JPH07310125A - Production of high magnetic flux density grain-oriented silicon steel sheet - Google Patents

Production of high magnetic flux density grain-oriented silicon steel sheet

Info

Publication number
JPH07310125A
JPH07310125A JP6101015A JP10101594A JPH07310125A JP H07310125 A JPH07310125 A JP H07310125A JP 6101015 A JP6101015 A JP 6101015A JP 10101594 A JP10101594 A JP 10101594A JP H07310125 A JPH07310125 A JP H07310125A
Authority
JP
Japan
Prior art keywords
annealing
flux density
magnetic flux
steel sheet
high magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6101015A
Other languages
Japanese (ja)
Inventor
Katsuro Kuroki
克郎 黒木
Tomoji Kumano
知二 熊野
Akira Sakaida
晃 坂井田
Maremizu Ishibashi
希瑞 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6101015A priority Critical patent/JPH07310125A/en
Publication of JPH07310125A publication Critical patent/JPH07310125A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Abstract

PURPOSE:To produce a high magnetic flux density grain-oriented silicon steel sheet low in core loss by executing finish annealing under specified conditions at the time of producing a high magnetic flux density grain-oriented silicon steel sheet from a silicon steel slab having a specified componental compsn. CONSTITUTION:A high magnetic flux density grain-oriented steel sheet is produced from a silicon steel slab having a compsn. contg., by weight, 0.020 to 0.075% C, 2.5 to 5.0% Si, 0.05 to 0.45% Mn, <=0.15% of one or more kinds of S and Se, 0.010 to 0.050% acid soluble Al, 0.0035 to 0.012% N, 0.02 to 0.15% Sn, 0.03 to 0.20% Cr, and the balance Fe with ineviatable impurities. At this time, finish annealing is executed so that the temp. rising rate at 900 to 1200 deg.C in the temp. rising stage is regulated to the range of 3 to 35 deg.C/hr, a gaseous mixture of N2 and H2 is used as the atmospheric gas therein, the relationship of -1.2R+46<=N<=-2.7R+118 is satisfied between the ratio N(%) in the gaseous N and R, and the oxidizing potential PH2O/PH2 in the annealing atmosphere is regulated to <=0.020.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気機器の鉄心に用いら
れる一方向性電磁鋼板の製造方法に関するもので、これ
により鉄損の低い高磁束密度一方向性電磁鋼板の製造を
可能にするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet used for an iron core of an electric device, which enables the production of a high magnetic flux density grain-oriented electrical steel sheet with low iron loss. Is.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は鋼板面が{110}
面で、圧延方向が〈100〉軸を有するいわゆるGos
s方位(ミラー指数で{110}〈001〉方位を表
す)を持つ結晶粒から構成されており、軟磁性材料とし
て変圧器及び発電機用の鉄心に使用される。この鋼板は
磁気特性として磁化特性と鉄損特性が良好でなければな
らない。磁化特性の良否はかけられた一定の磁場中で鉄
心内に誘起される磁束密度の高低で決まり、磁束密度の
高い製品では鉄心を小型化できる。磁束密度の高さは鋼
板結晶粒の方位を{110}〈001〉に高度に揃える
ことによって達成できる。
2. Description of the Related Art A unidirectional electrical steel sheet has a {110} steel plate surface.
Surface, so-called Gos having rolling direction <100> axis
It is composed of crystal grains having an s direction (representing {110} <001> direction by Miller index), and is used as a soft magnetic material for iron cores for transformers and generators. This steel sheet must have good magnetic properties and iron loss properties. The quality of the magnetization characteristics is determined by the level of the magnetic flux density induced in the iron core in the applied constant magnetic field, and the iron core can be downsized in products with high magnetic flux density. The high magnetic flux density can be achieved by aligning the orientation of the steel plate crystal grains to {110} <001>.

【0003】鉄損は鉄心に所定の交流磁場を与えた場合
に熱エネルギーとして消費される電力損失であり、その
良否に対して磁束密度、板厚、被膜張力、不純物量、比
抵抗、結晶粒の大きさ等が影響する。磁束密度の高い鋼
板は電気機器の鉄心を小さくでき、又鉄損も小さくなる
ので望ましく、当該技術分野ではできる限り磁束密度の
高い製品を安いコストで製造する方法の開発が課題であ
る。ところで、現在、工業生産されている代表的な一方
向性電磁鋼板の製造方法として3種類あるが各々につい
ては長所、短所がある。
Iron loss is a power loss consumed as heat energy when a predetermined alternating magnetic field is applied to the iron core, and magnetic flux density, plate thickness, coating tension, amount of impurities, specific resistance, crystal grains are determined according to the quality. The size of the will affect. A steel sheet having a high magnetic flux density can reduce the iron core of an electric device and also reduce an iron loss, which is desirable. In the technical field, development of a method for manufacturing a product having a high magnetic flux density at a low cost is an issue. By the way, at present, there are three types of typical industrially produced grain-oriented electrical steel sheet manufacturing methods, but each has its advantages and disadvantages.

