JP2007177282A - Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density - Google Patents

Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density Download PDF

Info

Publication number
JP2007177282A
JP2007177282A JP2005376781A JP2005376781A JP2007177282A JP 2007177282 A JP2007177282 A JP 2007177282A JP 2005376781 A JP2005376781 A JP 2005376781A JP 2005376781 A JP2005376781 A JP 2005376781A JP 2007177282 A JP2007177282 A JP 2007177282A
Authority
JP
Japan
Prior art keywords
hot
rolled sheet
less
transformation point
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005376781A
Other languages
Japanese (ja)
Inventor
Tomoyuki Okubo
智幸 大久保
Yoshihiko Oda
善彦 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005376781A priority Critical patent/JP2007177282A/en
Publication of JP2007177282A publication Critical patent/JP2007177282A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a nonoriented electromagnetic steel sheet having high magnetic flux density. <P>SOLUTION: A slab having a composition containing, by mass, ≤0.05% C, ≤1.5% Si, 0.05 to 1.0% Mn, ≤0.2% P, ≤0.01% S, ≤1.0% Al, and the balance Fe with inevitable impurities is subjected to hot rolling where finishing temperature is controlled to an Ar<SB>3</SB>transformation point or above, and is successively subjected to cooling where the average cooling rate from the Ar<SB>3</SB>transformation point to 200°C is controlled to >50°C/s, so as to be a hot rolled sheet. The hot rolled sheet is subjected to hot rolled sheet annealing, and is then subjected to cold rolling, so as to be a cold rolled sheet having a prescribed sheet thickness. The cold rolled sheet is next subjected to finish annealing. In this way, a electromagnetic steel sheet having a high magnetic flux density B<SB>50</SB>of ≥1.76T is obtained. For further improving its magnetic properties, the average cooling rate from the Ar<SB>3</SB>transformation point to 200°C is preferably controlled to ≥200°C/s. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電機機器等の鉄心材料に好適な無方向性電磁鋼板に係り、とくに極めて高い磁束密度を有する無方向性電磁鋼板の製造方法に関する。   The present invention relates to a non-oriented electrical steel sheet suitable for an iron core material such as electrical equipment, and more particularly to a method for producing a non-oriented electrical steel sheet having a very high magnetic flux density.

近年、省エネルギーの観点から、電機機器等の回転機や変圧器の高効率化が推進されている。このような状況から、電機機器等の回転機や変圧器の鉄芯として用いられる無方向性電磁鋼板には、更なる高磁束密度化、低鉄損化が要求されている。
無方向性電磁鋼板の磁束密度を向上させる一般的な手段としては、冷間圧延前の結晶粒を粗大化することにより、仕上焼鈍時の再結晶過程における{111}方位の生成を抑制し、{100}及び{110}方位を増加させることが挙げられる。冷間圧延前の結晶粒を粗大化するためには、熱延板焼鈍を行うことが最も効果的である。この熱延板焼鈍は、通常1000℃程度の温度で行われる。しかし、焼鈍中に変態が発生すると結晶粒が微細化するため、焼鈍温度をAc変態点以下とする必要がある。
In recent years, high efficiency of rotating machines and transformers such as electrical equipment has been promoted from the viewpoint of energy saving. Under these circumstances, non-oriented electrical steel sheets used as iron cores for rotating machines and transformers such as electrical equipment are required to have higher magnetic flux density and lower iron loss.
As a general means to improve the magnetic flux density of non-oriented electrical steel sheet, by coarsening the crystal grains before cold rolling, suppress the generation of {111} orientation in the recrystallization process during finish annealing, Increasing the {100} and {110} orientations. In order to coarsen the crystal grains before cold rolling, it is most effective to perform hot-rolled sheet annealing. This hot-rolled sheet annealing is usually performed at a temperature of about 1000 ° C. However, if transformation occurs during annealing, the crystal grains become finer, so the annealing temperature needs to be lower than the Ac 1 transformation point.

また、熱間圧延の仕上げ温度を高温化することにより結晶粒を粗大化させて、磁束密度を向上させることもできる、しかし、この場合も、熱間圧延終了後に、γ−α変態が生じると結晶粒が微紬化するため、熱間圧延の仕上げ温度はAr変態点以下とする必要がある。
しかしながら、SiやAl含有量の低い低級無方向性電磁鋼板では、A変態点が1000℃以下であるため、熱延板焼鈍の焼鈍温度や熱間圧延の仕上げ温度を十分に高温とすることができず、十分な結晶粒粗大化を達成することができない。このため、得られる無方向性電磁鋼板の磁束密度には限界があるという問題があった。
In addition, it is possible to increase the magnetic flux density by increasing the finishing temperature of hot rolling, thereby increasing the magnetic flux density. However, in this case as well, when the γ-α transformation occurs after the hot rolling is completed. Since the crystal grains become finer, the finishing temperature of hot rolling needs to be lower than the Ar 1 transformation point.
However, Si in the lower lower non-oriented electrical steel sheet and Al content, since the A 1 transformation point of 1000 ° C. or less, be a sufficiently high temperature to annealing temperature and the finish temperature of hot rolling of hot rolled sheet annealing Therefore, sufficient crystal grain coarsening cannot be achieved. For this reason, there existed a problem that the magnetic flux density of the non-oriented electrical steel sheet obtained had a limit.

