JPH10183311A - Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic - Google Patents

Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic

Info

Publication number
JPH10183311A
JPH10183311A JP8341210A JP34121096A JPH10183311A JP H10183311 A JPH10183311 A JP H10183311A JP 8341210 A JP8341210 A JP 8341210A JP 34121096 A JP34121096 A JP 34121096A JP H10183311 A JPH10183311 A JP H10183311A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
annealing
sulfide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8341210A
Other languages
Japanese (ja)
Inventor
Atsuto Honda
厚人 本田
Masaki Kono
正樹 河野
Yoshihiro Ozaki
芳宏 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8341210A priority Critical patent/JPH10183311A/en
Publication of JPH10183311A publication Critical patent/JPH10183311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a silicon steel sheet excellent in blanking workability and magnetic characteristic by specifying component composition and surface Vickers hardness and further specifying the content of either Sb or Sn or both of them. SOLUTION: The component composition of the objective steel sheet is, by weight, <=0.01% C, 0.1-2.0% Si, 0.1-1.5% Mn, 0.5-2.5% Al, <=0.1% P and <=0.01% S, and satisfies the relation, Si+0.60Al>=0.80 and the surface Vickers hardness of <=160HV. In addition, the steel preferably contains 0.005-0.20% either Sb or Sn or the total of both of them. Further, it is desired that the sulfide inclusions in the steel sheet are mostly calcium-sulfide or calcium- oxysulfide and the oxygen surface density in the surface layer of ferrite after finish annealing is <=1.0g/m<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、モーターや小型
トランスなど向けに、打抜き加工を施して使用される無
方向性電磁鋼板に関して、特に打抜き加工性および鉄損
特性を向上しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet used for a motor, a small transformer, or the like by performing a punching process, in particular, to improve the punching processability and iron loss characteristics. .

【0002】[0002]

【従来の技術】近年の省エネルギーに対する要請が強ま
るにともなって、電気機器類の高効率化が指向されてい
る。鋼板メーカーにおいても、この省エネルギー化の流
れに対応するべく、電気機器類に供する電磁鋼板の磁気
特性、とりわけ鉄損特性を、様々な手段により向上させ
てきた。
2. Description of the Related Art In recent years, as the demand for energy saving has increased, the efficiency of electric equipment has been increased. In order to cope with this trend of energy saving, steel sheet manufacturers have improved magnetic properties, particularly iron loss properties, of magnetic steel sheets used for electric appliances by various means.

【0003】すなわち、Siは、鋼板の比抵抗を高めるこ
とによって鉄損を低減させる、最も有効な元素であり、
広く用いられる。その他、AlもSiと同様の効果を有する
ことが知られる。このAlについて、例えば特開昭53-668
16号公報には、鋼板の比抵抗を高め、かつ微細なAIN の
析出による粒成長抑制作用を避けるため、Alの積極添加
が提案されている。また、特開昭55-73819号公報では、
Alを添加し、かつ焼鈍雰囲気を調整して鋼板表面の内部
酸化層を低減することによって、良好な高磁場特性を達
成している。さらに、特開昭54-68716号や同58-25427号
各公報では、Alを添加し、かつREM およびSbを複合添加
したり高純度化したりして集合組織を改善することによ
り、鉄損を低減している。同様に、Alの添加に加えて、
特開昭61-87823号公報では、仕上げ焼鈍時の鋼板冷却速
度を制御すること、特開平3-27427 号公報では、B,S
b, Snを複合添加して酸窒化を防止すること、特開平3-2
94422号公報では、冷間圧延を制御して鋼板LC特性比を
低減すること、特開平4-63252 号公報では、MnとAlを複
合添加すること、特開平4-136138号公報では、極低Siと
しかつP,Sbを添加して集合組織を改善すること、によ
って、いずれも磁気特性の改善を達成している。いずれ
の技術も、電磁鋼板自体の特性を改善することにより、
それを使用した電気機器の効率を向上しようとするもの
であった。
[0003] That is, Si is the most effective element for reducing iron loss by increasing the specific resistance of a steel sheet,
Widely used. In addition, Al is known to have the same effect as Si. About this Al, for example, JP-A-53-668
No. 16 proposes the positive addition of Al in order to increase the specific resistance of the steel sheet and avoid the effect of suppressing the grain growth due to the precipitation of fine AIN. Also, in JP-A-55-73819,
Good high magnetic field characteristics are achieved by adding Al and adjusting the annealing atmosphere to reduce the internal oxide layer on the steel sheet surface. Further, in JP-A-54-68716 and JP-A-58-25427, iron loss is improved by improving the texture by adding Al and adding REM and Sb in combination or purifying them. Has been reduced. Similarly, in addition to the addition of Al,
Japanese Patent Application Laid-Open No. 61-87823 discloses that the cooling rate of a steel sheet during finish annealing is controlled.
b, Sn combined addition to prevent oxynitridation, JP-A-3-2
In JP 94422, controlling the cold rolling to reduce the LC characteristic ratio of the steel sheet, in JP-A-4-63252, Mn and Al are added in combination, and in JP-A-4-136138, the extremely low By improving the texture by adding Si and adding P and Sb, the magnetic properties are all improved. Both technologies improve the properties of the electrical steel sheet itself,
The aim was to improve the efficiency of electrical equipment using it.

【0004】一方、半導体の性能が向上しかつ価格が低
下するとともに、その周辺技術も飛躍的に向上した結
果、小型回転機器の制御技術が進歩し、また優れた永久
磁石素材も開発されたことによって、DCブラシレスモー
ターのような、高効率回転機の製造が可能となった。こ
の種モーターの製造においては、特にローターの加工精
度が要求され、とりわけ打抜き加工された鉄心に永久磁
石を埋め込むようなタイプのコアでは、非常に過酷な打
抜き加工に耐える必要がある。ところが、上記した従来
技術による電磁鋼板は、磁気特性の改善は達成されるも
のの、上記使途に要求される、打抜き加工を行うと、加
工後に反りが発生して、加工後に所期した形状を保持で
きない、等の問題が生じていた。
On the other hand, as the performance of semiconductors has been improved and the price has been reduced, peripheral technologies have been dramatically improved. As a result, control technology for small rotating devices has been advanced, and excellent permanent magnet materials have been developed. This has made it possible to manufacture high-efficiency rotating machines such as DC brushless motors. In the manufacture of this type of motor, the processing accuracy of the rotor is particularly required, and especially in the case of a core in which a permanent magnet is embedded in a punched iron core, it is necessary to withstand extremely severe punching. However, although the magnetic steel sheet according to the prior art described above achieves improvement in magnetic properties, warpage occurs after punching when performing punching, which is required for the above uses, and the desired shape is maintained after processing. There were problems such as not being able to do so.

【0005】また、モーターのローターは、通常打抜き
加工のまま使用されるのに対して、ステーターはロータ
ーほど過酷な打抜き加工を受けず、この打抜き後に歪取
り焼鈍を施してから使用されることが多い。そして、ス
テーターに供する電磁鋼板では、上記したAlの添加手法
に加えて、製品板の歪取り後の結晶粒径を最適化するこ
とにより、その鉄損特性を向上させ、ステーター特性を
向上することができる。
[0005] In addition, while the rotor of the motor is usually used as it is in a punching process, the stator is not subjected to the severer punching process than the rotor. Many. In addition, in the electromagnetic steel sheet to be provided to the stator, in addition to the above-described method of adding Al, by optimizing the crystal grain size after strain removal of the product sheet, the iron loss property is improved, and the stator property is improved. Can be.

【0006】この鉄損は、冷間圧延後の仕上げ焼鈍によ
って得られる再結晶粒径に大きく依存し、低鉄損の製品
を得るためには、基本的に結晶粒径を大きくすることが
必要とされる。ちなみに、再結晶粒径が 150〜250 μm
のときに、低鉄損を得られることが知られている。
[0006] This iron loss largely depends on the recrystallized grain size obtained by finish annealing after cold rolling. In order to obtain a product with low iron loss, it is basically necessary to increase the crystal grain size. It is said. By the way, the recrystallized particle size is 150-250 μm
It is known that low iron loss can be obtained at the time.

【0007】ここに、結晶粒の成長性は、鋼中に分散す
る第2相、すなわち析出物や介在物の影響が大きく、そ
の成分やサイズ分布、分散状態に大きく左右される。こ
れらの析出物、介在物は結晶粒界の移動をピン止めする
効果があるため、極力低減することが粒成長性向上のた
めに有効である。従って、かかる粒径に再結晶させるた
めには、窒化物、硫化物のような微細な析出物を極力低
減することが有効である。
[0007] Here, the growth of the crystal grains is greatly affected by the second phase dispersed in the steel, ie, the precipitates and inclusions, and greatly depends on the components, the size distribution, and the dispersed state. Since these precipitates and inclusions have the effect of pinning the movement of the crystal grain boundaries, reducing them as much as possible is effective for improving the grain growth. Therefore, in order to recrystallize to such a particle size, it is effective to reduce fine precipitates such as nitrides and sulfides as much as possible.

【0008】しかしながら、現在の工業的技術レベルに
おいて、鋼材中の析出物、介在物を粒成長性に影響しな
い程度まで低減させた高清浄鋼を溶製することは極めて
難しく、また汎用の実用材料の製造に際してはコストの
問題も無視できないため、かような高清浄鋼の溶製は実
質的に不可能であった。
However, at the current industrial technology level, it is extremely difficult to melt high-purity steel in which precipitates and inclusions in the steel are reduced to such an extent that they do not affect the grain growth, and general-purpose practical materials are used. In the production of steel, the problem of cost cannot be neglected, and it is substantially impossible to melt such high-purity steel.

【0009】そのため、鋼中にはある程度の析出物、介
在物の残留が避けられず、それに起因して磁気特性の劣
化を余儀なくされていた。とくに、MnS等の比較的固溶
温度の低い析出物が形成された場合には、スラブ加熱や
熱延板焼鈍、冷延後の再結晶焼鈍等の過程で一旦固溶し
た後、冷却の段階で微細に再析出し、かかる微細析出物
は粒成長抑制効果が非常に大きいため、磁気特性を著し
く劣化させていた。
For this reason, some precipitates and inclusions remain in the steel inevitably, and as a result, the magnetic properties have to be deteriorated. In particular, when precipitates having a relatively low solid solution temperature, such as MnS, are formed, they are once dissolved in the process of slab heating, hot-rolled sheet annealing, recrystallization annealing after cold rolling, and then cooled. The fine precipitates have a remarkable effect of suppressing the grain growth, so that the magnetic properties are remarkably deteriorated.

【0010】この固溶・再析出を避ける手段としては、
スラブ加熱温度や熱延板焼鈍温度、冷延後の再結晶焼鈍
温度を低温化する方法がある。しかしながら、スラブ加
熱温度の低温化は、析出物の固溶を防止する効果はある
ものの、それに伴って熱延温度も低下するため、圧延が
困難になるだけでなく、熱延板に未再結晶部が残った
り、再結晶しても粒径が小さいので、その後の冷延、再
結晶による製品板の集合組織が劣化し、無方向性電磁鋼
板の製品特性にとって好ましくない。同様に、熱延板焼
鈍温度を低くする方法においても、再結晶や粒成長が不
十分となり、製品板の集合組織の劣化が避けられない。
さらに、再結晶焼鈍温度を低くした場合には、低温のた
めにかえって粒成長速度が遅くなり、限られた焼鈍時間
では十分な粒径が得られない。このように、析出物を固
溶・再析出させることなしに磁気特性の良好な製品を得
るには限界があり、実質的に特段の効果は期待できな
い。
As means for avoiding the solid solution and reprecipitation,
There is a method of lowering the slab heating temperature, the hot rolled sheet annealing temperature, and the recrystallization annealing temperature after cold rolling. However, although lowering the slab heating temperature has the effect of preventing solid solution of precipitates, it also lowers the hot rolling temperature, which not only makes rolling difficult, but also makes the hot rolled sheet unrecrystallized. Since the grain size is small even if a part remains or is recrystallized, the texture of the product sheet is deteriorated by subsequent cold rolling and recrystallization, which is not preferable for the product characteristics of the non-oriented electrical steel sheet. Similarly, in the method of lowering the annealing temperature of the hot-rolled sheet, recrystallization and grain growth become insufficient, and deterioration of the texture of the product sheet is inevitable.
Further, when the recrystallization annealing temperature is lowered, the grain growth rate is rather lowered due to the low temperature, and a sufficient grain size cannot be obtained with a limited annealing time. As described above, there is a limit in obtaining a product having good magnetic properties without dissolving and re-precipitating a precipitate, and no particular effect can be expected.

【0011】また、析出物等の悪弊を回避する手段とし
て、析出物の形態を制御する方法があるが、かような析
出物の形態制御方法としては、鋼中Sを REMサルファイ
ドやSbサルファイド等の固溶温度の高い析出物として固
定する方法(特開昭51-62115号公報)や、REM と同様に
Caを用いてSを固定する方法(特公昭58-17248号公報、
特公昭58-17249号公報および特開昭59-74213号公報)、
Zrを添加する方法(特公平1-52448号公報、特開昭51-6
0624号公報)等がある
As a means for avoiding adverse effects such as precipitates, there is a method of controlling the form of precipitates. As such a method of controlling the form of precipitates, S in steel is made of REM sulfide, Sb sulfide or the like. Method of fixing as a precipitate having a high solid solution temperature (JP-A-51-62115)
Method for fixing S using Ca (Japanese Patent Publication No. 58-17248,
JP-B-58-17249 and JP-A-59-74213),
Method of adding Zr (Japanese Patent Publication No. 1-52448, JP-A-51-6)
0624)

【0012】しかしながら、これらの方法で十分な効果
を得るためには、高価な副原料を多量に添加する必要が
あり、製品のコストアップが大きな問題となる。それば
かりか、 REMサルファイドは(REM, Mn, Al, Si)(O, S)
のように非常に複雑な析出形態をとる上に、溶融中で浮
上しにくく、鋼中に多量に残留する欠点もある。従っ
て、 REMサルファイド (主にCeサルファイド)単体での
固溶温度は高くても、実際は複合析出物であるため、部
分的に固溶・再析出する。
[0012] However, in order to obtain a sufficient effect by these methods, it is necessary to add a large amount of expensive auxiliary raw materials, and there is a major problem of an increase in product cost. Not only that, REM sulfide is (REM, Mn, Al, Si) (O, S)
In addition to the fact that it takes a very complicated precipitation form as described above, it is difficult to float during melting and has a disadvantage that it remains in a large amount in steel. Therefore, even though the solid solution temperature of REM sulfide (mainly Ce sulfide) alone is high, it is actually a composite precipitate, and partially solid solution and reprecipitate.

【0013】上記したように、無方向性電磁鋼板におい
て良好な磁気特性を得るためには、十分な粒成長性を確
保する必要があり、それに影響する析出物を制御するこ
とが重要になるが、現在までのところ、析出物を適切に
制御する手法は開発されていない。
As described above, in order to obtain good magnetic properties in a non-oriented electrical steel sheet, it is necessary to secure sufficient grain growth, and it is important to control the precipitates affecting the grain growth. To date, no technique has been developed to properly control the precipitates.

【0014】[0014]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、とくに打抜き加工に優れ、
かつ磁気特性の良好な無方向性電磁鋼板を提供しようと
するものである。さらに、この発明では、歪取り焼鈍後
の磁気的性質の向上を達成する手段について、提供する
ことも目的である。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and is particularly excellent in punching.
Another object of the present invention is to provide a non-oriented electrical steel sheet having good magnetic properties. It is a further object of the present invention to provide a means for improving magnetic properties after strain relief annealing.

【0015】[0015]

【課題を解決するための手段】発明者らは、無方向性電
磁鋼板の打抜き加工性に関して様々な研究を行ったとこ
ろ、SiおよびAlの含有量バランスを最適化し、さらに鋼
板表面の硬さを制御することによって、磁気特性を満足
せしめた上で良好な打抜き加工性が実現されることを見
出し、この発明を完成するに到った。また、硫化物系介
在物の形態を制御し、さらに鋼板の表面状態を制御する
ことにより、歪取り焼鈍後の磁気特性が向上すること
も、新たに知見した。
Means for Solving the Problems The inventors conducted various studies on the punching workability of non-oriented electrical steel sheets. As a result, the inventors optimized the content balance of Si and Al and further reduced the hardness of the steel sheet surface. By controlling, it was found that satisfactory punching workability was realized while satisfying magnetic properties, and the present invention was completed. It has also been newly found that the magnetic properties after strain relief annealing are improved by controlling the form of the sulfide-based inclusions and further controlling the surface state of the steel sheet.

【0016】すなわち、この発明は、C:0.01wt%以
下, Si:0.1 〜2.0 wt%, Mn:0.1 〜1.5 wt%, Al:0.
5 〜2.5 wt%, P:0.1 wt%以下およびS:0.01wt%以
下を、Si+0.60Al≧0.80wt%の下に含有する成分組成に
なり、かつ表面のビッカース硬さが HV160以下であるこ
とを特徴とする打抜き加工性および磁気特性に優れた無
方向性電磁鋼板である。
That is, according to the present invention, C: 0.01 wt% or less, Si: 0.1 to 2.0 wt%, Mn: 0.1 to 1.5 wt%, Al: 0.
5 to 2.5 wt%, P: 0.1 wt% or less, and S: 0.01 wt% or less, with a component composition containing Si + 0.60Al ≧ 0.80 wt% and Vickers hardness of the surface is HV160 or less. This is a non-oriented electrical steel sheet having excellent punching workability and magnetic properties.

【0017】ここに、上記成分に加えて、SbおよびSnの
いずれか一方、または両方を合計で、0.005 〜0.20wt%
含有すること、鋼板中の硫化物系介在物が、主としてカ
ルシウム−サルファイドまたはカルシウム−オキシサル
ファイドであること、そして仕上げ焼鈍後の地鉄表層の
酸素目付量が1.0 g/m2 以下であること、が磁気特性
の向上に有利である。なお、硫化物系介在物が主として
カルシウム−サルファイドまたはカルシウム−オキシサ
ルファイドであることは、具体的には、硫化物系介在物
におけるMn重量比率が10wt%以下に抑制されていること
を意味する。
Here, in addition to the above components, one or both of Sb and Sn are added in a total amount of 0.005 to 0.20 wt%.
That the sulfide-based inclusions in the steel sheet are mainly calcium-sulfide or calcium-oxysulfide, and that the basis weight of the surface iron layer after finish annealing is 1.0 g / m 2 or less; Are advantageous for improving magnetic properties. The fact that the sulfide-based inclusion is mainly calcium-sulfide or calcium-oxysulfide specifically means that the Mn weight ratio in the sulfide-based inclusion is suppressed to 10 wt% or less.

【0018】[0018]

【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果に基づいて具体的に説明する。発明者らは先
ず、市販の種々のDCブラシレスモーターを入手し、これ
らモーターに使用されているローターと同形状に加工で
きる金型を作成し、この金型を用いて鋼板素材の打抜き
試験を行った。具体的には、打抜き後の形状評価に当た
り、外径50mmおよび内径48mmのリングを、供試鋼板から
打抜き、この打抜き後のリングの反りの高さが最大で5
mm以下の素材であれば、いずれの金型で打抜いても形状
不良とならないことを確認し、これを打抜き形状の評価
指標とした。この評価方法によって、種々の鋼板素材を
評価した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described based on experimental results which have led to the present invention. The inventors first obtained various commercially available DC brushless motors, created a mold that could be processed into the same shape as the rotor used for these motors, and performed a punching test on a steel sheet material using this mold. Was. Specifically, in evaluating the shape after punching, a ring having an outer diameter of 50 mm and an inner diameter of 48 mm was punched from a test steel sheet, and the warp of the ring after this punching was at most 5 mm.
It was confirmed that, if the material was not more than mm, punching with any of the molds did not result in a defective shape, and this was used as an evaluation index of the punching shape. Various steel sheet materials were evaluated by this evaluation method.

【0019】すなわち、図1に、C:0.0020wt%, Mn:
0.50wt%, P:0.05wt%およびS:0.003 wt%を基本成
分とし、さらにSiおよびAlの含有量を種々に変化させ
て、常法に従って製造した、0.50mm厚の無方向性電磁鋼
板に関する、打抜き加工性の評価結果を示す。図1よ
り、Si+0.6 Al≧0.80wt%であれば、ほぼ満足する打抜
き加工性が得られることがわかる。
That is, FIG. 1 shows that C: 0.0020 wt%, Mn:
A non-oriented electrical steel sheet having a thickness of 0.50 mm and manufactured in accordance with a conventional method with 0.50 wt%, P: 0.05 wt% and S: 0.003 wt% as basic components, and further with various contents of Si and Al. And the evaluation results of the punching workability are shown. From FIG. 1, it can be seen that if Si + 0.6 Al ≧ 0.80 wt%, almost satisfactory punching workability can be obtained.

【0020】しかしながら、図1に示すように、Si+0.
6 Al≧0.80wt%を満足する領域にあっても、加工性が不
良のものが存在していた。そこで、この領域内での良材
と不良材とを詳細に比較検討したところ、不良材の鋼板
表面硬さが良材に比べて高いことが判明した。
However, as shown in FIG.
Even in the region satisfying 6Al ≧ 0.80 wt%, there was one having poor workability. Therefore, when a good material and a defective material in this region were compared in detail, it was found that the surface hardness of the steel plate of the defective material was higher than that of the good material.

【0021】すなわち、図2に、C:0.0020wt%, Mn:
0.50wt%, P:0.05wt%, S:0.003 wt%,Si:1.3 wt
%およびAl:1.0 wt%の成分組成の無方向性電磁鋼板を
常法に従って製造するに当たり、最終焼鈍時の雰囲気露
点を+30℃〜−50℃まで変化させたり、焼鈍温度を 700
℃〜1000℃まで変化させたり、あるいは中間焼鈍後の鋼
板に対する塩酸による酸洗時間を変化させることによっ
て、鋼板の表面硬さを種々に調整したときの、打抜き加
工性に及ぼす鋼板表面硬さの影響を示す。図2より、表
面硬さがHV160 を超えると、打抜き加工性が劣化するこ
とがわかる。
That is, FIG. 2 shows that C: 0.0020 wt%, Mn:
0.50wt%, P: 0.05wt%, S: 0.003wt%, Si: 1.3wt
% And Al: 1.0 wt% in producing a non-oriented electrical steel sheet according to a conventional method, by changing the atmosphere dew point during final annealing from + 30 ° C to -50 ° C, and increasing the annealing temperature by 700 ° C.
℃ ~ 1000 ℃, or by changing the pickling time with hydrochloric acid for the steel sheet after intermediate annealing, when adjusting the surface hardness of the steel sheet variously, the effect of the steel sheet surface hardness on the punching workability Show the effect. FIG. 2 shows that when the surface hardness exceeds HV160, the punching workability deteriorates.

【0022】以上、SiおよびAlの含有バランスを制御
し、かつ鋼板の表面硬さを制御することによって、打抜
き加工性が向上する理由については、必ずしも明確に解
明されたわけではないが、発明者らは次のように考えて
いる。先ず、打抜き後の形状を支配するものとして、硬
さがある。すなわち、柔らかすぎると、鋼板に集合組織
による悪影響が反映され、特に降伏強さの低い向きに行
われる打抜き時における、だれやつぶれが相対的に増加
し、上記向きとは異なる方向との強度差により、応力が
局所的に不均一になって加工形状を保持できなくなる。
一方、硬さが高すぎると、加工時に金型に加わる応力が
増加し、材料に対して過剰な応力が発生し、材料の不均
一変形を助長することになる。従って、SiおよびAlの含
有バランスの最適化によって、素材における強度の異方
性を減少し、さらに表面硬さを最適化することによっ
て、材料に対する過剰反応を軽減した結果、加工性が向
上したものと、考えられる。
Although the reason why the punching workability is improved by controlling the balance between the contents of Si and Al and controlling the surface hardness of the steel sheet has not been clearly elucidated, the inventors have found that. Thinks as follows. First, hardness governs the shape after punching. That is, if it is too soft, the adverse effect of the texture is reflected on the steel sheet, and in particular, when punching is performed in a direction where the yield strength is low, the drooping and crushing relatively increase, and the strength difference from a direction different from the above direction. As a result, the stress becomes locally non-uniform and the processed shape cannot be maintained.
On the other hand, if the hardness is too high, the stress applied to the mold during processing increases, causing excessive stress on the material and promoting non-uniform deformation of the material. Therefore, by optimizing the Si and Al content balance, the strength anisotropy of the material is reduced, and by optimizing the surface hardness, excess reaction to the material is reduced, resulting in improved workability. it is conceivable that.

【0023】次に、歪取り焼鈍後の磁性向上のために行
った実験結果について、詳しく説明する。すなわち、
C:0.003 wt%, Si:1.0 wt%, Mn:0.3 wt%, P:0.
03wt%, Al:1.7 wt%を含む鋼を転炉および真空脱ガス
により成分調整した。その後、CaSi合金を添加するか、
あるいはCaO, CaF2 の混合物を主成分とする、通常の脱
硫フラックスを添加することにより、それぞれS:0.00
7 wt%まで脱硫した。次いで、得られた鋼スラブを、通
常のガス加熱炉により1150℃に加熱した後、熱間圧延に
より2.6mm 厚の熱延板とした。その後、熱延板焼鈍を実
施もしくは省略して冷間圧延にて 0.5mm厚にした後、露
点を−15℃として再結晶焼鈍をして製品板とした。な
お、熱延板焼鈍および再結晶焼鈍の条件は、表1に示す
とおりである。
Next, the results of an experiment conducted to improve magnetism after strain relief annealing will be described in detail. That is,
C: 0.003 wt%, Si: 1.0 wt%, Mn: 0.3 wt%, P: 0.
The composition of steel containing 03 wt% and Al: 1.7 wt% was adjusted by converter and vacuum degassing. Then add CaSi alloy or
Alternatively, by adding a normal desulfurization flux containing a mixture of CaO and CaF 2 as a main component, S: 0.00
It was desulfurized to 7 wt%. Next, the obtained steel slab was heated to 1150 ° C. in a normal gas heating furnace, and then hot-rolled into a hot-rolled sheet having a thickness of 2.6 mm. Thereafter, hot-rolled sheet annealing was performed or omitted, and after cold rolling to a thickness of 0.5 mm, the dew point was set to -15 ° C and recrystallization annealing was performed to obtain a product sheet. The conditions for hot-rolled sheet annealing and recrystallization annealing are as shown in Table 1.

【0024】かくして得られた製品板の一部を打抜き加
工性の評価に供し、残りの製品板には 750℃で2時間の
窒素雰囲気ガス中での焼鈍を施したのち、磁気特性を測
定した。その評価結果を、表1に併記する。また、脱硫
後の硫化物系介在物におけるMn重量比率に関し、仕上げ
焼鈍後の製品板を対象にして調査した結果についても、
表1に示す。
A part of the product plate thus obtained was subjected to punching workability evaluation, and the remaining product plate was annealed at 750 ° C. for 2 hours in a nitrogen atmosphere gas, and then the magnetic properties were measured. . The evaluation results are also shown in Table 1. In addition, regarding the Mn weight ratio in the sulfide-based inclusions after desulfurization, the results of investigations on the product sheet after finish annealing,
It is shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から、いずれの条件においても、CaSi
を添加して硫化物系介在物中のMn重量比率を10wt%以下
とした鋼板は、硫化物系介在物中のMnSの含有率が高い
在来の鋼板に比較して、とくに鉄損特性が良好であるこ
とがわかる。
From Table 1, it can be seen that under all conditions, CaSi
Steel with a Mn weight ratio of 10 wt% or less in sulfide-based inclusions, compared with conventional steel sheets with a high MnS content in sulfide-based inclusions, has particularly high iron loss characteristics. It turns out that it is favorable.

【0027】なお、硫化物系介在物の制御によって良好
な磁気特性の得られる理由については必ずしも明らかで
はないが、通常の脱硫フラックス添加した場合に形成さ
れた、固溶温度の低い(Mn, Fe)Sはスラブ加熱、熱延板
焼鈍、再結晶焼鈍で再析出により微細分散するため粒成
長を阻害するのに対して、CaSi脱硫をした場合に形成さ
れる CaSは、鋼中で安定であるから溶解度が極めて低
く、固溶再析出せずに微細化しないため、粒成長性が良
好になるものと考えられる。
Although the reason why good magnetic properties can be obtained by controlling the sulfide-based inclusions is not necessarily clear, the low solid solution temperature (Mn, Fe) formed when a normal desulfurization flux is added is formed. ) S is finely dispersed by re-precipitation in slab heating, hot-rolled sheet annealing, and recrystallization annealing, which hinders grain growth, whereas CaS formed by CaSi desulfurization is stable in steel. Therefore, it is considered that the particles have extremely low solubility and do not undergo refining without solid solution reprecipitation, so that grain growth is improved.

【0028】ここで、脱硫剤として使用するCa合金とし
ては、金属カルシウムを鉄製フープで被覆したワイヤー
状のもの、またはカルシウムシリコン合金をインジェク
ションに適した寸法に粒度調整したもの等が好適であ
る。
Here, as the Ca alloy used as the desulfurizing agent, a wire-like material in which metallic calcium is covered with an iron hoop, or a calcium-silicon alloy whose particle size has been adjusted to a size suitable for injection, and the like are preferable.

【0029】次に、各成分範囲の限定理由について述べ
る。 C:0.01wt%以下 Cは、γ域を拡大し、α−γ変態点を低下させる。焼鈍
中にγ相がα粒界にフィルム状に生成しα粒の成長を抑
制するため、Cは基本的に少なくする必要がある。ま
た、SiやAl等のα相安定化元素を多量に含有し、全温度
域でγ相が生成しない場合でも鉄損特性の時効劣化を引
き起こすので、C含有量は0.01wt%以下とする必要があ
る。なお、下限は特に限定されないが、コスト等の面か
ら0.0005wt%以上とすることが望ましい。
Next, the reasons for limiting each component range will be described. C: 0.01 wt% or less C expands the γ region and lowers the α-γ transformation point. During annealing, the γ phase is formed in the form of a film at the α grain boundary to suppress the growth of the α grains, so that C must be basically reduced. Also, C content should be 0.01 wt% or less because it contains a large amount of α-phase stabilizing elements such as Si and Al, and causes aging deterioration of iron loss characteristics even when γ-phase is not generated in all temperature ranges. There is. The lower limit is not particularly limited, but is preferably 0.0005 wt% or more from the viewpoint of cost and the like.

【0030】Si:0.1 〜2.0 wt% Siは、鋼の比抵抗を高めて鉄損を低下させる元素であ
り、その効果を得るためには最低0.1 wt%が必要であ
る。一方、過度の含有は、硬さを上昇させて冷間圧延性
が悪くなるため、2.0 wt%を上限とする。
Si: 0.1 to 2.0 wt% Si is an element that increases the specific resistance of steel and reduces iron loss, and at least 0.1 wt% is required to obtain the effect. On the other hand, excessive content increases the hardness and deteriorates the cold rollability, so the upper limit is 2.0 wt%.

【0031】Al:0.5 〜2.5 wt% Alは、Siと同様に鋼の比抵抗を高めて鉄損を低下させる
元素であり、その効果を得るためには最低0.5 wt%が必
要である。一方、その含有量が多すぎると、連続鋳造に
おいてモールドとの潤滑性が低下し鋳造が困難となるた
め、上限を 2.5wt%とする。
Al: 0.5 to 2.5 wt% Al is an element that, like Si, increases the specific resistance of steel and reduces iron loss, and at least 0.5 wt% is required to obtain its effect. On the other hand, if the content is too large, the lubricity with the mold in continuous casting is reduced and casting becomes difficult, so the upper limit is set to 2.5 wt%.

【0032】Mn:0.1 〜1.5 wt% Mnは、SiやAlほどではないが鋼の比抵抗を高めて鉄損を
低下させる効果がある上、熱間圧延性を改善する効果も
あり、これらの効果を発揮するには 0.1wt%以上は必要
である。しかし、多量に含有すると冷間圧延性を劣化さ
せるため、 1.5wt%を上限とする。
Mn: 0.1 to 1.5 wt% Mn has the effect of increasing the specific resistance of the steel to reduce iron loss, though not so much as Si and Al, and also has the effect of improving hot rolling properties. 0.1% by weight or more is necessary to achieve the effect. However, if contained in a large amount, the cold rolling property is degraded, so the upper limit is 1.5 wt%.

【0033】P:0.1 wt%以下 Pも、SiやAlほどではないが鋼の比抵抗を高め、鉄損を
低下させる効果がある。また、粒界偏析により冷延再結
晶後の集合組織を改善して磁束密度を向上させる効果が
ある。しかし、過度の粒界偏析は粒成長性を阻害し、却
って鉄損を劣化させるため、 0.1wt%を上限とする。
P: 0.1 wt% or less P, although not as much as Si and Al, has the effect of increasing the specific resistance of steel and reducing iron loss. Further, there is an effect that the texture after cold rolling recrystallization is improved by the grain boundary segregation to improve the magnetic flux density. However, excessive grain boundary segregation hinders grain growth and rather deteriorates iron loss, so the upper limit is 0.1 wt%.

【0034】S:0.01wt%以下 Sは、析出物や介在物を形成して粒成長性を阻害するた
め、極力低減すべき元素である。この発明では、Sの析
出形態を制御することでSの無害化を実現するものであ
るが、Sの鋼中残存量が多い場合には介在物の粒子数が
増え、またSを固定するためのCaが相対的に不足すれ
ば、介在物中のMnS の割合が増え、やはり粒成長性に悪
影響を及ぼすため、Sの上限を0.01wt%とする。
S: 0.01 wt% or less S is an element to be reduced as much as possible because it forms precipitates and inclusions and inhibits grain growth. In the present invention, the harmlessness of S is realized by controlling the precipitation form of S. However, when the amount of S remaining in the steel is large, the number of inclusions increases and the S is fixed. If Ca is relatively insufficient, the proportion of MnS in the inclusions increases, which also adversely affects the grain growth. Therefore, the upper limit of S is set to 0.01 wt%.

【0035】また、SbおよびSnは、集合組織を改善して
磁束密度を向上させるだけでなく、鋼板表層の特にAlの
酸窒化を抑制し、さらにこれにともなう表層微細粒の生
成を抑制することにより表面硬さの上昇を抑えて、打抜
き加工性を向上させるために添加する。そして、いずれ
か一方または両方を合計で0.005 wt%未満では、その効
果はなく、一方 0.2wt%をこえると、粒成長性を阻害し
磁性を劣化させるため、 0.005〜 0.2wt%の範囲とす
る。
Further, Sb and Sn not only improve the texture and improve the magnetic flux density, but also suppress the oxynitridation of Al particularly on the surface layer of the steel sheet, and further suppress the generation of fine particles on the surface layer. Is added to suppress the increase in surface hardness and improve the punching workability. If one or both of them is less than 0.005 wt% in total, the effect is not obtained. On the other hand, if more than 0.2 wt%, grain growth is inhibited and magnetism is deteriorated. .

【0036】以上、必須成分について説明したが、その
他にも各種の公知元素を添加することが可能であり、例
えば磁気特性改善成分としてB,Ni, Cu, Sn, Sn, Biお
よびGe等を添加することができる。
Although the essential components have been described above, various other known elements can be added. For example, B, Ni, Cu, Sn, Sn, Bi, Ge, and the like are added as magnetic property improving components. can do.

【0037】次に、製造方法について説明すると、この
発明では、製造方法は特に限定されることはなく、従来
公知の方法が適用できる。例えば、熱間圧延は、スラブ
加熱を、省エネルギーの観点から望ましくは1200℃以下
で施し、圧延を行って、その後の熱延板焼鈍は必須では
ないが、磁束密度を向上させるためには 750℃〜1050℃
の範囲で焼鈍するのが好ましい。また、冷間圧延後の最
終焼鈍は、特に鋼板表層の酸化窒化と、それに伴う表層
微細粒の生成を防止して表面硬さの過度の上昇を抑制す
るために、雰囲気露点を−10℃以下とすることが推奨さ
れる。
Next, the manufacturing method will be described. In the present invention, the manufacturing method is not particularly limited, and a conventionally known method can be applied. For example, in hot rolling, slab heating is desirably performed at 1200 ° C. or less from the viewpoint of energy saving, rolling is performed, and subsequent hot-rolled sheet annealing is not essential, but in order to improve magnetic flux density, 750 ° C. ~ 1050 ℃
It is preferable to anneal within the range. In addition, the final annealing after cold rolling, especially to prevent the oxynitriding of the surface layer of the steel sheet and the accompanying generation of fine particles in the surface layer and to suppress an excessive increase in surface hardness, the atmosphere dew point is -10 ° C or less. It is recommended that

【0038】[0038]

【実施例】【Example】

実施例1 表2に示す成分組成の鋼を、転炉および真空脱ガスによ
って成分調整して、鋼中酸素量:0.007 wt%以下で溶製
し、次いで溶鋼を表2に示す各種脱硫剤を用いてS:0.
01%以下まで脱硫した。その後、連続鋳造により幅1100
〜1250mmで 225mm厚のスラブとした。これらのスラブ
を、通常のガス加熱炉で加熱した後、熱間圧延を施し、
その後熱延板焼鈍を実施もしくは省略して、冷間圧延に
て 0.5mm厚としたのち、露点20℃の雰囲気で再結晶焼鈍
を施して製品板とした。かくして得られた製品板の磁気
特性を、表2に併記する。また、各鋼板を対象に、外径
50mmおよび内径48mmのリングを供試鋼板から打抜いた際
の、打抜き後のリングの反りの高さを調査した結果につ
いても、表2に併記する。
Example 1 A steel having a component composition shown in Table 2 was adjusted by a converter and vacuum degassing to smelt the steel at an oxygen content of 0.007 wt% or less, and then the molten steel was mixed with various desulfurizing agents shown in Table 2. Using S: 0.
Desulfurized to less than 01%. After that, width 1100 by continuous casting
The slab was の 1250 mm thick and 225 mm thick. After heating these slabs in a normal gas heating furnace, hot rolling is performed,
Thereafter, hot-rolled sheet annealing was performed or omitted, and after cold rolling to a thickness of 0.5 mm, recrystallization annealing was performed in an atmosphere having a dew point of 20 ° C. to obtain a product sheet. The magnetic properties of the product sheet thus obtained are also shown in Table 2. In addition, for each steel plate,
Table 2 also shows the results of investigation of the warpage of the ring after punching when a ring having a diameter of 50 mm and an inner diameter of 48 mm was punched from the test steel sheet.

【0039】[0039]

【表2】 [Table 2]

【0040】表2に示した結果から明らかなように、こ
の発明に従う鋼板は比較例に比べてかつ打抜き加工性に
優れ、かつ磁気特性、特に鉄損特性にも優れることがわ
かる。
As is evident from the results shown in Table 2, the steel sheet according to the present invention is superior to the comparative example in terms of punching workability, and is also excellent in magnetic properties, particularly iron loss properties.

【0041】実施例2 表2の鋼 No.6および10と同じ成分になる鋼をスラブと
し、通常のガス加熱炉で1150℃に加熱した後、熱間圧延
を施し、その後 900℃の熱延板焼鈍を施してから、冷間
圧延にて 0.5mm厚とした後、 800℃で露点を−50℃から
+50℃まで変化させて再結晶焼鈍をして製品板とした。
得られた製品板の一部を打抜き性評価に供し、残りの鋼
板に 750℃,2時間の歪み取り焼鈍を施してから磁気特
性を調査した。その結果を、仕上げ焼鈍後の地鉄表層の
酸素目付量の測定結果とともに、表3に示す。
Example 2 A steel having the same composition as steel Nos. 6 and 10 in Table 2 was used as a slab, heated to 1150 ° C. in a normal gas heating furnace, subjected to hot rolling, and then hot rolled at 900 ° C. After performing sheet annealing, cold rolling was performed to obtain a thickness of 0.5 mm, and then recrystallization annealing was performed at 800 ° C. with a dew point changed from −50 ° C. to + 50 ° C. to obtain a product sheet.
A part of the obtained product sheet was subjected to punching property evaluation, and the remaining steel sheet was subjected to strain relief annealing at 750 ° C. for 2 hours, and then its magnetic properties were examined. The results are shown in Table 3 together with the measurement results of the basis weight of oxygen on the surface layer of the base steel after the finish annealing.

【0042】[0042]

【表3】 [Table 3]

【0043】表3から、再結晶焼鈍での露点を調整して
地鉄表層の酸素目付量を1.0 g/m 2 以下にすることに
よって、実施例1で得られる磁気特性を、さらに向上で
きることがわかる。これは、比較的Al含有量の高い鋼板
では、仕上げ焼鈍(再結晶焼鈍)時に生成する表面スケ
ールが、歪取り焼鈍時の窒化現象に影響を与えているた
めである。すなわち、Al含有量の増加によって仕上げ焼
鈍時に鋼板表面に生成しやすくなったスケールが、地鉄
表層の酸素目付量が1.0 g/m2 をこえると、窒化が進
行して磁性劣化現象が生じるのである。この理由は定か
ではないが、酸素目付量が増すにつれて表面スケール性
状が変化して窒化現象に影響を及ぼしているものと、考
えられる。
From Table 3, the dew point in the recrystallization annealing was adjusted.
The basis weight of oxygen on the surface layer of ground iron is 1.0 g / m TwoTo be
Therefore, the magnetic characteristics obtained in the first embodiment can be further improved.
You can see that you can. This is a steel plate with relatively high Al content
The surface scale generated during finish annealing (recrystallization annealing)
Is affecting the nitriding phenomenon during strain relief annealing.
It is. In other words, finish baking is performed by increasing the Al content.
The scale that easily forms on the steel sheet surface during dulling
Surface area oxygen weight is 1.0 g / mTwoBeyond the limit, nitriding proceeds
This causes a magnetic degradation phenomenon. I don't know why
However, as the oxygen weight increases, the surface scale property increases.
Is considered to have changed the state and affected the nitriding phenomenon.
available.

【0044】[0044]

【発明の効果】かくして、この発明に従い、SiおよびAl
の含有バランスを制御し、かつ鋼板の表面硬さを制御す
ることによって、満足する磁気特性の下に、打抜き加工
性を向上することができる。また、鋼板中の硫化物系介
在物を主としてカルシウム−サルファイドまたはカルシ
ウム−オキシサルファイドとしたもの、そして仕上げ焼
鈍後の地鉄表層の酸素目付量を1.0 g/m2 以下とした
ものでは、さらなる磁気特性の向上が可能である。
Thus, according to the present invention, Si and Al
By controlling the content balance and controlling the surface hardness of the steel sheet, the punching workability can be improved with satisfactory magnetic properties. Further, when the sulfide-based inclusions in the steel sheet are mainly calcium-sulfide or calcium-oxysulfide, and when the basis weight of oxygen of the ground iron surface layer after the finish annealing is 1.0 g / m 2 or less, further magnetic The characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SiおよびAlの含有量が打抜き加工性に及ぼす影
響を示すグラフである。
FIG. 1 is a graph showing the effect of the contents of Si and Al on punching workability.

【図2】鋼板表面硬さが打抜き加工性に及ぼす影響を示
すグラフである。
FIG. 2 is a graph showing the effect of steel sheet surface hardness on punching workability.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 C:0.01wt%以下, Si:0.1 〜2.0 wt
%, Mn:0.1 〜1.5 wt%, Al:0.5 〜2.5 wt%, P:0.
1 wt%以下およびS:0.01wt%以下を、 Si+0.60Al≧0.80wt% の下に含有する成分組成になり、かつ表面のビッカース
硬さが HV160以下であることを特徴とする打抜き加工性
および磁気特性に優れた無方向性電磁鋼板。
1. C: 0.01 wt% or less, Si: 0.1 to 2.0 wt
%, Mn: 0.1 to 1.5 wt%, Al: 0.5 to 2.5 wt%, P: 0.
Punching workability characterized by having a component composition containing 1 wt% or less and S: 0.01 wt% or less under Si + 0.60Al ≧ 0.80 wt% and having a Vickers hardness of HV160 or less on the surface. Non-oriented electrical steel sheet with excellent magnetic properties.
【請求項2】 請求項1に記載の無方向性電磁鋼板にお
いて、さらにSbおよびSnのいずれか一方、または両方を
合計で、0.005 〜0.20wt%含有する成分組成になる低鉄
損無方向性電磁鋼板。
2. The non-oriented electrical steel sheet according to claim 1, further comprising a component composition containing 0.005 to 0.20 wt% of one or both of Sb and Sn in total. Electrical steel sheet.
【請求項3】 鋼板中の硫化物系介在物が、主としてカ
ルシウム−サルファイドまたはカルシウム−オキシサル
ファイドである請求項1または2に記載の無方向性電磁
鋼板。
3. The non-oriented electrical steel sheet according to claim 1, wherein the sulfide-based inclusions in the steel sheet are mainly calcium-sulfide or calcium-oxysulfide.
【請求項4】 仕上げ焼鈍後の地鉄表層の酸素目付量が
1.0 g/m2 以下である請求項1、2または3に記載の
無方向性電磁鋼板。
4. The oxygen basis weight of the surface steel layer after finish annealing is
The non-oriented electrical steel sheet according to claim 1, 2 or 3, having a weight of 1.0 g / m 2 or less.
JP8341210A 1996-12-20 1996-12-20 Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic Pending JPH10183311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8341210A JPH10183311A (en) 1996-12-20 1996-12-20 Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8341210A JPH10183311A (en) 1996-12-20 1996-12-20 Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic

Publications (1)

Publication Number Publication Date
JPH10183311A true JPH10183311A (en) 1998-07-14

Family

ID=18344239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8341210A Pending JPH10183311A (en) 1996-12-20 1996-12-20 Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic

Country Status (1)

Country Link
JP (1) JPH10183311A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234304A (en) * 2000-02-28 2001-08-31 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetism and its producing method
JP2001294997A (en) * 2000-04-06 2001-10-26 Nippon Steel Corp Nonoriented silicon steel sheet excellent in orientation integration degree and grain growthability, and its manufacturing method
JP2001323351A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP2002080948A (en) * 2000-06-19 2002-03-22 Nkk Corp Nonoriented silicon steel sheet having excellent blanking workability
WO2010074447A3 (en) * 2008-12-26 2010-09-30 주식회사 포스코 Non-oriented electrical steel sheets having high workability for client companies and manufacturing method thereof
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
JP2015214758A (en) * 2015-07-10 2015-12-03 新日鐵住金株式会社 Non-oriented magnetic steel sheet excellent in magnetic properties and die stamping processability
EP3358027A4 (en) * 2015-10-02 2018-08-08 JFE Steel Corporation Non-oriented electromagnetic steel sheet and manufacturing method of same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234304A (en) * 2000-02-28 2001-08-31 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetism and its producing method
JP2001294997A (en) * 2000-04-06 2001-10-26 Nippon Steel Corp Nonoriented silicon steel sheet excellent in orientation integration degree and grain growthability, and its manufacturing method
JP2001323351A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP2002080948A (en) * 2000-06-19 2002-03-22 Nkk Corp Nonoriented silicon steel sheet having excellent blanking workability
JP4622162B2 (en) * 2000-06-19 2011-02-02 Jfeスチール株式会社 Non-oriented electrical steel sheet
WO2010074447A3 (en) * 2008-12-26 2010-09-30 주식회사 포스코 Non-oriented electrical steel sheets having high workability for client companies and manufacturing method thereof
KR101110253B1 (en) 2008-12-26 2012-03-13 주식회사 포스코 Non-oriented magnetic steel sheet with superior workability and manufacturing method thereof
JP2012512961A (en) * 2008-12-26 2012-06-07 ポスコ Non-oriented electrical steel sheet excellent in customer processability and manufacturing method thereof
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
JP2015214758A (en) * 2015-07-10 2015-12-03 新日鐵住金株式会社 Non-oriented magnetic steel sheet excellent in magnetic properties and die stamping processability
EP3358027A4 (en) * 2015-10-02 2018-08-08 JFE Steel Corporation Non-oriented electromagnetic steel sheet and manufacturing method of same

Similar Documents

Publication Publication Date Title
EP2826872B1 (en) Method of producing Non-Oriented Electrical Steel Sheet
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
CN110088327B (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2015515539A (en) Non-oriented silicon steel and method for producing the same
KR20150093807A (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO1986007390A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
KR20150073800A (en) Non-oriented electrical steel sheets and method for manufacturing the same
EP0101321B1 (en) Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
JPH10183311A (en) Non-oriented silicon steel sheet excellent in blanking workability and magnetic characteristic
KR100479992B1 (en) A non-oriented steel sheet with excellent magnetic property and a method for producing it
JP2022545025A (en) Cu-containing non-oriented electrical steel sheet and manufacturing method thereof
KR20230125156A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP4259177B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20210080658A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP7052934B2 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet
JP2007177282A (en) Method for producing nonoriented electromagnetic steel sheet having high magnetic flux density
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
JPH0443981B2 (en)
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
CN113166871A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP4987190B2 (en) Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing
KR20200076832A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100256342B1 (en) The manufacturing method for oriented electric steel sheet with magnetic and decarburing property
JP4258952B2 (en) Non-oriented electrical steel sheet