【0004】第一の技術はM.F.Littmannに
よる特公昭30−3651号公報に示されたMnSを用
いた2回冷延工程であり、得られる二次再結晶粒は安定
して発達するが、高い磁束密度が得られない。第二の技
術は田口等による特公昭40−15644号公報に示さ
れたAlN+MnSを用いた最終冷間圧延率を80%以
上の強圧下率とするプロセスであり、高い磁束密度は得
られるが工業生産に際しては製造条件の厳密なコントロ
ールが要求される。第三の技術は今中等による特公昭5
1−13469号公報に示されたMnS(及び/又はM
nSe)+Sbを含有する珪素鋼を2回冷延工程によっ
て製造するプロセスであり、比較的に高い磁束密度は得
られている。
The first technique is M.K. F. It is a two-time cold rolling process using MnS disclosed in Japanese Patent Publication No. Sho 30-3651 by Littmann, and the obtained secondary recrystallized grains grow stably, but a high magnetic flux density cannot be obtained. The second technique is a process disclosed in Japanese Patent Publication No. 40-15644 by Taguchi et al., Which uses AlN + MnS to set the final cold rolling rate to a strong rolling reduction of 80% or more. In production, strict control of production conditions is required. The third technology is now in Japanese Patent Publication Sho 5
MnS (and / or M shown in JP-A-1-146969)
This is a process for manufacturing silicon steel containing nSe) + Sb by two cold rolling steps, and a relatively high magnetic flux density is obtained.

【0005】上記3種類の技術においては共通して次の
ような問題がある。即ち、上記技術はいずれもが析出物
を微細、均一に制御する技術として熱延に先立つスラブ
加熱温度を、1250℃超、実際には1300℃以上と
極めて高い温度にすることによって粗大に析出している
析出物を一旦固溶させ、その後の熱延中、或いは熱処理
中に析出させている。スラブ加熱温度を上げることはス
ラブ加熱時の使用エネルギーの増大、設備損傷率の増大
等の他、材質的にはスラブの結晶組織に起因する線状の
二次再結晶不良が発生し、特に薄手材、高Si材におい
て顕著になってくる。
The above three types of technology have the following problems in common. That is, all of the above techniques are techniques for controlling the precipitates finely and uniformly, and coarse precipitation occurs when the slab heating temperature prior to hot rolling is set to an extremely high temperature of over 1250 ° C, actually 1300 ° C or higher. The formed precipitates are once solid-dissolved and then precipitated during hot rolling or heat treatment. Increasing the slab heating temperature increases the energy used during slab heating, increases the equipment damage rate, and causes linear secondary recrystallization defects due to the crystal structure of the slab in terms of material. Material, high Si material.

【0006】このような高温スラブ加熱法に対し特開昭
62−40315号公報或いは特開平5−112827
号公報に開示されている技術、即ち二次再結晶に必要な
インヒビターは、脱炭焼鈍(一次再結晶)完了以降から
仕上げ焼鈍における二次再結晶発現以前までに造り込む
ものがある。その手段は、鋼中にNを侵入させることに
よって、インヒビターとして機能する(Al,Si)N
を形成させるものである。鋼中にNを侵入させる手段と
しては、仕上げ焼鈍昇温過程での雰囲気ガスからのNの
侵入を利用するか、脱炭焼鈍後段領域或いは脱炭焼鈍完
了後のストリップを連続ラインでNH3 等の窒化源とな
る雰囲気ガスを用いて行う。これらの方法によって磁気
特性(鉄損、磁束密度)の良好な電磁鋼板が得られてい
るが、更なる高特性化が望まれるところである。
For such a high temperature slab heating method, JP-A-62-40315 or JP-A-5-112827.
Some of the techniques disclosed in the publication, that is, the inhibitors necessary for secondary recrystallization, are built in after the completion of decarburization annealing (primary recrystallization) and before the appearance of secondary recrystallization in finish annealing. The means acts as an inhibitor by injecting N into the steel (Al, Si) N.
Is formed. As a means for injecting N into the steel, the infiltration of N from the atmosphere gas in the final annealing temperature rising process is used, or the strip after decarburization annealing or the strip after decarburization annealing is completed in a continuous line with NH 3 or the like. It is carried out by using an atmospheric gas which becomes a nitriding source of Magnetic steel sheets with good magnetic properties (iron loss, magnetic flux density) have been obtained by these methods, but further improvement in properties is desired.

【0007】[0007]

【発明が解決しようとする課題】この製造法においては
脱炭焼鈍後の一次再結晶粒の粒径及びその集合組織が二
次再結晶粒の発達並びに磁気特性を大きく左右すること
は勿論であるが、脱炭焼鈍後に行う仕上げ焼鈍は良好な
Goss組織を発達させるうえで重要な工程である。特
に仕上げ焼鈍昇温過程(二次再結晶開始温度域)におけ
るインヒビターの弱体化(消失時間)が、二次再結晶方
位集積度を左右する。この因子としてインヒビターの
量、仕上げ焼鈍昇温速度フォルステライト被膜の形成状
態等がある。本発明はこれら因子の適正化を図り、磁気
特性の優れた一方向性電磁鋼板を安定して製造する方法
を提供するものである。
In this manufacturing method, it is needless to say that the grain size and texture of the primary recrystallized grains after decarburization annealing greatly influence the development of secondary recrystallized grains and magnetic properties. However, finish annealing performed after decarburization annealing is an important step in developing a good Goss structure. In particular, the weakening (disappearing time) of the inhibitor in the final annealing temperature rising process (secondary recrystallization starting temperature range) influences the secondary recrystallization orientation integration degree. Factors such as this include the amount of the inhibitor, the rate of temperature increase in the final annealing, the state of formation of the forsterite coating, and the like. The present invention aims to optimize these factors and provide a method for stably producing a grain-oriented electrical steel sheet having excellent magnetic properties.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量比でC:0.020〜0.075%、Si:
2.5〜5.0%、Mn:0.05〜0.45%、S或
いはSeを単独又は複合で0.15%以下、酸可溶性A
l:0.010〜0.050%、N:0.0035〜
0.012%、Sn:0.02〜0.15%、Cr:
0.03〜0.20%、残部Fe及び不可避的不純物か
らなる電磁鋼スラブを、1280℃以下の温度に加熱し
た後熱延し、熱延板焼鈍をし、1回又は中間焼鈍を介挿
する2回以上の最終圧下率が80%以上の圧延をし、次
いで脱炭焼鈍し、窒化処理を650〜850℃の温度で
ストリップを走行せしめる状態下で行った後仕上げ焼鈍
をする一方向性電磁鋼板の製造において、仕上げ焼鈍の
昇温過程900〜1200℃の昇温速度をR℃/hr(3
〜35℃/hr)とし、その雰囲気ガスをN2 とH2 の混
合ガスとし、N2 ガスの割合をN(%)とした場合−
1.2R+46≦N≦2.7R+118の関係を満たさ
せ、かつ焼鈍雰囲気の酸化ポテンシャルP H2 O /P H
2 を0.020以下として仕上げ焼鈍を行うものであ
る。
The gist of the present invention is that C: 0.020 to 0.075% by weight and Si:
2.5 to 5.0%, Mn: 0.05 to 0.45%, S or Se alone or in combination of 0.15% or less, acid-soluble A
1: 0.010 to 0.050%, N: 0.0035 to
0.012%, Sn: 0.02-0.15%, Cr:
An electromagnetic steel slab consisting of 0.03 to 0.20% and the balance Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or lower, then hot-rolled, hot-rolled sheet annealed, and inserted once or in intermediate annealing. One-way unidirectionality of two or more rollings with a final rolling reduction of 80% or more, followed by decarburization annealing and nitriding at a temperature of 650 to 850 ° C. under the condition that the strip is run, and then finish annealing. In the production of electrical steel sheets, the temperature rising rate of finish annealing is 900 to 1200 ° C. and the heating rate is R ° C./hr (3
To 35 ° C./hr), the atmosphere gas is a mixed gas of N 2 and H 2 , and the ratio of N 2 gas is N (%)-
1.2R + 46 ≦ N ≦ 2.7R + 118, and the oxidation potential P H 2 O / P H in the annealing atmosphere is satisfied.
Finish annealing is performed with 2 set to 0.020 or less.

