JP2006213993A - Method for producing grain oriented electromagnetic steel plate - Google Patents

Method for producing grain oriented electromagnetic steel plate Download PDF

Info

Publication number
JP2006213993A
JP2006213993A JP2005030492A JP2005030492A JP2006213993A JP 2006213993 A JP2006213993 A JP 2006213993A JP 2005030492 A JP2005030492 A JP 2005030492A JP 2005030492 A JP2005030492 A JP 2005030492A JP 2006213993 A JP2006213993 A JP 2006213993A
Authority
JP
Japan
Prior art keywords
mass
slab
temperature
phase
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005030492A
Other languages
Japanese (ja)
Other versions
JP4385960B2 (en
Inventor
Tadashi Nakanishi
匡 中西
Minoru Takashima
稔 高島
Yukihiro Aragaki
之啓 新垣
Toshito Takamiya
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005030492A priority Critical patent/JP4385960B2/en
Publication of JP2006213993A publication Critical patent/JP2006213993A/en
Application granted granted Critical
Publication of JP4385960B2 publication Critical patent/JP4385960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain oriented electromagnetic steel plate having excellent magnetic properties free from variation, in the case secondary recrystallization is caused, so as to be the grain oriented electromagnetic steel sheet without the incorporation of inhibitors, by allowing the secondary recrystallization to stably appear. <P>SOLUTION: At the time when a grain oriented electromagnetic steel sheet is produced using a slab having a composition comprising, by mass, 0.020 to 0.080% C, 2.0 to 8.0% Si, and 0.005 to 3.0% Mn, and in which the content of sol.Al is reduced to <0.0120%, S and Se to <0.0040%, respectively, and N to <0.0060%, and the balance Fe with inevitable impurities as the stock, the heating of the slab is performed to 1,100°C in such a manner that the temperature rising rate at which the surface temperature of the slab lies in the range of 850 to 1,100°C is controlled to 100 to 450°C/h, and is next subjected to soaking treatment at 1,100 to 1,250°C for 10 to 120 min, and, directly after the soaking, the slab composed of two phases of an α phase and a γ phase is extracted from the furnace, and hot rolling is started. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主として電力用変圧器の鉄心の材料に用いられる方向性電磁鋼板を、低コストで製造する方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet used mainly for a core material of a power transformer at low cost.

方向性電磁鋼板は、主として変圧器その他の電気機器の鉄心として用いられ、かかる用途に適合すべく磁束密度、鉄損値等の磁気特性に優れることが基本的に重要である。そのため、方向性電磁鋼板の製造の際に重要なことは、いわゆる仕上焼鈍により二次再結晶させた結晶粒の方位を、{110}<001>方位いわゆるゴス方位に高度に集積させることである。   Oriented electrical steel sheets are mainly used as iron cores for transformers and other electrical equipment, and it is basically important to have excellent magnetic properties such as magnetic flux density and iron loss value in order to adapt to such applications. Therefore, what is important in the production of grain-oriented electrical steel sheets is to highly accumulate the orientation of crystal grains secondary recrystallized by so-called finish annealing in the {110} <001> orientation, so-called Goth orientation. .

このような二次再結晶の集積を効果的に促進させる一般的な技術としては、インヒビターと呼ばれる析出物を使用する方法がある。例えば、特許文献1に記載のAlN,MnSを使用する方法、特許文献2に記載のMnS,MnSeを使用する方法がその代表例であって、これらは工業的に実用化されている。これらとは別に、CuSeとBNを添加する技術が特許文献3に、またTi,Zr,Vの窒化物を使用する方法が特許文献4に記載されるなど、数多くの技術が知られている。   As a general technique for effectively promoting the accumulation of such secondary recrystallization, there is a method using a precipitate called an inhibitor. For example, a method using AlN and MnS described in Patent Document 1 and a method using MnS and MnSe described in Patent Document 2 are typical examples, and these are industrially put into practical use. Apart from these, a number of techniques are known such as a technique for adding CuSe and BN is described in Patent Document 3 and a method using a nitride of Ti, Zr, and V is described in Patent Document 4.

これらのインヒビターを用いる方法は、安定して二次再結晶粒を発達させるのに有用な方法であるが、析出物を微細に分散させる必要上、熱延前のスラブ加熱温度を1300℃以上の高温で行う必要がある。しかしながら、スラブの高温加熱は、設備コストが嵩むことに加え、熱延時に生成するスケールの量も多大になるので、歩留りが低下するだけでなく、設備のメンテナンス等の問題も多くなり、近年の製造コスト低減の要求に応えることは難しかった。   The method using these inhibitors is a useful method for stably developing secondary recrystallized grains, but the slab heating temperature before hot rolling is 1300 ° C. or higher because it is necessary to finely disperse precipitates. Must be done at high temperatures. However, high-temperature heating of the slab not only increases the equipment cost, but also increases the amount of scale generated during hot rolling, which not only reduces yield but also increases problems such as equipment maintenance. It was difficult to meet the demand for manufacturing cost reduction.

一方、インヒビターを使用しないで方向性電楢鋼板を製造する方法としては、例えば特許文献5、特許文献6、特許文献7、特許文献8に記載の技術が知られている。これらの技術に共通していることは、表面エネルギーを駆動力として{110}面を優先的に成長させることを意図していることである。表面エネルギー差を有効に利用するためには、表面の寄与を大きくするために板厚を薄くすることが必然的に要求される。例えば、特許文献5に開示の技術では、板厚が0.2mm以下、特許文献6に開示の技術では板厚が0.15mm以下に制限されている。
現行使用されている方向性電磁鋼板の板厚は0.20mm以上がほとんどであるので、通常の製品を、上記したような表面エネルギーを使用する方法で得ることは困難である。
On the other hand, as a method for producing a grain-oriented electrical steel sheet without using an inhibitor, for example, techniques described in Patent Document 5, Patent Document 6, Patent Document 7, and Patent Document 8 are known. What is common to these techniques is that the {110} plane is intended to grow preferentially using surface energy as the driving force. In order to effectively use the surface energy difference, it is necessary to reduce the plate thickness in order to increase the contribution of the surface. For example, in the technique disclosed in Patent Document 5, the plate thickness is limited to 0.2 mm or less, and in the technique disclosed in Patent Document 6, the plate thickness is limited to 0.15 mm or less.
Since the thickness of the grain-oriented electrical steel sheets currently used is almost 0.20 mm or more, it is difficult to obtain a normal product by the method using the surface energy as described above.

さらに、表面エネルギーを利用するためには、表面酸化物の生成を抑制した状態で高温の最終仕上焼鈍を行わなければならない。例えば特許文献5に開示の技術では、1180℃以上の温度で、上記焼鈍の雰囲気として、真空中または不活性ガスあるいは水素ガスまたは水素ガスと窒素ガスの混合ガス中で行うことが必要とされている。また、特許文献6に開示の技術では、950〜1100℃の温度で不活性ガス雰囲気あるいは水素ガスまたは水素ガスと不活性ガスの混合雰囲気で、さらにこれらを減圧することが推奨されている。さらに、特許文献8に開示の技術では、1000〜1300℃の温度で酸素分圧が0.5Pa以下の非酸化性雰囲気または真空中での最終仕上焼鈍を行う必要がある。
上述したとおり、表面エネルギーを利用して良好な磁気特性を得るためには、最終仕上焼鈍の雰囲気としては不活性ガスや水素が用いられ、さらに推奨される条件としては真空とすることが求められるが、高温と真空の両立は設備的には困難でありコスト高となる。
Furthermore, in order to utilize the surface energy, it is necessary to perform high-temperature final finish annealing in a state in which the generation of surface oxides is suppressed. For example, in the technique disclosed in Patent Document 5, it is necessary to perform the annealing at a temperature of 1180 ° C. or higher in a vacuum or in an inert gas, hydrogen gas, or a mixed gas of hydrogen gas and nitrogen gas. Yes. In the technique disclosed in Patent Document 6, it is recommended to further reduce the pressure in an inert gas atmosphere or hydrogen gas or a mixed atmosphere of hydrogen gas and inert gas at a temperature of 950 to 1100 ° C. Furthermore, in the technique disclosed in Patent Document 8, it is necessary to perform final finish annealing in a non-oxidizing atmosphere or vacuum with an oxygen partial pressure of 0.5 Pa or less at a temperature of 1000 to 1300 ° C.
As described above, in order to obtain good magnetic properties using surface energy, an inert gas or hydrogen is used as the atmosphere of final finish annealing, and a vacuum is further required as a recommended condition. However, compatibility between high temperature and vacuum is difficult in terms of equipment and increases costs.

またさらに、表面エネルギーを利用した場合には、原理的には{110}面の選択のみが可能であり、圧延方向に<001>方向が揃ったゴス粒のみの成長が選択されるわけではない。方向性電磁鋼板は圧延方向に磁化容易軸<001>を揃えてはじめて磁気特性が向上するので、{110}面の選択のみでは原理的に良好な磁気特性は得られない。そのため、表面エネルギーを利用する方法で良好な磁気特性を得ることのできる圧延条件や焼鈍条件は限られたものとなり、その結果磁気特性は不安定となる。   Furthermore, when surface energy is used, in principle, only the {110} plane can be selected, and the growth of only goth grains with the <001> direction aligned in the rolling direction is not selected. . Since the magnetic properties of a grain-oriented electrical steel sheet improve only when the easy magnetization axis <001> is aligned in the rolling direction, good magnetic properties cannot be obtained in principle only by selecting the {110} plane. Therefore, rolling conditions and annealing conditions that can obtain good magnetic properties by a method using surface energy are limited, and as a result, the magnetic properties become unstable.

上記の問題に対して、出願人は、従来に比べて低温のスラブ加熱によって、磁気特性に優れた方向性電磁鋼板を低コストで製造する方法を、特許文献9において提案した。
すなわち、スラブにインヒビターを含有させずに二次再結晶を生じさせ、かつ二次再結晶粒のゴス方位への先鋭性を高める技術について、鋭意研究を進めた結果、主に不純物の含有量を抑制することにより、スラブにインヒビターを含有させなくても、安定して二次再結晶を発現させ得ることを見出すに至った。
この技術によれば、インヒビター成分を必要としないことから、インヒビター成分の固溶を意図した高温スラブ加熱は不要となり、スラブ加熱温度の低下が実現される。
In order to solve the above problem, the applicant proposed in Patent Document 9 a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties at low cost by slab heating at a lower temperature than in the past.
In other words, as a result of earnest research on the technology for generating secondary recrystallization without containing an inhibitor in the slab and increasing the sharpness of the secondary recrystallized grains in the Goth orientation, the content of impurities was mainly reduced. By suppressing, it came to discover that a secondary recrystallization could be expressed stably, even if an inhibitor is not contained in a slab.
According to this technique, since an inhibitor component is not required, high-temperature slab heating intended for solid solution of the inhibitor component is not necessary, and a reduction in the slab heating temperature is realized.

しかしながら、この特許文献9に開示の技術を、工業的規模において実施した場合に、得られた鋼板の磁気特性にはばらつきがあり、安定した生産が難しいことが判明した。   However, when the technique disclosed in Patent Document 9 is carried out on an industrial scale, it has been found that the magnetic properties of the obtained steel sheet vary and stable production is difficult.

また、インヒビターを含有するスラブの高温加熱では、特許文献10、特許文献11、特許文献12等に記載されているように、スラブ加熱時の昇温速度について検討がなされているが、インヒビクーを含有しないスラブの低温加熱については、昇温速度についての検討はされていない。   In addition, in high-temperature heating of slabs containing inhibitors, as described in Patent Document 10, Patent Document 11, Patent Document 12, etc., the rate of temperature increase during slab heating has been studied, but it contains inhibitor. Regarding the low temperature heating of the slabs that do not, the temperature rise rate has not been studied.

特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No.51-13469 特公昭58−42244号公報Japanese Patent Publication No.58-42244 特公昭46−40855号公報Japanese Patent Publication No.46-40855 特開昭64−55339号公報JP-A-64-55339 特開平2−57635号公報JP-A-2-57635 特開平7−76732号公報Japanese Unexamined Patent Publication No. 7-76732 特開平7−197126号公報Japanese Unexamined Patent Publication No. 7-197126 持開2000−129356号公報Open 2000-129356 特開平7−316657号公報Japanese Unexamined Patent Publication No. 7-316657 特開平8−176665号公報JP-A-8-176665 特開平8−333631号公報JP-A-8-333631

上述したとおり、特許文献9に開示の技術を工業的規模において実施した場合、得られる鋼板の磁気特性にはばらつきが生じ安定した生産が困難である。
本発明は、上記の問題を有利に解決するもので、インヒビターを含有させずに二次再結晶を生じさせて方向性電磁鋼板とする場合に、安定して二次再結晶を発現させることにより、ばらつきのない優れた磁気特性を有する方向性電磁鋼板を有利に製造することができる方法を提案することを目的とする。
As described above, when the technique disclosed in Patent Document 9 is implemented on an industrial scale, the magnetic properties of the obtained steel sheet vary and stable production is difficult.
The present invention advantageously solves the above-mentioned problems, and stably produces secondary recrystallization when a secondary recrystallization is generated without containing an inhibitor to obtain a grain-oriented electrical steel sheet. An object of the present invention is to propose a method capable of advantageously producing a grain-oriented electrical steel sheet having excellent magnetic characteristics without variation.

以下、本発明の解明経緯について説明する。
従来の1300℃程度以上の高温加熱と、本発明における1250℃以下のスラブ低温加熱における大きな相違点として、加熱後の相が、従来のスラブ高温加熱ではα単相になるのに対し、本発明におけるスラブ低温加熱ではα相とγ相の2相共存状態となることが挙げられる。
そして、本発明では、インヒビターを含有しないため、熱間圧延板の結晶粒の粗大化を防止するためには、γ相の働きが極めて重要になると考えられる。
The elucidation process of the present invention will be described below.
A major difference between conventional high-temperature heating of about 1300 ° C or higher and slab low-temperature heating of 1250 ° C or lower in the present invention is that the phase after heating becomes α single phase in conventional slab high-temperature heating, whereas the present invention In the slab low-temperature heating in, a two-phase coexistence state of α phase and γ phase can be mentioned.
And in this invention, since it does not contain an inhibitor, in order to prevent the coarsening of the crystal grain of a hot-rolled sheet, it is thought that the function of (gamma) phase becomes very important.

通常、α単相となるスラブ高温加熱では、熱力学的平衡状態になるのに十分な時間加熱すれば、スラブ中に存在する元素は均一に分散する。熱力学的平衡状態になるのに十分な時間とは、スラブ中に存在する元素が十分に拡散できる時間であると考えられるので、高温であれば比較的短いと考えられる。   Usually, in the slab high-temperature heating that becomes an α single phase, the elements present in the slab are uniformly dispersed if heating is performed for a time sufficient to achieve a thermodynamic equilibrium state. The time sufficient to reach the thermodynamic equilibrium state is considered to be a time during which the elements present in the slab can sufficiently diffuse, so it is considered to be relatively short at a high temperature.

一方、スラブ低温加熱では、α相とγ相の2相領域における加熱となる。この2相共存状態では、平衡状態に達したとしても、スラブ中に存在する元素の濃度は、α相とγ相で異なるものとなる。例えば、Fe−1.8mass%Si(C:0mass%)の場合、平衡状態図によ れば、1400℃の高温ではα単相(Si:1.8mass%)となるのに対し、これより低温の1150 ℃ではSi濃度が1.95mass%のα相と、Si濃度が1.65mass%のγ相の2相となる。よって、長時間加熱により、スラブ中に存在する元素は、上記したようなα相とγ相における平衡状態でのそれぞれの濃度に分配されることになる。従って、スラブ低温加熱の場合、この濃度分配の程度がスラブ内の位置によって不均一になる、という新たな問題が生じるのである。
そこで、発明者らは、この不均一性がどの程度であるのかを次の実験で調査した。
On the other hand, in the slab low temperature heating, heating is performed in a two-phase region of an α phase and a γ phase. In this two-phase coexistence state, even if an equilibrium state is reached, the concentration of elements present in the slab differs between the α phase and the γ phase. For example, in the case of Fe-1.8 mass% Si (C: 0 mass%), according to the equilibrium diagram, it becomes α single phase (Si: 1.8 mass%) at a high temperature of 1400 ° C, but lower than this. At 1150 ° C, there are two phases, an α phase with a Si concentration of 1.95 mass% and a γ phase with a Si concentration of 1.65 mass%. Therefore, by heating for a long time, the elements present in the slab are distributed to the respective concentrations in the equilibrium state in the α phase and the γ phase as described above. Therefore, in the case of slab low-temperature heating, there arises a new problem that the degree of concentration distribution is uneven depending on the position in the slab.
Therefore, the inventors investigated the extent of this non-uniformity in the following experiment.

C:0.04mass%、Si:3.4mass%およびMn:0.07mass%を含有する厚さ:250mmのスラブから、40mm角の試料を切り出し、その試料を1200℃で60分間均熱後、水冷した。その試料の断面を、研磨により鏡面化したのち、3%NHO3のナイタール液で腐食し、光学顕微鏡で観察した。
その結果、複数の小さな50μm程度の黒色部の集団からなる直径:2mm程度の領域が複数観察された。ここで、小さな50μm程度の黒色部は、カーバイトであり、これらカーバイトを含む直径:2mm程度の領域は、均熱時においてγ相であった領域と考えられる。すなわち、均熱終了時には、直径が2mm程度のγ相が、α相中に存在したと考えられ、γ相に起因する不均一性は2mm程度の長さで存在すると考えられる。
A 40 mm square sample was cut out from a slab having a thickness of 250 mm containing C: 0.04 mass%, Si: 3.4 mass%, and Mn: 0.07 mass%, and the sample was soaked at 1200 ° C. for 60 minutes and then cooled with water. The cross section of the sample was mirror-finished by polishing, then corroded with 3% NHO 3 nital solution, and observed with an optical microscope.
As a result, a plurality of regions each having a diameter of about 2 mm composed of a group of a plurality of small black portions of about 50 μm were observed. Here, a small black portion of about 50 μm is a carbide, and a region including a diameter of about 2 mm including these carbides is considered to be a region that was a γ phase at the time of soaking. That is, at the end of soaking, it is considered that the γ phase having a diameter of about 2 mm was present in the α phase, and the non-uniformity due to the γ phase is thought to exist with a length of about 2 mm.

ところで、α−Fe中におけるCとSiの拡散係数:Dから、拡散距離の目安となる(D×時間)0.5を、温度:1200℃、時間:60分の場合で計算すると、Cは3mm程度、Siは70μm程度になる。
なお、拡散係数Dは、改訂4版金属データブック(丸善株式会社,2004年)の前指数項と活性化エネルギーを用いて計算した。
By the way, when the diffusion coefficient of C and Si in α-Fe: D, which is a standard of the diffusion distance (D × time) 0.5 is calculated in the case of temperature: 1200 ° C. and time: 60 minutes, C is about 3 mm. , Si becomes about 70μm.
The diffusion coefficient D was calculated using the previous exponent term and activation energy in the revised 4th edition metal data book (Maruzen Co., Ltd., 2004).

従って、低温スラブ加熱に相当する1200℃、60分間の均熱を行う場合、上記の拡散速度を考慮すれば、α相と、α相から生じる直径:2mm程度のγ相には、拡散速度の大きいCは十分に濃度分配が行われるが、拡散速度の小さいSiは濃度分配が行われにくく、γ相の大きさ等にも影響されて、濃度分配の程度がスラブ内で不均一となる可能性が高いものと考えられる。
すなわち、発明者らは、特に主要成分であるSiが、上記のような濃度分配の不完全な非平衡状態にあって、しかもその程度がスラブ内で不均一となっている状態にあるものと推測した。
Therefore, when performing soaking at 1200 ° C for 60 minutes, which corresponds to low-temperature slab heating, the diffusion rate of the α-phase and the γ-phase with a diameter of about 2 mm arising from the α-phase is considered if the diffusion rate is taken into consideration. Large C has sufficient concentration distribution, but Si with low diffusion rate is difficult to perform concentration distribution, and the degree of concentration distribution may be uneven in the slab due to the size of the γ phase. It is considered that the nature is high.
In other words, the inventors, in particular, that Si, which is the main component, is in a non-equilibrium state in which concentration distribution is incomplete as described above, and the degree thereof is uneven in the slab. I guessed.

この推測により、磁気特性の安定化のためには、スラブ均熱終了時に、より平衡状態に近づけることが有効であると考えられる。より平衡状態に近づける方法としては、スラブの長時間均熱が考えられる。しかしながら、長時間均熱にするとスラブの結晶粒径が粗大化し、熱間圧延中に再結晶しにくくなり、また再結晶しても再結晶粒が粗大となり易いため、二次再結晶に不適切な方位である{100}<110>方位、いわゆる斜めキューブ方位が発達するので、磁気特性が劣化することが懸念される。   Based on this estimation, it is considered effective to bring the slab soaking closer to the equilibrium state in order to stabilize the magnetic characteristics. As a method of bringing the slab closer to the equilibrium state, it is conceivable that the slab is soaked for a long time. However, soaking for a long time makes the slab crystal grain size coarse, making it difficult to recrystallize during hot rolling, and recrystallized grains tend to be coarse even after recrystallization, making them inappropriate for secondary recrystallization. Since the {100} <110> orientation, a so-called oblique cube orientation, is developed, the magnetic properties may be deteriorated.

そこで、発明者らは、スラブ加熱時の均熱に至る過程において、昇温速度を遅くすることに想到し、加熱時における昇温速度の変更実験を行った。なお、昇温速度は、γ相が生成し始める850℃からγ相の量がほぼ最大を示す1100℃の範囲で変更した(Trans. ASM(1961)53, 715等参照)。
以下に 、実験の詳細について述べる。
Therefore, the inventors conceived that the rate of temperature rise was slowed in the process of soaking at the time of slab heating, and conducted an experiment for changing the rate of temperature rise during heating. The rate of temperature increase was changed in the range from 850 ° C. at which the γ phase began to form to 1100 ° C. at which the amount of γ phase almost reached the maximum (see Trans. ASM (1961) 53, 715, etc.).
The details of the experiment are described below.

C:0.04mass%、Si:3.3mass%およびMn:0.07mass%を含有する厚さ:220mm、幅:1100mmのスラブを50本、連続鋳造により製造した。これらのスラブを10本づつ、ガス燃焼炉で850℃から1100℃までの平均速度を250℃/h、350℃/h、450℃/h、550℃/h、650℃/hとして昇温し、1100℃以上で60分均熱した。その後、各10本のスラブのうち、半数は圧下率:9%の幅圧下を施し、半数は幅圧下をせずに粗圧延を行って厚さ:40mmのシートバーとし、引き続き仕上げ圧延を行って2.2mm厚の熱延板としたのち、コイルに巻き取った。   50 slabs having a thickness of 220 mm and a width of 1100 mm containing C: 0.04 mass%, Si: 3.3 mass% and Mn: 0.07 mass% were produced by continuous casting. Each of these 10 slabs was heated in a gas combustion furnace at an average speed from 850 ° C to 1100 ° C at 250 ° C / h, 350 ° C / h, 450 ° C / h, 550 ° C / h, and 650 ° C / h. Soaked at 1100 ° C or higher for 60 minutes. After that, half of the 10 slabs were subjected to width reduction with a reduction ratio of 9%, and half were subjected to rough rolling without width reduction to a sheet bar with a thickness of 40 mm, followed by finish rolling. After being made into a hot-rolled sheet with a thickness of 2.2 mm, it was wound around a coil.

さらに、これら全ての熱延板に、1000℃,30秒間の焼鈍を施し、35℃/sの速度で急冷後、酸洗し、240℃の冷間圧延で0.28mm厚に仕上げた。ついで、脱脂処理後、840℃で2分間の脱炭焼鈍を施した。
その後、MgOにTiO2を5mass%添加した焼鈍分離剤を、鋼板の両面に、片面の塗布量を8g/m2として塗布し、最終仕上焼鈍として、N2ガス中で850℃に48時間保持した後、900℃まで5℃/hの速度で昇温し、雰囲気ガスをN2ガスからH2ガスに変更し、25℃/hの速度で1150℃まで昇温し、1190℃で8時間保持したのち、600℃までH2ガス中で降温し、600℃からはArガス中で降温した。
ついで、未反応の焼鈍分離剤を除去したのち、固形分比率で50mass%のコロイダルシリカを含有するリン酸マグネシウム溶液を張力コーティング液として塗布したのち、840℃で30秒間焼き付けて製品板とした。
Furthermore, all these hot-rolled sheets were annealed at 1000 ° C. for 30 seconds, quenched at a rate of 35 ° C./s, pickled, and finished to a thickness of 0.28 mm by cold rolling at 240 ° C. Then, after degreasing, decarburization annealing was performed at 840 ° C. for 2 minutes.
After that, an annealing separator containing 5 mass% of TiO 2 in MgO was applied to both sides of the steel sheet with a coating amount of 8 g / m 2 on one side, and the final finish annealing was held at 850 ° C. for 48 hours in N 2 gas. After that, the temperature was raised to 900 ° C at a rate of 5 ° C / h, the atmosphere gas was changed from N 2 gas to H 2 gas, the temperature was raised to 1150 ° C at a rate of 25 ° C / h, and 1190 ° C for 8 hours. After holding, the temperature was lowered to 600 ° C. in H 2 gas, and from 600 ° C., the temperature was lowered in Ar gas.
Then, after removing the unreacted annealing separator, a magnesium phosphate solution containing 50 mass% colloidal silica in a solid content ratio was applied as a tension coating solution, and then baked at 840 ° C. for 30 seconds to obtain a product plate.

かくして得られた製品板の磁気特性について調べた結果を、図1に示す。
同図から明らかなように、850℃から1100℃間の平均速度を450℃/h以下とした場合には磁気特性が良好で、またばらつきが小さい。特に熱間圧延に先立ち、幅圧下を施した場合には、さらに磁気特性は良好で、ばらつきも小さいことが判明した。
The results of examining the magnetic properties of the product plate thus obtained are shown in FIG.
As is clear from the figure, when the average speed between 850 ° C. and 1100 ° C. is 450 ° C./h or less, the magnetic characteristics are good and the variation is small. In particular, it was found that when the width reduction was performed prior to hot rolling, the magnetic properties were even better and the variation was small.

昇温速度を450℃/hとしてもSiが2mm程度拡散するのに十分な時間とはならないにもかかわらず、上記のように磁気特性が向上したのは、スラブ加熱前の状態でSiの不均一性が大きかったためと考えられ、昇温速度を制御することにより、長時間均熱のような弊害がなく、十分な磁気特性の改善が達成されるのである。   Even if the heating rate is 450 ° C / h, the magnetic properties have improved as described above, even though the time is not sufficient for Si to diffuse by about 2 mm. This is probably because the uniformity is large, and by controlling the rate of temperature increase, there is no adverse effect such as soaking for a long time, and a sufficient improvement in magnetic properties is achieved.

また、幅圧下によりさらに磁気特性が改善された理由は、必ずしも明らかではないが、以下のように推測できる。
本発明は、インヒビターを含有していないので、圧下によりインヒビターの析出状態が影響したとは考えられない。従って、結晶粒あるいはγ相の状態が幅圧下により変化したと考えられる。また、昇温速度を遅くして、幅圧下を施した場合に特に磁気特性が改善されたことから、γ相の状態が変化したものと考えられる。
すなわち、幅圧下とそれに続く水平圧下によりスラブ中の固溶元素の拡散が速くなり、Si等の元素がα相とγ相で十分に分配されるのが促進され、その結果安定性が増したものと考えられる。ここで、スラブの圧下が水平圧下だけで変形の方向が同じ場合には、この効果は十分には現れないものと推測される。
The reason why the magnetic characteristics are further improved by the width reduction is not necessarily clear, but can be estimated as follows.
Since the present invention does not contain an inhibitor, it cannot be considered that the precipitation state of the inhibitor was affected by the reduction. Therefore, it is considered that the state of the crystal grains or the γ phase changed due to the width reduction. In addition, it is considered that the state of the γ phase has changed since the magnetic properties were improved particularly when the temperature rise rate was slowed down and width reduction was performed.
In other words, the width reduction and the subsequent horizontal reduction increase the diffusion of solid solution elements in the slab, and promotes the sufficient distribution of elements such as Si in the α and γ phases, resulting in increased stability. It is considered a thing. Here, it is estimated that this effect does not appear sufficiently when the slab is pressed down only horizontally and the deformation direction is the same.

上述したように、磁気特性を安定して向上させるためには、γ相が生成する温度域をゆっくり加熱することが重要であり、さらにスラブ均熱後に5%以上の幅圧下を施すことが効果的である。
本発明は、上記した知見に基づき、完成されたものである。
As described above, in order to stably improve the magnetic properties, it is important to slowly heat the temperature range where the γ phase is generated, and further, it is effective to apply a width reduction of 5% or more after slab soaking. Is.
The present invention has been completed based on the above findings.

すなわち、本発明は、
(1)C:0.020〜0.080mass%、Si:2.0〜8.0mass%、Mn:0.005〜3.0mass%を含み、sol.Alを0.0120mass%未満、S, Seをそれぞれ0.0040mass%未満、Nを0.0060mass%未満に低減し、残部はFeおよび不可避的不純物の組成になるスラブを、スラブ加熱後、熱間圧延し、ついで1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、脱炭焼鈍し、その後焼鈍分離剤を適用して最終仕上焼鈍を施すことによって方向性電磁鋼板を製造するに際し、
上記スラブ加熱において、スラブの表面温度が850〜1100℃間の昇温速度を 100〜450℃/hとして1100℃まで加熱し、ついで1100〜1250℃の間で10〜120分間の均熱処理を施し、均熱直後α相とγ相の2相からなるスラブを炉から抽出して、熱間圧延を開始することを特徴とする方向性電磁鋼板の製造方法。
That is, the present invention
(1) C: 0.020 to 0.080 mass%, Si: 2.0 to 8.0 mass%, Mn: 0.005 to 3.0 mass%, sol.Al less than 0.0120 mass%, S and Se less than 0.0040 mass%, N After reducing the slab to less than 0.0060 mass%, the balance being Fe and inevitable impurities composition, hot rolling after slab heating, and then performing one or more cold rollings sandwiching intermediate annealing In producing a grain-oriented electrical steel sheet by performing decarburization annealing and then applying final annealing by applying an annealing separator,
In the above slab heating, the surface temperature of the slab is heated to 1100 ° C at a heating rate of 850 to 1100 ° C at 100 to 450 ° C / h, and then subjected to a soaking treatment at 1100 to 1250 ° C for 10 to 120 minutes. A method for producing a grain-oriented electrical steel sheet, characterized in that a slab consisting of two phases of an α phase and a γ phase is extracted from a furnace immediately after soaking and hot rolling is started.

(2)前記炉からスラブを抽出した後、スラブの表面温度が1000℃以上の温度域で圧下率:5%以上の幅圧下を施してから、熱間圧延における水平圧下を開始することを特徴とする上記(1)に記載の方向性電磁鋼板の製造方法。 (2) After the slab is extracted from the furnace, the horizontal reduction in the hot rolling is started after the width reduction of the reduction ratio: 5% or more is performed in the temperature range where the surface temperature of the slab is 1000 ° C. or more. The method for producing a grain-oriented electrical steel sheet according to (1) above.

(3)前記スラブが、さらに、Ni:0.01〜1.50mass%、Cu:0.01〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、P:0.005〜0.50mass%およびCr:0.01〜1.50mass%のうちから選んだ少なくとも一種を含有する組成になることを特徴とする上記(1)または(2)に記載の方向性電磁鋼板の製造方法。 (3) The slab further comprises Ni: 0.01-1.50 mass%, Cu: 0.01-0.50 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, P: 0.005-0.50 mass%, and Cr. : A method for producing a grain-oriented electrical steel sheet according to (1) or (2), wherein the composition contains at least one selected from 0.01 to 1.50 mass%.

本発明によれば、磁気特性に優れた方向性電磁鋼板を、工業的に安定して、しかも安価に製造することが可能となり、その工業的価値は極めて高い。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture the grain-oriented electrical steel plate excellent in the magnetic characteristic industrially stably and cheaply, and the industrial value is very high.

以下、本発明を具体的に説明する。
まず、本発明において、スラブの成分組成を上記の範囲に限定した理由について説明する。
C:0.020〜0.080mass%
C量が、0.080mass%を超えると、脱炭焼鈍時に磁気時効の起こらない0.0050mass%未満まで低減するのが困難になるので、C量は0.080mass%以下に限定される。一方、スラブ加熱後、α相とγ相の2相共存状態とするためには、Cは0.020mass%以上必要である。
The present invention will be specifically described below.
First, the reason why the slab component composition is limited to the above range in the present invention will be described.
C: 0.020-0.080 mass%
If the amount of C exceeds 0.080 mass%, it becomes difficult to reduce to less than 0.0050 mass% at which no magnetic aging occurs during decarburization annealing, so the amount of C is limited to 0.080 mass% or less. On the other hand, C is required to be 0.020 mass% or more in order to obtain a two-phase coexistence state of α phase and γ phase after slab heating.

Si:2.0〜8.0mass%
Siは、鋼板の比抵抗を高め、鉄損を低減するのに有効な成分であるが、含有量が8.0mass%を超えると冷延性が損なわれ、一方2.0mass%未満では比抵抗が低下するだけでなく、最終仕上焼鈍中にα→γ変態によって結晶方位のランダム化を生じ、十分な鉄損低減効果が得られない。このためSi量は2.0〜8.0mass%の範囲とする。
Si: 2.0-8.0mass%
Si is an effective component for increasing the specific resistance of steel sheets and reducing iron loss. However, when the content exceeds 8.0 mass%, the cold-rolling property is impaired, whereas when the content is less than 2.0 mass%, the specific resistance decreases. In addition, the crystal orientation is randomized by the α → γ transformation during the final finish annealing, and a sufficient iron loss reduction effect cannot be obtained. For this reason, Si amount is taken as 2.0 to 8.0 mass%.

Mn:0.005〜3.0mass%
Mnは、熱間加工性を良好にするために必要な元素であるが、含有量が0.005mass%未満ではその添加効果に乏しく、一方3.0mass%を超えると磁束密度が低下するので、Mn量は 0.005〜3.0mass%の範囲とする。
Mn: 0.005-3.0mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005 mass%, the effect of addition is poor, while if it exceeds 3.0 mass%, the magnetic flux density decreases. Is in the range of 0.005 to 3.0 mass%.

sol.Al:0.0120mass%未満
Alは、過剰に存在すると二次再結晶が困難となる。特にsol.Alが0.0120mass%以上になると二次再結晶が生じ難くなり、磁気特性が劣化するため、sol.Alは0.0120mass%未満に抑制する必要がある。
sol.Al: less than 0.0120 mass%
If Al is present in excess, secondary recrystallization becomes difficult. In particular, when sol.Al is 0.0120 mass% or more, secondary recrystallization hardly occurs and magnetic properties are deteriorated, so sol.Al needs to be suppressed to less than 0.0120 mass%.

S, Se:それぞれ0.0040mass%未満
SおよびSeはそれぞれ、0.0040mass%以上で存在すると、二次再結晶が困難となる。これは、スラブ加熱により粗大化したMnS,MnSeが一次再結晶組織を不均一にするためである。従って、SおよびSeの含有量は、それぞれ0.0040mass%未満に抑制する必要がある。
S and Se: each less than 0.0040 mass% When S and Se are respectively present at 0.0040 mass% or more, secondary recrystallization becomes difficult. This is because MnS and MnSe coarsened by slab heating make the primary recrystallized structure non-uniform. Accordingly, the S and Se contents must be suppressed to less than 0.0040 mass%, respectively.

N:0.0060mass%未満
Nも、SやSeと同様、過剰に存在すると、二次再結晶が困難となる。特にNが0.0060mass%以上では、二次再結晶が生じ難くなり、磁気特性が劣化するので、0.0060mass%未満に抑制する必要がある。
N: Less than 0.0060 mass% When N is present in an excessive amount, as in S and Se, secondary recrystallization becomes difficult. In particular, when N is 0.0060 mass% or more, secondary recrystallization hardly occurs and the magnetic properties deteriorate, so it is necessary to suppress it to less than 0.0060 mass%.

その他は、Feと不可避的不純物である。不可避的不純物の中でも窒化物形成元素であるTi,Nb,B,Ta,V等についてはそれぞれ、0.0050mass%未満に低減することが二次再結晶を安定化する上で有効である。   Others are Fe and inevitable impurities. Among the inevitable impurities, Ti, Nb, B, Ta, V and the like, which are nitride forming elements, are each effective for stabilizing secondary recrystallization to be reduced to less than 0.0050 mass%.

以上、必須成分および抑制成分について説明したが、本発明ではその他にも、工業的により安定して磁気特性を改善する観点から、Ni,Cu,SnおよびSbのうちから選んだ一種または二種以上を、またフォルステライト被膜の形成を安定化させる観点から、PおよびCrのうちから選んだ一種または二種を、それぞれ以下に示す含有量範囲で適宜含有させることができる。   As described above, the essential component and the suppression component have been described. In addition, in the present invention, one or more selected from Ni, Cu, Sn, and Sb are selected from the viewpoint of improving the magnetic properties more stably industrially. In addition, from the viewpoint of stabilizing the formation of the forsterite film, one or two selected from P and Cr can be appropriately contained in the content ranges shown below.

Ni:0.01〜1.50mass%
Niは、熱延板組織を改善して磁気特性を向上させる上で有用な元素である。しかしながら、含有量が0.01mass%未満では磁気特性の向上量が小さく、一方1.50mass%を超えると二次再結晶が不安定になり磁気特性が劣化するので、Niは0.01〜1.50mass%の範囲で含有させることが好ましい。
Ni: 0.01-1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.01 mass%, the improvement in magnetic properties is small. On the other hand, if it exceeds 1.50 mass%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so Ni is in the range of 0.01 to 1.50 mass%. It is preferable to contain.

Cu:0.01〜0.50mass%
Cuは、最終仕上焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して、磁気特性を向上させる有用元素である。そのためには、0.01mass%以上含有させることが望ましい。一方、Cuを0.50mass%を超えて含有されると、熱間圧延性が劣化するため、Cuは0.50mass%を上限として含有させることが望ましい。
Cu: 0.01-0.50mass%
Cu is a useful element that suppresses nitriding and oxidation of the steel sheet during final finish annealing, promotes secondary recrystallization of crystal grains having a good crystal orientation, and improves magnetic properties. For that purpose, it is desirable to contain 0.01 mass% or more. On the other hand, when Cu is contained in excess of 0.50 mass%, hot rollability deteriorates, so it is desirable to contain Cu with an upper limit of 0.50 mass%.

Sn:0.005〜0.50mass%
Snは、最終仕上焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して、磁気特性を向上させる有用元素である。そのためには、0.005mass%以上含有させることが望ましい。一方、Snが0.50mass%を超えて含有されると、冷間圧延性が劣化するため、Snは0.50mass%を上限として含有させることが望ましい。
Sn: 0.005-0.50mass%
Sn is a useful element that suppresses nitriding and oxidation of the steel sheet during final finish annealing, promotes secondary recrystallization of crystal grains having a good crystal orientation, and improves magnetic properties. For that purpose, it is desirable to contain 0.005 mass% or more. On the other hand, when Sn is contained in excess of 0.50 mass%, the cold rolling property is deteriorated. Therefore, Sn is desirably contained with an upper limit of 0.50 mass%.

Sb:0.005〜0.50mass%
Sbは、最終仕上焼鈍中の鋼板の窒化や酸化を抑制し、良好な結晶方位を有する結晶粒の二次再結晶を促進して、磁気特性を向上させる有用元素である。そのためには、0.005mass%以上含有させることが望ましい。一方、Sbが0.50mass%を超えて含有されると、冷間圧延性が劣化するため、Sbは0.50mass%を上限として含有させることが望ましい。
Sb: 0.005-0.50mass%
Sb is a useful element that suppresses nitriding and oxidation of the steel sheet during final finish annealing, promotes secondary recrystallization of crystal grains having a good crystal orientation, and improves magnetic properties. For that purpose, it is desirable to contain 0.005 mass% or more. On the other hand, if the Sb content exceeds 0.50 mass%, the cold rollability deteriorates. Therefore, it is desirable to contain Sb with an upper limit of 0.50 mass%.

P:0.005〜0.50mass%
Pは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.005mass%以上含有させることが望ましい。一方、Pが0.50mass%を超えて含有されると、冷間圧延性が劣化するので、Pは0.50mass%を上限として含有させることが望ましい。
P: 0.005-0.50mass%
P has a function of stabilizing the formation of the forsterite film. For that purpose, P is preferably contained in an amount of 0.005 mass% or more. On the other hand, when P exceeds 0.50 mass%, the cold rolling property deteriorates. Therefore, it is desirable that P is contained with an upper limit of 0.50 mass%.

Cr:0.01〜1.50mass%
Crは、フォルステライト被膜の形成を安定化させる働きがあり、そのためには0.01mass%以上含有させることが望ましい。一方、Crが1.50mass%を超えて含有されると、二次再結晶が困難となり、磁気特性が劣化するので、Crは1.50mass%を上限として含有させることが望ましい。
Cr: 0.01 ~ 1.50mass%
Cr has a function of stabilizing the formation of the forsterite film. For that purpose, it is desirable to contain 0.01 mass% or more. On the other hand, if Cr is contained in excess of 1.50 mass%, secondary recrystallization becomes difficult and magnetic properties deteriorate, so Cr is desirably contained with an upper limit of 1.50 mass%.

次に、本発明の製造方法について説明する。
上記の好適成分組成範囲に調整したスラブを、通常の造塊法、連続鋳造法で製造する。また、100 mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。
Next, the manufacturing method of this invention is demonstrated.
The slab adjusted to the above suitable component composition range is produced by a normal ingot-making method and a continuous casting method. Further, a thin cast piece having a thickness of 100 mm or less may be manufactured by a direct casting method.

次に、スラブを加熱したのち、熱間圧延に供するが、本発明では、このスラブ加熱工程が重要である。
すなわち、本発明では、スラブ加熱時の850℃から1100℃までの間の昇温速度を100℃/h以上、450℃/h以下とすることが肝要である。昇温速度を450℃/h以下としたのは、スラブをより熱力学的平衡状態に近づけ、安定な状態にし、製品板の磁気特性を良好とするためである。昇温速度の下限は、特性上は特に規定する必要はないが、100℃/h 未満だと加熱する時間が長くなり、工業的生産には不利であるので、下限を100℃/hとした。より好ましい昇温速度は200〜400℃/hの範囲である。
ここで、昇温速度は平均速度を指す。すなわち、スラブの表面温度が850℃に達した時刻をT850、1100℃に達した時刻をT1100とした場合、昇温速度は250℃÷(T1100−T850)で算出することとする。
Next, the slab is heated and then subjected to hot rolling. In the present invention, this slab heating step is important.
That is, in the present invention, it is important that the rate of temperature increase from 850 ° C. to 1100 ° C. during slab heating is 100 ° C./h or more and 450 ° C./h or less. The reason for setting the heating rate to 450 ° C./h or less is to bring the slab closer to a thermodynamic equilibrium state, to make it stable, and to improve the magnetic properties of the product plate. The lower limit of the heating rate does not need to be specified in terms of characteristics, but if it is less than 100 ° C / h, the heating time becomes longer, which is disadvantageous for industrial production, so the lower limit was set to 100 ° C / h. . A more preferable temperature increase rate is in the range of 200 to 400 ° C./h.
Here, the rate of temperature rise refers to the average rate. That is, when the time when the surface temperature of the slab reaches 850 ° C. is T 850 and the time when the surface temperature reaches 1100 ° C. is T 1100 , the rate of temperature increase is calculated by 250 ° C. ÷ (T 1100 −T 850 ). .

また、昇温速度の制御温度域を850℃から1100℃の範囲とした理由は、この温度範囲では昇温により熱力学的平衡状態のγ相量が増加するため、熱力学的平衡状態に近づけるにはこの温度範囲で十分な時間が必要だからである。なお、850℃までの昇温速度については、工業的生産性を考慮した上で決定すればよい。   In addition, the reason why the temperature range of the heating rate is set to the range of 850 ° C to 1100 ° C is that, in this temperature range, the amount of γ phase in the thermodynamic equilibrium state increases as the temperature rises, so it approaches the thermodynamic equilibrium state. This is because sufficient time is required in this temperature range. The rate of temperature increase up to 850 ° C. may be determined in consideration of industrial productivity.

その後、すなわち1100℃まで昇温した後、1100℃以上、1250℃以下の温度域で10分から120分間の均熱処理を施す。ここに、均熱温度が1250℃を超えるとスラブの結晶粒径が粗大化し、熱間圧延中に再結晶し難くなり、また再結晶しても再結晶粒が粗大となり易いため、二次再結晶に不適切な方位である{100}<110>方位、いわゆる斜めキューブ方位が発達するので、磁気特性が劣化する。しかも、本発明では、スラブ中にインヒビターを含まないので、不可避的に混入する析出物形成成分が再固溶・再析出することにより微細析出物が形成され、二次再結晶挙動に悪影響を及ぼす。また、均熱時間が120分を超えても、同様の理由により好ましくない。一方、均熱温度が1100℃未満、また均熱時間が10分未満では、熱間圧延の圧下荷重が高くなり熱間圧延が困難となる。従って、1100℃以上、1250℃以下の温度域で10分から120分間均熱することが必要である。より好ましい均熱時間は60〜120分である。なお、均熱とはスラブの表面温度が1100℃以上の時間を指すこととする。   Thereafter, after raising the temperature to 1100 ° C., soaking is performed for 10 minutes to 120 minutes in a temperature range of 1100 ° C. to 1250 ° C. Here, when the soaking temperature exceeds 1250 ° C, the crystal grain size of the slab becomes coarse, and it becomes difficult to recrystallize during hot rolling. Since the {100} <110> orientation which is an inappropriate orientation for the crystal, the so-called oblique cube orientation develops, the magnetic properties deteriorate. In addition, in the present invention, since no inhibitor is contained in the slab, fine precipitates are formed by re-dissolving and re-precipitating the precipitate-forming components that are inevitably mixed, which adversely affects the secondary recrystallization behavior. . Even if the soaking time exceeds 120 minutes, it is not preferable for the same reason. On the other hand, when the soaking temperature is less than 1100 ° C. and the soaking time is less than 10 minutes, the rolling load of hot rolling becomes high and hot rolling becomes difficult. Therefore, it is necessary to soak in the temperature range of 1100 ° C. or higher and 1250 ° C. or lower for 10 minutes to 120 minutes. A more preferable soaking time is 60 to 120 minutes. Note that soaking refers to the time when the surface temperature of the slab is 1100 ° C. or higher.

ここで、スラブの表面温度は実測値が好ましいが、現実的には炉の中にあるスラブの表面温度を実測するのは極めて難しいため、炉内雰囲気の温度等から有限要素法等により計算した値でもよい。
また、スラブ加熱は、ガス燃焼炉または電気式加熱炉、あるいはこれら両方を用いてもよい。
Here, the actual measured value of the surface temperature of the slab is preferable, but in reality, it is extremely difficult to actually measure the surface temperature of the slab in the furnace. It may be a value.
The slab heating may be performed using a gas combustion furnace, an electric heating furnace, or both.

均熱が終了したスラブに対しては、スラブの表面温度が1000℃以上の条件下で圧下率:5%以上の幅圧下を施すことが好ましい。かような幅圧下は、1回または2回以上行い、2回以上の場合には各幅圧下率の合計値が5%以上となればよい。ここで、幅圧下を行う際のスラブ表面温度が1000℃未満では、熱間圧延の圧下荷重が高くなって熱間圧延が困難となるため、幅圧下量が5%未満では十分な磁気特性の改善効果が得られない。
ここに、幅圧下を行うべき好適温度は1100℃以上、好適圧下率は5〜15%である。
For the slab that has been soaked, it is preferable to apply a width reduction of a reduction ratio of 5% or more under the condition that the surface temperature of the slab is 1000 ° C. or higher. Such width reduction is performed once or twice or more. When the width reduction is performed twice or more, the total value of the width reduction ratios may be 5% or more. Here, when the slab surface temperature during width reduction is less than 1000 ° C., the rolling load of hot rolling becomes high and hot rolling becomes difficult. Therefore, when the width reduction amount is less than 5%, sufficient magnetic properties are obtained. The improvement effect cannot be obtained.
Here, the preferred temperature at which the width reduction should be performed is 1100 ° C. or more, and the preferred reduction rate is 5 to 15%.

次に、スラブは、熱間粗圧延を行い、引き続き熱間仕上圧延を行って熱延板とする。熱間粗圧延および熱間仕上圧延は、主に水平圧下からなるが、その途中で板幅を調整するための幅圧下を施してもよい。   Next, the slab is subjected to hot rough rolling and subsequently hot finish rolling to obtain hot rolled sheets. Hot rough rolling and hot finish rolling mainly consist of horizontal reduction, but width reduction for adjusting the plate width may be applied in the middle of the rolling.

ついで、必要に応じて熱延板焼鈍を施す。製品板においてゴス組織を高度に発達させるためには、熱延板焼鈍温度は800℃以上、1200℃以下とするのが好適である。熱延板焼鈍温度が800℃未満では、熱延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1200℃を超えると、不可避的に混入する析出物形成成分が固溶し冷却時に不均一に再析出するため、整粒一次再結晶組織を実現することが困難となり、やはり二次再結晶の発達が阻害される。また、熱延板焼鈍温度が1200℃を超えると、熱延板焼鈍後の粒径が粗大化しすぎることも、整粒の一次再結晶組織を実現する上で極めて不利である。   Next, hot-rolled sheet annealing is performed as necessary. In order to highly develop a goth structure in the product plate, it is preferable that the hot-rolled sheet annealing temperature is 800 ° C. or higher and 1200 ° C. or lower. If the hot-rolled sheet annealing temperature is less than 800 ° C., a band structure in hot rolling remains, and it becomes difficult to realize a primary recrystallized structure of sized particles, which inhibits the development of secondary recrystallization. On the other hand, if the annealing temperature of the hot-rolled sheet exceeds 1200 ° C, the precipitate forming components inevitably mixed in will dissolve and re-precipitate non-uniformly during cooling, making it difficult to achieve a sized primary recrystallized structure. Again, the development of secondary recrystallization is inhibited. Moreover, when the hot-rolled sheet annealing temperature exceeds 1200 ° C., it is extremely disadvantageous to realize the primary recrystallized structure of the sized particles because the grain size after the hot-rolled sheet annealing is too coarse.

熱延板焼鈍後、1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、脱炭焼鈍を行って、Cを磁気時効の起こらない0.0080mass%以下、好ましくは0.0050mass%以下まで低減する。冷間圧延は常温で行ってもよいが、鋼板の温度を100〜280℃に上昇させて行うこと、また冷間圧延途中で100〜280℃の範囲での時効処理を1回または複数回行うことは、ゴス組織を発達させる上で有効である。   After hot-rolled sheet annealing, after cold rolling at least once with intermediate or intermediate annealing, decarburization annealing is performed, and C is 0.0080 mass% or less, preferably 0.0050 mass% or less, in which magnetic aging does not occur To reduce. Cold rolling may be performed at room temperature, but the temperature of the steel sheet is increased to 100 to 280 ° C, and aging treatment in the range of 100 to 280 ° C is performed once or a plurality of times during the cold rolling. This is effective in developing Gothic tissue.

最終冷延後の脱炭焼鈍は、湿潤雰囲気を使用して700〜1000℃の範囲で行うことが好適である。また、脱炭焼鈍後に浸珪法によってSi量を増加させる技術を併用してもよい。   The decarburization annealing after the final cold rolling is preferably performed in a range of 700 to 1000 ° C. using a wet atmosphere. Moreover, you may use together the technique which increases Si amount by the siliconization method after decarburization annealing.

その後、MgOを主体とする焼鈍分離剤を適用して、最終仕上焼鈍を施すことにより、二次再結晶組織を発達させると共にフォルステライト被膜を形成させる。最終仕上焼鈍は、二次再結晶発現のために800℃以上で行う必要があるが、800℃までの加熱速度は、磁気特性に大きな影響を与えないので任意の条件でよい。
最終仕上焼鈍後は、平坦化焼鈍により形状を矯正する。
さらに、鉄損改善のためには、鋼板表面に張力を付与する絶縁コーティングを施すことが有効である。
Thereafter, an annealing separator mainly composed of MgO is applied to perform final finish annealing, thereby developing a secondary recrystallized structure and forming a forsterite film. The final finish annealing needs to be performed at 800 ° C. or higher for secondary recrystallization. However, the heating rate up to 800 ° C. does not have a great influence on the magnetic properties, and may be under any conditions.
After final finish annealing, the shape is corrected by flattening annealing.
Furthermore, in order to improve iron loss, it is effective to provide an insulating coating that applies tension to the surface of the steel sheet.

実施例1
C:0.05mass%、Si:3.5mass%、Mn:0.06mass%、sol.Al:0.0040mass%、N:0.0040mass%、S:0.0020mass%およびSe:0.0002mass%を含有し、残部はFeおよび不可避的不純物の組成になる厚さ:220mm、幅:1200mmのスラブを、連続鋳造法により製造した。
これらのスラブを、表1に示す条件で、ガス燃焼炉で加熱した後、一部のスラブについては1120℃で幅圧下を実施した。その後、粗圧延により厚さ:45mmのシートバーとし、引き続き仕上圧延を行って2.3mm厚の熱延板とし、コイルに巻き取った。
ついで、これらすべての熱延板に1000℃、30秒間の焼鈍を施し、35℃/sの速度で急冷した後、酸洗し、その後冷間圧延により0.28mm厚に仕上げた。
ついで、脱脂処理後、露点:60℃、水素濃度:50vol%、窒素濃度:50vol%の雰囲気中にて、840℃, 2分間の脱炭焼鈍を施した。
Example 1
C: 0.05 mass%, Si: 3.5 mass%, Mn: 0.06 mass%, sol.Al: 0.0040 mass%, N: 0.0040 mass%, S: 0.0020 mass% and Se: 0.0002 mass%, the balance being Fe A slab having a thickness of 220 mm and a width of 1200 mm with an inevitable impurity composition was produced by a continuous casting method.
After these slabs were heated in a gas combustion furnace under the conditions shown in Table 1, some slabs were subjected to width reduction at 1120 ° C. Thereafter, rough rolling was performed to obtain a sheet bar having a thickness of 45 mm, and then finish rolling was performed to obtain a hot-rolled sheet having a thickness of 2.3 mm, which was wound around a coil.
Subsequently, all these hot-rolled sheets were annealed at 1000 ° C. for 30 seconds, quenched at a rate of 35 ° C./s, pickled, and then finished to a thickness of 0.28 mm by cold rolling.
Then, after degreasing, decarburization annealing was performed at 840 ° C. for 2 minutes in an atmosphere having a dew point of 60 ° C., a hydrogen concentration of 50 vol%, and a nitrogen concentration of 50 vol%.

その後、MgOにTiO2を8mass%添加した焼鈍分離剤を、鋼板の両面に、片面の塗布量を5g/m2として塗布した後、最終仕上焼鈍として、N2ガス中で860℃に48時間保持後、900℃まで5℃/hの速度で昇温し、雰囲気ガスをN2ガスからH2ガスに変更し、25℃/hの速度で1200℃まで昇温し、引き続き1200℃で5時間保持した後、600℃までH2ガス中で降温し、600℃からはArガス中で降温する、焼鈍処理を施した。
上記の最終仕上焼鈍後、未反応の焼鈍分離剤を除去したのち、固形分比率で50mass%のコロイダルシリカを含有するリン酸マグネシウム溶液を張力コーティング液として塗布し、840℃で30秒間焼き付けて、製品板とした。なお、製品板は、各条件で約10tonのコイルを2個製造した。
After that, an annealing separator containing 8 mass% of TiO 2 added to MgO was applied to both sides of the steel sheet at a coating amount of 5 g / m 2 on one side, and then finally annealed at 860 ° C. for 48 hours in N 2 gas. After holding, the temperature is raised to 900 ° C at a rate of 5 ° C / h, the atmospheric gas is changed from N 2 gas to H 2 gas, the temperature is raised to 1200 ° C at a rate of 25 ° C / h, and then 5 ° C at 1200 ° C. After maintaining the time, the temperature was lowered to 600 ° C. in H 2 gas, and from 600 ° C., the temperature was lowered in Ar gas.
After removing the unreacted annealing separator after the above final finish annealing, a magnesium phosphate solution containing 50 mass% colloidal silica in a solid content ratio is applied as a tension coating solution, and baked at 840 ° C. for 30 seconds. A product plate was used. In addition, the product plate produced two coils of about 10 tons under each condition.

かくして得られた各製品板において、コイルの長手方向両端部および中央部の磁気特性を、800A/mで励磁したときの磁束密度B8で評価した。
各条件で6点測定した磁束密度B8の最大値、最小値および平均値を表1に示す。
In each product plate thus obtained, the magnetic properties at both ends and the center in the longitudinal direction of the coil were evaluated by the magnetic flux density B 8 when excited at 800 A / m.
Table 1 shows the maximum value, the minimum value, and the average value of the magnetic flux density B 8 measured at six points under each condition.

Figure 2006213993
Figure 2006213993

表1に示したとおり、本発明に従い製造した製品板はいずれも、磁気特性のばらつきが少なく、また平均特性値も優れていた。   As shown in Table 1, all of the product plates produced according to the present invention had little variation in magnetic properties and excellent average property values.

実施例2
表2示す成分を含有し、残部はFeおよび不可避的不純物の組成になる厚さ:210mm、幅:1300mmのスラブを、連続鋳造法により製造した。
これらのスラブをガス燃焼炉で、スラブ表面温度が500℃から850℃まで平均速度:500℃/hで昇温し、850℃から1100℃まで平均速度:200℃/hで昇温したのち、1100℃から1250℃の範囲で60分間の均熱処理を施した。なお、この均熱処理において時間的に平均した温度は1200℃であった。
ついで、1150℃で幅圧下を実施した後、粗圧延により厚さ:40mmのシートバーとし、引き続き仕上げ圧延により2.1mm厚の熱延板としたのち、コイルに巻き取った。
その後、これらすべての熱延板に1030℃、30秒間の焼鈍を施したのち、40℃/sの速度で急冷し、酸洗後、冷間圧延により0.30mm厚に仕上げた。
Example 2
A slab having a thickness of 210 mm and a width of 1300 mm containing the components shown in Table 2 with the balance of Fe and inevitable impurities was produced by a continuous casting method.
These slabs were heated in a gas combustion furnace at an average rate of 500 ° C / h from 500 ° C to 850 ° C, and from 850 ° C to 1100 ° C at an average rate of 200 ° C / h. A soaking treatment was performed in the range of 1100 ° C to 1250 ° C for 60 minutes. The temperature averaged over time in this soaking was 1200 ° C.
Next, after carrying out width reduction at 1150 ° C., a sheet bar having a thickness of 40 mm was obtained by rough rolling, and subsequently a hot rolled sheet having a thickness of 2.1 mm was obtained by finish rolling, and then wound on a coil.
Thereafter, all these hot-rolled sheets were annealed at 1030 ° C. for 30 seconds, then rapidly cooled at a rate of 40 ° C./s, pickled, and finished to a thickness of 0.30 mm by cold rolling.

ついで、脱脂処理後、、露点:55℃、水素濃度:50vol%、窒素濃度:50vol%の雰囲気中にて、850℃,1分間の脱炭焼鈍を施した。
その後、MgOにTiO2を3mass%添加した焼鈍分離剤を、鋼板の両面に、片面の塗布量を7g/m2として塗布したのち、最終仕上焼鈍として、N2ガス中で870℃に40時間保持後、900℃まで5℃/hの速度で昇温し、雰囲気ガスをN2ガスからH2ガスに変更し、20℃/hの速度で1180℃まで昇温し、引き続き1180℃で8時間保持した後、600℃までH2ガス中で降温し、600℃からはArガス中で降温する、焼鈍処理を施した。
上記の最終仕上焼鈍後、未反応の焼鈍分離剤を除去したのち、固形分比率で50mass%のコロイダルシリカを含有するリン酸マグネシウム溶液を張力コーティング液として塗布し、840℃で30秒間焼き付けて、製品板とした。なお、製品板は、各条件で約10tonのコイルを2個製造した。
Then, after degreasing, decarburization annealing was performed at 850 ° C. for 1 minute in an atmosphere having a dew point of 55 ° C., a hydrogen concentration of 50 vol%, and a nitrogen concentration of 50 vol%.
After that, an annealing separator containing 3 mass% of TiO 2 in MgO was applied to both sides of the steel sheet at a coating amount of 7 g / m 2 on one side, and then final annealing was performed at 870 ° C. in N 2 gas for 40 hours. After holding, the temperature is raised to 900 ° C at a rate of 5 ° C / h, the atmosphere gas is changed from N 2 gas to H 2 gas, the temperature is raised to 1180 ° C at a rate of 20 ° C / h, and then 8 ° C at 1180 ° C. After maintaining the time, the temperature was lowered to 600 ° C. in H 2 gas, and from 600 ° C., the temperature was lowered in Ar gas.
After the above final finish annealing, after removing the unreacted annealing separator, a magnesium phosphate solution containing 50 mass% colloidal silica in a solid content ratio is applied as a tension coating solution, and baked at 840 ° C. for 30 seconds. A product plate was used. In addition, the product plate produced two coils of about 10 tons under each condition.

かくして得られた各製品板において、コイルの長手方向両端部および中央部の磁気特性を、800A/mで励磁したときの磁束密度B8で評価した。
各条件で6点測定した磁束密度B8の最大値、最小値および平均値を表2に示す。
In each product plate thus obtained, the magnetic properties at both ends and the center in the longitudinal direction of the coil were evaluated by the magnetic flux density B 8 when excited at 800 A / m.
Table 2 shows the maximum value, minimum value, and average value of the magnetic flux density B 8 measured at six points under each condition.

Figure 2006213993
Figure 2006213993

表2から明らかなように、本発明に従い製造した製品板はいずれも、磁気特性のばらつきが少なく、また平均特性値も優れていた。   As is apparent from Table 2, all the product plates produced according to the present invention had little variation in magnetic properties and excellent average property values.

スラブ加熱時における800〜1100℃間のスラブ表面の平均昇温速度と製品板の磁気特性との関係を示す図である。It is a figure which shows the relationship between the average temperature increase rate of the slab surface between 800-1100 degreeC at the time of slab heating, and the magnetic characteristic of a product board.

Claims (3)

C:0.020〜0.080mass%、Si:2.0〜8.0mass%、Mn:0.005〜3.0mass%を含み、sol.Alを0.0120mass%未満、S, Seをそれぞれ0.0040mass%未満、Nを0.0060mass%未満に低減し、残部はFeおよび不可避的不純物の組成になるスラブを、スラブ加熱後、熱間圧延し、ついで1回または中間焼鈍を挟む2回以上の冷間圧延を施した後、脱炭焼鈍し、その後焼鈍分離剤を適用して最終仕上焼鈍を施すことによって方向性電磁鋼板を製造するに際し、
上記スラブ加熱において、スラブの表面温度が850〜1100℃間の昇温速度を 100〜450℃/hとして1100℃まで加熱し、ついで1100〜1250℃の間で10〜120分間の均熱処理を施し、均熱直後α相とγ相の2相からなるスラブを炉から抽出して、熱間圧延を開始することを特徴とする方向性電磁鋼板の製造方法。
C: 0.020 to 0.080 mass%, Si: 2.0 to 8.0 mass%, Mn: 0.005 to 3.0 mass%, sol.Al is less than 0.0120 mass%, S and Se are each less than 0.0040 mass%, N is 0.0060 mass% The slab with a composition of Fe and inevitable impurities in the balance is reduced to less than that, hot-rolled after slab heating, and then cold-rolled once or twice with intermediate annealing, and then decarburized. In producing a grain-oriented electrical steel sheet by annealing and then applying a final finish annealing by applying an annealing separator,
In the above slab heating, the surface temperature of the slab is heated to 1100 ° C at a heating rate of 850 to 1100 ° C at 100 to 450 ° C / h, and then subjected to a soaking treatment at 1100 to 1250 ° C for 10 to 120 minutes. A method for producing a grain-oriented electrical steel sheet, characterized in that a slab consisting of two phases of an α phase and a γ phase is extracted from a furnace immediately after soaking and hot rolling is started.
前記炉からスラブを抽出した後、スラブの表面温度が1000℃以上の温度域で圧下率:5%以上の幅圧下を施してから、熱間圧延における水平圧下を開始することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。   After the slab is extracted from the furnace, the horizontal reduction in the hot rolling is started after the rolling reduction: 5% or more in the temperature range where the surface temperature of the slab is 1000 ° C or more. Item 2. A method for producing a grain-oriented electrical steel sheet according to Item 1. 前記スラブが、さらに、Ni:0.01〜1.50mass%、Cu:0.01〜0.50mass%、Sn:0.005〜0.50mass%、Sb:0.005〜0.50mass%、P:0.005〜0.50mass%およびCr:0.01〜1.50mass%のうちから選んだ少なくとも一種を含有する組成になることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。   The slab further comprises Ni: 0.01-1.50 mass%, Cu: 0.01-0.50 mass%, Sn: 0.005-0.50 mass%, Sb: 0.005-0.50 mass%, P: 0.005-0.50 mass%, and Cr: 0.01- The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the composition contains at least one selected from 1.50 mass%.
JP2005030492A 2005-02-07 2005-02-07 Method for producing grain-oriented electrical steel sheet Active JP4385960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030492A JP4385960B2 (en) 2005-02-07 2005-02-07 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030492A JP4385960B2 (en) 2005-02-07 2005-02-07 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006213993A true JP2006213993A (en) 2006-08-17
JP4385960B2 JP4385960B2 (en) 2009-12-16

Family

ID=36977455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030492A Active JP4385960B2 (en) 2005-02-07 2005-02-07 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4385960B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
WO2012073772A1 (en) * 2010-12-03 2012-06-07 Jfeスチール株式会社 Hot rolling method for silicon-containing steel slab
WO2015096430A1 (en) * 2013-12-27 2015-07-02 东北大学 Method for preparing oriented high silicon electrical steel
JP2019178413A (en) * 2018-03-30 2019-10-17 Jfeスチール株式会社 Processing method of grain-oriented electromagnetic steel sheet
JP2019183271A (en) * 2018-03-30 2019-10-24 Jfeスチール株式会社 Production method of grain-oriented electromagnetic steel sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195875A (en) * 2010-03-18 2011-10-06 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
WO2012073772A1 (en) * 2010-12-03 2012-06-07 Jfeスチール株式会社 Hot rolling method for silicon-containing steel slab
JP2012117136A (en) * 2010-12-03 2012-06-21 Jfe Steel Corp Hot rolling method for silicon-containing steel slab
CN103237907A (en) * 2010-12-03 2013-08-07 杰富意钢铁株式会社 Hot rolling method for silicon-ontaining steel slab
WO2015096430A1 (en) * 2013-12-27 2015-07-02 东北大学 Method for preparing oriented high silicon electrical steel
JP2019178413A (en) * 2018-03-30 2019-10-17 Jfeスチール株式会社 Processing method of grain-oriented electromagnetic steel sheet
JP2019183271A (en) * 2018-03-30 2019-10-24 Jfeスチール株式会社 Production method of grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP4385960B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
RU2537628C1 (en) Production of texture sheets from electrical steel
JP5991484B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
WO2011158519A1 (en) Oriented electromagnetic steel plate production method
JP4258349B2 (en) Method for producing grain-oriented electrical steel sheet
JP2010236013A (en) Method for producing grain-oriented magnetic steel sheet
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JP2008001977A (en) Process for producing grain-oriented magnetic steel sheet
JP4385960B2 (en) Method for producing grain-oriented electrical steel sheet
JP2009256713A (en) Method for manufacturing grain-oriented electrical steel sheet
CN109906284B (en) Oriented electrical steel sheet and method for manufacturing the same
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
WO2019131853A1 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JP4206665B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP7465975B2 (en) Grain-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Ref document number: 4385960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250