JPH05295443A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH05295443A
JPH05295443A JP4104984A JP10498492A JPH05295443A JP H05295443 A JPH05295443 A JP H05295443A JP 4104984 A JP4104984 A JP 4104984A JP 10498492 A JP10498492 A JP 10498492A JP H05295443 A JPH05295443 A JP H05295443A
Authority
JP
Japan
Prior art keywords
annealing
slab
hot
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4104984A
Other languages
Japanese (ja)
Other versions
JP2607331B2 (en
Inventor
Yasunari Yoshitomi
康成 吉冨
Katsuro Kuroki
克郎 黒木
Hiroaki Masui
浩昭 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4104984A priority Critical patent/JP2607331B2/en
Publication of JPH05295443A publication Critical patent/JPH05295443A/en
Application granted granted Critical
Publication of JP2607331B2 publication Critical patent/JP2607331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To omit hot rolled plate annealing and to stably obtain superior magnetic properties by limiting the amount of solid-solution N in a slab at the completion of slab heating and controlling the average grain size of primary recrystallized grains before the initiation of final finish annealing. CONSTITUTION:A slab of a steel having a composition consisting of, by weight ratio, 0.021-0.075% C, 2.5-4.5% Sr, 0.010-0.060% acid-soluble Al, <=0.0150 N, <=0.014% of (S+0.405Se), 0.05-0.8% Mn, and the balance Fe with inevitable impurities, is heated up to <1280 deg.C and hot-rolled. The amount of solid-solution N in the slab at the completion of slab heating is regulated to <=0.0045wt.%. Final cold rolling is done at 80% draft. Subsequently, decarburizing annealing is done and the average grain size of primary recrystallized grains before the initiation of final finish annealing is regulated to 18-30mum. Then, final finish annealing is performed. In the course between the completion of hot rolling and the initiation of secondary recrystallization at final finish annealing, nitriding treatment is applied to the steel sheet. Further, it is preferable to regulate the cumulative draft of final three passes at hot rolling to >=40%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8 が通常使用される。また、鉄
損特性を表す数値としては、周波数50Hzで1.7テス
ラー(T)まで磁化したときの1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. The magnetic field strength is 800A as a numerical value indicating the excitation characteristic.
A magnetic flux density B 8 at / m is usually used. In addition, as a numerical value showing the iron loss characteristic, the iron loss per kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is W 17/50.
Are using. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics.

【0003】なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性を改善することができる。
Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large and the iron loss characteristics may become poor. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸をもったいわゆるゴス組織を発達さ
せることにより、製造されている。良好な磁気特性を得
るためには、磁化容易軸である〈001〉を圧延方向に
高度に揃えることが必要である。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction.

【0005】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においてはMnS及びAlNを後者ではMn
S,MnSe,Sb等を主なインヒビターとして用いて
いる。従って現在の技術においてはこれらインヒビター
として機能する析出物の大きさ、形態及び分散状態を適
正制御することが不可欠である。
As a representative technique for manufacturing such a high magnetic flux density unidirectional electrical steel sheet, Japanese Patent Publication No. 40-15644.
There is a method described in JP-B No. 51-13469. MnS and AlN in the former and Mn in the latter
S, MnSe, Sb, etc. are used as main inhibitors. Therefore, in the present technology, it is indispensable to appropriately control the size, morphology and dispersion state of precipitates that function as these inhibitors.

【0006】MnSに関して言えば、現在の工程では熱
延前のスラブ加熱時にMnSをいったん完全固溶させた
後、熱延時に析出する方法がとられている。二次再結晶
に必要な量のMnSを完全固溶するためには1400℃
程度の温度が必要である。これは普通鋼のスラブ加熱温
度に比べて200℃以上も高く、この高温スラブ加熱処
理には以下に述べるような不利な点がある。 1)方向性電磁鋼専用の高温スラブ加熱炉が必要。2)
加熱炉のエネルギー原単位が高い。3)溶融スケール量
が増大し、いわゆるノロかき出し等にみられるように操
業上の悪影響が大きい。
Regarding MnS, in the present process, a method is employed in which MnS is once completely solid-soluted during slab heating before hot rolling and then precipitated during hot rolling. 1400 ℃ to completely dissolve the required amount of MnS for secondary recrystallization
Some temperature is required. This is higher than the slab heating temperature of ordinary steel by 200 ° C. or more, and this high temperature slab heating treatment has the following disadvantages. 1) A high temperature slab heating furnace exclusively for grain oriented electrical steel is required. 2)
The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as can be seen in so-called shaving.

【0007】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並みに下げればよいわけであるが、
このことは同時にインヒビターとして有効なMnSの量
を少なくするかあるいはまったく用いないことを意味
し、必然的に二次再結晶の不安定化をもたらす。
In order to avoid such problems, the slab heating temperature should be lowered to the level of ordinary steel.
At the same time, this means that the amount of MnS effective as an inhibitor is reduced or not used at all, and inevitably results in destabilization of secondary recrystallization.

【0008】このため低温スラブ加熱化を実現するため
には何らかの形でMnS以外の析出物などによりインヒ
ビターを強化し、仕上焼鈍時の正常粒成長の制御を充分
にする必要がある。このようなインヒビターとしては硫
化物の他、窒化物、酸化物及び粒界析出元素等が考えら
れ、公知の技術として例えば次のようなものがあげられ
る。
Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor in some form with precipitates other than MnS and sufficiently control normal grain growth during finish annealing. As such inhibitors, sulfides, nitrides, oxides, grain boundary precipitation elements and the like are conceivable, and known techniques include, for example, the following.

【0009】特公昭54−24685号公報では、A
s,Bi,Sn,Sb等の粒界偏析元素を鋼中に含有す
ることにより、スラブ加熱温度を1050〜1350℃
の範囲にする方法が開示された。特開昭52−2411
6号公報ではAlの他、Zr,Ti,B,Nb,Ta,
V,Cr,Mo等の窒化物生成元素を含有することによ
り、スラブ加熱温度を1100〜1260℃の範囲にす
る方法が開示された。また、特開昭57−158322
号公報ではMn含有量を下げ、Mn/Sの比率を2.5
以下にすることにより低温スラブ加熱化を行ない、さら
にCuの添加により二次再結晶を安定化する技術が開示
された。
In Japanese Patent Publication No. 54-24685, A
By containing grain boundary segregation elements such as s, Bi, Sn, and Sb in the steel, the slab heating temperature is set to 1050 to 1350 ° C.
The method of making into the range of was disclosed. JP-A-52-2411
No. 6, in addition to Al, Zr, Ti, B, Nb, Ta,
A method of controlling the slab heating temperature in the range of 1100 to 1260 ° C. by containing a nitride forming element such as V, Cr and Mo has been disclosed. Also, JP-A-57-158322
In the publication, the Mn content is reduced and the Mn / S ratio is set to 2.5.
A technique has been disclosed in which low-temperature slab heating is performed by the following, and further, secondary recrystallization is stabilized by adding Cu.

【0010】一方、これらインヒビターの補強と組み合
わせて金属組織の側から改良を加えた技術も開示され
た。すなわち特開昭57−89433号公報ではMnに
加えS,Se.Sb,Bi,Pb,Sn,B等の元素を
加え、これにスラブの柱状晶率と二次冷延圧下率を組み
合わせることにより1100〜1250℃の低温スラブ
加熱化を実現している。
On the other hand, a technique has also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S, Se. By adding elements such as Sb, Bi, Pb, Sn, and B, and combining them with the columnar crystal ratio of the slab and the secondary cold rolling reduction ratio, low temperature slab heating at 1100 to 1250 ° C is realized.

【0011】さらに特開昭59−190324号公報で
はSあるいはSeに加え、Al及びBと窒素を主体とし
てインヒビターを構成し、これに冷延後の一次再結晶焼
鈍時にパルス焼鈍を施すことにより二次再結晶を安定化
する技術が公開された。このように方向性電磁鋼板製造
における低温スラブ加熱化実現のためには、これまでに
多大な努力が続けられてきている。
Further, in JP-A-59-190324, an inhibitor is mainly composed of Al and B and nitrogen in addition to S or Se, which is pulse-annealed during primary recrystallization annealing after cold rolling. A technique for stabilizing the secondary recrystallization has been published. Thus, in order to realize low temperature slab heating in the production of grain-oriented electrical steel sheets, great efforts have been made so far.