【0009】以下本発明を詳細に説明する。重量比で
C:0.055%、Si:3.3%、Mn:0.12
%、S:0.008%、Cr:0.12%、酸可溶性A
l:0.028%、N:0.0077%、P:0.03
0%、Sn:0.05%を含んだ電磁鋼スラブを115
0℃で加熱熱延し2.3mmの熱延板を造った。これを1
120℃+900℃で焼鈍した後急冷却した。次いで酸
洗し0.23mmに冷間圧延した。これを湿水素、窒素雰
囲気中で脱炭焼鈍をし一次再結晶粒の粒径を23μmに
調整した。この後窒化焼鈍を750℃×30秒で水素、
窒素、アンモニアの混合ガス中で行い、鋼板の窒素量を
ほぼ200ppm に調整した。
The present invention will be described in detail below. Weight ratio of C: 0.055%, Si: 3.3%, Mn: 0.12
%, S: 0.008%, Cr: 0.12%, acid-soluble A
1: 0.028%, N: 0.0077%, P: 0.03
115% electromagnetic steel slab containing 0% and Sn: 0.05%
A hot rolled sheet of 2.3 mm was prepared by hot rolling at 0 ° C. This one
It was annealed at 120 ° C + 900 ° C and then rapidly cooled. It was then pickled and cold rolled to 0.23 mm. This was decarburized and annealed in an atmosphere of wet hydrogen and nitrogen to adjust the grain size of the primary recrystallized grains to 23 μm. After this, nitriding annealing was performed at 750 ° C. for 30 seconds with hydrogen
It was carried out in a mixed gas of nitrogen and ammonia to adjust the nitrogen content of the steel sheet to about 200 ppm.

【0010】次いでMgO,TiO2 を主成分とする焼
鈍分離剤を塗布し1200℃で20時間の仕上げ焼鈍を
行った。この仕上げ焼鈍の条件として昇温過程900〜
1200℃までの昇温速度を表1のごとく変化させ、焼
鈍雰囲気ガスはいずれもN2とH2 の混合ガスとし、そ
のN2 の割合を10〜100%の範囲で変化させた。な
お、雰囲気ガスの酸化ポテンシャルP H2 O /P H2
0.01とした。室温から900℃までの昇温速度は2
0℃/hrとした。この結果を図1に示す。この図から−
1.2R+46≦N≦−2.7R+118の範囲におい
て高磁束密度が得られている。なおN2 90%超ではそ
の効果が見られないのでmax90%とした。
Then, an annealing separator containing MgO and TiO 2 as main components was applied and finish annealing was carried out at 1200 ° C. for 20 hours. As a condition of this finish annealing, the temperature rising process 900-
The heating rate up to 1200 ° C. was changed as shown in Table 1, the annealing atmosphere gas was a mixed gas of N 2 and H 2 , and the ratio of N 2 was changed in the range of 10 to 100%. Note that the oxidation potential of the atmospheric gas P H 2 O / P H 2 =
It was set to 0.01. The heating rate from room temperature to 900 ° C is 2
It was set to 0 ° C./hr. The result is shown in FIG. From this figure-
A high magnetic flux density is obtained in the range of 1.2R + 46 ≦ N ≦ -2.7R + 118. If N 2 exceeds 90%, the effect is not observed, so the maximum was set to 90%.

【0011】[0011]

【表1】 [Table 1]

【0012】この理由については次のように考えてい
る。一般に二次再結晶粒の結晶方位は二次再結晶粒の発
現及び成長温度域のインヒビター挙動に大きく左右され
る。方向性の優れた結晶方位(Goss方位)を発達さ
せるには、高温域のインヒビターの分解消失の時間を長
くしGoss方位の優先成長を有利にすることが必要で
ある。これを達成するために昇温速度と雰囲気ガス(N
2 %)に注目し検討を行ったが、昇温速度は3℃/hr未
満では時間的に又35℃/hr超では設備的面から工業的
に達成することが困難であるため3℃/hr〜35℃/hr
の範囲とした。昇温速度が遅いと高温域の滞留時間が長
くなるためインヒビターの分解は速まる。これを防止す
るためN2 %を高くする。一方昇温速度が速くなるとイ
ンヒビターの分解が高温側にずれるためN2 %を下げる
ことでその分解を速める。このような組み合わせにより
二次再結晶粒の発現及び成長温度域の必要インヒビター
を調整し、Goss方位の優先成長を行わせているもの
と考えている。
The reason for this is considered as follows. Generally, the crystallographic orientation of the secondary recrystallized grains is greatly influenced by the appearance of the secondary recrystallized grains and the inhibitor behavior in the growth temperature range. In order to develop a crystallographic orientation (Goss orientation) with excellent directionality, it is necessary to lengthen the decomposition and disappearance time of the inhibitor in the high temperature region to make preferential growth of the Goss orientation advantageous. In order to achieve this, the temperature rising rate and the atmosphere gas (N
2 %) was examined, but it was difficult to achieve a temperature rise rate of less than 3 ° C / hr in time, and more than 35 ° C / hr because it was difficult to achieve industrially from the viewpoint of equipment. hr-35 ℃ / hr
And the range. When the heating rate is slow, the residence time in the high temperature region is long and the inhibitor decomposition is accelerated. To prevent this, N 2 % is increased. On the other hand, when the temperature rising rate is high, the decomposition of the inhibitor shifts to the high temperature side, and therefore the decomposition is accelerated by lowering N 2 %. It is considered that the combination of such combinations adjusts the expression of secondary recrystallized grains and the necessary inhibitors in the growth temperature range to preferentially grow the Goss orientation.

【0013】本発明の限定理由は以下の通りである。C
は、その含有量が0.020%未満になると、二次再結
晶が不安定になり、二次再結晶した場合でも製品の磁束
密度がB8 で1.80Tと低いものとなる。一方、Cの
含有量が0.075%を超えて多くなり過ぎると、脱炭
焼鈍時間が長くなり、生産性を損なう。好ましくは0.
03〜0.06%がよい。Siは、その含有量が2.5
%未満になると低鉄損の製品を得難く、一方5.0%を
超えて多くなり過ぎると材料の冷延性に問題を生ずる。
The reasons for limiting the present invention are as follows. C
When the content is less than 0.020%, the secondary recrystallization becomes unstable, and even when the secondary recrystallization is performed, the magnetic flux density of the product is as low as 1.80 T at B 8 . On the other hand, if the content of C exceeds 0.075% and becomes too large, the decarburization annealing time becomes long and the productivity is impaired. Preferably 0.
03-0.06% is good. Si has a content of 2.5
If it is less than 1.0%, it is difficult to obtain a product with low iron loss, while if it exceeds 5.0%, there is a problem in cold ductility of the material.

【0014】本発明の出発材料の成分系における特徴の
一つは、S或いはSeを単独又は複合で0.015%以
下、好ましくは0.0070%以下とする点にある。S
は周知のごとくMnS,Se或いはMnSeを形成し粒
成長を抑制する作用をする。本発明においては二次再結
晶粒を発現させるに必要なインヒビターは、脱炭焼鈍以
降で造り込むことを特徴としており、冷延以前で微細な
析出物が分散することは一次再結晶粒径を調整して高磁
束密度低鉄損を得る本発明においては好ましくない。従
ってS或いはSeは0.015%以下としている。又S
或いはSe量を少なくすることは熱延時の耳割れの低減
にも効果が大きい。
One of the characteristics of the component system of the starting material of the present invention is that S or Se alone or in combination is 0.015% or less, preferably 0.0070% or less. S
As is well known, forms MnS, Se or MnSe and acts to suppress grain growth. In the present invention, the inhibitor required to develop the secondary recrystallized grains is characterized by being built in after decarburization annealing, and the dispersion of fine precipitates before cold rolling means that the primary recrystallized grain size is It is not preferable in the present invention in which high magnetic flux density and low iron loss are obtained by adjusting. Therefore, S or Se is set to 0.015% or less. See S
Alternatively, reducing the amount of Se has a great effect on reducing ear cracks during hot rolling.

【0015】AlはNと結合してAlNを形成するが、
本発明においては、後工程即ち一次再結晶完了後に鋼を
窒化することにより、(Al,Si)Nを形成せしめる
ことを必須としているから、フリーのAlが一定量以上
必要である。そのため、酸可溶性Alとして、0.01
0〜0.050%添加する。Nは0.0035〜0.0
12%にする必要がある。0.012%を超えるとブリ
スターと呼ばれる鋼板表面の脹れが発生する。又一次再
結晶組織の調整が困難になる。下限は0.0035%が
よい。この値未満になると二次再結晶粒を発達させるの
が困難になる。
Al combines with N to form AlN,
In the present invention, it is indispensable to form (Al, Si) N by nitriding steel after the post-process, that is, after completion of primary recrystallization, so that a certain amount or more of free Al is required. Therefore, as acid-soluble Al, 0.01
Add 0-0.050%. N is 0.0035 to 0.0
It needs to be 12%. If it exceeds 0.012%, swelling of the steel sheet surface called blister occurs. Further, it becomes difficult to adjust the primary recrystallization structure. The lower limit is preferably 0.0035%. Below this value, it becomes difficult to develop secondary recrystallized grains.

【0016】Mnは、その含有量が少な過ぎると二次再
結晶が不安定となり、一方、多過ぎると高い磁束密度を
持つ製品を得難くなる。適正な含有量は、0.050〜
0.45%である。Crは脱炭焼鈍時の酸化を促進する
元素であるが、Snとの複合添加で仕上げ焼鈍後の被膜
形成が安定化する。Snは脱炭焼鈍後の集合組織を改善
し、ひいては二次再結晶粒を改善し被膜の安定化と相ま
って鉄損改善に効果が大きい。Snの適量は0.02〜
0.15%でありこれより少ないと効果が弱く、一方多
いと窒化が困難になり二次再結晶粒が発達しなくなる。
好ましくは0.03〜0.08%がよい。
If the content of Mn is too small, the secondary recrystallization becomes unstable, while if it is too large, it becomes difficult to obtain a product having a high magnetic flux density. The proper content is 0.050
It is 0.45%. Cr is an element that promotes oxidation during decarburization annealing, but the combined formation with Sn stabilizes the film formation after finish annealing. Sn improves the texture after decarburization annealing and, in turn, improves secondary recrystallized grains and, together with the stabilization of the coating, has a great effect on improving iron loss. Suitable amount of Sn is 0.02
If it is less than 0.15%, the effect is weak, while if it is more than this, nitriding becomes difficult and secondary recrystallized grains do not develop.
It is preferably 0.03 to 0.08%.

【0017】Crの適量は0.03〜0.20%がよ
い。0.03%未満では上記効果が得られない。又0.
20%超添加しても合金コストが上昇するだけで効果が
向上しないので制限される。好ましくは0.05〜0.
15%がよい。この他微量のP,Cuを含むことは本発
明の主旨を損なうものではない。
A suitable amount of Cr is preferably 0.03 to 0.20%. If it is less than 0.03%, the above effect cannot be obtained. Also 0.
Even if over 20% is added, the alloy cost only rises and the effect does not improve, so it is limited. Preferably 0.05-0.
15% is good. In addition, the inclusion of a trace amount of P and Cu does not impair the gist of the present invention.

【0018】次に、本発明の製造プロセスについて説明
する。電磁鋼スラブは、転炉或いは電気炉等の溶解炉で
鋼を溶製し、必要に応じて真空脱ガス処理し、次いで連
続鋳造によって或いは造塊後分塊圧延することによって
得られる。熱延板の焼鈍は公知の方法でよいが、通常9
00〜1170℃の温度で行った後急冷却をする。
Next, the manufacturing process of the present invention will be described. The electromagnetic steel slab is obtained by melting steel in a melting furnace such as a converter or an electric furnace, subjecting it to vacuum degassing treatment if necessary, and then performing continuous casting or slabbing after ingot casting. A known method may be used for annealing the hot rolled sheet, but usually 9
After performing at a temperature of 00 to 1170 ° C., rapid cooling is performed.

【0019】なお熱延板の焼鈍を省略しても充分商品価
値あるものが製造可能である。冷延率は高いB8 値を得
るために80%以上とする。脱炭焼鈍は脱炭を行う他に
一次再結晶組織の調整及び被膜形成に必要な酸化層を生
成させる役割がある。これは通常800〜900℃の温
度域で湿水素、窒素ガス中で行う。
Even if the annealing of the hot-rolled sheet is omitted, a product having a sufficient commercial value can be manufactured. The cold rolling rate is 80% or more in order to obtain a high B 8 value. In addition to decarburization, decarburization annealing has the role of adjusting the primary recrystallization structure and forming an oxide layer necessary for film formation. This is usually performed in a temperature range of 800 to 900 ° C. in wet hydrogen and nitrogen gas.

【0020】次に窒化処理条件の限定理由について述べ
る。図2は窒素が最も鋼中に入りやすいH2 ガスとNH
3 ガスの混合ガスを雰囲気として、30秒間窒化処理を
行った後、仕上げ焼鈍して得られた製品が良好な二次再
結晶を示す領域を、窒化処理温度と鋼板の窒素量とNH
3 ガス濃度の関係を示す。この図から明らかなごとく、
650〜850℃の温度域で窒化が良好であることがわ
かる。なお850℃を超えると一次再結晶粒が成長し二
次再結晶不良となる。又650℃未満では窒化が困難に
なり二次再結晶不良となる。良好な二次再結晶粒を安定
して発達させるには窒素量は120ppm 以上、好ましく
は150ppm 以上必要である。上記窒化条件でこの範囲
の窒化量が得られる。この後MgO,TiO2 を主成分
とするスラリーを塗布し1100℃以上の温度で仕上げ
焼鈍を行う。
Next, the reasons for limiting the nitriding conditions will be described. Figure 2 easily enters into the nitrogen most steel H 2 gas and NH
After the nitriding treatment was performed for 30 seconds in a mixed gas of 3 gases, the product obtained by finish annealing was subjected to the nitriding treatment temperature, the nitrogen content of the steel sheet, and the NH
3 shows the relationship of gas concentrations. As is clear from this figure,
It can be seen that nitriding is good in the temperature range of 650 to 850 ° C. If the temperature exceeds 850 ° C., primary recrystallized grains grow and secondary recrystallization becomes defective. On the other hand, if the temperature is lower than 650 ° C, nitriding becomes difficult and secondary recrystallization becomes poor. In order to stably develop good secondary recrystallized grains, the nitrogen content must be 120 ppm or more, preferably 150 ppm or more. Under the above nitriding conditions, a nitriding amount in this range can be obtained. Then, a slurry containing MgO and TiO 2 as a main component is applied and finish annealing is performed at a temperature of 1100 ° C. or higher.

【0021】次に本発明における仕上げ焼鈍の昇温過程
800〜1200℃の雰囲気ガスの酸化ポテンシャルの
限定理由を説明する。重量比でC:0.058%、S
i:3.45%、Mn:0.10%、S:0.007
%、Cr:0.12%、P:0.025%、Sn:0.
05%、酸可溶性Al:0.030%を含んだスラブを
1150℃で加熱熱延し2.3mmの熱延板を製造した。
これを1120℃+900℃で焼鈍した後急冷却した。
次いで酸洗し0.17mmに冷間圧延した。これを湿水
素、窒素雰囲気中で脱炭焼鈍をし一次再結晶粒の粒径を
ほぼ22μmに調整した。この後窒化焼鈍を750℃×
30秒で水素、窒素、アンモニアの混合ガス中で行い、
鋼板の窒素量をほぼ200ppmに調整した。
Next, the reason for limiting the oxidation potential of the atmospheric gas at 800 to 1200 ° C. in the temperature rising process of finish annealing in the present invention will be explained. C: 0.058% by weight, S
i: 3.45%, Mn: 0.10%, S: 0.007
%, Cr: 0.12%, P: 0.025%, Sn: 0.
A slab containing 05% and acid-soluble Al: 0.030% was hot-rolled at 1150 ° C. to produce a hot-rolled sheet of 2.3 mm.
This was annealed at 1120 ° C + 900 ° C and then rapidly cooled.
It was then pickled and cold rolled to 0.17 mm. This was decarburized and annealed in an atmosphere of wet hydrogen and nitrogen to adjust the grain size of primary recrystallized grains to about 22 μm. After this, nitriding annealing is performed at 750 ° C ×
30 seconds in a mixed gas of hydrogen, nitrogen and ammonia,
The nitrogen content of the steel sheet was adjusted to approximately 200 ppm.

【0022】次いでMgO,TiO2 を主成分とする焼
鈍分離剤を塗布し1200℃×20時間の仕上げ焼鈍を
行った。この仕上げ焼鈍の条件として、昇温過程900
〜1200℃までの雰囲気ガスをN2 :50%、H2
50%の混合ガスとし、雰囲気ガスの酸化ポテンシャル
P H2 O /P H2 を0.01,0.02,0.03,
0.04の4水準に変化させて処理した。なお、室温か
ら800℃までのN2 は25%とし、昇温速度は7℃/
hr(N2 :75%)と15℃/hr(N2 :50%)で行
った。この後無水クロム酸、燐酸アルニミウムを主成分
とする張力コーティングを施した。結果を図3に示す。
この結果からP H2 O /P H2 :0.02以下において
低鉄損材が得られた。0.02を超えると被膜の形成が
悪くなりこれが鉄損特性に悪影響しているものと考えら
れる。このような理由からP H2 O/P H2 は0.02
以下とした。
Then, an annealing separator containing MgO and TiO 2 as a main component was applied and finish annealing was performed at 1200 ° C. for 20 hours. As a condition of this finish annealing, the temperature rising process 900
Atmosphere gas up to 1200 ° C. is N 2 : 50%, H 2 :
A mixed gas of 50% is used, and the oxidation potential P H 2 O / P H 2 of the atmosphere gas is 0.01, 0.02, 0.03.
It was processed by changing it to four levels of 0.04. In addition, N 2 from room temperature to 800 ° C. was 25%, and the temperature rising rate was 7 ° C. /
It was carried out at hr (N 2 : 75%) and 15 ° C./hr (N 2 : 50%). Then, a tension coating containing chromic anhydride and aluminum phosphate as main components was applied. The results are shown in Fig. 3.
The Results P H 2 O / P H 2 : low core loss material is obtained at 0.02. When it exceeds 0.02, it is considered that the formation of the coating film deteriorates and this adversely affects the iron loss characteristics. For this reason, P H 2 O / P H 2 is 0.02
Below.

【0023】[0023]

【実施例】【Example】

実施例1 重量比でC:0.056%、Si:3.5%、Mn:
0.10%、S:0.007%、Cr:0.12%、酸
可溶性Al:0.030%、N:0.0075%、P:
0.025%、Sn:0.05%を含んだ電磁鋼スラブ
を1150℃で加熱熱延し2.3mmの熱延板を造った。
これを1120℃+900℃で焼鈍した後急冷却した。
次いで酸洗し0.20mmに冷間圧延した。これを湿水
素、窒素雰囲気中で830℃の脱炭焼鈍をし一次再結晶
粒の粒径を約23μmに調整した。
Example 1 C: 0.056% by weight ratio, Si: 3.5%, Mn:
0.10%, S: 0.007%, Cr: 0.12%, acid-soluble Al: 0.030%, N: 0.0075%, P:
An electromagnetic steel slab containing 0.025% and Sn: 0.05% was heated and hot-rolled at 1150 ° C to produce a hot-rolled sheet of 2.3 mm.
This was annealed at 1120 ° C + 900 ° C and then rapidly cooled.
It was then pickled and cold rolled to 0.20 mm. This was decarburized and annealed at 830 ° C. in an atmosphere of wet hydrogen and nitrogen to adjust the grain size of primary recrystallized grains to about 23 μm.

【0024】この後窒化焼鈍を750℃×30秒で水
素、窒素、アンモニアの混合ガス中で行い、鋼板の窒素
量をほぼ220ppm に調整した。次いでMgO,TiO
2 を主成分とする焼鈍分離剤を塗布し1200℃×20
時間の仕上げ焼鈍を行った。この仕上げ焼鈍の条件とし
て昇温過程900〜1200℃までの昇温速度と焼鈍雰
囲気ガスを表2,表3のごとく変化させた。なお、室温
から900℃までの昇温速度は25℃/hrとし、雰囲気
ガスの酸化ポテンシャルP H2 O /P H2 =0.01と
した。磁束密度を表4に示す。本発明の条件を満たす範
囲において高磁束密度鋼板が得られた。
Then, nitriding annealing was performed at 750 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia to adjust the nitrogen content of the steel sheet to about 220 ppm. Then MgO, TiO
Applying an annealing separator containing 2 as the main component, 1200 ℃ × 20
A time finish annealing was performed. As conditions for this finish annealing, the temperature rising rate from 900 to 1200 ° C. and the annealing atmosphere gas were changed as shown in Tables 2 and 3. The temperature rising rate from room temperature to 900 ° C. was 25 ° C./hr, and the oxidizing potential of the atmosphere gas was PH 2 O / PH 2 = 0.01. The magnetic flux density is shown in Table 4. A high magnetic flux density steel plate was obtained in the range satisfying the conditions of the present invention.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】実施例2 重量比でC:0.050%、Si:3.2%、Mn:
0.10%、S:0.009%、Cr:0.12%、酸
可溶性Al:0.027%、N:0.0077%、P:
0.040%、Sn:0.05%を含んだ電磁鋼スラブ
を1150℃で加熱熱延し2.3mmの熱延板を造った。
これを1120℃+900℃で焼鈍した後急冷却した。
次いで酸洗し0.30mmに冷間圧延した。これを湿水
素、窒素雰囲気中で840℃の脱炭焼鈍をし一次再結晶
粒の粒径を約24μmに調整した。この後窒化焼鈍を7
50℃×30秒で水素、窒素、アンモニアの混合ガス中
で行い、鋼板の窒素量をほぼ200ppm に調整した。次
いでMgO,TiO2 を主成分とする焼鈍分離剤を塗布
し1200℃×20時間の仕上げ焼鈍を行った。この仕
上げ焼鈍の条件として、昇温過程900〜1200℃ま
での昇温速度と雰囲気ガスと焼鈍雰囲気ガスの酸化ポテ
ンシャルを表5のごとく変化させた。磁気特性を表6,
表7に示す。この結果からわかるように本発明の範囲に
おいて高い磁束密度の鋼板が得られたが、表7では高磁
束密度鋼板は得られていない。
Example 2 C: 0.050%, Si: 3.2%, Mn: by weight.
0.10%, S: 0.009%, Cr: 0.12%, acid-soluble Al: 0.027%, N: 0.0077%, P:
An electromagnetic steel slab containing 0.040% and Sn: 0.05% was heated and hot-rolled at 1150 ° C. to produce a hot-rolled sheet of 2.3 mm.
This was annealed at 1120 ° C + 900 ° C and then rapidly cooled.
It was then pickled and cold rolled to 0.30 mm. This was decarburized and annealed at 840 ° C. in an atmosphere of wet hydrogen and nitrogen to adjust the grain size of primary recrystallized grains to about 24 μm. After this, nitriding annealing is performed 7
It was carried out at 50 ° C. for 30 seconds in a mixed gas of hydrogen, nitrogen and ammonia, and the nitrogen content of the steel sheet was adjusted to about 200 ppm. Then, an annealing separator containing MgO and TiO 2 as a main component was applied and finish annealing was performed at 1200 ° C. for 20 hours. As conditions for this finish annealing, the temperature rising rate from 900 to 1200 ° C. in the temperature rising process and the oxidizing potentials of the atmosphere gas and the annealing atmosphere gas were changed as shown in Table 5. The magnetic properties are shown in Table 6,
It shows in Table 7. As can be seen from these results, steel sheets with high magnetic flux density were obtained within the scope of the present invention, but in Table 7, high magnetic flux density steel sheets were not obtained.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】[0032]

【発明の効果】本発明により磁気特性の良好な方向性電
磁鋼板を得ることができる。
According to the present invention, a grain-oriented electrical steel sheet having good magnetic properties can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】仕上げ焼鈍昇温速度、N2 %、と磁気特性の関
係を示す図表である。
FIG. 1 is a table showing the relationship between the finish annealing temperature rising rate, N 2 %, and magnetic properties.

【図2】窒化温度、窒化量と二次再結晶の良否の関係を
示す図表である。
FIG. 2 is a chart showing the relationship between nitriding temperature, nitriding amount, and quality of secondary recrystallization.

【図3】仕上げ焼鈍のP H2 O /P H2 と磁気特性の関
係を示す図表である。
FIG. 3 is a table showing a relationship between P H 2 O / P H 2 of finish annealing and magnetic properties.

【手続補正書】[Procedure amendment]

【提出日】平成6年6月14日[Submission date] June 14, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量比でC:0.020〜0.075%、Si:
2.5〜5.0%、Mn:0.05〜0.45%、S或
いはSeを単独又は複合で0.15%以下、酸可溶性A
l:0.010〜0.050%、N:0.0035〜
0.012%、Sn:0.02〜0.15%、Cr:
0.03〜0.20%、残部Fe及び不可避的不純物か
らなる電磁鋼スラブを、1280℃以下の温度に加熱し
た後熱延し、熱延板焼鈍をし、1回又は中間焼鈍を介挿
する2回以上の最終圧下率が80%以上の圧延をし、次
いで脱炭焼鈍し、窒化処理を650〜850℃の温度で
ストリップを走行せしめる状態下で行った後仕上げ焼鈍
をする一方向性電磁鋼板の製造において、仕上げ焼鈍の
昇温過程900〜1200℃の昇温速度をR℃/hr(3
〜35℃/hr)とし、その雰囲気ガスをN2 とH2 の混
合ガスとし、N2 ガスの割合をN(%)とした場合−
1.2R+46≦N≦2.7R+118の関係を満た
させ、かつ焼鈍雰囲気の酸化ポテンシャルP H2 O/P
H2 を0.020以下として仕上げ焼鈍を行うものであ
る。
The gist of the present invention is that C: 0.020 to 0.075% by weight and Si:
2.5 to 5.0%, Mn: 0.05 to 0.45%, S or Se alone or in combination of 0.15% or less, acid-soluble A
1: 0.010 to 0.050%, N: 0.0035 to
0.012%, Sn: 0.02-0.15%, Cr:
An electromagnetic steel slab consisting of 0.03 to 0.20% and the balance Fe and unavoidable impurities is heated to a temperature of 1280 ° C. or lower, then hot-rolled, hot-rolled sheet annealed, and inserted once or in intermediate annealing. One-way unidirectionality of two or more rollings with a final rolling reduction of 80% or more, followed by decarburization annealing and nitriding at a temperature of 650 to 850 ° C. under the condition that the strip is run, and then finish annealing. In the production of electrical steel sheets, the temperature rising rate of finish annealing is 900 to 1200 ° C. and the heating rate is R ° C./hr (3
To 35 ° C./hr), the atmosphere gas is a mixed gas of N 2 and H 2 , and the ratio of N 2 gas is N (%)-
1.2R + 46 ≦ N ≦ - 2.7R + 118 relationship was satisfied in and oxidation potential of the annealing atmosphere P H 2 O / P
Finishing annealing is performed with H 2 set to 0.020 or less.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石橋 希瑞 北九州市戸畑区飛幡町1番1号 新日本製 鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nozomi Ishibashi 1-1 Tobahata-cho, Tobata-ku, Kitakyushu City Nippon Steel Co., Ltd. Yawata Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.020〜0.075%、 Si:2.5〜5.0%、 Mn:0.05〜0.45%、 S或いはSeを単独又は複合で0.15%以下、 酸可溶性Al:0.010〜0.050%、 N :0.0035〜0.012%、 Sn:0.02〜0.15%、 Cr:0.03〜0.20%、 残部Fe及び不可避的不純物からなる電磁鋼スラブを、
1280℃以下の温度に加熱した後熱延し、必要に応じ
て熱延板焼鈍をし、最終圧下率が80%以上の1回又は
中間焼鈍を介挿する2回以上の圧延をし、次いで脱炭焼
鈍し、窒化処理を650〜850℃の温度でストリップ
を走行せしめる状態下で行った後、仕上げ焼鈍をする一
方向性電磁鋼板の製造において、仕上げ焼鈍の昇温過程
900〜1200℃の昇温速度を3〜35℃/hrの範囲
としその昇温速度をR℃/hr、その雰囲気ガスをN2
2 の混合ガスとし、N2 ガスの割合N(%)とRとの
間に、−1.2R+46≦N≦2.7R+118なる関
係を満たさしめ、かつ焼鈍雰囲気の酸化ポテンシャルP
H2 O /P H2 を0.020以下として仕上げ焼鈍を行
うことを特徴とする高磁束密度一方向性電磁鋼板の製造
方法。
1. A weight ratio of C: 0.020 to 0.075%, Si: 2.5 to 5.0%, Mn: 0.05 to 0.45%, and S or Se alone or in combination of 0. 15% or less, acid-soluble Al: 0.010 to 0.050%, N: 0.0035 to 0.012%, Sn: 0.02 to 0.15%, Cr: 0.03 to 0.20% , A magnetic steel slab consisting of the balance Fe and unavoidable impurities,
After heating to a temperature of 1280 ° C. or lower, hot rolling is performed, and hot-rolled sheet annealing is performed if necessary, and final rolling ratio is 80% or more once or two or more times of intermediate annealing, and then rolling. After decarburization annealing and nitriding treatment at a temperature of 650 to 850 ° C. under the condition that the strip is run, finish annealing is performed in the production of the grain-oriented electrical steel sheet. The temperature rising rate is in the range of 3 to 35 ° C./hr, the temperature rising rate is R ° C./hr, the atmosphere gas is a mixed gas of N 2 and H 2 , and the ratio N (%) of N 2 gas and R In the meantime, the relationship of −1.2R + 46 ≦ N ≦ 2.7R + 118 is satisfied, and the oxidation potential P of the annealing atmosphere is
A method for producing a high magnetic flux density grain-oriented electrical steel sheet, characterized in that finish annealing is performed with H 2 O / PH 2 of 0.020 or less.
JP6101015A 1994-05-16 1994-05-16 Production of high magnetic flux density grain-oriented silicon steel sheet Withdrawn JPH07310125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101015A JPH07310125A (en) 1994-05-16 1994-05-16 Production of high magnetic flux density grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101015A JPH07310125A (en) 1994-05-16 1994-05-16 Production of high magnetic flux density grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH07310125A true JPH07310125A (en) 1995-11-28

Family

ID=14289395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101015A Withdrawn JPH07310125A (en) 1994-05-16 1994-05-16 Production of high magnetic flux density grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH07310125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482207B1 (en) * 2000-10-19 2005-04-13 주식회사 포스코 A method for manufacturing grain oriented electric steel sheet
WO2015096430A1 (en) * 2013-12-27 2015-07-02 东北大学 Method for preparing oriented high silicon electrical steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482207B1 (en) * 2000-10-19 2005-04-13 주식회사 포스코 A method for manufacturing grain oriented electric steel sheet
WO2015096430A1 (en) * 2013-12-27 2015-07-02 东北大学 Method for preparing oriented high silicon electrical steel

Similar Documents

Publication Publication Date Title
JPH03211232A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP3390109B2 (en) Low iron loss high magnetic flux density
JP3368310B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH07310125A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH10245629A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH11279642A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and film formation
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP2001040416A (en) Manufacture of grain oriented silicon steel sheet with high goss integration degree
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JPH09137223A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731