このような問題に対し、例えば特許文献1には、熱延板焼鈍温度をA変態点以上として磁気特性を改善する無方向性電磁鋼板の製造方法が記載されている。特許文献1に記載された技術は、熱延板焼鈍温度をAc変態点以上とし、ついでAr変態点からAr変態点までの冷却速度を50℃/s以下に制限して磁束密度の改善を図ろうとするものである。
また、特許文献2には、熱間圧延の仕上げ温度をAr変態点以上として磁気特性を改善する無方向性電磁鋼板の製造方法が記載されている。特許文献2に記載された技術は、熱間圧延の仕上げ温度をAr変態点以上とし、ついで、Ar変態点からAr変態点までの冷却速度を5℃/s以下に制限して磁束密度の改善を図ろうとするものである。
特開平3−204421号公報 特開平6−192731号公報
To cope with problems, for example, Patent Document 1, a manufacturing method of the non-oriented electrical steel sheet to improve the magnetic properties of hot-rolled sheet annealing temperature of more than the A 1 transformation point is described. In the technology described in Patent Document 1, the hot-rolled sheet annealing temperature is set to the Ac 3 transformation point or higher, and then the cooling rate from the Ar 3 transformation point to the Ar 1 transformation point is limited to 50 ° C./s or less. It is intended to improve.
Patent Document 2 describes a method for producing a non-oriented electrical steel sheet that improves the magnetic properties by setting the finishing temperature of hot rolling to the Ar 1 transformation point or higher. The technique described in Patent Document 2 sets the hot rolling finishing temperature to the Ar 3 transformation point or higher, and then limits the cooling rate from the Ar 3 transformation point to the Ar 1 transformation point to 5 ° C./s or less to produce magnetic flux. It is intended to improve the density.
Japanese Patent Laid-Open No. 3-204421 JP-A-6-192731

しかしながら、特許文献1や特許文献2に記載された技術では、γ→α変態域(二相域)の冷却速度を低く抑えて冷却しており、熱延板焼鈍工程や、熱間圧延後の冷却過程が長時間化し、生産性が阻害されるという問題があった。しかも、冷却を大気中で行う場合には、冷却時間の長時間化は、高温で外気に晒される時間が長くなり、酸化層厚みが増加して脱スケール性が悪くなるという問題がある。   However, in the techniques described in Patent Document 1 and Patent Document 2, cooling is performed while keeping the cooling rate in the γ → α transformation region (two-phase region) low, and after the hot-rolled sheet annealing step or hot rolling There was a problem that the cooling process was prolonged and productivity was hindered. In addition, when cooling is performed in the air, the longer cooling time has a problem that the time for exposure to the outside air at a high temperature becomes longer, the oxide layer thickness increases, and the descalability deteriorates.

本発明は、上記した従来技術の問題に鑑みてなされたものであり、上記した従来技術の問題を解決し、特にSiやAl等の含有量の低い無方向性電磁鋼板の磁束密度を著しく向上させ、B50:1.76T以上となる高磁束密度を有する、無方向性電磁鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, solves the problems of the above-described prior art, and remarkably improves the magnetic flux density of non-oriented electrical steel sheets with low contents such as Si and Al in particular. An object of the present invention is to provide a method for producing a non-oriented electrical steel sheet having a high magnetic flux density of B 50 : 1.76 T or more.

本発明者らは、上記した目的を達成するため、磁束密度に影響する要因について鋭意検討した。まず、本発明者らが行った実験結果について、説明する。
表1に示す組成の溶鋼を溶製し、鋳造して鋼素材とした。ついで、この鋼素材を加熱し、粗圧延を施して板厚25mmのスラブとした。
得られたスラブから熱膨張試験片を採取し、10℃/sの加熱速度で1150℃まで加熱したのち、10℃/sで冷却する熱サイクルを用いて、熱膨張試験を実施し、Ac、Ac、Ar、Arの各変態点を測定した。得られたAc変態点は918℃、Ac変態点は972℃、Ar変態点は956℃、Ar変態点は905℃であった。
In order to achieve the above-described object, the present inventors diligently studied factors that affect the magnetic flux density. First, the experimental results conducted by the present inventors will be described.
Molten steel having the composition shown in Table 1 was melted and cast to obtain a steel material. Next, this steel material was heated and subjected to rough rolling to obtain a slab having a thickness of 25 mm.
The resulting thermal expansion test specimens were taken from the slab, after heated up to 1150 ° C. at a heating rate of 10 ° C. / s, by using the thermal cycle to cool at 10 ° C. / s, by performing thermal expansion test, Ac 1 , Ac 3 , Ar 3 , Ar 1 transformation points were measured. The Ac 1 transformation point obtained was 918 ° C., the Ac 3 transformation point was 972 ° C., the Ar 3 transformation point was 956 ° C., and the Ar 1 transformation point was 905 ° C.

このスラブを1200℃に加熱したのち、表2で示す条件で熱間圧延を施し、板厚2.2mmの熱延板とし、熱間圧延終了後、表2に示す条件で冷却した。ついで、得られた熱延板の一部に、Ar雰囲気中で900℃×30sの熱延板焼鈍を施した。熱延板焼鈍済みの熱延板から試験片を採取して、組織観察を行った。その結果、熱延板No.1で、明らかに結晶粒の粗大化を確認した。熱延板No.1以外の熱延板では、明らかに特異な結晶粒の粗大化は認められなかった。   The slab was heated to 1200 ° C., and then hot-rolled under the conditions shown in Table 2 to form a hot-rolled sheet having a thickness of 2.2 mm. Next, a part of the obtained hot rolled sheet was subjected to hot rolled sheet annealing at 900 ° C. × 30 s in an Ar atmosphere. A specimen was collected from the hot-rolled sheet that had been annealed and subjected to microstructure observation. As a result, coarsening of crystal grains was clearly confirmed in hot rolled sheet No. 1. In the hot-rolled sheets other than the hot-rolled sheet No. 1, obviously no unusual grain coarsening was observed.

ついで、熱延板焼鈍済みの熱延板に、冷間圧延を施し、板厚0.5mmの冷延板とした。得られた冷延板に、仕上焼鈍(800℃×30s)を施し、磁気特性(磁束密度:B50)を調査した。得られた結果を表2に併記して示す。 Subsequently, the hot-rolled sheet annealed by hot rolling was cold-rolled to obtain a cold-rolled sheet having a thickness of 0.5 mm. The obtained cold-rolled sheet was subjected to finish annealing (800 ° C. × 30 s), and the magnetic properties (magnetic flux density: B 50 ) were investigated. The obtained results are shown together in Table 2.

Figure 2007177282
Figure 2007177282

Figure 2007177282
熱延板No.1のみが、高いB50を示し、それ以外の熱延板では磁気特性の向上は認められなかった。なお、熱延板焼鈍を施さない場合についても磁気特性を調査したが、磁気特性の顕著な向上は全く認められなかった。
Figure 2007177282
Only hot-rolled sheet No. 1 exhibited high B 50, and no improvement in magnetic properties was observed with other hot-rolled sheets. In addition, although the magnetic characteristic was investigated also about the case where hot-rolled sheet annealing was not given, the remarkable improvement of a magnetic characteristic was not recognized at all.

そこで、本発明者らは、上記した熱延板No.1における結晶粒の粗大化や磁気特性の向上の原因について調査した。
熱延板No.1について、熱延板焼鈍前に、酸でエッチングし光学顕微鏡で組織を観察したところ、白くエッチングされる結晶粒と黒くエッチングされる結晶粒とが混在しているのが観察された。マイクロビッカース硬度計で結晶粒ごとの硬さ測定を行ったところ、黒くエッチングされる結晶粒では、白くエッチングされる結晶粒に比べて、30HV程度の硬さの増加が認められた。
Therefore, the present inventors investigated the cause of the coarsening of crystal grains and the improvement of magnetic properties in the above-described hot rolled sheet No. 1.
Regarding hot-rolled sheet No. 1, before annealing the hot-rolled sheet, when it was etched with an acid and the structure was observed with an optical microscope, it was observed that crystal grains etched white and crystal grains etched black were mixed. It was done. When the hardness of each crystal grain was measured with a micro Vickers hardness tester, the hardness of the crystal grains etched in black was increased by about 30 HV compared with the crystal grains etched in white.

さらに、本発明者らは、この熱延板No.1について、さらに調査するため、EBSP法(Electron Back Scattering Pattern)を用いて、Image Quality像を撮影した。Image Quality像は、走査型電子顕微鏡に試料を大きく傾斜してセットし、そこで電子線を止めることにより発生するDiffraction Patternにおける菊池パターン鮮明度を数値化してマップ表示したもので、パターンが鮮明であればImage Quality像の数値が高くなり白く表示される。つまり、Image Quality像は試料中の残留歪を定性的に表示したものと考えられる。高いImage Quality像が得られる場合には残留歪が少ないことを意味している。得られたImage Quality像は明らかに結晶粒ごとに異なっており、酸によるエッチングで黒くエッチングされる結晶粒では低いImage Quality像が得られた。   Furthermore, the present inventors photographed an image quality image using the EBSP method (Electron Back Scattering Pattern) in order to investigate further about this hot-rolled sheet No. 1. The image quality image is a map that displays the Kikuchi pattern sharpness in the Diffraction Pattern generated by stopping the electron beam at a large tilt on the scanning electron microscope. For example, the value of the Image Quality image will be high and displayed white. In other words, the image quality image is considered to be a qualitative representation of the residual strain in the sample. If a high image quality image is obtained, it means that there is little residual distortion. The obtained Image Quality image was clearly different for each crystal grain, and a low Image Quality image was obtained for the crystal grain etched black by acid etching.

ついで、Image Quality像の低い結晶粒を一つ選び、粒内の{001}極点図を作成したところ、結晶粒内で結晶方位が変化していることが明らかになった。
このようなことから、熱延板焼鈍前の熱延板No.1では結晶粒内に歪が蓄積されており、しかも歪蓄積量が結晶粒ごとに異なっていると考えられる。したがって、熱延板焼鈍中に、歪蓄積の少ない粒が歪蓄積の多い粒を蚕食して成長し結晶粒が非常に粗大化する、歪誘起粒成長が、熱延板No.1のみに発生し、結晶粒が粗大化したものと考えられる。
Next, when selecting a crystal grain with a low image quality image and creating a {001} pole figure within the grain, it became clear that the crystal orientation had changed within the crystal grain.
For this reason, in hot-rolled sheet No. 1 before hot-rolled sheet annealing, strain is accumulated in the crystal grains, and the strain accumulation amount is considered to be different for each crystal grain. Therefore, during hot-rolled sheet annealing, strain-induced grain growth occurs only in hot-rolled sheet No. 1, in which grains with less strain accumulation engulf grains with much strain accumulation and grow very coarse. The crystal grains are considered to be coarse.

なお、上記した熱延板No.1におけるように、熱間圧延の仕上げ温度をAr変態点以上とし、熱間圧延終了後に水冷することにより、結晶粒ごとに異なる歪が蓄積される機構については、現在までには完全に解明されたわけではないが、本発明者らは、次のように推察している。
熱間圧延終了後の冷却中、オーステナイトからフェラィトに変態する際に、熱延板の一部ではフェライトの核生成・成長が起こり、歪の少ないフェライト粒が形成される。しかし、残りのオーステナイトの部分は、急速に冷却されてFeの拡散が抑えられるため、α−γ粒界が移動できなくなって無拡散に近い変態(γ−α変態)が生じ、剪断歪が導入されると考えられる。なお、この際、熱間圧延で導入された歪も一部開放されずに残留すると推定される。このよう機構で、結晶粒ごとに歪蓄積量が異なる状態となると推察される。
In addition, as in the hot rolled sheet No. 1 described above, a mechanism in which different strains are accumulated for each crystal grain by setting the hot rolling finishing temperature to the Ar 3 transformation point or higher and water cooling after the hot rolling is completed. Has not been fully elucidated until now, but the present inventors speculate as follows.
During the transformation after the hot rolling, during transformation from austenite to ferrite, ferrite nucleation / growth occurs in a part of the hot-rolled sheet, and ferrite grains with less strain are formed. However, the remaining austenite is rapidly cooled to suppress the diffusion of Fe, so that the α-γ grain boundary cannot move and a transformation close to non-diffusion (γ-α transformation) occurs, introducing shear strain. It is thought that it is done. At this time, it is estimated that some of the strain introduced by hot rolling remains without being released. With such a mechanism, it is assumed that the amount of accumulated strain differs for each crystal grain.

また、さらに、本発明者らは、表1に示す組成の鋼素材を用い、熱間圧延の仕上げ温度と熱間圧延終了直後の冷却条件が磁束密度に及ぼす影響について調査を行った。
上記した鋼素材を加熱し、粗圧延を施して板厚25mmのスラブとし、ついでこれらスラブに、1200℃で加熱して板厚2.2mmの熱延板とする熱間圧延を施した。なお、熱間圧延の仕上げ温度と、熱間圧延終了直後の冷却条件を変化させた。なお、200℃以下の冷却速度は磁気特性に明確な影響を与えなかったため、冷却速度はAr変態点から200℃までの平均冷却速度で表示した。
Furthermore, the present inventors investigated the influence which the finishing temperature of hot rolling and the cooling conditions immediately after completion | finish of hot rolling have on magnetic flux density using the steel raw material of the composition shown in Table 1.
The steel material described above was heated and roughly rolled into slabs with a thickness of 25 mm, and these slabs were then hot rolled at 1200 ° C. to form hot-rolled sheets with a thickness of 2.2 mm. In addition, the finishing temperature of hot rolling and the cooling conditions immediately after completion of hot rolling were changed. In addition, since the cooling rate below 200 ° C. did not clearly affect the magnetic properties, the cooling rate was expressed as an average cooling rate from the Ar 3 transformation point to 200 ° C.

得られた熱延板に、熱延板焼鈍(900℃×30s、Ar雰囲気中)を施したのち、冷間圧延を施し板厚0.5mmの冷延板とした。得られた冷延板に、仕上げ焼鈍(800℃×30s)を施した。得られた仕上げ焼鈍済み冷延板について、磁気特性を調査した。
得られた結果を、磁束密度B50と熱間圧延の仕上げ温度との関係で図1に示す。図1から、熱間圧延の仕上げ温度がAr変態点以上で、かつAr変態点から200℃までの平均冷却速度が50℃/s以上の場合に、明らかな磁束密度B50の改善が認められる。また、更なる磁束密度の改善のためには、熱間圧延終了後のAr変態点から200℃までの平均冷却速度を200℃/s以上とするが望ましい。
The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing (900 ° C. × 30 s in an Ar atmosphere), and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.5 mm. The obtained cold-rolled sheet was subjected to finish annealing (800 ° C. × 30 s). The magnetic properties of the obtained annealed cold-rolled sheet were investigated.
The obtained results are shown in FIG. 1 in relation to the magnetic flux density B 50 and the hot rolling finishing temperature. From Fig. 1, when the finishing temperature of hot rolling is above the Ar 3 transformation point and the average cooling rate from the Ar 3 transformation point to 200 ° C is 50 ° C / s or more, the apparent improvement of the magnetic flux density B 50 is confirmed. Is recognized. In order to further improve the magnetic flux density, it is desirable that the average cooling rate from the Ar 3 transformation point after the hot rolling to 200 ° C. is 200 ° C./s or more.

本発明は、上記した知見に基づき、さらに、検討を加えて完成されたものである。
すなわち、本発明の要旨はつぎのとおりである。
(1)質量%で、C:0.05%以下、Si:1.5%以下、Mn:0.05〜1.0%、P:0.2%以下、S:0.01%以下、Al:1.0%以下を含み、残部Fe及び不可避不純物からなる組成のスラブに、熱間圧延を施し熱延板としたのち、該熱延板に熱延板焼鈍と、ついで、1回もしくは焼鈍を挟む2回以上の冷間圧延を施し所定板厚の冷延板とし、ついで該冷延板に仕上げ焼鈍を行う、無方向性電磁鋼板の製造方法において、前記熱間圧延の仕上げ温度をAr変態点以上とし、該熱間圧延に続く冷却をAr変態点から200℃までの平均冷却速度が50℃/s超えである冷却とすることを特徴とする高磁束密度を有する無方向性電磁鋼板の製造方法。
The present invention has been completed based on the above findings and further studies.
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.05% or less, Si: 1.5% or less, Mn: 0.05 to 1.0%, P: 0.2% or less, S: 0.01% or less, Al: 1.0% or less, the remaining Fe and inevitable A slab composed of impurities is hot-rolled to form a hot-rolled sheet, and then the hot-rolled sheet is subjected to hot-rolled sheet annealing, and then subjected to one or two or more cold-rolling sandwiches between the predetermined sheets. In the method for producing a non-oriented electrical steel sheet, in which a cold-rolled sheet is thick and then finish-annealed on the cold-rolled sheet, the finishing temperature of the hot rolling is set to the Ar 3 transformation point or higher, and cooling following the hot rolling A method for producing a non-oriented electrical steel sheet having a high magnetic flux density, characterized in that the average cooling rate from the Ar 3 transformation point to 200 ° C. exceeds 50 ° C./s.

(2)(1)において、前記Ar変態点から200℃までの平均冷却速度が200℃/s以上であることを特徴とする無方向性電磁鋼板の製造方法。
(3)(1)または(2)において、前記スラブが、前記組成に加えてさらに、質量%で、Sn:0.005〜0.1%およびSb:0.005〜0.1%のうちから選ばれた1種または2種を含む組成のスラブとすることを特徴とする無方向性電磁鋼板の製造方法。
(2) The method for producing a non-oriented electrical steel sheet according to (1), wherein an average cooling rate from the Ar 3 transformation point to 200 ° C. is 200 ° C./s or more.
(3) In (1) or (2), in addition to the above composition, the slab may further contain, by mass%, Sn: 0.005 to 0.1% and Sb: 0.005 to 0.1%, or one or two A method for producing a non-oriented electrical steel sheet, characterized by comprising a slab having a composition containing seeds.

本発明によれば、特に高温の熱延板焼鈍を行いにくい、低級の無方向性電磁鋼板の磁束密度をB50で1.76T以上と著しく向上させることが可能となり、産業上格段の効果を奏する。また、本発明によれば、歪誘起粒成長を利用して、熱延板の結晶粒を粗大化するため、熱延板焼鈍温度を必要以上に高温化する必要がなく、焼鈍炉の長寿命化、さらには製造コストの低減に繋がるという効果もある。 According to the present invention, it is possible to remarkably improve the magnetic flux density of a low-grade non-oriented electrical steel sheet, which is particularly difficult to perform high-temperature hot-rolled sheet annealing, to 1.76 T or more at B 50 , and there is a remarkable industrial effect. . In addition, according to the present invention, since the grain size of the hot-rolled sheet is coarsened by utilizing strain-induced grain growth, it is not necessary to raise the hot-rolled sheet annealing temperature more than necessary, and the long life of the annealing furnace There is also an effect that leads to a reduction in manufacturing cost.

本発明では、質量%で、C:0.05%以下、Si:1.5%以下、Mn:0.05〜1.0%、P:0.2%以下、S:0.01%以下、Al:1.0%以下を含み、残部Fe及び不可避不純物からなる組成のスラブを用いる。まず、本発明で使用するスラブの組成限定理由について説明する。以下、組成における質量%は、単に%と記す。
C:0.05%以下
Cは、変態点を低下させる作用を有する元素であり、好ましくは0.01%以上含有させることにより、熱間圧延の仕上げ温度をAr変態点以上にすることが容易となる。しかし、0.05%を超えて含有すると、熱延板の急冷時に導入される歪が均一化しやすくなり、熱延板焼鈍時に結晶粒の粗大化を達成しにくくなる。このため、Cは0.05%以下に限定した。なお、製品のC含有量が0.005%を超えると、磁気時効が発生して鉄損が増加する。このため、工程途中で適正な方法により脱炭し、最終的なC含有量を0.005%以下とすることが望ましい。なお、スラブ段階でC含有量を0.005%以下としてもよく、本発明の効果を損なうものではない。
In the present invention, in mass%, C: 0.05% or less, Si: 1.5% or less, Mn: 0.05 to 1.0%, P: 0.2% or less, S: 0.01% or less, Al: 1.0% or less, and the balance Fe and A slab composed of inevitable impurities is used. First, the reasons for limiting the composition of the slab used in the present invention will be described. Hereinafter, the mass% in the composition is simply referred to as%.
C: 0.05% or less C is an element having an action of lowering the transformation point, and preferably 0.01% or more makes it easy to set the finishing temperature of hot rolling to the Ar 3 transformation point or more. However, if the content exceeds 0.05%, the strain introduced during rapid cooling of the hot-rolled sheet is likely to be uniform, and it becomes difficult to achieve coarsening of the crystal grains during hot-rolled sheet annealing. For this reason, C was limited to 0.05% or less. If the C content of the product exceeds 0.005%, magnetic aging occurs and iron loss increases. For this reason, it is desirable to decarburize by an appropriate method in the middle of the process so that the final C content is 0.005% or less. Note that the C content may be 0.005% or less in the slab stage, and does not impair the effects of the present invention.

Si:1.5%以下
Siは、電磁鋼板の比抵抗を増加させ、渦電流を低減して鉄損を改善する効果があり、本発明では、0.1%以上含有させることが望ましい。なお、Siは、電磁鋼板の硬さを増加させる作用も有するため、硬さ調整のために含有させることもできる。一方、1.5%を超える含有は、変態点を上昇させ、熱間圧延の仕上げ温度をAr変態点以上とすることが困難となる。このため、Siは1.5%以下に限定した。
Si: 1.5% or less
Si has the effect of increasing the specific resistance of the electrical steel sheet and reducing the eddy current to improve the iron loss. In the present invention, Si is desirably contained in an amount of 0.1% or more. In addition, since Si also has the effect | action which increases the hardness of an electromagnetic steel plate, it can also be contained for hardness adjustment. On the other hand, if the content exceeds 1.5%, the transformation point is raised, and it is difficult to set the finishing temperature of hot rolling to the Ar 3 transformation point or higher. For this reason, Si was limited to 1.5% or less.

Mn:0.05〜1.0%
Mnは、Sと結合し、熱間圧延時の熱間脆性を抑制する作用を有する元素であり、このような効果は0.05%以上の含有で顕著となるが、1.0%を超える含有は、磁束密度を低下させる。このため、Mnは0.05〜1.0%に限定した。なお、好ましくは0.2〜0.4%である。
P:0.2%以下
Pは、電磁鋼板の硬さを増加させ、打抜き時のダレなどを防止する目的で含有させる元素であり、このような効果は0.05%以上の含有で顕著となる。一方、0.2%を超える含有は、加工性を低下させる。このため、Pは0.2%以下に限定した。なお、好ましくは0.1%以下である。
Mn: 0.05-1.0%
Mn is an element that combines with S and has an action of suppressing hot brittleness during hot rolling. Such an effect becomes remarkable when the content is 0.05% or more. Reduce density. For this reason, Mn was limited to 0.05 to 1.0%. In addition, Preferably it is 0.2 to 0.4%.
P: 0.2% or less P is an element to be included for the purpose of increasing the hardness of the electrical steel sheet and preventing sagging during punching. Such an effect becomes significant when the content is 0.05% or more. On the other hand, if the content exceeds 0.2%, workability is lowered. For this reason, P was limited to 0.2% or less. In addition, Preferably it is 0.1% or less.

S:0.01%以下
Sは、介在物を形成し、結晶粒の成長を妨げる元索であり、本発明では可能な限り低滅することが望ましい。特に、0.01%を超えて含有すると、上記した作用が顕著となる。このため、Sは0.01%以下に限定した。なお、好ましくは0.004%以下である。
Al:1.0%以下
Alは、電磁鋼板の比低抗を増加させ、渦電流を低減して鉄損を改善する効果を有する元素である。またAlは、Siと同様に、硬さ調整に用いることもできる。このような効果は0.1%以上の含有で認められる。一方、1.0%を超える含有は、変態点を上昇させるため、熱間圧延の仕上げ温度をAr変態点以上とすることが困難となる。このため、Alは1.0%以下に限定した。なお、好ましくは0.5%以下である。
S: 0.01% or less S is an original rope that forms inclusions and prevents the growth of crystal grains. In the present invention, S is preferably as low as possible. In particular, when the content exceeds 0.01%, the above-described action becomes remarkable. For this reason, S was limited to 0.01% or less. In addition, Preferably it is 0.004% or less.
Al: 1.0% or less
Al is an element that has the effect of increasing the specific resistance of the electrical steel sheet, reducing eddy currents, and improving iron loss. Moreover, Al can also be used for hardness adjustment similarly to Si. Such an effect is recognized when the content is 0.1% or more. On the other hand, if the content exceeds 1.0%, the transformation point is raised, so that it is difficult to set the finishing temperature of hot rolling to the Ar 3 transformation point or higher. For this reason, Al was limited to 1.0% or less. In addition, Preferably it is 0.5% or less.

上記した成分が基本組成であるが、上記した成分に加え、さらに集合組織の改善や焼鈍時の酸化・窒化防止のために、Sn、Sbのうちから選ばれた1種または2種を含有できる。
Sn:0.005〜0.1%およびSb:0.005〜0.1%のうちから選ばれた1種または2種
Sn、Sbは、集合組織の改善や焼鈍時の酸化・窒化を防止し、更なる磁束密度を改善させる作用があり、必要に応じて選択して1種または2種を含有できる。このような効果は、Sn、Sbともに、0.005%以上の含有で認められる。一方、Sn、Sbともに、0.1%を超えて含有しても、その効果が飽和する。このため、Sn:0.005〜0.1%、Sb:0.005〜0.1%に限定することが好ましい。
The above-mentioned components are basic compositions, but in addition to the above-described components, one or two selected from Sn and Sb can be contained for further improving the texture and preventing oxidation / nitridation during annealing. .
One or two selected from Sn: 0.005-0.1% and Sb: 0.005-0.1%
Sn and Sb have the effect of improving the texture and preventing oxidation / nitridation during annealing and further improving the magnetic flux density, and can be selected as needed and can contain one or two kinds. Such an effect is recognized when both Sn and Sb are contained at 0.005% or more. On the other hand, even if both Sn and Sb are contained exceeding 0.1%, the effect is saturated. For this reason, it is preferable to limit to Sn: 0.005-0.1% and Sb: 0.005-0.1%.

上記した成分以外の残部は、Fe及び不可避不純物である。なお、不可避的不純物としては、Ti:0.003%以下、Nb:0.003%以下、V:0.003%以下が許容できる。
上記した組成のスラブの製造方法はとくに限定されない、所定の組成の溶綱を転炉等により溶製し、必要に応じて脱ガス処理等の精錬を施したのち、連続鋳造法により所定寸法の鋳片とするなど、常用の製造方法がいずれも適用できる。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include Ti: 0.003% or less, Nb: 0.003% or less, and V: 0.003% or less.
The manufacturing method of the slab having the above composition is not particularly limited. After melting a molten steel having a predetermined composition by a converter or the like, and performing refining such as degassing treatment as necessary, the slab having a predetermined size is obtained by a continuous casting method. Any conventional manufacturing method can be applied, such as making a slab.

上記した組成のスラブは、熱間圧延を施されて、熱延板とされる。
本発明における熱間圧延の加熱は、とくに限定する必要はないが、1200℃以下とすることが粒成長促進の観点から好ましい。所定の温度に加熱されたスラブは、ついで熱間圧延を施され熱延板とされるが、熱間圧延の仕上げ温度は、Ar変態点以上とする。
熱間圧延の仕上げ温度がAr変態点未満では、熱間圧延終了後に、急冷を施しても、表2に示すように、その後の熱延板焼鈍中に、結晶粒の粗大化が生じないため、磁束密度の顕著な改善が得られない。
The slab having the above composition is hot-rolled to form a hot-rolled sheet.
The heating in the hot rolling in the present invention is not particularly limited, but is preferably 1200 ° C. or less from the viewpoint of promoting grain growth. The slab heated to a predetermined temperature is then hot-rolled to form a hot-rolled sheet, and the hot-rolling finishing temperature is not less than the Ar 3 transformation point.
When the finishing temperature of the hot rolling is less than the Ar 3 transformation point, even if rapid cooling is performed after completion of the hot rolling, as shown in Table 2, no coarsening of crystal grains occurs during the subsequent hot-rolled sheet annealing. Therefore, a significant improvement in magnetic flux density cannot be obtained.

また、本発明では、熱間圧延に続く冷却を、Ar変態点から200℃までの平均冷却速度が50℃/s超えである冷却とする。平均冷却速度が50℃/s以下では、図1から明らかなように、熱間圧延の仕上げ温度を、Ar変態点以上としても、磁束密度の顕著な改善は認められない。なお、更なる磁束密度の改善のためには、Ar変態点から200℃までの平均冷却速度が200℃/s以上とすることが好ましい。 In the present invention, the cooling subsequent to hot rolling is cooling in which the average cooling rate from the Ar 3 transformation point to 200 ° C. exceeds 50 ° C./s. When the average cooling rate is 50 ° C./s or less, as is apparent from FIG. 1, no significant improvement in the magnetic flux density is observed even when the hot rolling finishing temperature is set to the Ar 3 transformation point or higher. In order to further improve the magnetic flux density, the average cooling rate from the Ar 3 transformation point to 200 ° C. is preferably 200 ° C./s or more.

なお、上記した工程を施したのち、さらに、スキンパス圧延を施すことや、絶縁皮膜を塗布することは、本発明の効果を何ら損なうものではない。   In addition, after giving the above-mentioned process, it does not impair the effect of this invention at all to give a skin pass rolling and to apply | coat an insulating film.

転炉で吹練し、さらに脱ガス処理を施して、表3に示す組成に調整した溶鋼を、ついで連続鋳造法で鋳造し、スラブとした。これらスラブに、1200℃で2hr加熱し、表3に示す条件の仕上げ温度、熱間圧延終了後冷却速度からなる熱間圧延を施して板厚2.2mmの熱延板とした。その後、得られた熱延板に、850℃×30sの熱延板焼鈍を施し、ついで脱スケール処理を施したのち、冷間圧延を施し、板厚0.5mmの冷延板とした。得られた冷延板に、さらに仕上げ焼鈍(20vol%H−80 vol%N雰囲気中、800℃×30s)を施したのち、磁気特性を調査した。 The molten steel, which was blown in a converter and further degassed and adjusted to the composition shown in Table 3, was cast by a continuous casting method to obtain a slab. These slabs were heated at 1200 ° C. for 2 hours, and subjected to hot rolling consisting of a finishing temperature under the conditions shown in Table 3 and a cooling rate after completion of hot rolling to obtain a hot rolled sheet having a thickness of 2.2 mm. Thereafter, the obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at 850 ° C. × 30 s, followed by descaling, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.5 mm. To the resulting cold-rolled sheet, (in 20vol% H 2 -80 vol% N 2 atmosphere, 800 ° C. × 30s) further finish annealing after subjected to, it was investigated magnetic properties.

なお、磁気特性は、得られた冷延板から試験片を採取し、JIS C 2550の規定に準拠して、エプスタイン法を用いて磁束密度B50を測定した。
また、変態点は、10℃/sの加熱速度で1150℃まで加熱したのち、10℃/sで冷却する熱サイクルを用いて、熱膨張測定により求めた。
得られた結果を表3に示す。
For magnetic properties, a test piece was collected from the obtained cold-rolled sheet, and the magnetic flux density B 50 was measured using the Epstein method in accordance with the provisions of JIS C 2550.
The transformation point was determined by thermal expansion measurement using a thermal cycle in which the sample was heated to 1150 ° C. at a heating rate of 10 ° C./s and then cooled at 10 ° C./s.
The obtained results are shown in Table 3.

Figure 2007177282
本発明例はいずれも、B50が1.76T以上となる高磁束密度を示している。一方、本発明の範囲を外れる比較例は、熱間圧延の仕上げ温度がAr変態点未満となった場合、あるいは平均冷却速度が50℃/s以下と冷却が遅すぎる場合、あるいは素材成分が本発明の範囲を外れる場合には、いずれも磁束密度の改善は認められなかった。
Figure 2007177282
Each of the examples of the present invention shows a high magnetic flux density at which B 50 is 1.76 T or more. On the other hand, in comparative examples that are outside the scope of the present invention, the hot rolling finishing temperature is less than the Ar 3 transformation point, the average cooling rate is 50 ° C./s or less, or the cooling is too slow, or the material component is In any case outside the scope of the present invention, no improvement in magnetic flux density was observed.

磁束密度に及ぼす熱間圧延の仕上げ温度、熱間圧延後の冷却速度の影響を示すグラフである。It is a graph which shows the influence of the finishing temperature of hot rolling and the cooling rate after hot rolling which acts on magnetic flux density.

Claims (3)

質量%で、
C:0.05%以下、 Si:1.5%以下、
Mn:0.05〜1.0%、 P:0.2%以下、
S:0.01%以下、 Al:1.0%以下
を含み、残部Fe及び不可避不純物からなる組成のスラブに、熱間圧延を施し熱延板とし、該熱延板に熱延板焼鈍を施したのち、1回もしくは焼鈍を挟む2回以上の冷間圧延を施し所定板厚の冷延板とし、ついで該冷延板に仕上げ焼鈍を行う、無方向性電磁鋼板の製造方法において、前記熱間圧延の仕上げ温度をAr変態点以上とし、該熱間圧延に続く冷却をAr変態点から200℃までの平均冷却速度が50℃/s超えである冷却とすることを特徴とする高磁束密度を有する無方向性電磁鋼板の製造方法。
% By mass
C: 0.05% or less, Si: 1.5% or less,
Mn: 0.05 to 1.0%, P: 0.2% or less,
S: 0.01% or less, Al: containing 1.0% or less, slab of the composition consisting of the balance Fe and inevitable impurities, hot-rolled into a hot-rolled sheet, and after hot-rolled sheet annealing, In the method for producing a non-oriented electrical steel sheet, the cold rolled sheet having a predetermined thickness is subjected to cold rolling at least once or sandwiching annealing, and then the cold rolled sheet is subjected to finish annealing. The high magnetic flux density is characterized in that the finishing temperature is not less than the Ar 3 transformation point, and the cooling following the hot rolling is cooling in which the average cooling rate from the Ar 3 transformation point to 200 ° C. exceeds 50 ° C./s. A method for producing a non-oriented electrical steel sheet.
前記Ar変態点から200℃までの平均冷却速度が200℃/s以上であることを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 1, wherein an average cooling rate from the Ar 3 transformation point to 200 ° C is 200 ° C / s or more. 前記スラブが、前記組成に加えてさらに、質量%で、Sn:0.005〜0.1%およびSb:0.005〜0.1%のうちから選んだ1種または2種を含む組成のスラブとすることを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。   The slab is a slab having a composition containing 1 type or 2 types selected from Sn: 0.005-0.1% and Sb: 0.005-0.1% by mass% in addition to the composition. The manufacturing method of the non-oriented electrical steel sheet according to claim 1 or 2.
JP2005376781A 2005-12-28 2005-12-28 Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density Pending JP2007177282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005376781A JP2007177282A (en) 2005-12-28 2005-12-28 Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005376781A JP2007177282A (en) 2005-12-28 2005-12-28 Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density

Publications (1)

Publication Number Publication Date
JP2007177282A true JP2007177282A (en) 2007-07-12

Family

ID=38302751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005376781A Pending JP2007177282A (en) 2005-12-28 2005-12-28 Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density

Country Status (1)

Country Link
JP (1) JP2007177282A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
JP2020100860A (en) * 2018-12-20 2020-07-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
US11162155B2 (en) 2016-12-20 2021-11-02 Posco Non-oriented electrical steel sheet and method for producing same
US11486019B2 (en) 2017-12-26 2022-11-01 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
US11162155B2 (en) 2016-12-20 2021-11-02 Posco Non-oriented electrical steel sheet and method for producing same
US11486019B2 (en) 2017-12-26 2022-11-01 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2020100860A (en) * 2018-12-20 2020-07-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
JP7311739B2 (en) 2018-12-20 2023-07-20 日本製鉄株式会社 Non-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
JP5892327B2 (en) Method for producing non-oriented electrical steel sheet
JP5605518B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
KR102062184B1 (en) Method for producing non-oriented electrical steel sheet having excellent magnetic properties
JP6388092B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2013139629A (en) Method for producing low iron loss grain-oriented magnetic steel sheet
JP7462737B2 (en) 600MPa-class non-oriented electrical steel sheet and its manufacturing method
JPWO2020136993A1 (en) Non-oriented electrical steel sheet and its manufacturing method
WO1986007390A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JP6011063B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP4207231B2 (en) Method for producing non-oriented electrical steel sheet
JP2007177282A (en) Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density
KR102457575B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2022545025A (en) Cu-containing non-oriented electrical steel sheet and manufacturing method thereof
JP2006213993A (en) Method for producing grain oriented electromagnetic steel plate
JP7052934B2 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet
JP2011052302A (en) Method for producing grain-oriented electromagnetic steel sheet
JP2004332031A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH10183311A (en) Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP4701669B2 (en) Method for producing non-oriented electrical steel sheet
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density