【0012】さて、先に特開昭59−56522号公報
においてMnを0.08〜0.45%、Sを0.007
%以下にすることにより低温スラブ加熱化を可能にする
技術が開示された。この方法により高温スラブ加熱時の
スラブ結晶粒粗大化に起因する製品の線状二次再結晶不
良発生の問題が解消された。
First, in JP-A-59-56522, Mn is 0.08 to 0.45% and S is 0.007.
A technique has been disclosed that enables low temperature slab heating by controlling the content to be not more than%. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0013】[0013]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としておるもの
の、当然のことながら、良好な磁気特性を安定して得る
技術でなければ、工業化はできない。他方スラブ加熱を
低温化すると当然、熱延温度が低下する等熱延に関する
変更が生じる。しかしながら、これまでのところ、熱延
方法を組み込んだ低温スラブ加熱の一貫製造方法はほと
んど検討されていなかった。
Although the method by low temperature slab heating is originally intended to reduce the manufacturing cost, it is needless to say that it cannot be industrialized unless it is a technique for stably obtaining good magnetic characteristics. . On the other hand, lowering the slab heating naturally causes changes in hot rolling such as a decrease in hot rolling temperature. However, until now, an integrated manufacturing method of low temperature slab heating incorporating a hot rolling method has hardly been studied.

【0014】従来の高温スラブ加熱(例えば1300℃
以上)の場合、熱延の主な役割は、粗大結晶粒の再結
晶による分断、MnS,AlN等の微細析出又は析出
抑制、{110}〈001〉方位粒の剪断変形による
形成の3点であったが、低温スラブ加熱の場合は必要
なく、に関しては本発明者が特願平1−1778号で
開示している如く、脱炭焼鈍後の結晶組織を適切なもの
とすればよいので、熱延板での析出物制御は必須でな
い。従って従来法での熱延に対する制約は低温スラブ加
熱の場合には少ないと言える。
Conventional high temperature slab heating (eg 1300 ° C.)
In the above case, the main roles of hot rolling are three points: division by recrystallization of coarse crystal grains, fine precipitation of MnS, AlN or the like or suppression of precipitation, and formation by shear deformation of {110} <001> oriented grains. However, it is not necessary in the case of low-temperature slab heating, and as for the present inventor, as disclosed in Japanese Patent Application No. 1-1778, the crystal structure after decarburization annealing may be made appropriate, Precipitate control on hot-rolled sheet is not essential. Therefore, it can be said that there are few restrictions on hot rolling in the conventional method in the case of low temperature slab heating.

【0015】ところで、一方向性電磁鋼板の製造におい
ては通常熱延後組織の不均一化、析出処理等を目的とし
て熱延板焼鈍が行われている。例えばAlNを主インヒ
ビターとする製造方法においては、特公昭46−238
20号公報に示すように熱延板焼鈍においてAlNの析
出処理を行ってインヒビターを制御する方法がとられて
いる。
Meanwhile, in the production of unidirectional electrical steel sheets, hot-rolled sheet annealing is usually performed for the purpose of making the structure non-uniform after hot rolling, precipitation treatment and the like. For example, in the production method using AlN as the main inhibitor, Japanese Patent Publication No. 46-238
As disclosed in Japanese Unexamined Patent Publication No. 20 (1994), a method of controlling the inhibitor by performing AlN precipitation treatment in hot-rolled sheet annealing is adopted.

【0016】通常一方向性電磁鋼板は鋳造−熱延−焼鈍
−冷延−脱炭焼鈍−仕上焼鈍のような主工程を経て製造
され、多量のエネルギーを必要としており、加えて普通
鋼製造プロセス等と比較して製造コストも高くなってい
る。近年多量のエネルギー消費をするこのような製造工
程に対する見直しが進められ、工程、エネルギーの簡省
略化の要請が強まってきた。このような要請に応えるべ
く、AlNを主インヒビターとする製造方法において、
熱延板焼鈍でのAlNの析出処理を、熱延後の高温巻取
で代替する方法(特公昭59−45730号公報)が提
案された。
Generally, the grain-oriented electrical steel sheet is manufactured through the main steps of casting-hot rolling-annealing-cold rolling-decarburization annealing-finish annealing, and requires a large amount of energy. The manufacturing cost is higher than the above. In recent years, a review has been made on such a manufacturing process that consumes a large amount of energy, and a demand for simplifying the process and energy has increased. In order to meet such a demand, in a production method using AlN as a main inhibitor,
A method (Japanese Patent Publication No. 59-45730) of replacing the precipitation treatment of AlN in hot-rolled sheet annealing with high-temperature winding after hot-rolling has been proposed.

【0017】確かに、この方法によって熱延板焼鈍を省
略しても、磁気特性をある程度確保することはできる
が、5〜20トンのコイル状で巻取られる通常の方法に
おいては、冷却過程でコイル内での場所的な熱履歴の差
が生じ、必然的にAlNの析出が不均一となり最終的な
磁気特性はコイル内の場所によって変動し、歩留が低下
する結果となる。
Certainly, even if the hot-rolled sheet annealing is omitted by this method, the magnetic characteristics can be secured to some extent, but in the usual method of winding in a coil shape of 5 to 20 tons, the cooling process is performed. A difference in thermal history occurs locally in the coil, which inevitably causes non-uniform deposition of AlN, and the final magnetic characteristics fluctuate depending on the location in the coil, resulting in a decrease in yield.

【0018】そこで本発明者らは、従来ほとんど注目さ
れていなかった仕上熱延最終パス後の再結晶現象に着目
し、この現象を利用して80%以上の強圧下1回冷延に
よる製造法において熱延板焼鈍を省略する方法(特願平
1−85540号、特願平1−85541号)を提示し
た。これらの技術は、仕上熱延最終3パスの強圧下及び
熱延終了後の高温での保持により熱延板を微細再結晶組
織としたことに特徴があり、これらの技術により、12
80℃未満の温度でのスラブ加熱と、熱延板焼鈍の省略
の両立が可能となった。
Therefore, the present inventors have paid attention to the recrystallization phenomenon after the final pass of hot rolling for finishing, which has hardly been noticed in the past, and utilizing this phenomenon, a production method by single cold rolling under a high pressure of 80% or more. The method of omitting hot-rolled sheet annealing (Japanese Patent Application No. 1-85540 and Japanese Patent Application No. 1-85541) was presented. These techniques are characterized in that the hot-rolled sheet has a fine recrystallized structure by being strongly pressed in the final three passes of hot-rolling and held at high temperature after completion of hot-rolling.
It became possible to achieve both slab heating at a temperature of less than 80 ° C and omission of hot-rolled sheet annealing.

【0019】一方、これまで一方向性電磁鋼板の熱延に
関しては、高温スラブ加熱(例えば1300℃以上)時
のスラブ結晶粒の粗大成長に起因する二次再結晶不良
(圧延方向に連なった線状細粒発生)を防止するため
に、熱延時の960〜1190℃での温度で1パス当り
30%以上の圧下率で再結晶化高圧下圧延を施し、粗大
結晶粒を分断する方法が提案されている(特公昭60−
37172号公報)。確かにこの方法によって線状細粒
発生が減少するが、熱延板焼鈍を施す製造プロセスを前
提としている。
On the other hand, regarding hot rolling of unidirectional electrical steel sheets, secondary recrystallization defects (lines extending in the rolling direction) caused by coarse growth of slab crystal grains during high temperature slab heating (eg, 1300 ° C. or higher) In order to prevent the formation of fine grains, a method is proposed in which recrystallization under high pressure rolling is performed at a reduction ratio of 30% or more per pass at a temperature of 960 to 1190 ° C during hot rolling to divide coarse crystal grains. Has been done (Japanese Patent Sho 60-
37172 publication). Although this method surely reduces the generation of linear fine grains, it is premised on the manufacturing process of hot-rolled sheet annealing.

【0020】また、MnS,MnSe,Sbをインヒビ
ターとする製造方法において、熱延時の950〜120
0℃の温度で圧下率10%以上で連続して熱延し、引き
続き3℃/sec 以上の冷却速度で冷却することによって
MnS,MnSeを均一微細に析出させ、磁気特性を向
上させる方法が提案されている(特開昭51−2071
6号公報)。また熱延を低温で行い再結晶の進行を抑制
し、剪断変形で形成される{110}〈001〉方位粒
が引き続く再結晶で減少するのを防止することによって
磁気特性を向上させる方法が提案されている(特公昭5
9−32526号公報、特公昭59−35415号公
報)。
Further, in the production method using MnS, MnSe, and Sb as inhibitors, 950 to 120 during hot rolling are used.
A method is proposed in which MnS and MnSe are uniformly and finely precipitated by continuously hot rolling at a rolling reduction of 10% or more at a temperature of 0 ° C. and subsequently cooling at a cooling rate of 3 ° C./sec or more to improve magnetic properties. (JP-A-51-2071)
No. 6). Also proposed is a method of improving the magnetic properties by performing hot rolling at a low temperature to suppress the progress of recrystallization and prevent the {110} <001> oriented grains formed by shear deformation from being reduced by subsequent recrystallization. Has been done (Japanese Patent Publication Sho 5
9-32526, Japanese Patent Publication No. 59-35415).

【0021】これらの方法においても、熱延板焼鈍無し
の1回冷延法での製造は検討さえされていない。また、
超低炭素を含有する珪素鋼スラブの熱延において、熱延
板で歪を蓄積させる低温大圧下熱延を行い、引き続く熱
延板焼鈍での再結晶により超低炭素材特有の粗大結晶粒
を分断する方法が提案されている(特公昭59−342
12号公報)。しかしこの方法においても、熱延板焼鈍
無しの1回冷延法での製造は検討さえされていない。
Even in these methods, the production by the single cold rolling method without annealing the hot rolled sheet has not been studied. Also,
During hot rolling of silicon steel slabs containing ultra-low carbon, hot rolling at low temperature and large pressure that accumulates strain in the hot-rolled sheet is performed, and coarse crystal grains peculiar to the ultra-low carbon material are obtained by recrystallization during subsequent hot-rolled sheet annealing A method of dividing is proposed (Japanese Patent Publication No. 59-342).
No. 12). However, even in this method, the production by the single cold rolling method without hot-rolled sheet annealing has not been studied.

【0022】従って、本発明者らが、先に示した低温ス
ラブ加熱と熱延板焼鈍の省略を両立させた技術(特願平
1−85540号、特願平1−85541号)の意義は
大きいことがわかる。本発明者らは、これらの技術を工
場化するため工場実験を進め、その過程で、磁性変動が
生じ、問題となった。そこで、本発明者らは、広範にわ
たってこの原因を調査し、この磁性変動が、スラブ加熱
時の鋼中の固溶Nに起因することをつきとめた。
Therefore, the significance of the technique (Japanese Patent Application No. 1-85540, Japanese Patent Application No. 1-85541) which enables the present inventors to achieve both the low-temperature slab heating and the omission of hot-rolled sheet annealing described above is significant. It turns out to be big. The inventors of the present invention proceeded with factory experiments in order to industrialize these technologies, and in the process, magnetic fluctuations occurred, which became a problem. Therefore, the present inventors extensively investigated the cause of this, and found that this magnetic variation was due to solid solution N in the steel during slab heating.

【0023】[0023]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。 (1)重量比でC:0.021〜0.075%、Si:
2.5〜4.5%、酸可溶性Al:0.010〜0.0
60%、N:0.0150%以下、S+0.405S
e:0.014%以下、Mn:0.05〜0.8%を含
有し、残部がFe及び不可避不純物からなるスラブを1
280℃未満の温度で加熱し、熱延を行い、次いで圧下
率80%以上の最終冷延を含み、必要に応じて中間焼鈍
を挟む1回以上の冷延を行い、次いで脱炭焼鈍、最終仕
上焼鈍を施して一方向性電磁鋼板を製造する方法におい
て、上記スラブ加熱完了時のスラブ中の固溶Nを0.0
045重量%以下とし、脱炭焼鈍完了後、最終仕上焼鈍
開始までの一次再結晶粒の平均粒径を18〜30μmと
し、熱延後、最終仕上焼鈍の二次再結晶開始までの間に
鋼板に窒化処理を施すことを特徴とする磁気特性の優れ
た一方向性電磁鋼板の製造方法。
The subject matter of the present invention is as follows. (1) C: 0.021 to 0.075% by weight ratio, Si:
2.5-4.5%, acid-soluble Al: 0.010-0.0
60%, N: 0.0150% or less, S + 0.405S
e: 0.014% or less, Mn: 0.05 to 0.8%, and the balance is 1 slab consisting of Fe and unavoidable impurities.
Heating is performed at a temperature of less than 280 ° C., hot rolling is performed, and then final cold rolling with a rolling reduction of 80% or more is performed, and if necessary, one or more cold rollings with intermediate annealing sandwiched are performed, followed by decarburization annealing and final In the method for producing a grain-oriented electrical steel sheet by applying finish annealing, the solid solution N in the slab upon completion of heating the slab is 0.0
045% by weight or less, the average grain size of primary recrystallized grains after completion of decarburization annealing until the start of final finish annealing is 18 to 30 μm, and after hot rolling, until the start of secondary recrystallization of final finish annealing. A method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises subjecting a grain to a nitriding treatment.

【0024】本発明はまたSn:0.01〜0.15重
量%を含有するスラブを用いること、熱延最終3パスの
累積圧下率を40%以上とすること、熱延板をスラブ加
熱温度以下の温度で焼鈍することができる。
The present invention also uses a slab containing Sn: 0.01 to 0.15% by weight, the cumulative rolling reduction of the final three hot rolling passes is 40% or more, and the hot rolled sheet is heated to the slab heating temperature. It can be annealed at the following temperatures.

【0025】[0025]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
或いは造塊法で鋳造し、必要に応じて分塊工程を挟んで
スラブとし、引き続き熱間圧延して熱延板とし、次いで
圧下率80%以上の最終冷延を含み、必要に応じて中間
焼鈍を挟む1回以上の冷延、脱炭焼鈍、最終仕上焼鈍を
順次行うことによって製造される。
The function of the grain-oriented electrical steel sheet of the present invention is
Molten steel obtained by the conventional steelmaking method is cast by a continuous casting method or an ingot casting method, and if necessary, a slab is sandwiched between slabs, followed by hot rolling into a hot rolled sheet, and then reduction. A final cold rolling with a rate of 80% or more is included, and it is manufactured by sequentially performing one or more cold rollings with intermediate annealing interposed therebetween, decarburizing annealing, and final finishing annealing.

【0026】本発明者らは、熱延板焼鈍を省略した1回
冷延法で低温スラブ加熱材を製造した場合の磁性の変動
の原因とその解消策について詳細に検討した。そしてそ
の結果、この現象がスラブ加熱時の固溶Nに基づく、A
lNの析出の変動に起因することをつきとめた。
The present inventors have studied in detail the cause of variation in magnetism and its solution when a low temperature slab heating material is manufactured by the single cold rolling method without hot-rolled sheet annealing. As a result, this phenomenon is caused by the solid solution N at the time of heating the slab.
It was found that the variation was caused by the precipitation of 1N.

【0027】まず、実験結果を基に、本発明の効果を説
明する。図1に、スラブ加熱完了時の固溶N量と製品の
磁束密度の変動との関係を示す。この場合、重量比で、
C;0.035〜0.070%、Si;2.5〜3.6
%、酸可溶性Al;0.017〜0.055%、N;
0.0051〜0.0097%、S;0.005〜0.
007%、Mn;0.10〜0.16%を含有し、残部
Fe及び不可避的不純物からなる40mm厚の20種類の
成分のスラブを作成した。そして1000〜1260℃
の温度に60分均熱後6パスで熱延し、約2秒後に水冷
し、550℃まで冷却した後、550℃に1時間保持し
て炉冷する巻取りシミュレーションを施した。この場
合、6パスの圧下配分は、40→15→7→3.5→3
→2.6→2.3mmとした。
First, the effect of the present invention will be described based on experimental results. FIG. 1 shows the relationship between the amount of solid solution N at the completion of slab heating and the fluctuation of the magnetic flux density of the product. In this case, by weight,
C: 0.035 to 0.070%, Si: 2.5 to 3.6
%, Acid-soluble Al; 0.017 to 0.055%, N;
0.0051-0.0097%, S; 0.005-0.
A slab of 20 kinds of components having a content of 007%, Mn; 0.10 to 0.16% and a balance of Fe and unavoidable impurities and having a thickness of 40 mm was prepared. And 1000 to 1260 ° C
After soaking for 60 minutes in 6 passes, hot rolling was performed in 6 passes, water cooling was performed after about 2 seconds, cooling to 550 ° C., and holding at 550 ° C. for 1 hour were performed to perform a coiling simulation. In this case, the reduction distribution of 6 passes is 40 → 15 → 7 → 3.5 → 3
→ 2.6 → 2.3 mm.

【0028】かかる熱延板に熱延板焼鈍を施すことなく
約85%の強圧下圧延を行って最終板厚0.335mmの
冷延板とし、810℃,820℃,830℃,
840℃に150秒保持する4条件の脱炭焼鈍を施し、
次いで、750℃に30秒保持する焼鈍時、焼鈍雰囲気
中にNH3 ガスを混入させ、鋼板に窒素を吸収せしめ
た。
Without subjecting the hot-rolled sheet to annealing of the hot-rolled sheet, strong reduction rolling of about 85% was carried out to obtain a cold-rolled sheet having a final sheet thickness of 0.335 mm, and 810 ° C, 820 ° C, 830 ° C,
Decarburization annealing under 4 conditions of holding at 840 ° C for 150 seconds,
Next, during annealing at 750 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen.

【0029】この窒化処理後のN量は、0.0214〜
0.0231重量%であった。かかる窒化処理後の鋼板
にMgOを主成分とする焼鈍分離剤を塗布し、最終仕上
焼鈍を行った。しかる後、製品の磁束密度B8 を測定
し、同一成分、同一熱延条件の熱延板に対してとった4
つの脱炭焼鈍条件でのB8 の最高値と最低値の差ΔB8
をもとめた。
The amount of N after this nitriding treatment is 0.0214-
It was 0.0231% by weight. An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. After that, the magnetic flux density B 8 of the product was measured and taken for hot-rolled sheets under the same hot-rolling conditions with the same components 4
Difference between the highest and lowest B 8 under two decarburization annealing conditions ΔB 8
I asked.

【0030】更に、上記スラブと同じ成分のものを用意
し、各スラブに対して、上記と同一のスラブ加熱条件で
加熱後即水冷し、N量と窒化物の量(N as Nit
ride)を測定し、その差をスラブ加熱完了時の固溶
N量とした。
Further, a slab having the same composition as the above slab is prepared, and each slab is heated under the same slab heating conditions as described above and immediately water-cooled to obtain an N amount and a nitride amount (N as Nit).
Ride) was measured, and the difference was taken as the amount of solute N at the completion of slab heating.

【0031】図1から明らかなように、スラブ加熱完了
時の固溶N量が0.0045%以下の時にΔB8 が0.
03T以下となり、安定した磁気特性となっている。
As is apparent from FIG. 1, when the amount of dissolved N at the completion of slab heating is 0.0045% or less, ΔB 8 is 0.
The magnetic property is stable at or below 03T, which is stable.

【0032】図1に示したスラブ加熱完了時の固溶N量
制御の効果のメカニズムについて、必ずしも明らかでは
ないが、本発明者らは、以下のように推定している。
The mechanism of the effect of controlling the amount of solid solution N at the completion of slab heating shown in FIG. 1 is not necessarily clear, but the present inventors presume as follows.

【0033】本発明は、本発明者らが特願平1−177
8号で開示した脱炭焼鈍後の結晶組織を適切なものにす
ることを基本とする技術体系に属する。一方、スラブ加
熱完了時に固溶していたNは、熱延中、または脱炭焼鈍
時(特に昇温時)微細な窒化物(主にAlN)となると
考えられる。この微細な窒化物は、脱炭焼鈍時のわずか
の温度変化においても、サイズ、析出量が変動すると考
えられる。
The present invention was made by the present inventors in Japanese Patent Application No. 1-177.
It belongs to the technical system disclosed in No. 8 that is based on making the crystal structure after decarburization annealing appropriate. On the other hand, it is considered that the N that was in solid solution at the time of completion of slab heating becomes fine nitrides (mainly AlN) during hot rolling or during decarburization annealing (especially at the time of temperature increase). It is considered that the size and precipitation amount of this fine nitride fluctuate even with a slight temperature change during decarburization annealing.

【0034】この析出物の変動は、結晶組織のバラツキ
を引き起こし、それが、磁気特性の変動につながるもの
と考えられる。従って、この結晶組織のバラツキの原因
となっているスラブ加熱完了時の固溶N量を低減するこ
とが、磁気特性の変動を低減するのに有効なものと考え
られる。
It is considered that the variation of the precipitate causes the variation of the crystal structure, which leads to the variation of the magnetic characteristics. Therefore, it is considered that reducing the amount of solute N at the time of completion of heating the slab, which causes the variation in the crystal structure, is effective in reducing the variation in magnetic characteristics.

【0035】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは0.021重量%
(以下単に%と略述)未満になると二次再結晶が不安定
になり、かつ二次再結晶した場合でもB8 >1.80
(T)が得がたいので0.021%以上とした。一方、
Cが多くなり過ぎると脱炭焼鈍時間が長くなり経済的で
ないので0.075%以下とした。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. C is 0.021% by weight
If it is less than (hereinafter simply abbreviated as%), the secondary recrystallization becomes unstable, and even if secondary recrystallization is performed, B 8 > 1.80.
Since (T) is difficult to obtain, it was set to 0.021% or more. on the other hand,
If C is too large, the decarburization annealing time becomes long and it is not economical, so the content was made 0.075% or less.

【0036】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下とした。又、2.5%未満
では素材の固有抵抗が低すぎ、トランス鉄心材料として
必要な低鉄損が得られないので2.5%以上とした。望
ましくは3.2%以上である。
If Si exceeds 4.5%, cracking during cold rolling becomes significant, so the content is set to 4.5% or less. On the other hand, if it is less than 2.5%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained. It is preferably 3.2% or more.

【0037】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)Nを確保するため、酸可溶性A
lとして0.010%以上が必要である。酸可溶性Al
が0.060%を超えると熱延板のAlNが不適切とな
り二次再結晶が不安定になるので0.060%以下とし
た。
Al is AlN necessary for stabilizing the secondary recrystallization.
Alternatively, in order to secure (Al, Si) N, acid-soluble A
0.01% or more is required as l. Acid soluble Al
Is more than 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.060% or less.

【0038】Nについては、0.0150%を超えると
ブリスターと呼ばれる鋼板表面のふくれが発生するので
0.0150%以下とした。
When N exceeds 0.0150%, blisters on the surface of the steel sheet called blister occur, so N is set to 0.0150% or less.

【0039】MnS,MnSeが鋼中に存在しても、製
造工程の条件を適性に選ぶことによって磁気特性を良好
にすることが可能である。しかしながらSやSeが高い
と線状細粒と呼ばれる二次再結晶不良部が発生する傾向
があり、この二次再結晶不良部の発生を予防するために
は(S+0.405Se)≦0.014%とすべきであ
る。
Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, if S and Se are high, secondary recrystallization defects called linear fine grains tend to occur. To prevent the generation of secondary recrystallization defects, (S + 0.405Se) ≦ 0.014 Should be%.

【0040】SあるいはSeが上記値を超える場合に
は、製造条件をいかに変更しても二次再結晶不良部が発
生する確率が高くなり好ましくない。また最終仕上焼鈍
で純化するのに要する時間が長くなりすぎて好ましくな
く、このような観点からSあるいはSeを不必要に増す
ことは意味がない。
If S or Se exceeds the above value, the probability of occurrence of secondary recrystallization defects becomes high no matter how the manufacturing conditions are changed, which is not preferable. Further, the time required for purification in the final finish annealing is too long, which is not preferable, and it is meaningless to increase S or Se unnecessarily from such a viewpoint.

【0041】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、つまりストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を超えると製品の磁束密度を低下させ、好ま
しくないので、Mn量の上限を0.8%とした。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, that is, the side edge portion of the strip becomes wavy, which causes a problem of lowering the product yield. On the other hand, if the Mn content exceeds 0.8%, the magnetic flux density of the product is reduced, which is not preferable, so the upper limit of the Mn content was set to 0.8%.

【0042】Snは、粒界偏析元素として知られてお
り、粒成長を抑制する元素である。一方スラブ加熱時S
nは完全固溶しており、通常考えられる数10℃の温度
差を有する加熱時のスラブ内でも、一様に固溶している
と考えられる。従って、温度差があるにもかかわらず加
熱時のスラブ内で均一に分布しているSnは、脱炭焼鈍
時の粒成長抑制効果についても、場所的に均一に作用す
ると考えられる。
Sn is known as a grain boundary segregation element and is an element that suppresses grain growth. On the other hand, when heating the slab S
It is considered that n is completely in solid solution, and is uniformly dissolved even in the slab at the time of heating having a temperature difference of several tens of degrees Celsius which is usually considered. Therefore, it is considered that Sn, which is uniformly distributed in the slab during heating despite the temperature difference, also acts locally in terms of the grain growth suppressing effect during decarburization annealing.

【0043】このため、AlNの場所的不均一に起因す
る脱炭焼鈍時の粒成長の場所的不均一を、Snは希釈す
る効果があるものと考えられる。従って、本発明の固溶
N量の上限を制限する技術に加え、Snを添加すること
はさらに製品の磁気特性の変動を低減させるのに有効で
ある。
Therefore, it is considered that Sn has the effect of diluting the non-uniformity of grain growth during decarburization annealing due to the non-uniformity of AlN. Therefore, in addition to the technique of the present invention for limiting the upper limit of the amount of solute N, addition of Sn is effective for further reducing the fluctuation of the magnetic properties of the product.

【0044】このSnの適性範囲を0.01〜0.15
%とした。この下限値未満では、粒成長抑制効果が少な
すぎて好ましくない。一方、この上限値を超えると鋼板
の窒化が難しくなり、二次再結晶不良の原因となるため
好ましくない。
The suitable range of Sn is 0.01 to 0.15.
%. Below this lower limit, the grain growth suppressing effect is too small, which is not preferable. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0045】この他インヒビター構成元素として知られ
ているSb,Cu,Cr,Ni,B,Ti,Nb等を微
量に含有することはさしつかえない。特に、B,Ti,
Nb等窒化物構成元素は、スラブ加熱時の鋼中の固溶N
量を低減するために積極的に添加してもかまわない。
In addition, it is possible to contain a small amount of Sb, Cu, Cr, Ni, B, Ti, Nb, etc., which are known as inhibitor constituent elements. In particular, B, Ti,
Nb and other nitride constituent elements are solid solution N in steel during slab heating.
It may be added positively to reduce the amount.

【0046】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行なうという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。スラブ加熱完了
時のスラブ中の固溶N量は0.0045%以下にしなけ
ればならない。0.0045%を超えると、図1に示し
た如く、磁性変動が大きくなり好ましくない。
The slab heating temperature was limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The amount of solute N in the slab upon completion of heating the slab must be 0.0045% or less. If it exceeds 0.0045%, as shown in FIG. 1, the magnetic fluctuation becomes large, which is not preferable.

【0047】加熱されたスラブは、引き続き熱延されて
熱延板となる。熱延最終3パスの累積圧下率を40%以
上とすることは、製品の磁束密度の場所的バラツキを低
減する上でさらに好ましい。
The heated slab is subsequently hot rolled to form a hot rolled plate. It is more preferable to set the cumulative rolling reduction of the final three passes of hot rolling to 40% or more in order to reduce the spatial variation in the magnetic flux density of the product.

【0048】熱延工程は、通常100〜400mm厚のス
ラブを加熱した後、いずれも複数回のパスで行う粗熱延
と仕上熱延よりなる。粗熱延の方法については特に限定
するものではなく、通常の方法で行われる。粗熱延後仕
上熱延開始までの時間については、特に限定するもので
はないが、1秒以上かけて仕上熱延を開始することは、
AlNの析出促進の点で好ましい。
The hot-rolling step usually comprises rough hot-rolling and finish hot-rolling, in which a slab having a thickness of 100 to 400 mm is heated and then each is subjected to a plurality of passes. The method of rough hot rolling is not particularly limited, and a usual method is used. The time from the start of rough hot rolling to the start of finish hot rolling is not particularly limited, but starting the finish hot rolling over 1 second or more
It is preferable in terms of promoting the precipitation of AlN.

【0049】本発明の特徴は粗熱延に引き続く仕上熱延
にある。仕上熱延は通常4〜10パスの高速連続圧延で
行われる。通常仕上熱延の圧下配分は前段が圧下率が高
く後段に行くほど圧下率を下げて形状を良好なものとし
ている。圧延速度は通常100〜3000m/min とな
っており、パス間の時間は0.01〜100秒となって
いる。
The feature of the present invention is the finish hot rolling following the rough hot rolling. Finishing hot rolling is usually performed by high speed continuous rolling for 4 to 10 passes. In the rolling distribution of the normal hot rolling, the rolling ratio is high in the front stage and lower in the rear stage, so that the shape is good. The rolling speed is usually 100 to 3000 m / min, and the time between passes is 0.01 to 100 seconds.

【0050】本発明で限定しているのは、熱延最終3パ
スの累積圧下率だけであり、その他の条件は特に限定す
るものではないが、粗熱延、仕上熱延の前段で強圧下を
行うことも、幾分なりとも加工誘起析出を生ぜしめるこ
とになり好ましい。又、最終3パスでも特に最終パスで
の強圧下が効果的である。
The present invention is limited only to the cumulative rolling reduction in the final three passes of hot rolling, and other conditions are not particularly limited, but a strong reduction is performed before rough hot rolling and finish hot rolling. It is also preferable to carry out the above because it causes work-induced precipitation to some extent. Further, even in the final three passes, strong reduction in the final pass is particularly effective.

【0051】通常、100〜300mm厚のスラブが1〜
5mm厚の熱延板となる熱延工程において、熱延中板厚が
薄くなるにつれて、板厚方向の熱伝導が容易となるた
め、スラブ内にあった温度差は徐々に少なくなってく
る。この段階で、AlNの析出をさらに促進するために
は、歪を加えAlNの析出核としての転位を多くするこ
とが有効である。従って、鋼板中の温度差が最も軽減さ
れる仕上熱延の後段で加工歪を加え、AlNの析出促進
をはかることは、AlN析出量の変動が後工程まで継承
されるのを極力抑制するのに有効と考えられる。
Usually, a slab with a thickness of 100 to 300 mm is
In the hot rolling process for forming a hot rolled sheet having a thickness of 5 mm, as the sheet thickness during hot rolling becomes thinner, heat conduction in the sheet thickness direction becomes easier, so that the temperature difference in the slab gradually decreases. At this stage, in order to further promote the precipitation of AlN, it is effective to apply strain to increase the dislocations as AlN precipitation nuclei. Therefore, adding work strain in the latter stage of finishing hot rolling where the temperature difference in the steel sheet is most reduced to promote the precipitation of AlN suppresses the variation of the precipitation amount of AlN to the succeeding process as much as possible. Considered to be effective.

【0052】次いで上記熱延条件の限定理由について述
べる。仕上熱延最終3パスでの累積圧下率を40%以上
とした。この値未満では、AlNの加工誘起析出の効果
が不十分なので好ましくない。なお、最終3パスの累積
圧下率の上限については特に限定するものではないが、
工業的には99.9%以上の累積圧下を加えることは困
難である。
Next, the reasons for limiting the above hot rolling conditions will be described. The cumulative rolling reduction in the final 3 passes of hot rolling was set to 40% or more. Below this value, the effect of processing-induced precipitation of AlN is insufficient, which is not preferable. Although the upper limit of the cumulative rolling reduction of the final 3 passes is not particularly limited,
Industrially, it is difficult to apply a cumulative reduction of 99.9% or more.

【0053】熱延の最終パス後、通常0.1〜100秒
程度空冷された後水冷され300〜700℃の温度で巻
取られ、徐冷される。この冷却プロセスについては特に
限定されるものではないが、熱延後1秒以上空冷等を行
い、鋼板をAlNの析出温度域にできるだけ長時間保持
することは、AlNの析出を進ませる上で好ましい。こ
の熱延板は次いで、圧下率80%以上の最終冷延を含
み、必要に応じて中間焼鈍を挟む1回以上の冷延を施
す。最終冷延の圧下率を80%以上としたのは、圧下率
を上記範囲とすることによって、脱炭板において尖鋭な
{110}〈001〉方位粒と、これに蚕食され易い対
応方位粒({111}〈112〉方位粒等)を適性量得
ることができ、磁束密度を高める上で好ましいためであ
る。
After the final pass of hot rolling, it is usually air-cooled for about 0.1 to 100 seconds, water-cooled, wound at a temperature of 300 to 700 ° C., and gradually cooled. The cooling process is not particularly limited, but it is preferable to carry out air cooling or the like for 1 second or more after hot rolling and keep the steel sheet in the AlN precipitation temperature region as long as possible for promoting the precipitation of AlN. .. This hot-rolled sheet is then subjected to one or more cold-rollings including a final cold-rolling with a rolling reduction of 80% or more, and with intermediate annealing sandwiched as necessary. The reduction ratio of the final cold rolling is set to 80% or more because the reduction ratio is set in the above range because the sharpened {110} <001> oriented grains in the decarburized plate and the corresponding oriented grains ( This is because {111} <112> oriented grains and the like) can be obtained in an appropriate amount, which is preferable in increasing the magnetic flux density.

【0054】本発明は、熱延板焼鈍省略プロセスを基に
構成したものであるが、スラブ加熱温度以下の温度で熱
延板焼鈍を施す場合も、同様にスラブ加熱時の固溶Nに
起因する製品の磁気特性の変動が発生する。従って、こ
の場合も、本発明のスラブ内の固溶N制限、Sn添加、
熱延最終3パスの強圧下、後述する脱炭焼鈍後の粒径の
制御を用いることができ、かつ熱延板焼鈍省略プロセス
よりも良好な特性が得られる。
The present invention is based on the process of omitting hot-rolled sheet annealing. However, when hot-rolled sheet annealing is performed at a temperature equal to or lower than the slab heating temperature, it is similarly caused by the solid solution N during slab heating. Changes in the magnetic properties of the product. Therefore, also in this case, solid solution N limitation in the slab of the present invention, addition of Sn,
It is possible to use the control of the grain size after decarburization annealing, which will be described later, under the high pressure of the final three passes of hot rolling, and obtain better characteristics than the hot rolling sheet annealing skipping process.

【0055】かかる冷延後の鋼板は、通常の方法で脱炭
焼鈍、焼鈍分離剤塗布、最終仕上焼鈍を施されて最終製
品となる。ここで脱炭焼鈍完了後、最終仕上焼鈍開始ま
での間の一次再結晶粒の平均粒径を18〜30μmに制
御することは、必要である。その理由はこの平均粒径の
範囲で良好な磁束密度が得られやすく、かつ粒径変動に
対する磁束密度の変化が少ないからである。
The steel sheet after cold rolling is subjected to decarburization annealing, application of an annealing separating agent, and final finishing annealing by a usual method to obtain a final product. Here, it is necessary to control the average grain size of the primary recrystallized grains to 18 to 30 μm after the completion of decarburization annealing and before the start of final finish annealing. The reason is that it is easy to obtain a good magnetic flux density in this range of the average particle size, and the change of the magnetic flux density due to the particle size variation is small.

【0056】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施すと規定したのは、
本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。
It is defined that the steel sheet is nitrided after the hot rolling and before the secondary recrystallization of the final finish annealing.
This is because the inhibitor strength required for secondary recrystallization tends to be insufficient in the process that is premised on low temperature slab heating as in the present invention.

【0057】窒化の方法としては特に限定するものでは
なく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガスを混
入させ窒化する方法、プラズマを用いる方法、焼鈍分離
剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化物が
分離してできた窒素を鋼板に吸収させる方法、最終仕上
焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化する方
法等いずれの方法でもよい。窒化量については特に限定
するものではないが、1ppm 以上は必要である。
The method of nitriding is not particularly limited. After decarburization annealing, a method of nitriding by subsequently mixing NH 3 gas in an annealing atmosphere, a method of using plasma, a method of adding a nitride to an annealing separator, and finally finishing Any method may be used, such as a method in which the steel sheet absorbs nitrogen formed by the separation of nitrides during the temperature rise during annealing, a method in which the N 2 partial pressure in the atmosphere of final finishing annealing is increased, and the steel sheet is nitrided. The nitriding amount is not particularly limited, but 1 ppm or more is necessary.

【0058】[0058]

【実施例】【Example】

実施例1 C:0.049重量%、Si:3.21重量%、Mn:
0.14重量%、S:0.007重量%を基本成分と
し、酸可溶性Al:0.027重量%、N:0.008
0重量%を添加し、残部Fe及び不可避的不純物からな
る40mm厚のスラブを作成した。
Example 1 C: 0.049% by weight, Si: 3.21% by weight, Mn:
0.14 wt%, S: 0.007 wt% as a basic component, acid-soluble Al: 0.027 wt%, N: 0.008
0 wt% was added to make a 40 mm thick slab consisting of the balance Fe and inevitable impurities.

【0059】次いで、かかるスラブを、1250℃、
1080℃の2水準の温度で60分均熱した後、ただ
ちに熱延を開始し、6パスで熱延して2.3mmの熱延板
とした。この時圧下配分を40→15→7→3.5→3
→2.6→2.3(mm)とした。また、上記と同一成分
のスラブを,の条件でスラブ加熱完了後スラブを水
焼入れし、Nと窒化物の分析を行い、固溶N量を測定し
たところ、0.0055重量%、0.0025重量
%であった。
Then, the slab is heated to 1250 ° C.
After soaking at two levels of temperature of 1080 ° C. for 60 minutes, hot rolling was immediately started, and hot rolling was performed for 6 passes to obtain a hot rolled sheet of 2.3 mm. At this time, the reduction distribution is 40 → 15 → 7 → 3.5 → 3
→ 2.6 → 2.3 (mm). In addition, the slab having the same composition as the above was water-quenched after completion of heating the slab under the conditions of, N and nitride were analyzed, and the amount of dissolved N was 0.0055% by weight, 0.0025% by weight. % By weight.

【0060】上記熱延終了後は1秒間空冷後550℃ま
で水冷し、550℃に1時間保持した後炉冷する巻取り
シミュレーションを行った。この熱延板を酸洗して圧下
率約85%で0.335mmの冷延板とし、a:810
℃,b:820℃,c:830℃,d:840℃の4つ
の温度条件で150秒保持する脱炭焼鈍を施した。
After completion of the hot rolling, a coiling simulation was conducted in which air cooling was performed for 1 second, water cooling was performed up to 550 ° C., holding at 550 ° C. for 1 hour, and then furnace cooling. This hot-rolled sheet was pickled to make a cold-rolled sheet of 0.335 mm with a reduction rate of about 85%, and a: 810
Decarburization annealing was performed for 150 seconds under four temperature conditions of ° C, b: 820 ° C, c: 830 ° C, and d: 840 ° C.

【0061】しかる後、750℃で30秒保持する焼鈍
を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に窒
素を吸収せしめた。窒化後のこの鋼板のN量は0.02
13〜0.0232重量%であった。この鋼板の断面全
厚における一次再結晶粒の平均粒径を光学顕微鏡と画像
解析機を用いて測定したところ、20〜26μmであっ
た。
After that, annealing was carried out at 750 ° C. for 30 seconds, and NH 3 gas was mixed in the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of this steel sheet after nitriding is 0.02
It was 13 to 0.0232% by weight. The average grain size of the primary recrystallized grains in the entire cross-sectional thickness of this steel sheet was measured by using an optical microscope and an image analyzer, and it was 20 to 26 μm.

【0062】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、N2 25%、H2 75%の雰囲気
ガス中で15℃/時の速度で1200℃まで昇温し、引
き続きH2 100%の雰囲気ガス中で1200℃で20
時間保持する最終仕上焼鈍を行った。実験条件と製品の
磁気特性を表1に示す。
Next, an annealing separator containing MgO as a main component was applied to this steel sheet, and the temperature was raised to 1200 ° C. at a rate of 15 ° C./hour in an atmosphere gas of N 2 25% and H 2 75%, and then continued. 20 at 1200 ° C in H 2 100% atmosphere gas
A final finish annealing was carried out for holding for a time. Table 1 shows the experimental conditions and the magnetic properties of the products.

【0063】[0063]

【表1】 [Table 1]

【0064】本発明のものは脱炭焼鈍による磁気特性の
バラツキが少なくなっている。
The present invention has less variation in magnetic properties due to decarburization annealing.

【0065】実施例2 C:0.054重量%、Si:3.08重量%、Mn:
0.16重量%、S:0.006重量%、N:0.00
85重量%を基本成分とし、酸可溶性Alを、0.0
19重量%、0.040重量%なる2水準のレベルで
添加し、残部Fe及び不可避的不純物からなる2種類の
250mm厚スラブを作成した。
Example 2 C: 0.054% by weight, Si: 3.08% by weight, Mn:
0.16% by weight, S: 0.006% by weight, N: 0.00
85 wt% as a basic component, acid-soluble Al, 0.0
It was added at two levels of 19% by weight and 0.040% by weight, and two 250 mm thick slabs composed of the balance Fe and unavoidable impurities were prepared.

【0066】次いで、かかるスラブを、1180℃の温
度で60分均熱した後、1080℃で熱延を開始して
2.3mmの熱延板とした。熱延の圧下配分、熱延後の冷
却条件、及び熱延後最終仕上焼鈍までの工程条件は、実
施例1記載の条件で行った。スラブ加熱完了時の固溶N
量は0.0061重量%、0.0032重量%であ
った。窒化後のN量は0.0203〜0.0214重量
%であり、窒化後の一次再結晶粒の平均粒径は、18〜
26μmであった。実験条件と製品の磁気特性を表2に
示す。
Then, the slab was soaked at a temperature of 1180 ° C. for 60 minutes, and then hot rolling was started at 1080 ° C. to obtain a hot rolled sheet of 2.3 mm. The reduction distribution of hot rolling, the cooling conditions after hot rolling, and the process conditions until final finishing annealing after hot rolling were performed under the conditions described in Example 1. Solid solution N when slab heating is completed
The amount was 0.0061% by weight and 0.0032% by weight. The amount of N after nitriding is 0.0203 to 0.0214% by weight, and the average grain size of the primary recrystallized grains after nitriding is 18 to
It was 26 μm. Table 2 shows the experimental conditions and the magnetic properties of the products.

【0067】[0067]

【表2】 [Table 2]

【0068】本発明のものは脱炭焼鈍による磁気特性の
バラツキが少なくなっている。
The present invention has less variation in magnetic properties due to decarburization annealing.

【0069】実施例3 C:0.038重量%、Si:3.05重量%、Mn:
0.15重量%、S:0.006重量%、酸可溶性A
l:0.030重量%、N:0.0085重量%を基本
成分として含有し、Sn:0.002重量%、S
n:0.07重量%なる2種類の成分で、残部Fe及び
不可避的不純物からなる2種類の250mm厚のスラブを
作成した。
Example 3 C: 0.038% by weight, Si: 3.05% by weight, Mn:
0.15% by weight, S: 0.006% by weight, acid-soluble A
1: 0.030 wt%, N: 0.0085 wt% as a basic component, Sn: 0.002 wt%, S
Two kinds of slabs having a thickness of 250 mm and made of balance Fe and unavoidable impurities were prepared with two kinds of components of n: 0.07% by weight.

【0070】次いで、かかるスラブを、1150℃の温
度で60分均熱した後、1100℃で熱延を開始して
2.3mmの熱延板とした。熱延の圧下配分、熱延後の冷
却条件、及び冷延までの工程条件は、実施例1記載の条
件で行った。しかる後、かかる冷延板をa:820℃,
b:830℃,c:840℃,d:850℃なる4つの
温度条件で150秒保持する脱炭焼鈍を施した。
Then, the slab was soaked at a temperature of 1150 ° C. for 60 minutes, and then hot rolling was started at 1100 ° C. to obtain a hot rolled sheet of 2.3 mm. The reduction distribution of hot rolling, the cooling conditions after hot rolling, and the process conditions until cold rolling were performed under the conditions described in Example 1. After that, the cold rolled sheet was a: 820 ° C,
Decarburization annealing was performed for 150 seconds under four temperature conditions of b: 830 ° C, c: 840 ° C and d: 850 ° C.

【0071】しかる後、750℃で30秒保持する焼鈍
を行い、焼鈍雰囲気中にNH3 ガスを混入させ、鋼板に
窒素を吸収せしめた。窒化後のN量は0.0207〜
0.0228重量%であり、窒化後の一次再結晶粒の平
均粒径は20〜26μmであった。
Thereafter, annealing was carried out at 750 ° C. for 30 seconds, NH 3 gas was mixed in the annealing atmosphere, and the steel sheet was made to absorb nitrogen. The amount of N after nitriding is 0.0207-
It was 0.0228% by weight, and the average grain size of the primary recrystallized grains after nitriding was 20 to 26 μm.

【0072】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、N2 50%、H2 50%の雰囲気
ガス中で10℃/時の速度で1200℃まで昇温し、引
き続きH2 100%の雰囲気ガス中で1200℃で20
時間保持する最終仕上焼鈍を行った。上記成分のスラブ
加熱完了時の固溶Nの測定値は、0.0040重量
%、0.0039重量%であった。実験条件と製品の
磁気特性を表3に示す。
Then, an annealing separator containing MgO as a main component was applied to this steel sheet, and the temperature was raised to 1200 ° C. at a rate of 10 ° C./hour in an atmosphere gas of N 2 50% and H 2 50%, and then continued. 20 at 1200 ° C in H 2 100% atmosphere gas
A final finish annealing was carried out for holding for a time. The measured values of the solid solution N of the above components when the slab heating was completed were 0.0040% by weight and 0.0039% by weight. Table 3 shows the experimental conditions and the magnetic properties of the products.

【0073】[0073]

【表3】 [Table 3]

【0074】本発明の場合磁気特性のバラツキが少な
かったがSnを添加したの場合は更に良好であった。
In the case of the present invention, the variation in magnetic characteristics was small, but it was even better when Sn was added.

【0075】実施例4 C:0.054重量%、Si:3.45重量%、Mn:
0.14重量%、S:0.006重量%、酸可溶性A
l:0.049重量%、N:0.0108重量%を含有
し、残部Fe及び不可避的不純物からなる40mm厚スラ
ブを作成した。次いで、かかるスラブを、1150℃の
温度で30分均熱した後、ただちに熱延を開始して、
1.8mmの熱延板とした。この時圧下配分を40→1
6→7→2.9→2.5→2.1→1.8(mm)、4
0→30→20→10→5→2.5→1.8(mm)の2
条件とした。熱延後4秒間空冷後、400℃まで水冷
し、400℃に1時間保持した後炉冷する巻取りシミュ
レーションを行った。
Example 4 C: 0.054% by weight, Si: 3.45% by weight, Mn:
0.14% by weight, S: 0.006% by weight, acid-soluble A
A 40 mm thick slab containing 1: 0.049% by weight, N: 0.0108% by weight, and the balance Fe and inevitable impurities was prepared. Then, after soaking the slab at a temperature of 1150 ° C. for 30 minutes, hot rolling is immediately started,
It was a hot rolled sheet of 1.8 mm. At this time, the reduction distribution is 40 → 1
6 → 7 → 2.9 → 2.5 → 2.1 → 1.8 (mm), 4
0 → 30 → 20 → 10 → 5 → 2.5 → 1.8 (mm) 2
It was a condition. After the hot rolling, air cooling was performed for 4 seconds, followed by water cooling to 400 ° C., holding at 400 ° C. for 1 hour, and then furnace cooling.

【0076】この熱延板を圧下率約86%で0.260
mmの冷延板とし、引き続き最終仕上焼鈍までの工程条件
を実施例1と同じ条件で行った。スラブ加熱完了時の固
溶N量の測定値は0.0025重量%であった。そし
て、窒化後のN量は0.0213〜0.0229重量%
であり、窒化後の一次再結晶粒の平均粒径は21〜27
μmであった。実験条件、製品の磁気特性を表4に示
す。
This hot-rolled sheet was 0.260 at a rolling reduction of about 86%.
A cold-rolled sheet having a thickness of mm was used, and the process conditions until the final finish annealing were the same as in Example 1. The measured value of the amount of dissolved N at the time of completion of heating the slab was 0.0025% by weight. And, the amount of N after nitriding is 0.0213 to 0.0229% by weight.
The average grain size of the primary recrystallized grains after nitriding is 21 to 27.
was μm. Table 4 shows the experimental conditions and the magnetic properties of the product.

【0077】[0077]

【表4】 [Table 4]

【0078】本発明の場合脱炭焼鈍による磁気特性の
バラツキは小さかった。熱延最終3パスの累積圧下率の
大きいは更に小さかった。
In the case of the present invention, there was little variation in the magnetic properties due to decarburization annealing. The larger cumulative rolling reduction in the final three passes of hot rolling was even smaller.

【0079】実施例5 C:0.059重量%、Si:3.48重量%、Mn:
0.14重量%、S:0.007重量%、酸可溶性A
l:0.035重量%、N:0.0080重量%を添加
し、残部Fe及び不可避的不純物からなる40mm厚スラ
ブを作成した。次いで、かかるスラブを、1150℃の
温度で60分均熱した後、ただちに熱延を開始して2.
3mmの熱延板とした。40mmからの熱延の圧下配分、熱
延後の冷却条件、及び冷延までの工程条件は、実施例1
記載の条件で行った。かかる冷延板を、800℃に1
50秒保持、840℃に150秒保持、880℃に
150秒保持する脱炭焼鈍を施した。
Example 5 C: 0.059% by weight, Si: 3.48% by weight, Mn:
0.14% by weight, S: 0.007% by weight, acid-soluble A
l: 0.035 wt% and N: 0.0080 wt% were added to prepare a 40 mm thick slab consisting of the balance Fe and unavoidable impurities. Then, after soaking the slab at a temperature of 1150 ° C. for 60 minutes, hot rolling is immediately started to 2.
A 3 mm hot rolled sheet was used. The reduction distribution of hot rolling from 40 mm, the cooling conditions after hot rolling, and the process conditions until cold rolling are the same as in Example 1.
The conditions were as described. This cold-rolled sheet is heated to 800 ° C for 1
Decarburization annealing was performed for 50 seconds, 840 ° C. for 150 seconds, and 880 ° C. for 150 seconds.

【0080】しかる後、750℃に30秒保持する焼鈍
を行い、焼鈍雰囲気中にNH3 ガスを混入させ、鋼板に
窒素を吸収せしめた。窒化後のN量は、0.0207〜
0.0232重量%であった。この鋼板の断面全厚にお
ける一次再結晶粒の平均粒径を光学顕微鏡と画像解析を
用いて測定した。
Thereafter, annealing was carried out at 750 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere, and the steel sheet was made to absorb nitrogen. The amount of N after nitriding is 0.0207-
It was 0.0232% by weight. The average grain size of the primary recrystallized grains in the entire cross-section thickness of this steel sheet was measured using an optical microscope and image analysis.

【0081】次いで、この鋼板にMgOを主成分とする
焼鈍分離剤を塗布し、実施例1記載の条件で最終仕上焼
鈍を行った。スラブ加熱完了時の固溶Nの測定値は、
0.0035重量%であった。実験条件と製品の磁気特
性を表5に示す。
Next, an annealing separator containing MgO as a main component was applied to this steel sheet, and final finish annealing was performed under the conditions described in Example 1. The measured value of solid solution N at the completion of slab heating is
It was 0.0035% by weight. Table 5 shows the experimental conditions and the magnetic properties of the products.

【0082】[0082]

【表5】 [Table 5]

【0083】実施例6 実施例1記載の2種類の熱延板に980℃×2分(均
熱)後急冷する熱延板焼鈍を施し、次いで約88%の圧
下率で0.285mm厚の冷延板とし、実施例1の条件で
脱炭焼鈍を施した。しかる後、760℃で30秒保持す
る焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入し、鋼
板に窒素を吸収せしめた。
Example 6 The two kinds of hot-rolled sheets described in Example 1 were annealed at 980 ° C. for 2 minutes (soaking) and then rapidly cooled, and then rolled at a reduction ratio of about 88% to a thickness of 0.285 mm. As a cold-rolled sheet, decarburization annealing was performed under the conditions of Example 1. After that, annealing was carried out at 760 ° C. for 30 seconds, NH 3 gas was mixed in the annealing atmosphere, and the steel sheet was made to absorb nitrogen.

【0084】窒化後のN量は、0.0201〜0.02
10重量%であり、窒化後の一次再結晶粒の平均粒径は
22〜26μmであった。次いでこの鋼板にMgOを主
成分とする焼鈍分離剤を塗布し、実施例1記載の条件で
最終仕上焼鈍を施した。実験条件と製品の磁気特性を表
6に示す。
The amount of N after nitriding is 0.0201 to 0.02.
It was 10% by weight, and the average grain size of the primary recrystallized grains after nitriding was 22 to 26 μm. Next, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed under the conditions described in Example 1. Table 6 shows the experimental conditions and the magnetic properties of the products.

【0085】[0085]

【表6】 [Table 6]

【0086】本発明は脱炭焼鈍による磁気特性の差が比
較例に比べ小さかった。
In the present invention, the difference in magnetic properties due to decarburization annealing was smaller than that in the comparative example.

【0087】[0087]

【発明の効果】本発明においては、スラブ加熱完了時の
スラブ内の固溶N量の制限、さらにはSn添加及び熱延
最終3パスの累積圧下率の制御とさらに脱炭焼鈍完了
後、最終仕上焼鈍開始までの間での一次再結晶粒の平均
粒径を制御することにより、熱延板焼鈍を省略して、良
好な磁気特性を安定して得ることができるので、その工
業的効果は極めて大である。
In the present invention, the amount of solute N in the slab at the time of heating the slab is completed, the addition of Sn and the control of the cumulative rolling reduction of the final three passes of hot rolling and the completion of decarburization annealing are completed. By controlling the average grain size of the primary recrystallized grains until the start of finish annealing, hot-rolled sheet annealing can be omitted and good magnetic properties can be stably obtained, so its industrial effect is It is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラブ加熱完了時の固溶N量と製品の磁束密度
の変動との関係を表すグラフである。
FIG. 1 is a graph showing the relationship between the amount of solid solution N at the completion of slab heating and the variation in magnetic flux density of a product.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.021〜0.075%、 Si:2.5〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0150%以下、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 残部がFe及び不可避不純物からなるスラブを1280
℃未満の温度で加熱し、熱延を行い、次いで圧下率80
%以上の最終冷延を含み、必要に応じて中間焼鈍を挟む
1回以上の冷延を行い、次いで脱炭焼鈍、最終仕上焼鈍
を施して一方向性電磁鋼板を製造する方法において、上
記スラブ加熱完了時のスラブ中の固溶Nを0.0045
重量%以下とし、脱酸焼鈍完了後、最終仕上焼鈍開始ま
での一次再結晶粒の平均粒径を18〜30μmとし、熱
延後、最終仕上焼鈍の二次再結晶開始までの間に鋼板に
窒化処理を施すことを特徴とする磁気特性の優れた一方
向性電磁鋼板の製造方法。
1. By weight ratio, C: 0.021 to 0.075%, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.0150% or less. , S + 0.405Se: 0.014% or less, Mn: 0.05 to 0.8%, and a balance of 1280 with a slab consisting of Fe and unavoidable impurities.
Heating at a temperature below ℃, hot rolling is performed, and then a rolling reduction of 80
% Or more final cold rolling, if necessary, one or more cold rollings with intermediate annealing sandwiched therebetween, followed by decarburizing annealing and final finishing annealing to produce a unidirectional electrical steel sheet. When the heating is completed, the solid solution N in the slab is 0.0045
After the deoxidizing annealing is completed, the average grain size of the primary recrystallized grains is 18 to 30 μm after the completion of deoxidation annealing, and after hot rolling, the steel sheet is formed before the secondary recrystallization of the final finish annealing. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by performing a nitriding treatment.
【請求項2】 重量比でSn:0.01〜0.15%を
含有することを特徴とする請求項1記載の磁気特性の優
れた一方向性電磁鋼板の製造方法。
2. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the weight ratio of Sn is 0.01 to 0.15%.
【請求項3】 熱延最終3パスの累積圧下率を40%以
上とすることを特徴とする請求項1または2記載の磁気
特性の優れた一方向性電磁鋼板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the cumulative rolling reduction in the final three hot rolling passes is 40% or more.
【請求項4】 熱延板をスラブ加熱温度以下の温度で焼
鈍することを特徴とする請求項1または2または3記載
の磁気特性の優れた一方向性電磁鋼板の製造方法。
4. The method for producing a grain-oriented electrical steel sheet with excellent magnetic properties according to claim 1, 2 or 3, wherein the hot rolled sheet is annealed at a temperature not higher than the slab heating temperature.
JP4104984A 1992-04-23 1992-04-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties Expired - Fee Related JP2607331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4104984A JP2607331B2 (en) 1992-04-23 1992-04-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4104984A JP2607331B2 (en) 1992-04-23 1992-04-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH05295443A true JPH05295443A (en) 1993-11-09
JP2607331B2 JP2607331B2 (en) 1997-05-07

Family

ID=14395362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4104984A Expired - Fee Related JP2607331B2 (en) 1992-04-23 1992-04-23 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2607331B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
US6432222B2 (en) 2000-06-05 2002-08-13 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
US7857915B2 (en) 2005-06-10 2010-12-28 Nippon Steel Corporation Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same
KR20210079755A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228956B2 (en) * 2015-07-17 2017-11-08 ポスコPosco Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
US10577050B2 (en) 2016-12-26 2020-03-03 Shimano Inc. Bicycle sprocket

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472521A (en) * 1933-10-19 1995-12-05 Nippon Steel Corporation Production method of grain oriented electrical steel sheet having excellent magnetic characteristics
US6432222B2 (en) 2000-06-05 2002-08-13 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
US7857915B2 (en) 2005-06-10 2010-12-28 Nippon Steel Corporation Grain-oriented electrical steel sheet extremely excellent in magnetic properties and method of production of same
KR20210079755A (en) * 2019-12-20 2021-06-30 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Also Published As

Publication number Publication date
JP2607331B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH08269571A (en) Production of grain-oriented silicon steel strip
JP2784687B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06228646A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH086139B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05156361A (en) Manufacture of grain-oriented electric steel sheet excellent in magnetic property
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH04362133A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic property
JPH05295438A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees