KR100479992B1 - A non-oriented steel sheet with excellent magnetic property and a method for producing it - Google Patents

A non-oriented steel sheet with excellent magnetic property and a method for producing it Download PDF

Info

Publication number
KR100479992B1
KR100479992B1 KR10-1999-0040876A KR19990040876A KR100479992B1 KR 100479992 B1 KR100479992 B1 KR 100479992B1 KR 19990040876 A KR19990040876 A KR 19990040876A KR 100479992 B1 KR100479992 B1 KR 100479992B1
Authority
KR
South Korea
Prior art keywords
less
annealing
elements
steel sheet
steel
Prior art date
Application number
KR10-1999-0040876A
Other languages
Korean (ko)
Other versions
KR20010028570A (en
Inventor
배병근
장삼규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0040876A priority Critical patent/KR100479992B1/en
Publication of KR20010028570A publication Critical patent/KR20010028570A/en
Application granted granted Critical
Publication of KR100479992B1 publication Critical patent/KR100479992B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 전기기기의 철심으로 사용되는 무방향성 전기강판 및 그 제조방법에 관한 것으로, 함유성분을 조정하여 자성을 향상시키지 않는 원소는 극력 억제하고, 무방향성 전기강판의 제조에 있어서 열간압연온도, 소둔온도 및 분위기를 제어함으로써, 강을 청정하게 제조하고 자성을 향상시킬 수 있는 무방향성 전기강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a non-oriented electrical steel sheet used as an iron core of an electric machine and a method for manufacturing the same, the element that does not improve the magnetic properties by adjusting the content of the components is suppressed as much as possible, hot rolling temperature, in the production of non-oriented electrical steel sheet, By controlling the annealing temperature and the atmosphere, to provide a non-oriented electrical steel sheet and a method for manufacturing the steel that can be produced clean steel and improve the magnetic, the purpose is.

본 발명은 중랑%로, C:0.01% 이하, Si: 3.5% 이하, Mn: 1.2% 이하, Al: 1.3% 이하, Sn:0.03~0.3%, Cr:0.05~0.5%, Ti: 0.0005~0.009%, N: 0.005% 이하, O: 0.005% 이하, Cu, Ni, Sb, Ca 원소들의 합이 0.2% 이하이며, P, S, Mo, V, B, Zr, W, As, Mg, Te, Zn 원소들의 합이 0.1% 이하로 조성되는 무방향성 전기강판에 관한 것을 기술적 요지로 하며, 또한 본 발명은, 상기와 같이 조성되는 슬라브를 1250℃ 이하로 재가열한 후 열간압연하고, 600℃ 이상 페라이트 온도범위에서 권취하고, 열연판을 소둔 또는 소둔없이 산세하고, 최종두께로 냉간압연하고, 냉연판을 소둔시 (Ac1-150℃)~Ac1 온도범위에서 수소10% 이상의 분위기에서 소둔하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법에 관한 것을 기술적 요지로 한다.The present invention is in the midrange%, C: 0.01% or less, Si: 3.5% or less, Mn: 1.2% or less, Al: 1.3% or less, Sn: 0.03 to 0.3%, Cr: 0.05 to 0.5%, Ti: 0.0005 to 0.009 %, N: 0.005% or less, O: 0.005% or less, and the sum of Cu, Ni, Sb, and Ca elements is 0.2% or less, and P, S, Mo, V, B, Zr, W, As, Mg, Te, Technically, the present invention relates to a non-oriented electrical steel sheet in which the sum of Zn elements is 0.1% or less, and the present invention also reheats the slab formed as described above to 1250 ° C or less, and then hot-rolls the ferrite to 600 ° C or more. Winding in the temperature range, pickling the hot rolled sheet without annealing or annealing, cold rolling to the final thickness, and annealing the cold rolled sheet in an atmosphere of at least 10% hydrogen in the temperature range (Ac 1 -150 ° C) to Ac 1 The technical gist of the non-oriented electrical steel sheet having excellent magnetic properties is described.

Description

자성이 우수한 무방향성 전기강판 및 그 제조방법{A NON-ORIENTED STEEL SHEET WITH EXCELLENT MAGNETIC PROPERTY AND A METHOD FOR PRODUCING IT}Non-oriented electrical steel sheet having excellent magnetic properties and manufacturing method thereof {A NON-ORIENTED STEEL SHEET WITH EXCELLENT MAGNETIC PROPERTY AND A METHOD FOR PRODUCING IT}

본 발명은 모터, 변압기와 같은 전기기기의 철심용 등으로 사용되는 무방향성 전기강판 및 그의 제조방법에 관한 것으로, 보다 상세하게는 강성분을 적절히 제어한 자기적 특성이 우수한 무방향성 전기강판 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same used for iron cores of electrical equipment such as motors, transformers, and more particularly, non-oriented electrical steel sheet having excellent magnetic properties to properly control the steel components and the same It relates to a manufacturing method.

모터와 변압기 등의 전기기기에서 철심으로 사용되는 무방향성 전기강판은 낮은 자기장에서 자화가 잘 되서, 적은 전기를 걸어 주고도 높은 힘을 얻을 수 있는 것이어야 한다. 즉, 효율이 높아야 하는 것이다. 이렇게 되기 위해서는 무방향성 전기강판에 있어서 철손은 낮고 자속밀도는 높아야 한다. 철손은 자기장을 가할 때 열로 나타나고, 자속밀도는 걸어준 자기장에서 전달되는 힘과 효율정도를 나타내는데, 큰 자기장을 가함에도 불구하고 동력이 적다면 자속밀도가 낮기 때문이다.자속밀도가 높으면 그 만큼 자화가 용이하여 철심부위의 구리선을 저감할 수 있는데, 구리의 양이 적다는 것은 모터에서 주요손실인 동손이 적다는 것을 의미한다. 모터에서의 손실로는 동손, 철손 및 기계손 등이 있는데, 그 중에서도 동손의 비율이 높다.Non-oriented electrical steel sheets used as iron cores in electric equipment such as motors and transformers should be magnetized at low magnetic fields, and should be able to obtain high power even with a small amount of electricity. In other words, the efficiency must be high. This requires low iron loss and high magnetic flux density in the non-oriented electrical steel sheet. Iron loss appears as heat when applying a magnetic field, and the magnetic flux density represents the strength and efficiency of the magnetic field delivered to it. It is easy to reduce the copper wire at the core part, and the low amount of copper means less copper loss, which is a major loss in the motor. Losses in the motor include copper loss, iron loss, and mechanical loss. Among them, the ratio of copper loss is high.

무방향성 전기강판은 일반적으로 규소의 량으로 등급을 결정하고 있는데, 이것은 Si가 비저항이 높아서 철손중 와류손실을 낮추기 때문이다. 와류손실을 높이는 기타 원소로 Al도 있으나 가격이 비싼 단점이 있다. 이러한 비저항을 증가시키는 원소는 과량 첨가시 압연을 어렵게 하는 단점이 있기 때문에, 첨가하는데 있어서 제한이 있다. 따라서, 비저항을 증가시키는 합금원소를 첨가하되 재료의 특성을 향상시킬 수 있도록 불순물원소 억제 및 재질을 향상시키는 방법이 필요하다.Non-oriented electrical steel sheets are generally graded by the amount of silicon, because Si has a high resistivity, which lowers the eddy current loss during iron loss. Al is another element that increases the vortex loss, but has the disadvantage of being expensive. The element which increases such a specific resistance has a disadvantage in making rolling difficult when it is added in excess, and there is a limitation in addition. Therefore, there is a need for a method of suppressing impurity elements and improving materials so as to add alloying elements that increase specific resistance, but improve properties of materials.

이를 해결하기 위해 개시된 일본특허 특개평 7-268568호는, 불순물원소를 극력 억제하고 있으나 V을 첨가하여 자기적 특성이 불리한 단점이 있고, 일본특허 특개평 7-54044호도 자성에 불리한 As, P 등의 불순물을 첨가하고 있다. 또한, 이들 특허는 자성에 해로운 O의 량에 대한 제한이 없다. In order to solve this problem, Japanese Patent Laid-Open No. Hei 7-268568 suppresses impurity elements as much as possible, but has a disadvantage in that magnetic properties are disadvantageous by adding V. Japanese Patent Laid-Open No. Hei 7-54044 is also disadvantageous in magnetism, such as As and P. Impurity of is added. In addition, these patents have no limit on the amount of O harmful to magnetism.

이에 본 발명은 함유성분을 조정하여 자성을 향상시키지 않는 원소는 극력 억제하고, 무방향성 전기강판의 제조에 있어서, 열간압연온도, 소둔온도 및 분위기를 제어함으로써, 자성을 향상시킬 수 있는 무방향성 전기강판 및 그 제조방법을 제공하고자 하는데, 그 목적이 있다. Accordingly, the present invention controls the elements that do not improve the magnetism by adjusting the content of components, and in the manufacture of non-oriented electrical steel sheet, by controlling the hot rolling temperature, the annealing temperature and the atmosphere, the non-directional electrical which can improve the magnetism To provide a steel sheet and a method of manufacturing the same, the purpose is.

본 발명은 중랑%로, C:0.01% 이하, Si: 3.5% 이하, Mn: 1.2% 이하, Al: 1.3% 이하, Sn:0.03~0.3%, Cr:0.05~0.5%, Ti: 0.0005~0.009%, N: 0.005% 이하, O: 0.005% 이하, Cu, Ni, Sb, Ca 원소들의 합이 0.2% 이하이며, P, S, Mo, V, B, Zr, W, As, Mg, Te, Zn 원소들의 합이 0.1% 이하로 조성되는 것을 특징으로 하는 자성이 우수한 전기강판에 관한 것이며, 또한 본 발명은 상기와 같은 조성을 갖는 슬라브를 1250℃ 이하로 재가열 후 열간압연하고, 600℃ 이상 페라이트 온도범위에서 권취하고, 열연판을 소둔 또는 소둔없이 산세하고, 최종두께로 냉간압연하고, 냉연판을 소둔시 (Ac1-150℃)~Ac1 온도범위에서 수소10% 이상의 분위기에서 소둔하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법에 관한 것이다.The present invention is in the midrange%, C: 0.01% or less, Si: 3.5% or less, Mn: 1.2% or less, Al: 1.3% or less, Sn: 0.03 to 0.3%, Cr: 0.05 to 0.5%, Ti: 0.0005 to 0.009 %, N: 0.005% or less, O: 0.005% or less, and the sum of Cu, Ni, Sb, and Ca elements is 0.2% or less, and P, S, Mo, V, B, Zr, W, As, Mg, Te, The present invention relates to an electrical steel sheet having excellent magnetic properties, characterized in that the sum of Zn elements is 0.1% or less, and the present invention also hot-rolls after reheating a slab having such a composition to 1250 ° C. or less, and ferrite temperature of 600 ° C. or more. Winding in the range, pickling the hot rolled sheet without annealing or annealing, cold-rolled to the final thickness, and annealing the cold rolled sheet in an atmosphere of at least 10% hydrogen in the temperature range (Ac 1 -150 ℃) ~ Ac 1 It relates to a method for producing non-oriented electrical steel sheet having excellent magnetic properties.

본 발명자들은 자성이 우수한 무방향성 전기강판을 제조하기 위해, 불순물원소를 가능한 억제하고 강을 청정하게 제조하여 자성에 유리한 개질을 만들고자 하였다. 자성에 해로워서 첨가하지 않는 원소로는 C, P, S, N, O, Mo, V, B, Zr, W, As, Mg, Te, Zn 등이 있고, 자성에 해롭지는 않으나 첨가하지는 않는 원소로는 Cu, Ne, Sb, Ca 등이 있으며, 자성에는 해롭지만 다른 불순물원소를 억제하기 위해 불가피하게 첨가하는 원소로는 Ti를 들 수 있다. 그러나, 제강의 전로작업전 용강을 분석한 결과에 의하면 다음과 같은 결과를 얻을 수 있다. 즉, C는 6% 이하, P는 0.2% 이하, S는 0.3% 이하, N는 0.03% 이하, O는 0.035 이하, Mo는 0.01% 이하, V는 0.1% 이하, B는 0.01% 이하, Zr은 0.005 이하, W는 0.5% 이하, As는 0.01% 이하, Mg는 0.01% 이하, Te는 0.005% 이하, Zn은 0.01% 이하, Cu는 0.05% 이하, Ni은 0.05% 이하, Sb는 0.005% 이하, Ti는 0.5% 이하인 것이다. 따라서, 첨가하지 원소들도 최종제품 분석시 소량씩 함유되어 있음을 알 수 있다. 상기 원소들 중 O등과 쉽게 반응하는 원소들은, 전로에서 산소에 의한 취련작업을 실시할 경우, 산화되어 개재물로 부상하기 때문에 강중에는 낮게 잔류하게 된다.The inventors of the present invention have attempted to produce an advantageous non-magnetic electrical steel sheet by suppressing impurity elements as much as possible and producing steel cleanly in order to manufacture non-oriented electrical steel sheets having excellent magnetic properties. Elements that are not harmful due to magnetism and are not added include C, P, S, N, O, Mo, V, B, Zr, W, As, Mg, Te, and Zn. As the furnace, Cu, Ne, Sb, Ca, and the like are harmful to magnetism, but Ti is an element inevitably added to suppress other impurity elements. However, according to the results of analyzing the molten steel before the steelmaking converter, the following results can be obtained. That is, C is 6% or less, P is 0.2% or less, S is 0.3% or less, N is 0.03% or less, O is 0.035 or less, Mo is 0.01% or less, V is 0.1% or less, B is 0.01% or less, Zr Silver is 0.005 or less, W is 0.5% or less, As is 0.01% or less, Mg is 0.01% or less, Te is 0.005% or less, Zn is 0.01% or less, Cu is 0.05% or less, Ni is 0.05% or less, Sb is 0.005% Hereinafter, Ti is 0.5% or less. Therefore, it can be seen that elements not added are also contained in small amounts in the final product analysis. Among the elements, elements that easily react with O, etc., remain low in the steel because they are oxidized and float as inclusions when oxygen is blown in the converter.

본 발명에서 제거하지 않거나 첨가하는 원소는, Si, Mn, Al, Sn, Cr, Ti이다. 이 밖에 기타원소는 첨가하지 않으며, 강중 미량으로 존재하는 것은 용광로의 용선으로부터 불가피하게 첨가된 원소 또는 전로작업시 냉매로 첨가된 고철의 불순물에서 함유된 것이다. 이와 같은 성분으로 구성되는 본 발명강은 전로작업시 용선이나 고철에서 첨가될 수 있는 불순물의 상한을 설정한다.Elements which are not removed or added in the present invention are Si, Mn, Al, Sn, Cr, Ti. In addition, other elements are not added, and the trace elements present in the steel are contained in the elements inevitably added from the molten iron of the blast furnace or the impurities of the scrap metal added as the refrigerant during the converter operation. The steel of the present invention composed of such components sets an upper limit of impurities which can be added in molten iron or scrap metal during the converter operation.

이하, 본 발명에 따른 성분계의 수치한정이유에 대하여 설명한다.Hereinafter, the reason for numerical limitation of the component system which concerns on this invention is demonstrated.

상기 C는 자기시효를 일으켜서 전기기기의 철심으로 사용중 자기적 특성을 저하시키므로 슬라브에서는 0.01% 이하로 하고, 최종제품에서는 0.003% 이하로 한다. 0.003%보다 높게 함유되는 경우에는 탈탄소둔을 실시하는데, 탈탄소둔은 냉연판소둔시에 할 수 있다. The above C causes magnetic aging to decrease the magnetic properties during use by the iron core of the electric equipment, so it is 0.01% or less in the slab and 0.003% or less in the final product. If the content is higher than 0.003%, decarbonization annealing is performed, but decarbonization annealing can be performed during cold rolling annealing.

상기 Si는 비저항을 증가시켜서 철손중 와류손실을 낮추는 원소이지만, 과다할 경우 판파단이 발생될 수 있기 때문에, 냉간압연시 1회 압연을 위해 본 발명강에서는 3.5% 이하로 첨가한다.The Si is an element that decreases the eddy current loss during iron loss by increasing the resistivity, but if excessive, plate breakage may occur, so that it is added in the steel of the present invention for less than 3.5% for one-time rolling during cold rolling.

상기 Al은 비저항을 증가시켜 와류손실을 낮추는 원소로, 1.3% 보다 많이 첨가되면 그 첨가량에 비해 자성의 향상정도가 작기 때문에 1.3% 이하로 제한한다. The Al is an element that increases the specific resistance and lowers the eddy current loss. When Al is added more than 1.3%, the Al is limited to 1.3% or less because the degree of improvement in magnetism is small.

상기 Sn은 결정립계에 편석하여 소둔시 강표면으로부터 산소원소 등의 확산침입을 억제하고, 최종제품의 표면에 치밀하게 분포하여 산화를 억제하며, 또한 자성에 불리한 (222)면의 집합조직을 억제시키는 역할을 한다. 본 발명에서 첨가량은 0.03~0.3%로 하는데, 그 이유는 0.03% 이하로 하면 그 효과가 적고, 0.3% 이상으로 하면 냉간압연성이 나빠지기 때문이다.The Sn segregates at the grain boundaries to suppress diffusion intrusion of oxygen elements from the steel surface upon annealing, to be densely distributed on the surface of the final product, to inhibit oxidation, and to suppress the texture of the (222) surface which is disadvantageous to magnetism. Play a role. In the present invention, the addition amount is 0.03 to 0.3%, since the effect is less when the amount is 0.03% or less, and the cold rolling property becomes worse when the amount is 0.3% or more.

상기 Cr은 강중 N를 저감하고, 제품표면의 부식을 억제하는 원소로, 최소 0.05% 이상 첨가되어야 그 효과가 있고, 0.5%를 초과하면 첨가량에 비해 그 영향이 감소하므로 0.05~0.5%로 첨가한다.Cr is an element that reduces N in steel and suppresses corrosion of the surface of the product, and at least 0.05% is added to the effect, and when it exceeds 0.5%, the effect is reduced compared to the added amount, so it is added at 0.05 to 0.5%. .

상기 Ti는 산소 및 질소와 쉽게 결합하여 강중 석출물형성을 억제하는 원소로, 첨가량은 0.0005~0.009%로 한다. 그 이유는, 0.009% 이상 첨가될 경우 산소나 질소와의 결합물이 과다하여 오히려 강의 청정도가 떨어지게 되고, 0.0005% 미만일 경우도 O와 N가 높아져 강의 청정도가 떨어지기 때문이다.Ti is an element that easily combines with oxygen and nitrogen to suppress precipitate formation in steel, and the amount of Ti is 0.0005 to 0.009%. The reason is that when 0.009% or more is added, oxygen or nitrogen is excessively combined, and steel cleanliness is lowered, and when it is less than 0.0005%, O and N become high and steel cleanliness decreases.

상기 N는 미세하고 긴 AlN석출물을 형성하여 결정립의 성장을 억제하므로 가능한 억제하는 것이 바람직하여, 본 발명에서는 0.005% 이하로 한다.Since N forms fine and long AlN precipitates to suppress the growth of crystal grains, it is preferable to suppress them as much as possible, and in the present invention, the content is made 0.005% or less.

상기 O는 다른 원소와 쉽게 결합해 산화물을 형성하여 용강중에서는 슬래그로 부상되지만, 일부 부상하지 못한 개재물은 강중에 잔존하여 미세한 석출물로 남아 최종제품에서 자구의 이동을 억제하여 자성을 저하시킨다. 또한, 슬라브중 잔존하는 미산화 산소는 후속공정의 열처리시 다른 원소와 결합하여 자성을 저하시키므로, 본 발명에서는 0.005%이하로 한다.The O is easily combined with other elements to form an oxide to rise as slag in molten steel, but some uninjured inclusions remain in the steel to remain as fine precipitates, thereby inhibiting the movement of magnetic domains in the final product, thereby lowering the magnetism. In addition, since the non-oxidized oxygen remaining in the slab is combined with other elements during the heat treatment of the subsequent process to lower the magnetism, in the present invention, it is 0.005% or less.

상기 Cu와 Ni은 산화가 어려운 원소로서, 전로작업후 고철을 사용하지 않더라도 잔존한다. Sb와 Ca은 불순물로 잔존할 경우에도 자성을 저하시키지는 않았다. 그러나, 이같은 Cu, Ni, Sb, Ca은, 기타 불순물을 제어하는데 용이하도록 그 합이 0.2% 이하로 함유되는 것이 바람직하다.Cu and Ni are elements that are difficult to oxidize, and remain even after scrap metal is not used. Sb and Ca did not degrade the magnetism even when they remained as impurities. However, such a sum of Cu, Ni, Sb, and Ca is preferably contained in an amount of 0.2% or less so as to easily control other impurities.

기타 P, S, Mo, V, B, Zr, W, As, Mg, Te, Zn 원소들은, 전로작업시 대부분 산소와 결합하거나 기타 원소와 결합해 슬래그로 부상하여 제거될 수 있어서, 이들 원소들의 합과 전로작업전 냉괴로 넣는 고철등으로 함유되는 원소를 합하여 0.1% 이하로 한다. 0.1% 이상이 되면 자성이 저조해지므로 냉괴의 고철로 첨가되는 원소를 극력 억제해야 한다. 이들 원소중 특히 P,S는 편석원소로서 제품까지 잔존하여, 자기장을 가할 경우 자구의 이동을 억제하므로 자성을 저하시킨다. 따라서, 상기 원소들은 가능한한 낮게 함유되어야 한다.Other P, S, Mo, V, B, Zr, W, As, Mg, Te, Zn elements can be removed by floating as slag in combination with oxygen or other elements in the converter operation. The sum and the elements contained in the scrap metal, etc., put into cold ingot before the converter work should be 0.1% or less. If it is more than 0.1%, the magnetism is low, so the element added to the cold iron scrap should be suppressed as much as possible. Among these elements, especially P and S remain as a segregation element to the product, and when the magnetic field is applied, the movement of the magnetic domain is suppressed, thereby lowering the magnetism. Therefore, the elements should be contained as low as possible.

이하, 본 발명의 제조방법에 대하여 설명한다. Hereinafter, the manufacturing method of this invention is demonstrated.

상기와 같이 조성되는 강 슬라브는, 바람직한 예를 들면, 용광로에서 가져온 용선을 적어도 70% 이상 넣고 나머지 30% 이하의 고철을 전로에 넣어서 얻어지는 냉괴이다. 제강에서 정련된 용강에 대하여 노외정련을 통해 Al과 Ti 등에 의한 탈산 및 탈질을 실시하고, 기타 원소를 첨가한 후 연속주조공정에서 슬라브로 응고시키고, 열간압연전 가열로로 장입하여 1250℃ 이하로 가열한다. 1250℃ 보다 높은 온도로 재가열하면 AlN과 MnS 등 자성에 해로운 석출물이 재용해되어 열간압연 후 미세하게 석출될 수 있으므로, 낮은 온도범위로 재가열 후 열간압연하는 것이 바람직하다.The steel slab formed as mentioned above is a cold ingot obtained by putting at least 70% or more of the molten iron brought from a furnace, and putting the remaining 30% or less of scrap metal into a converter. Deoxidation and denitrification by Al, Ti, etc. is performed on the molten steel refined in steelmaking, after addition of other elements, solidified into slabs in a continuous casting process, charged into a heating furnace before hot rolling, and then to 1250 ° C or lower. Heat. When reheating to a temperature higher than 1250 ℃ redissolves the harmful particles such as AlN and MnS may be finely precipitated after hot rolling, it is preferable to hot rolling after reheating to a low temperature range.

열간압연 후 열연판을 공기중에서 코일상태로 권취한 후 냉각한다. 자기적 특성을 보다 향상시키기 위해서는 600℃~페라이트역의 온도범위(Ar1)에서 권취할 수 있다. 가능한 높은 온도로 권취하면 열연판내에서 발생된 미세한 석출물이 조대화하여 강을 청정화할 수 있으나, 오스테나이트역에서 권취하면 온도가 과도하게 높아서 산화가 많아지고, 석출물이 미세화될 수 있기 때문에 600℃~페라이트역의 온도범위(Ar1)로 하는 것이 바람직하다.After hot rolling, the hot rolled sheet is wound in a coil state in air and cooled. In order to improve the magnetic properties can be wound in the temperature range of (Ar 1) of 600 ℃ ~ ferrite station. If the coil is wound as high as possible, fine precipitates generated in the hot rolled sheet may coarse to clean the steel, but if wound in the austenite zone, the temperature may be excessively high to increase oxidation, and the precipitate may be reduced to 600 ° C. to a temperature range of (Ar 1) of the ferrite station it is preferred.

권취냉각된 열연판은, 자성을 보다 향상시키기 위해서는 열연판 소둔을 행하는 경우도 있다. 이러한 열연판에는 여전히 미세한 석출물이 잔존하기 때문에, 자성을 보다 향상시키기 위해서는 열연판을 850~11250℃의 온도범위로 1분 이상 소둔할 수 있다. 이 때, 850℃ 미만에서 소둔하면 소둔효과가 적고, 1150℃ 보다 높은 온도에서 소둔하면 판형상이 불량해져 판내에서 오히려 석출물이 용해될 수 있으므로, 상기 온도범위로 제한한다. 이같은 열연판소둔은 반드시 행해야 하는 것은 아니며, 열연판소둔을 행한 후에는 산세후 냉간압연한다. 또한, 열연판소둔을 행하지 않은 경우에 있어서도 산세후 냉간압연한다.In order to further improve the magnetic properties, the wound-rolled hot rolled sheet may be subjected to hot rolled sheet annealing. Since fine precipitates still remain in the hot rolled sheet, the hot rolled sheet may be annealed for 1 minute or more in a temperature range of 850 to 11250 ° C. in order to further improve magnetic properties. At this time, annealing at less than 850 ° C is less annealing effect, when annealing at a temperature higher than 1150 ° C is bad plate shape, and precipitates can be rather dissolved in the plate, it is limited to the above temperature range. Such hot-rolled sheet annealing is not necessarily performed, and after hot-rolled sheet annealing, cold rolling is performed after pickling. In addition, even if hot-rolled sheet annealing is not performed, it is cold-rolled after pickling.

상기 소둔열연판을 연속압연하여 최종의 제품두께로 냉간압연한 후 소둔하는데, 소둔온도가 강성분에 의해 주어지는 가열시 100% 페라이트상의 상한치인 Ac1 온도 이하에서 소둔하는 것이 바람직하다. 이 온도이상이 되면 오스테나이트상이 조직에 나타날 수 있어서 자성에 불리한 집합조직인 (111)면과 (211)면 등이 발달될 수 있기 때문에, 결정립 미세화를 방지하기 위하여 페라이트상에서 소둔해야 한다. 또한, 냉연판 소둔시 하한온도는 결정립이 성장될 수 있도록 하기 위해 (Ac1-150℃)보다는 높아야 한다. 따라서, 소둔온도는 적어도 (Ac1-150℃)보다는 높고 Ac1보다 낮은 온도 범위로 해야 한다.The annealed hot rolled sheet is continuously rolled and cold rolled to the final product thickness, followed by annealing. Preferably, the annealing temperature is annealed below the Ac 1 temperature, which is the upper limit of the 100% ferrite phase upon heating given by the steel component. Above this temperature, the austenite phase may appear in the tissue, and thus, the (111) and (211) surfaces, which are aggregates that are disadvantageous to magnetism, may develop. Therefore, the austenite phase should be annealed on the ferrite to prevent grain refinement. In addition, the lower limit temperature at the time of cold annealing should be higher than (Ac 1 -150 ° C) in order for the grain to grow. Therefore, the annealing temperature should be at least a temperature range higher than (Ac 1 -150 ° C) and lower than Ac 1 .

표면에 산소가 들어가면 소재내부의 Al, Si, Mn 등의 원소와 결합하여 산화물을 형성하기 때문에, 수소를 적어도 10% 이상 함유하는 비산화성 분위기로 소둔해야 하는 것이 바람직하다. 소둔시간은 30초~5분 동안으로 하여 연속으로 행한다. 그 후, 소둔판은 절연피막처리후 수요가로 출하된다.When oxygen enters the surface, an oxide is formed by combining with elements such as Al, Si, Mn, etc. in the material, and therefore, it is preferable to anneal it in a non-oxidizing atmosphere containing at least 10% or more of hydrogen. Annealing time is carried out continuously for 30 second-5 minutes. After that, the annealing plate is shipped at the demand price after the insulation coating treatment.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예1)Example 1

하기 표1과 같은 성분을 갖는 강 슬라브를 전로작업 후 노외정련을 통하여 제조하였다. 하기 표1에서 A계 원소는 Cu, Ni,Sb, Ca의 원소들을 합한 것이며, B계 원소는 P, S, Mo, V, B, Zr, W, As, Mg, Te, Zn의 원소들을 합한 것이었다. 슬라브로 제조된 강을 1150℃에서 1.5시간 가열하고 열간압연한 후, 하기 표2와 같은 권취온도로 권취하여 공기중에서 냉각하였다. 냉각된 열연판은 하기 표2와 같은 조건으로 소둔하거나 소둔없이 산세하고 냉간압연한 후, 수소40%와 질소 60%의 환원분위기에서 하기 표2와 같은 조건으로 소둔하였다. 그 다음, 소둔판을 절단한 후 자기적 특성을 조사하여 그 결과를 하기 표2에 나타내었다.Steel slabs having the components shown in Table 1 below were prepared through an external refining process after the converter. In Table 1, the A-based element is the sum of elements of Cu, Ni, Sb, and Ca, and the B-based element is the sum of elements of P, S, Mo, V, B, Zr, W, As, Mg, Te, and Zn. Was. The steel made of slabs was heated at 1150 ° C. for 1.5 hours, hot rolled, and then wound at a winding temperature as shown in Table 2 to cool in air. The cooled hot rolled sheet was annealed or annealed without cold annealing under the conditions shown in Table 2, and then annealed under the conditions shown in Table 2 in a reducing atmosphere of 40% hydrogen and 60% nitrogen. Then, after cutting the annealing plate to investigate the magnetic properties and the results are shown in Table 2 below.

강종Steel grade CC SiSi MnMn AlAl SnSn CrCr NN OO TiTi A계A system B계B series 발명강aInventive Steel a 0.0030.003 0.850.85 0.250.25 0.220.22 0.100.10 0.270.27 0.00120.0012 0.00210.0021 0.00320.0032 0.0720.072 0.0250.025 발명강bInventive Steel b 0.0030.003 0.870.87 0.240.24 0.320.32 0.090.09 0.250.25 0.00180.0018 0.00240.0024 0.00120.0012 0.0310.031 0.0090.009 비교강aComparative Steel a 0.0030.003 0.860.86 0.250.25 0.220.22 0.110.11 0.220.22 0.00120.0012 0.00450.0045 0.00030.0003 0.0710.071 0.2520.252 비교강bComparative Steel b 0.0030.003 0.890.89 0.230.23 0.310.31 0.090.09 0.260.26 0.00170.0017 0.00230.0023 0.01090.0109 0.2300.230 0.0100.010 비교강cComparative Steel c 0.0020.002 0.850.85 0.240.24 0.320.32 0.100.10 0.030.03 0.00410.0041 0.00520.0052 0.00130.0013 0.0490.049 0.1210.121

상기 표1에 나타난 바와 같이, 비교강(a)는 B계 원소가 많이 함유되어 있으며, O도 높게 나타난 반면, Ti가 낮았다. 비교강(b)는 Ti이 과다하게 많고, 전반적으로 강내부의 청정도가 낮았으며, A계 원소도 높았다. 비교강 (c)는 Cr 성분이 낮으며, B계 원소가 높게 나타났다. 반면, 발명강(a) 와 (b)는 슬라브의 성분이 발명강의 조성을 만족하고 있다. As shown in Table 1, the comparative steel (a) contains a lot of B-based elements, O was also high, while Ti was low. Comparative steel (b) was excessively high in Ti, overall cleanliness in the steel was low, and A-based elements were also high. Comparative steel (c) had a low Cr component and a high B-based element. On the other hand, invented steels (a) and (b), the components of the slab satisfy the composition of the invention steel.

시료번호Sample Number 강종Steel grade 열연판권취온도(℃)Hot Rolled Sheet Winding Temperature (℃) 열연판소둔온도(℃)Hot Rolled Annealing Temperature (℃) Ac1(℃)Ac1 (℃) 냉연판소둔온도(℃)Cold Rolled Annealing Temperature (℃) 철손(W15/50)W/kg Iron loss (W 15/50 ) W / kg 자속밀도(B50)TeslaMagnetic flux density (B 50 ) Tesla 발명재1Invention 1 발명강aInventive Steel a 650650 950950 972972 950950 3.493.49 1.771.77 발명재2Invention 2 발명강bInventive Steel b 800800 없음none 10091009 980980 3.653.65 1.741.74 발명재3Invention 3 발명강bInventive Steel b 750750 950950 10091009 960960 3.453.45 1.761.76 비교재1Comparative Material 1 발명강bInventive Steel b 550550 950950 10091009 960960 3.723.72 1.731.73 비교재2Comparative Material 2 발명강bInventive Steel b 600600 없음none 10091009 840840 4.154.15 1.721.72 비교재3Comparative Material 3 비교강aComparative Steel a 750750 950950 975975 950950 4.244.24 1.711.71 비교재4Comparative Material 4 비교강bComparative Steel b 750750 950950 10121012 960960 3.863.86 1.731.73 비교재5Comparative Material 5 비교강cComparative Steel c 700700 950950 10051005 960960 4.314.31 1.721.72 W15/50 : 50Hz에서 1.5Tesla로 자기장을 걸었을 때 발생되는 손실W 15/50 : Loss caused by applying a magnetic field at 1.5 Tesla at 50 Hz B50 : 5000A/m로 자기장을 걸었을 때 유도되는 자속밀도B 50 : Magnetic flux density induced when magnetic field is applied at 5000 A / m

상기 표2에서 알 수 있듯이, 비교재(1)은 열연판 권취온도가 낮아서 자성이 저조하게 나타났다. 냉연판 소둔온도가 (Ac1-150℃)보다도 낮은 비교재(2) 또한 자성이 저조하였다. 비교재 (3)~(5)는 적절한 제조조건에서 제조되었으나, 비교강 (a)~(b)로 작업되어 자성이 저조하였다. 반면, 발명재들은 발명의 범위로 제조되어 자기적 특성이 우수하였다.As can be seen in Table 2, the comparative material (1) was low in the hot rolled sheet winding temperature appeared low magnetic. The cold-rolled sheet annealing temperature (Ac 1 -150 ℃) lower than the comparative material 2 was also poor magnetism. Comparative materials (3) to (5) were manufactured under appropriate manufacturing conditions, but were made of comparative steels (a) to (b) to have low magnetic properties. On the other hand, the invention materials were manufactured in the scope of the invention, the magnetic properties were excellent.

(실시예2)Example 2

중량%로, C: 0.004%, Si: 2.95%, Mn: 0.16%, Al: 0.82%, Sn:0.11%, Cr: 0.31%, N: 0.0013%, O: 0.0019%, Ti: 0.0023%, A계 원소는 Cu: 0.01%, Ni: 0.03%, Sb: 0.009%, Ca: 0.0012%이고, B계 원소는 P: 0.008%, S: 0.0015%, Mo: 0.0012%, V: 0.0003%, B: 0.0009%, Zr: 0.0005%, W: 0.0012%, As: 0.001%, Mg: 0.0007%, Te: 0.0008%, Zn: 0.0006%로 함유되고, 잔부 Fe 및 기타 불순물로 조성되는 슬라브를 1150℃로 가열한 후 2.3mm의 두께로 열간압연하고, 720℃온도에서 권취한 후 열연판을 1100℃에서 10분간 소둔한 후 산세하였다. 소둔된 열연판은 산세후 0.5mm의 두께로 냉간압연하였다. 냉연판은 건조한 분위기에서 수소 5%와 수소50%로 구분하고 나머지는 질소로 하여, 1030℃온도에서 2분간 소둔하였다. 이 강은 소둔범위내에서는 페라이트상만이 존재하였다. 소둔후 연속하여 유무기혼합의 절연피막을 입힌 후 절단하여 자성을 측정하였다. 그 결과, 냉연판 소둔시 수소5%로 작업된 소재는 철손(W15/50)이 2.65W/kg이고, 자속밀도(B50)는 1.66Tesla이었다. 또한, 결정립크기는 120㎛로 성장되었다. 이에 비해 수소가 50%로 작업된 소재는 철손(W15/50)은 2.34W/kg이고, 자속밀도(B50)는 1.68Tesla이었다. 또한, 결정립크기가 150㎛로 크게 성장되어 자성이 향상되었다. 따라서, 수소가 다량 함유된 분위기에서 소둔하는 것이 자성향상에 있어서, 바람직한 것임을 알 수 있었다.By weight, C: 0.004%, Si: 2.95%, Mn: 0.16%, Al: 0.82%, Sn: 0.11%, Cr: 0.31%, N: 0.0013%, O: 0.0019%, Ti: 0.0023%, A The system element is Cu: 0.01%, Ni: 0.03%, Sb: 0.009%, Ca: 0.0012%, and the B element is P: 0.008%, S: 0.0015%, Mo: 0.0012%, V: 0.0003%, and B: A slab containing 0.0009%, Zr: 0.0005%, W: 0.0012%, As: 0.001%, Mg: 0.0007%, Te: 0.0008%, Zn: 0.0006%, and the balance of Fe and other impurities is heated to 1150 ° C. After the hot rolled to a thickness of 2.3mm, wound at 720 ℃ temperature, the hot rolled sheet was annealed for 10 minutes at 1100 ℃ and then pickled. The annealed hot rolled sheet was cold rolled to a thickness of 0.5 mm after pickling. The cold rolled sheet was divided into 5% hydrogen and 50% hydrogen in a dry atmosphere, and the remainder was nitrogen, followed by annealing for 2 minutes at 1030 ° C. This steel had only a ferrite phase within the annealing range. After annealing, the coating was continuously coated with an organic-inorganic mixture, followed by cutting to measure magnetic properties. As a result, the material worked with 5% hydrogen during annealing of the cold rolled sheet had an iron loss (W 15/50 ) of 2.65 W / kg and a magnetic flux density (B 50 ) of 1.66 Tesla. Also, the grain size was grown to 120 mu m. In comparison, the material with 50% hydrogen was 2.34 W / kg in iron loss (W 15/50 ) and the magnetic flux density (B 50 ) was 1.68 Tesla. In addition, the crystal grain size was largely grown to 150 µm to improve magnetism. Therefore, it was found that annealing in an atmosphere containing a large amount of hydrogen is preferable for the improvement of magnetic properties.

상술한 바와 같이, 본 발명은 강성분을 제어하고, 그 제조공정에서 소둔온도 및 분위기 등을 적절히 제조함으로써, 강을 청정하게 하고, 제품의 자기적 특성을 보다 향상시킬 수 있었다. As described above, the present invention was able to clean the steel and improve the magnetic properties of the product by controlling the steel component and appropriately producing the annealing temperature and the atmosphere in the manufacturing process.

Claims (2)

중랑%로, C:0.01% 이하, Si: 3.5% 이하, Mn: 1.2% 이하, Al: 1.3% 이하, Sn:0.03~0.3%, Cr:0.05~0.5%, Ti: 0.0005~0.009%, N: 0.005% 이하, O: 0.005% 이하, Cu, Ni, Sb, Ca 원소들의 합이 0.2% 이하이며, P, S, Mo, V, B, Zr, W, As, Mg, Te, Zn 원소들의 합이 0.1% 이하로 조성되는 자성이 우수한 무방향성 전기강판.At midrange%, C: 0.01% or less, Si: 3.5% or less, Mn: 1.2% or less, Al: 1.3% or less, Sn: 0.03 to 0.3%, Cr: 0.05 to 0.5%, Ti: 0.0005 to 0.009%, N : 0.005% or less, O: 0.005% or less, the sum of Cu, Ni, Sb, and Ca elements is 0.2% or less, and P, S, Mo, V, B, Zr, W, As, Mg, Te, and Zn elements Non-oriented electrical steel sheet having excellent magnetic properties with a sum of 0.1% or less. 중랑%로, C:0.01% 이하, Si: 3.5% 이하, Mn: 1.2% 이하, Al: 1.3% 이하, Sn:0.03~0.3%, Cr:0.05~0.5%, Ti: 0.0005~0.009%, N: 0.005% 이하, O: 0.005% 이하, Cu, Ni, Sb, Ca 원소들의 합이 0.2% 이하이며, P, S, Mo, V, B, Zr, W, As, Mg, Te, Zn 원소들의 합이 0.1% 이하로 조성되는 슬라브를,At midrange%, C: 0.01% or less, Si: 3.5% or less, Mn: 1.2% or less, Al: 1.3% or less, Sn: 0.03 to 0.3%, Cr: 0.05 to 0.5%, Ti: 0.0005 to 0.009%, N : 0.005% or less, O: 0.005% or less, the sum of Cu, Ni, Sb, and Ca elements is 0.2% or less, and P, S, Mo, V, B, Zr, W, As, Mg, Te, and Zn elements Slabs whose sum is 0.1% or less 1250℃ 이하로 재가열한 후 열간압연하고, 600℃ 이상 페라이트 온도범위에서 권취하고, 열연판을 소둔 또는 소둔없이 산세하고, 최종두께로 냉간압연하고, 냉연판을 소둔시 (Ac1-150℃)~Ac1 온도범위에서 수소10% 이상의 분위기에서 소둔하는 것을 특징으로 하는 자성이 우수한 무방향성 전기강판의 제조방법.After reheating to 1250 ℃ or lower, hot rolling, winding in ferrite temperature range of 600 ℃ or higher, pickling hot rolled sheet without annealing or annealing, cold rolling to final thickness, and annealing cold rolled sheet (Ac 1 -150 ℃) Method for producing an excellent non-oriented electrical steel sheet characterized in that the annealing in an atmosphere of at least 10% hydrogen in the temperature range ~ Ac 1 .
KR10-1999-0040876A 1999-09-22 1999-09-22 A non-oriented steel sheet with excellent magnetic property and a method for producing it KR100479992B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0040876A KR100479992B1 (en) 1999-09-22 1999-09-22 A non-oriented steel sheet with excellent magnetic property and a method for producing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0040876A KR100479992B1 (en) 1999-09-22 1999-09-22 A non-oriented steel sheet with excellent magnetic property and a method for producing it

Publications (2)

Publication Number Publication Date
KR20010028570A KR20010028570A (en) 2001-04-06
KR100479992B1 true KR100479992B1 (en) 2005-03-30

Family

ID=19612603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0040876A KR100479992B1 (en) 1999-09-22 1999-09-22 A non-oriented steel sheet with excellent magnetic property and a method for producing it

Country Status (1)

Country Link
KR (1) KR100479992B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180071103A (en) * 2016-12-19 2018-06-27 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101903008B1 (en) * 2016-12-20 2018-10-01 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101919529B1 (en) * 2016-12-20 2018-11-16 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
US20220049323A1 (en) * 2018-12-27 2022-02-17 Jfe Steel Corporation Non-oriented electrical steel sheet
US11319619B2 (en) 2016-12-19 2022-05-03 Posco Non-oriented electrical steel sheet and manufacturing method therefor
EP4036257A4 (en) * 2019-12-09 2023-06-07 JFE Steel Corporation Non-oriented electromagnetic steel sheet, motor core, and methods respectively for manufacturing same
US11773463B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Non-oriented electrical steel sheet and method for preparing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544612B1 (en) * 2001-12-22 2006-01-24 주식회사 포스코 Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100957931B1 (en) * 2002-12-23 2010-05-13 주식회사 포스코 Method for manufacturing non-oriented electrical sheets with low core loss
MX353669B (en) 2011-09-27 2018-01-23 Jfe Steel Corp Non-grain-oriented magnetic steel sheet.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64226A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of high tensile non-oriented electrical steel sheet
JPH01198426A (en) * 1988-02-03 1989-08-10 Nkk Corp Manufacture of non-oriented magnetic steel sheet excellent in magnetic property
JPH0261031A (en) * 1988-08-26 1990-03-01 Nkk Corp Non-oriented silicon steel sheet excellent in magnetic property and its production
JPH0273919A (en) * 1988-09-10 1990-03-13 Nippon Steel Corp Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
JPH0463228A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
KR100192841B1 (en) * 1996-08-31 1999-06-15 이구택 Non-oriented magnetic steel plate and its production method
KR19990042318A (en) * 1997-11-26 1999-06-15 이구택 Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64226A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of high tensile non-oriented electrical steel sheet
JPH01198426A (en) * 1988-02-03 1989-08-10 Nkk Corp Manufacture of non-oriented magnetic steel sheet excellent in magnetic property
JPH0261031A (en) * 1988-08-26 1990-03-01 Nkk Corp Non-oriented silicon steel sheet excellent in magnetic property and its production
JPH0273919A (en) * 1988-09-10 1990-03-13 Nippon Steel Corp Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
JPH0463228A (en) * 1990-07-02 1992-02-28 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in magnetic property before and after magnetic annealing
KR100192841B1 (en) * 1996-08-31 1999-06-15 이구택 Non-oriented magnetic steel plate and its production method
KR19990042318A (en) * 1997-11-26 1999-06-15 이구택 Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR100340548B1 (en) * 1997-11-26 2002-07-18 이구택 A method for manufacturing non-oriented silicon steel sheet having superior magnetic property

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254997B2 (en) 2016-12-19 2022-02-22 Posco Non-oriented electrical steel sheet and manufacturing method therefor
WO2018117601A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor
KR101892231B1 (en) 2016-12-19 2018-08-27 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
US11319619B2 (en) 2016-12-19 2022-05-03 Posco Non-oriented electrical steel sheet and manufacturing method therefor
KR20180071103A (en) * 2016-12-19 2018-06-27 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR101919529B1 (en) * 2016-12-20 2018-11-16 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
EP3561102A4 (en) * 2016-12-20 2019-11-13 Posco Non-oriented electrical steel sheet and method for producing same
JP2020503444A (en) * 2016-12-20 2020-01-30 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
CN110114489B (en) * 2016-12-20 2021-09-07 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same
US11162155B2 (en) 2016-12-20 2021-11-02 Posco Non-oriented electrical steel sheet and method for producing same
CN110114489A (en) * 2016-12-20 2019-08-09 Posco公司 Non-oriented electromagnetic steel sheet and preparation method thereof
KR101903008B1 (en) * 2016-12-20 2018-10-01 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
US11773463B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Non-oriented electrical steel sheet and method for preparing same
US20220049323A1 (en) * 2018-12-27 2022-02-17 Jfe Steel Corporation Non-oriented electrical steel sheet
US11732319B2 (en) * 2018-12-27 2023-08-22 Jfe Steel Corporation Non-oriented electrical steel sheet
EP4036257A4 (en) * 2019-12-09 2023-06-07 JFE Steel Corporation Non-oriented electromagnetic steel sheet, motor core, and methods respectively for manufacturing same

Also Published As

Publication number Publication date
KR20010028570A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
KR20180089500A (en) Non-oriented electric steel sheet and manufacturing method thereof
JP2013525596A (en) Method for producing highly efficient non-directional silicon steel with excellent magnetic properties
CA1333988C (en) Ultra-rapid annealing of nonoriented electrical steel
KR100479992B1 (en) A non-oriented steel sheet with excellent magnetic property and a method for producing it
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
JPH055126A (en) Production of nonoriented silicon steel sheet
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
KR100345701B1 (en) A Method for Manufacturing Non-Oriented Electrical Steel Sheets
KR950004933B1 (en) Method of making non-oriented electro magnetic steel plate with excellent magnetic characteristic
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
KR100544610B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR100256342B1 (en) The manufacturing method for oriented electric steel sheet with magnetic and decarburing property
KR100544612B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR100435480B1 (en) A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
JPH0317892B2 (en)
KR102361872B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR960003175B1 (en) Method for preparation of non-oriented electrical steel sheet having high flux-density
KR101077167B1 (en) Method for manufacturing non-oriented electrical steel sheets with improved magnetic property

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140321

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150316

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170322

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180313

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee