JPH07138642A - Production of grain-oriented electrical steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented electrical steel sheet excellent in magnetic property

Info

Publication number
JPH07138642A
JPH07138642A JP28666993A JP28666993A JPH07138642A JP H07138642 A JPH07138642 A JP H07138642A JP 28666993 A JP28666993 A JP 28666993A JP 28666993 A JP28666993 A JP 28666993A JP H07138642 A JPH07138642 A JP H07138642A
Authority
JP
Japan
Prior art keywords
annealing
hot
aln
rolled sheet
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28666993A
Other languages
Japanese (ja)
Inventor
Maremizu Ishibashi
希瑞 石橋
Yasunari Yoshitomi
康成 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28666993A priority Critical patent/JPH07138642A/en
Publication of JPH07138642A publication Critical patent/JPH07138642A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To economically stabilize magnetic properties at a higher order by discriminating the necessity or unnecessity of annealing after hot rolling by low temp. slab heating method from AIN precipitation quantity and, as necessary, adding the annealing of hot rolled sheet. CONSTITUTION:A slab consisting of, by weight, <=0.075% C, 2.2-4.5% Si, 0.010-0.060% acid-soluble Al, <=0.0130% N, <=0.014% S+0.405 Se, 0.045-0.8% Mn and the balance Fe essentially is used. After the slab is heated to <1280 deg.C and hot rolled, the final high draft cold rolling of >=80% draft is executed, next, in a stage where decarburization annealing and final finish annealing are executed, when N content as AlN after hot rolling is taken as NasAlN and, at the time of N-NasAlN >=0.0010% and (NasAlN)/N <=0.75, the annealing of hot rolled sheet at 800-1200 deg.C is applied. After the completion of decarburization annealing, the grain size of primary crystallization until the final finish annealing is started is taken as 18-36mum, nitriding is executed while secondry recrystallization in the final finish annealing is started and nitrogen of >=0.0010% is absorbed into the steel sheet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた一方向性電磁鋼板の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、主にトランスその
他の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表わす数値としては、通常磁場の強さ8
00A/m における磁束密度B8が使用される。また、鉄
損特性を表わす数値としては、周波数50Hzで1.7テ
スラー(T)まで磁化した時の1kg当りの鉄損W17/50
を使用している。磁束密度は、鉄損特性の最大支配因子
であり、一般的にいって磁束密度が高いほど鉄損特性が
良好になる。なお、一般的に磁束密度を高くすると二次
再結晶粒が大きくなり、鉄損特性が不良となる場合があ
る。これに対しては、磁区制御により、二次再結晶粒の
粒径に拘らず、鉄損特性の改善をすることができる。
2. Description of the Related Art Unidirectional magnetic steel sheets are mainly used as iron core materials for transformers and other electrical equipment, and are required to have excellent magnetic characteristics such as excitation characteristics and iron loss characteristics. As a numerical value showing the excitation characteristic, the strength of a normal magnetic field is 8
A magnetic flux density B 8 at 00 A / m is used. In addition, as a numerical value showing the iron loss characteristic, the iron loss per kg when magnetized to 1.7 Tesler (T) at a frequency of 50 Hz is W 17/50.
Are using. The magnetic flux density is the most dominant factor of the iron loss characteristics, and generally speaking, the higher the magnetic flux density, the better the iron loss characteristics. Generally, when the magnetic flux density is increased, the secondary recrystallized grains become large, which may result in poor iron loss characteristics. On the other hand, by controlling the magnetic domains, the iron loss characteristics can be improved regardless of the grain size of the secondary recrystallized grains.

【0003】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持ったいわゆるゴス組織を発達さ
せることにより、製造されている。良好な磁気特性を得
るためには、磁化容易軸である〈001〉を圧延方向に
高度に揃えることが必要である。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finishing annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary to highly align <001>, which is the easy magnetization axis, in the rolling direction.

【0004】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに特公昭40−15644
号公報及び特公昭51−13469号公報記載の方法が
ある。前者においては主なインヒビターとしてMnS及
びAlNを、後者ではMnS,MnSe,Sb等を用い
ている。従って現在の技術においてはこれらのインヒビ
ターとして機能する析出物の大きさ、形態及び分散状態
を適正に制御することが不可欠である。MnSに関して
いえば、現在の工程では熱延前のスラブ加熱時にMnS
を一旦完全固溶させた後、熱延時に析出する方法がとら
れている。
A typical technique for producing such a high magnetic flux density unidirectional electrical steel sheet is Japanese Patent Publication No. 40-15644.
There is a method described in JP-B No. 51-13469. In the former, MnS and AlN are used as main inhibitors, and in the latter, MnS, MnSe, Sb, etc. are used. Therefore, in the current technology, it is essential to appropriately control the size, morphology and dispersion state of the precipitates that function as these inhibitors. Speaking of MnS, in the current process, MnS is generated when the slab is heated before hot rolling.
A method is used in which the solid solution is once completely dissolved and then precipitated during hot rolling.

【0005】二次再結晶に必要な量のMnSを完全固溶
するためには1400℃程度の温度が必要である。これ
は普通鋼のスラブ加熱温度に比べて200℃以上も高
く、この高温スラブ加熱処理には、1)方向性電磁鋼専
用の高温スラブ加熱炉が必要。2)加熱炉のエネルギー
原単位が高い。3)溶融スケール量が増大し、いわゆる
ノロかき出し等に見られるように操業上の悪影響が大き
い。
A temperature of about 1400 ° C. is required to completely dissolve the required amount of MnS for secondary recrystallization. This is higher than the slab heating temperature of ordinary steel by 200 ° C or more, and this high-temperature slab heating treatment requires 1) a high-temperature slab heating furnace dedicated to grain-oriented electrical steel. 2) The energy intensity of the heating furnace is high. 3) The amount of molten scale increases, and the adverse effect on operation is large, as seen in so-called shaving.

【0006】このような問題点を回避するためにはスラ
ブ加熱温度を普通鋼並に下げればよいわけであるが、こ
のことは同時にインヒビターとして有効なMnSの量を
少なくするかあるいは全く用いないことを意味し、必然
的に二次再結晶の不安定化をもたらす。このため低温ス
ラブ加熱化を実現するためには何らかの形でMnS以外
の析出物等によりインヒビターを強化し、仕上焼鈍時の
正常粒成長の抑制を十分にする必要がある。
In order to avoid such problems, the slab heating temperature should be lowered to the same level as that of ordinary steel, but at the same time, the amount of MnS effective as an inhibitor should be reduced or not used at all. Means that the destabilization of the secondary recrystallization is inevitably brought about. Therefore, in order to realize low-temperature slab heating, it is necessary to strengthen the inhibitor in some form with precipitates other than MnS to sufficiently suppress normal grain growth during finish annealing.

【0007】このようなインヒビターとしては、硫化物
の他、窒化物、酸化物及び粒界析出元素等が考えられ、
公知の技術として例えば次のようなものがあげられる。
特公昭54−24685号公報ではAs,Bi,Sn,
Sb等の粒界偏析元素を鋼中に含有することにより、ス
ラブ加熱温度を1050〜1350℃の範囲にする方法
が開示され、特開昭52−24116号公報ではAlの
他、Zr,Ti,B,Nb,Ta,V,Cr,Mo等の
窒化物生成元素を含有することによりスラブ加熱温度を
1100〜1260℃の範囲にする方法を開示してい
る。また、特開昭57−158322号公報ではMn含
有量を下げ、Mn/Sの比率を2.5以下にすることに
より低温スラブ加熱化を行い、更にCuの添加により二
次再結晶を安定化する技術を開示している。
As such inhibitors, in addition to sulfides, nitrides, oxides and grain boundary precipitation elements are considered,
Examples of known techniques include the following.
In Japanese Examined Patent Publication No. 54-24685, As, Bi, Sn,
A method of controlling the slab heating temperature in the range of 1050 to 1350 ° C. by containing grain boundary segregation elements such as Sb in steel is disclosed. JP-A-52-24116 discloses Al, Zr, Ti, It discloses a method for controlling the slab heating temperature in the range of 1100 to 1260 ° C. by containing a nitride forming element such as B, Nb, Ta, V, Cr and Mo. Further, in JP-A-57-158322, low-temperature slab heating is performed by lowering the Mn content and setting the Mn / S ratio to 2.5 or less, and further adding Cu to stabilize secondary recrystallization. The technology to do is disclosed.

【0008】これらインヒビターの補強と組み合わせて
金属組織の側から改良を加えた技術も開示された。すな
わち特開昭57−89433号公報ではMnに加えS,
Se,Sb,Bi,Pb,Sn,B等の元素を加え、こ
れにスラブの柱状晶率と二次冷延圧下率を組み合わせる
ことにより1100〜1250℃の低温スラブ加熱化を
実現している。更に特開昭59−190324号公報で
はSあるいはSeに加え、Al及びBと窒素を主体とし
てインヒビターを構成し、これに冷延後の一次再結晶焼
鈍時にパルス焼鈍を施すことにより二次再結晶を安定化
する技術を公開している。
Techniques have also been disclosed in which improvements are made from the metallographic side in combination with the reinforcement of these inhibitors. That is, in JP-A-57-89433, S, in addition to Mn,
Elements such as Se, Sb, Bi, Pb, Sn, and B are added, and the columnar crystal ratio of the slab and the secondary cold rolling reduction are combined to realize low-temperature slab heating at 1100 to 1250 ° C. Further, in JP-A-59-190324, in addition to S or Se, an inhibitor is mainly composed of Al and B and nitrogen, and a secondary recrystallization is performed by performing pulse annealing at the time of primary recrystallization annealing after cold rolling. The technology to stabilize is released.

【0009】このように方向性電磁鋼板製造における低
温スラブ加熱化実現のためには、これまでに多大な努力
が続けられてきている。更に、特開昭59−56522
号公報においてはMnを0.08〜0.45%、Sを
0.007%以下にすることにより低温スラブ加熱化を
可能にする技術が開示された。この方法により高温スラ
ブ加熱時のスラブ結晶粒粗大化に起因する製品の線状二
次再結晶不良発生の問題が解消された。
As described above, in order to realize the low temperature slab heating in the production of grain-oriented electrical steel sheet, great efforts have been made so far. Furthermore, JP-A-59-56522
In Japanese Patent Laid-Open Publication No. 2008-242242, a technique is disclosed which enables low temperature slab heating by setting Mn to 0.08 to 0.45% and S to 0.007% or less. By this method, the problem of defective linear secondary recrystallization of the product due to coarsening of the slab crystal grains during heating of the high temperature slab was solved.

【0010】[0010]

【発明が解決しようとする課題】低温スラブ加熱による
方法は元来、製造コストの低減を目的としているもの
の、当然のことながら良好な磁気特性を安定して得る技
術でなければ、工業化できない。本発明者らは、低温ス
ラブ加熱の工業化のため、最終仕上焼鈍前の一次再結
晶の平均粒径制御と、熱延後、最終仕上焼鈍の二次再
結晶開始までの間に鋼板に窒化処理を施すことを柱とす
る技術を構築してきた。この窒化処理により形成される
窒化物は、二次再結晶開始時点では、主にAlNになっ
ている。高温で変化しにくいインヒビターとして、Al
Nを選択しているわけであり、その意味において、スラ
ブ中にAlが含有されることは必須条件となる。
Although the method using low temperature slab heating is originally intended to reduce the manufacturing cost, it cannot be industrialized unless it is a technique that can stably obtain good magnetic characteristics. The present inventors, for industrialization of low-temperature slab heating, control the average grain size of primary recrystallization before final finishing annealing, and after hot rolling, nitriding the steel sheet between the start of secondary recrystallization of final finishing annealing. We have built a technology that is based on The nitride formed by this nitriding treatment is mainly AlN at the start of secondary recrystallization. As an inhibitor that does not easily change at high temperatures, Al
N is selected, and in that sense, the inclusion of Al in the slab is an essential condition.

【0011】他方、スラブ中にNが必要以上に含有され
ることは、本技術体系からして、再考の余地があった。
つまり、スラブ中に必須のAlと、ある程度以上のN量
があれば、スラブ加熱から脱炭焼鈍までの工程で、Al
Nが形成され、脱炭焼鈍時の一次再結晶粒の粒成長に影
響を与えることとなる。本発明の目的は、この上工程で
のAlNの析出制御をベースとし、低温スラブ加熱で磁
性変動のない優れた特性を有する一方向性電磁鋼板の製
造方法を提供することにある。
On the other hand, it is necessary to reconsider that N is contained in the slab more than necessary from the viewpoint of the present technical system.
In other words, if there is an indispensable Al in the slab and a certain amount of N or more, in the process from slab heating to decarburization annealing, Al
N is formed, which affects the grain growth of primary recrystallized grains during decarburization annealing. An object of the present invention is to provide a method for producing a grain-oriented electrical steel sheet which has excellent characteristics without magnetic fluctuation due to low-temperature slab heating, based on AlN precipitation control in the above process.

【0012】[0012]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記の通りである。 (1)重量比でC:0.075%以下、Si:2.2〜
4.5%、酸可溶性Al:0.010〜0.060%、
N:0.0130%以下、S+0.405Se:0.0
14%以下、Mn:0.05〜0.8%を含有し、残部
がFe及び不可避的不純物からなるスラブを1280℃
未満の温度で加熱し、熱延を行い、圧下率80%以上の
最終強圧下冷延を行い、次いで脱炭焼鈍、最終仕上焼鈍
を施して一方向性電磁鋼板を製造する方法において、熱
延板でのAlNとしてのN量(重量比)をN as AlN
とした時、N−N as AlN及び(N as AlN)/N
の値を基に、熱延板焼鈍を施すかどうかを判定し、脱炭
焼鈍完了後、最終仕上焼鈍開始までの一次再結晶粒の平
均粒径を18〜35μmとし、熱延後、最終仕上焼鈍の
二次再結晶開始までの間に、鋼板に0.0010重量%
以上の窒素吸収を行わせる窒化処理を施すことを特徴と
する磁気特性の優れた一方向性電磁鋼板の製造方法。
The gist of the present invention is as follows. (1) C: 0.075% or less by weight ratio, Si: 2.2
4.5%, acid-soluble Al: 0.010 to 0.060%,
N: 0.0130% or less, S + 0.405Se: 0.0
A slab containing 14% or less, Mn: 0.05 to 0.8%, and the balance Fe and unavoidable impurities at 1280 ° C.
In the method for producing a unidirectional electrical steel sheet by heating at a temperature of less than 1, hot rolling, final cold rolling with a draft of 80% or more, followed by decarburizing annealing and final finishing annealing. The N amount (weight ratio) as AlN in the plate is N as AlN
And N-N as AlN and (N as AlN) / N
Based on the value of, it is determined whether or not hot-rolled sheet annealing is performed, and after decarburization annealing is completed, the average grain size of primary recrystallized grains until the start of final finishing annealing is set to 18 to 35 μm, and after hot rolling, final finishing is performed. 0.0010% by weight of steel plate before the start of secondary recrystallization of annealing
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which is characterized by performing the nitriding treatment for absorbing nitrogen as described above.

【0013】(2)前項において熱延板でN−N as A
lN≧0.0010%かつ(N asAlN)/N≦0.
75となった場合に、800〜1200℃の熱延板焼鈍
を施すことを特徴とする磁気特性の優れた一方向性電磁
鋼板の製造方法。 (3)前項(1),(2)においてスラブの成分とし
て、更にSn:0.01〜0.15%を含有せしめるこ
とを特徴とする磁気特性の優れた一方向性電磁鋼板の製
造方法。
(2) In the preceding paragraph, N-N as A is used for the hot rolled sheet.
1N ≧ 0.0010% and (N as AlN) / N ≦ 0.
In the case of 75, a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by performing hot-rolled sheet annealing at 800 to 1200 ° C. (3) A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which further comprises Sn: 0.01 to 0.15% as a component of the slab in the above (1) and (2).

【0014】[0014]

【作用】本発明が対象としている一方向性電磁鋼板は、
従来用いられている製鋼法で得られた溶鋼を連続鋳造法
あるいは造塊法で鋳造し、必要に応じて分塊工程をはさ
んでスラブとし、引き続き熱間圧延して熱延板とし、必
要に応じて、熱延板を焼鈍し、次いで圧下率が80%以
上となる最終冷延を施し、次いで、脱炭焼鈍、最終仕上
焼鈍を順次行うことによって製造される。
The unidirectional electrical steel sheet targeted by the present invention is
Molten steel obtained by the conventional steelmaking method is cast by a continuous casting method or an ingot casting method, and if necessary, a slab is formed by interposing the agglomeration process, and subsequently hot rolled into a hot rolled sheet. According to the above, the hot-rolled sheet is annealed, then subjected to final cold rolling with a reduction rate of 80% or more, and then sequentially subjected to decarburization annealing and final finishing annealing.

【0015】本発明者らは、熱延板焼鈍を省略した1回
冷延法で低温スラブ加熱材を製造する場合の磁性の変動
の原因とその解決策について詳細に検討した。そして、
その結果、熱延板でのAlNとしてのN量(N as Al
N)を基に、熱延条件等へのフィードバックまたは脱炭
焼鈍条件等のフィードフォアードを行うことによって、
その磁性変動を激減できることをつきとめた。
The present inventors have examined in detail the cause of magnetic fluctuation and its solution when a low temperature slab heating material is manufactured by a single cold rolling method in which hot-rolled sheet annealing is omitted. And
As a result, the amount of N as AlN in the hot rolled sheet (N as Al
Based on N), by performing feedback to hot rolling conditions or feedforward such as decarburization annealing conditions,
They found that the magnetic fluctuation could be drastically reduced.

【0016】しかしながら、熱延工程等は5〜20TON
程度のスラブまたはストリップで製造される工程である
がために、熱延板でのAlNとしてのN量がある適正範
囲から外れてしまうと、熱延板焼鈍を施さないプロセス
におけるその後の工程では、その材質的不備を補うこと
ができないことをつきとめた。この場合の対処策として
は、熱延板でのAlNとしてのN量を基に熱延板焼鈍の
必要可否を判定することが非常に有効であることをつき
とめた。
However, the hot rolling process is 5 to 20 TON.
Since it is a process that is manufactured with a slab or strip of a certain degree, if the N amount as AlN in the hot rolled sheet deviates from a proper range, in the subsequent step in the process that does not perform hot rolled sheet annealing, He found that he could not make up for the material deficiency. As a coping measure in this case, it was found that it is very effective to judge whether or not the hot-rolled sheet needs to be annealed based on the amount of N as AlN in the hot-rolled sheet.

【0017】先ず、実験結果を基に、本発明の効果を説
明する。図1に、熱延板でのN−N as AlN量と製品
の磁束密度の関係を示す。この場合、重量比で、C:
0.026〜0.048%、Si:2.6〜3.2%、
酸可溶性Al:0.024〜0.039%、N:0.0
002〜0.0096%、Mn:0.09〜0.14
%、S:0.005〜0.007%なる成分を含有し、
残部がFe及び不可避的不純物からなる250mm厚のス
ラブを1000〜1250℃の温度に約120分保持し
た後、7パスで粗熱延を行い、40mm厚とし、次いで6
パスで仕上熱延を行い、2.3mm厚とした。この時粗圧
延時に水冷を行ったり、粗熱延と仕上熱延間の時間を意
図的に変更したり、熱延終了から水冷開始までの時間を
種々変更した。
First, the effect of the present invention will be described based on experimental results. FIG. 1 shows the relationship between the amount of N—N as AlN in the hot rolled sheet and the magnetic flux density of the product. In this case, the weight ratio is C:
0.026 to 0.048%, Si: 2.6 to 3.2%,
Acid-soluble Al: 0.024 to 0.039%, N: 0.0
002 to 0.0096%, Mn: 0.09 to 0.14
%, S: 0.005 to 0.007% is contained,
A 250 mm-thick slab with the balance being Fe and inevitable impurities was held at a temperature of 1000 to 1250 ° C. for about 120 minutes, followed by rough hot rolling in 7 passes to a thickness of 40 mm, and then 6
Finishing hot rolling was performed with a pass to a thickness of 2.3 mm. At this time, water cooling was performed during rough rolling, the time between rough hot rolling and finish hot rolling was intentionally changed, and the time from the end of hot rolling to the start of water cooling was variously changed.

【0018】かかる熱延板に(A)熱延板焼鈍を施さな
い、(B)1000℃×3分(均熱)後急冷なる条件で
処理し、次いで、約85%の圧下率の強圧下圧延を行っ
て最終板厚0.335mmの冷延板とした。かかる冷延板
を840℃に150秒保持する脱炭焼鈍を施し、次い
で、750℃に30秒保持する焼鈍時、焼鈍雰囲気中に
NH3 ガスを混入させ、鋼板に窒素を吸収せしめた。
The hot rolled sheet is (A) not annealed, (B) treated at 1000 ° C. for 3 minutes (soaking) and then rapidly cooled, and then subjected to a strong rolling reduction of about 85%. Rolling was performed to obtain a cold rolled sheet having a final sheet thickness of 0.335 mm. The cold-rolled sheet was subjected to decarburizing annealing at 840 ° C. for 150 seconds, and then, at the time of annealing at 750 ° C. for 30 seconds, NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen.

【0019】この窒化処理後のN量は、0.0185〜
0.0243重量%であり、一次再結晶粒の平均粒径
(円相当直径の平均値)は、20〜28μmであった。
かかる窒化処理後の鋼板にMgOを主成分とする焼鈍分
離剤を塗布し、最終仕上焼鈍を行った。しかる後、製品
の磁束密度を測定し、同一成分、同一熱延条件の熱延板
に対してとったΔB8 =B8 (熱延板焼鈍あり)−B8
(熱延板焼鈍なし)の値を求めた。また、本実験におけ
る熱延板において、AlNとして存在するN量(重量
比)〔N as AlN〕を化学分析で求め、N−N as A
lN,(N as AlN)/Nの量を各試料に対して計算
した。
The amount of N after this nitriding treatment is 0.0185-
It was 0.0243% by weight, and the average particle size of the primary recrystallized grains (average value of equivalent circle diameter) was 20 to 28 μm.
An annealing separator containing MgO as a main component was applied to the steel sheet after the nitriding treatment, and final finish annealing was performed. After that, the magnetic flux density of the product was measured and taken for a hot-rolled sheet with the same composition and the same hot-rolling condition ΔB 8 = B 8 (with hot-rolled sheet annealing) -B 8
The value (without hot-rolled sheet annealing) was determined. In the hot-rolled sheet in this experiment, the amount of N (weight ratio) present as AlN [N as AlN] was determined by chemical analysis, and N-N as A
The amount of IN, (N as AlN) / N was calculated for each sample.

【0020】図1から明らかなように、熱延板におい
て、N−N as AlN≧0.0010%でかつ(N as
AlN)/N≦0.75の場合には、熱延板焼鈍を施す
ことにより、B8 の値が0.03T以上向上し、良好な
磁気特性となっている。図1に示した熱延板におけるA
lN析出量と熱延板焼鈍の効果の関係のメカニズムにつ
いて、必ずしも明らかではないが、本発明者らは、以下
のように推定している。
As is apparent from FIG. 1, in the hot-rolled sheet, N-N as AlN ≧ 0.0010% and (N as
When AlN) /N≦0.75, the value of B 8 is improved by 0.03 T or more by performing hot-rolled sheet annealing, and good magnetic properties are obtained. A in the hot-rolled sheet shown in FIG.
Although the mechanism of the relationship between the amount of 1N precipitation and the effect of hot-rolled sheet annealing is not necessarily clear, the present inventors presume as follows.

【0021】本発明は、本発明者らが特開平2−182
866号公報で開示した脱炭焼鈍後の結晶組織を適切な
ものにすることを基本とする技術体系に属する。一方、
スラブ加熱完了時に固溶していたNは、熱延中、または
脱炭焼鈍時(特に昇温時)微細な窒化物(主にAlN)
となると考えられる。この微細な窒化物は、脱炭焼鈍時
のわずかの温度変化においても、サイズ、析出量が変動
すると考えられる。しかしながら、析出物による粒成長
抑制効果(Zener因子)は、析出物のサイズに逆比
例し、その体積分率に比例する。従って、スラブ加熱完
了時の固溶N量を減少しすぎても、析出物の粒成長抑制
効果が小さくなりすぎ、その結果、脱炭焼鈍時の粒成長
が顕著になりすぎ、結晶組織の制御が困難となる。
The present invention was made by the inventors of the present invention as disclosed in JP-A-2-182.
It belongs to a technical system disclosed in Japanese Patent No. 866, which is basically based on making the crystal structure after decarburization annealing appropriate. on the other hand,
N dissolved in the solid solution at the completion of slab heating is a fine nitride (mainly AlN) during hot rolling or during decarburization annealing (especially at temperature rise).
It is believed that It is considered that the size and precipitation amount of this fine nitride fluctuate even with a slight temperature change during decarburization annealing. However, the grain growth suppression effect (Zener factor) by the precipitate is inversely proportional to the size of the precipitate and proportional to its volume fraction. Therefore, even if the amount of solute N at the time of completion of slab heating is reduced too much, the effect of suppressing grain growth of precipitates becomes too small, and as a result, grain growth at the time of decarburization annealing becomes too conspicuous to control the crystal structure Will be difficult.

【0022】このように、上工程でのAlNの析出制御
は重要であるが、成分、熱延等の工程条件調整では、そ
の制御が容易でなく、本発明の如く熱延板焼鈍省略を目
指し、止むを得ない状況の場合にのみ熱延板焼鈍を施そ
うとする技術の場合、特に、AlN析出制御の新しい規
範が必要となる。この観点において、本発明者らは、広
範な実験、解析の結果、図1の知見を得た。つまり、熱
延板において、N asAlNの量とN量に対する比率が
所定の範囲にある場合に、熱延板焼鈍を施すことによる
磁性安定化が顕著である。
As described above, it is important to control the precipitation of AlN in the upper step, but it is not easy to control it by adjusting the process conditions such as the composition and hot rolling. In the case of the technique of performing hot-rolled sheet annealing only in an unavoidable situation, a new norm for AlN precipitation control is required. From this viewpoint, the present inventors have obtained the knowledge of FIG. 1 as a result of extensive experiments and analysis. That is, when the amount of N as AlN and the ratio with respect to the amount of N in the hot rolled sheet are within a predetermined range, the magnetic stabilization by the hot rolled sheet annealing is remarkable.

【0023】この所定の範囲は、AlNの析出が熱延板
で不十分な場合に相当し、これに対して、熱延板焼鈍を
施してAlN析出を均一に行わしめることが磁性の安定
化に大きく貢献するものと考えられる。上記の所定範囲
の場合、熱延板焼鈍を施さないと良好な磁性を安定して
有する製品となり得ないので、熱延板の状態でそれを判
定でき、かつ、良好な磁性を有する製品とするアクショ
ン(熱延板焼鈍)を実施する工業的意味は大きい。
This predetermined range corresponds to the case where AlN precipitation is insufficient in the hot-rolled sheet, and it is possible to stabilize the magnetism by subjecting the hot-rolled sheet annealing to uniform AlN precipitation. It is thought that it will greatly contribute to. In the case of the above-mentioned predetermined range, a product having good magnetism cannot be stably obtained without annealing the hot-rolled plate, so that it can be judged in the state of the hot-rolled plate, and the product has good magnetism. The industrial significance of carrying out actions (hot rolled sheet annealing) is great.

【0024】次に本発明の構成要件の限定理由について
述べる。先ず、スラブの成分と、スラブ加熱温度に関し
て限定理由を詳細に説明する。Cは、多くなりすぎると
脱炭焼鈍時間が長くなり経済的でないので0.075重
量%(以下単に%と略述)以下とした。なお磁気特性の
面で特に好ましい範囲は、0.020〜0.070%で
ある。Siは4.5%を超えると冷延時の割れが著しく
なるので4.5%以下とした。また、2.2%未満では
素材の固有抵抗が低すぎ、トランス鉄心材料として必要
な低鉄損が得られないので2.2%以上とした。Alは
二次再結晶の安定化に必要なAlNもしくは(Al,S
i)Nを確保するため、酸可溶性Alとして0.010
%以上が必要である。酸可溶性Alが0.060%を超
えると熱延板のAlNが不適切となり二次再結晶が不安
定になるので0.060%以下とした。
Next, the reasons for limiting the constituent features of the present invention will be described. First, the reasons for limiting the components of the slab and the slab heating temperature will be described in detail. If C is too large, the decarburization annealing time becomes long and it is not economical, so it was made 0.075% by weight (hereinafter simply referred to as%) or less. In terms of magnetic properties, a particularly preferable range is 0.020 to 0.070%. When Si exceeds 4.5%, cracking during cold rolling becomes significant, so the content of Si is set to 4.5% or less. On the other hand, if it is less than 2.2%, the specific resistance of the material is too low, and the low iron loss required for the transformer core material cannot be obtained. Al is AlN or (Al, S, which is necessary for stabilizing the secondary recrystallization.
i) 0.010 as acid-soluble Al for securing N
% Or more is required. If the acid-soluble Al exceeds 0.060%, the AlN of the hot-rolled sheet becomes unsuitable and the secondary recrystallization becomes unstable, so the content was made 0.060% or less.

【0025】Nについては、0.0130%を超えると
ブリスターと呼ばれる鋼板表面のふくれが発生するので
0.0130%以下とした。MnS,MnSeが鋼中に
存在しても、製造工程の条件を適正に選ぶことによって
磁気特性を良好にすることが可能である。しかしながら
SやSeが高いと線状細粒と呼ばれる二次再結晶不良部
が発生する傾向があり、この二次再結晶不良部の発生を
予防するためには(S+0.405Se)≦0.014
%とすべきである。SあるいはSeが上記値を超える場
合には、製造条件をいかに変更しても二次再結晶不良部
が発生する確率が高くなり好ましくない。また最終仕上
焼鈍で純化するのに要する時間が長くなりすぎて好まし
くなく、このような観点からSあるいはSeを不必要に
増すことは意味がない。
When N exceeds 0.0130%, blisters on the surface of the steel sheet called blisters occur, so N is set to 0.0130% or less. Even if MnS and MnSe are present in the steel, it is possible to improve the magnetic properties by properly selecting the conditions of the manufacturing process. However, if S and Se are high, secondary recrystallization defective portions called linear fine grains tend to occur, and in order to prevent the generation of this secondary recrystallization defective portion, (S + 0.405Se) ≦ 0.014
Should be%. When S or Se exceeds the above value, the probability of occurrence of a secondary recrystallization defect portion increases even if the manufacturing conditions are changed, which is not preferable. In addition, the time required for purification in the final finish annealing is too long, which is not preferable, and it is meaningless to increase S or Se unnecessarily from this viewpoint.

【0026】Mnの下限値は0.05%である。0.0
5%未満では、熱間圧延によって得られる熱延板の形状
(平坦さ)、つまりストリップの側縁部が波形状となり
製品歩留りを低下させる問題が発生する。一方、Mn量
が0.8%を超えると製品の磁束密度を低下させ、好ま
しくないので、Mn量の上限を0.8%とした。Sn
は、粒界偏析元素として知られており、粒成長を抑制す
る元素である。一方スラブ加熱時Snは完全固溶してお
り、通常考えられる数10℃の温度差を有する加熱時の
スラブ内でも、一様に固溶していると考えられる。従っ
て、温度差があるにも拘らず加熱時のスラブ内で均一に
分布しているSnは、脱炭焼鈍時の粒成長抑制効果につ
いても、場所的に均一に作用すると考えられる。
The lower limit of Mn is 0.05%. 0.0
If it is less than 5%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, that is, the side edge portion of the strip becomes wavy, which causes a problem of lowering the product yield. On the other hand, when the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable, so the upper limit of the Mn content was set to 0.8%. Sn
Is known as a grain boundary segregation element and is an element that suppresses grain growth. On the other hand, Sn is completely in solid solution during heating of the slab, and it is considered that Sn is evenly dissolved in the slab during heating having a temperature difference of several tens of degrees C. which is usually considered. Therefore, it is considered that Sn, which is uniformly distributed in the slab during heating despite the temperature difference, also acts locally in terms of the grain growth suppressing effect during decarburization annealing.

【0027】このため、AlNの場所的不均一に起因す
る脱炭焼鈍時の粒成長の場所的不均一を、Snは希釈す
る効果があるものと考えられる。従って、Snを添加す
ることは更に製品の磁気特性の変動を低減させるのに有
効である。このSnの適正範囲を0.01〜0.15%
とした。この下限値未満では、粒成長抑制効果が少なす
ぎて好ましくない。一方、この上限値を超えると鋼板の
窒化が難しくなり、二次再結晶不良の原因となるため好
ましくない。
Therefore, it is considered that Sn has the effect of diluting the non-uniformity of grain growth during decarburization annealing due to the non-uniformity of AlN. Therefore, the addition of Sn is effective in further reducing the fluctuation of the magnetic properties of the product. The proper range of Sn is 0.01 to 0.15%
And Below this lower limit, the grain growth suppressing effect is too small, which is not preferable. On the other hand, if the upper limit is exceeded, nitriding of the steel sheet becomes difficult, which causes secondary recrystallization failure, which is not preferable.

【0028】この他インヒビター構成元素として知られ
ているSb,Cu,Cr,Ni,B,Ti,Nb等を微
量に含有することはさしつかえない。特に、B,Ti,
Nb等窒化物構成元素は、スラブ加熱時の鋼中の固溶N
量を低減するために積極的に添加してもかまわない。こ
れらのAlよりNとの親和力の高い元素がある場合に
は、後述する熱延板でのN−N as AlNの量を計算す
る際に、全N量から含有するB,Ti,Nbのために形
成される窒化物のN量を差し引きすることは、本発明に
おける制御効果の精度を高める上で好ましい。
In addition, it may be contained a small amount of Sb, Cu, Cr, Ni, B, Ti, Nb, etc., which are known as inhibitor constituent elements. In particular, B, Ti,
Nb and other nitride constituent elements are solid solution N in steel during slab heating.
It may be added positively to reduce the amount. When there are elements having a higher affinity for N than Al, B, Ti, and Nb contained from the total N amount when calculating the amount of N—N as AlN in the hot rolled sheet described later It is preferable to subtract the N amount of the nitride formed in order to improve the accuracy of the control effect in the present invention.

【0029】スラブ加熱温度は、普通鋼並にしてコスト
ダウンを行うという目的から1280℃未満と限定し
た。好ましくは1200℃以下である。加熱されたスラ
ブは、引き続き熱延されて熱延板となる。熱延工程は、
通常100〜400mm厚のスラブを加熱した後、いずれ
も複数回のパスで行う粗熱延と仕上熱延よりなる。粗熱
延の方法については特に限定するものではないが、Al
N析出を促進するために、積極的に水冷を行う等の方策
をとることは好ましい。
The slab heating temperature is limited to less than 1280 ° C. for the purpose of cost reduction in the same manner as ordinary steel. It is preferably 1200 ° C or lower. The heated slab is subsequently hot rolled to form a hot rolled plate. The hot rolling process is
Usually, after heating a slab having a thickness of 100 to 400 mm, both are rough hot rolling and finish hot rolling which are carried out by a plurality of passes. The method of rough hot rolling is not particularly limited, but Al
In order to promote N precipitation, it is preferable to take measures such as actively performing water cooling.

【0030】粗熱延後仕上熱延までの時間については、
特に限定するものではないが、1秒以上かけて仕上熱延
を開始することは、AlNの析出促進の点で好ましい。
引き続く仕上熱延は、通常4〜10パスの高速連続圧延
で行われる。通常仕上熱延の圧下配分は前段が圧下率が
高く後段に行くほど圧下率を下げて形状を良好なものと
している。圧延速度は通常100〜3000m/minとな
っており、パス間の時間は0.01〜100秒となって
いる。
Regarding the time from rough hot rolling to finish hot rolling,
Although not particularly limited, starting the finish hot rolling over 1 second or more is preferable from the viewpoint of promoting precipitation of AlN.
Subsequent hot rolling for finishing is usually performed by high-speed continuous rolling for 4 to 10 passes. In the rolling distribution of normal hot rolling, the rolling ratio is high in the front stage and lower in the rear stage, and the shape is improved by lowering the rolling ratio. The rolling speed is usually 100 to 3000 m / min, and the time between passes is 0.01 to 100 seconds.

【0031】熱延板でのAlN析出の量を確保するため
に仕上熱延開始温度、終了温度を調整したり、圧下配分
を調整することは積極的に行うべきである。AlNの析
出し易い温度域(800〜950℃)、またはその近傍
で、積極的に圧下率を高め、加工誘起析出を生ぜしめる
ことも、AlN析出量制御に有効な手段となる。
In order to secure the amount of AlN precipitation in the hot-rolled sheet, it is necessary to positively adjust the finish hot-rolling start temperature and finish temperature, and adjust the reduction distribution. It is also an effective means for controlling the amount of AlN precipitation that the work-induced precipitation is caused by positively increasing the rolling reduction in the temperature range (800 to 950 ° C.) where AlN is easily precipitated or in the vicinity thereof.

【0032】熱延の最終パス後、鋼板は通常0.1〜1
00秒程度空冷された後、水冷され300〜700℃の
温度で巻取られ、徐冷される。この冷却プロセスについ
ては特に限定されるものではないが、熱延後1秒以上空
冷等を行い、鋼板をAlNの析出温度域にできるだけ長
時間保持する等の方法をAlN析出量制御に利用するこ
とは好ましい。
After the final pass of hot rolling, the steel sheet is usually 0.1-1
After being air-cooled for about 00 seconds, it is water-cooled, wound at a temperature of 300 to 700 ° C., and gradually cooled. The cooling process is not particularly limited, but a method of performing air cooling for 1 second or more after hot rolling and holding the steel sheet in the precipitation temperature range of AlN as long as possible is used for controlling the precipitation amount of AlN. Is preferred.

【0033】かかる熱延後の鋼板のN−N as AlN及
び(N as AlN)/Nの値を基に熱延板焼鈍を施すか
どうかを判定すると規定した。これは、図1に示した如
く磁気特性を安定化する上で、熱延板焼鈍が必要かどう
かをこれらの量で判定できるからである。更には、これ
らの範囲がN−N as AlN≧0.0010%かつ(N
as AlN)/N≦0.75となった場合に、800〜
1200℃の熱延板焼鈍を施すと磁気特性が安定化する
のでこれらの数量を規定した。N−N as AlNの上限
は、特に限定せず、N量の上限値である0.0130%
まで許容される。また、(N as AlN)/Nの下限に
ついても特に限定せず0まで許容される。これは熱延板
でAlNの析出がたとえ全くなくても、熱延板焼鈍時に
AlNを十分析出することが可能だからである。
It was specified that whether or not to perform hot-rolled sheet annealing should be determined based on the values of N-N as AlN and (N as AlN) / N of the steel sheet after hot rolling. This is because it is possible to determine whether or not hot-rolled sheet annealing is necessary in order to stabilize the magnetic characteristics as shown in FIG. 1 by these amounts. Furthermore, if these ranges are N-N as AlN ≧ 0.0010% and (N
as AlN) /N≦0.75, 800-
Since the magnetic characteristics are stabilized when the hot-rolled sheet is annealed at 1200 ° C., these quantities are specified. The upper limit of N-N as AlN is not particularly limited, and is the upper limit of the N amount of 0.0130%.
Is allowed up to. Further, the lower limit of (N as AlN) / N is not particularly limited and can be up to 0. This is because it is possible to sufficiently precipitate AlN during annealing of the hot-rolled sheet, even if AlN is not precipitated at all in the hot-rolled sheet.

【0034】熱延板焼鈍の温度の下限は、800℃とす
る。この温度未満では、AlNの析出を短時間で行うこ
とは容易でない。また、熱延板焼鈍の温度の上限は、1
200℃とした。これは、この温度を超えるとAlNの
固溶が顕著となり、本発明における熱延板焼鈍の最大の
役割であるAlN析出の点で意味がないからである。な
お、熱延板焼鈍の熱サイクルを前段を高温(1000〜
1200℃)、後段を低温(800〜1000℃)とす
ることは、AlNの一部固溶による微細AlN析出の場
所的不均一性の低温及び均一析出という意味において好
ましい。
The lower limit of the temperature of hot-rolled sheet annealing is 800 ° C. Below this temperature, it is not easy to deposit AlN in a short time. The upper limit of the temperature of hot-rolled sheet annealing is 1
It was set to 200 ° C. This is because if this temperature is exceeded, the solid solution of AlN becomes remarkable and it is meaningless in terms of AlN precipitation, which is the greatest role of the hot-rolled sheet annealing in the present invention. In addition, the heat cycle of hot-rolled sheet annealing was performed at a high temperature (1000-
It is preferable that the temperature is 1200 ° C.) and the latter stage is low temperature (800 to 1000 ° C.) in terms of low temperature and uniform precipitation of the local non-uniformity of fine AlN precipitation due to partial solid solution of AlN.

【0035】この熱延板は次いで、上記の判定基準を基
に必要に応じて熱延板焼鈍を施し、圧下率80%以上の
最終冷延を行う。最終冷延の圧下率を80%以上とした
のは、圧下率を上記範囲とすることによって、脱炭板に
おいて尖鋭な{110}〈001〉方位粒と、これに蚕
食され易い対応方位粒({111}〈112〉方位粒
等)を適正量得ることができ、磁束密度を高める上で好
ましいためである。かかる冷延後の鋼板は、通常の方法
で脱炭焼鈍、焼鈍分離剤塗布、最終仕上焼鈍を施されて
最終製品となる。ここで脱炭焼鈍完了後、最終仕上焼鈍
開始までの間の一次再結晶粒の平均粒径を18〜35μ
mに制御することは必要である。その理由はこの平均粒
径の範囲で良好な磁束密度が得られ易く、かつ粒径変動
に対する磁束密度の変化が少ないからである。
This hot-rolled sheet is then subjected to hot-rolled sheet annealing as required based on the above-mentioned criteria, and finally cold-rolled at a rolling reduction of 80% or more. The reduction ratio of the final cold rolling is set to 80% or more by setting the reduction ratio within the above range by sharpening the {110} <001> oriented grains in the decarburized plate and the corresponding oriented grains ( This is because an appropriate amount of {111} <112> oriented grains, etc. can be obtained, which is preferable in increasing the magnetic flux density. The steel sheet after such cold rolling is subjected to decarburization annealing, annealing separation agent coating, and final finishing annealing by a usual method to obtain a final product. Here, after the decarburization annealing is completed, the average particle size of the primary recrystallized grains until the start of the final finishing annealing is 18 to 35 μm.
It is necessary to control to m. The reason is that it is easy to obtain a good magnetic flux density in the range of the average particle size, and the change of the magnetic flux density due to the particle size variation is small.

【0036】そして、熱延後最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施すと規定したのは、
本発明の如き低温スラブ加熱を前提とするプロセスで
は、二次再結晶に必要なインヒビター強度が不足がちに
なるからである。窒化の方法としては特に限定するもの
ではなく、脱炭焼鈍後引き続き焼鈍雰囲気にNH3 ガス
を混入させ窒化する方法、プラズマを用いる方法、焼鈍
分離剤に窒化物を添加し、最終仕上焼鈍の昇温中に窒化
物が分離してできた窒素を鋼板に吸収させる方法、最終
仕上焼鈍の雰囲気のN2 分圧を高めとし、鋼板を窒化す
る方法等いずれの方法でもよい。窒化量については二次
再結晶を安定して発現させるために10ppm 以上は必要
である。
Then, it is defined that the steel sheet is subjected to the nitriding treatment before the secondary recrystallization of the final finish annealing after the hot rolling.
This is because the inhibitor strength required for secondary recrystallization tends to be insufficient in the process that is premised on low temperature slab heating as in the present invention. The nitriding method is not particularly limited, and a method of mixing NH 3 gas in an annealing atmosphere after decarburization annealing to perform nitriding, a method of using plasma, adding a nitride to an annealing separator and adding a nitride to the final finishing annealing is performed. Any method such as a method of absorbing nitrogen formed by separation of nitrides in the temperature into the steel sheet, a method of increasing the N 2 partial pressure in the atmosphere of final annealing and nitriding the steel sheet may be used. The nitriding amount is required to be 10 ppm or more in order to stably develop the secondary recrystallization.

【0037】[0037]

【実施例】【Example】

実施例1 重量%で、Si:2.95%、C:0.031%、酸可
溶性Al:0.030%、N:0.0061%、Mn:
0.13%、S:0.006%を含有する250mm厚の
スラブを1200℃で90分保持した後、7パスで40
mm厚まで粗熱延し、しかる後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。この熱延板のN as A
lNを分析し、N−N as AlN及び、(N as Al
N)/Nを計算すると、各々、0.0031%、0.4
9であった。この場合、図1から熱延板焼鈍を施すこと
により、磁束密度が0.03T以上向上すると予測され
た。
Example 1 By weight%, Si: 2.95%, C: 0.031%, acid-soluble Al: 0.030%, N: 0.0061%, Mn:
A 250 mm thick slab containing 0.13% and S: 0.006% was held at 1200 ° C. for 90 minutes, and then 40 times in 7 passes.
After roughly hot rolling to a thickness of mm, finishing hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 2.3 mm. N as A of this hot rolled sheet
1N was analyzed to analyze N-N as AlN and (N as Al
N) / N is calculated to be 0.0031% and 0.4, respectively.
It was 9. In this case, it was predicted from FIG. 1 that the magnetic flux density was improved by 0.03 T or more by performing the hot-rolled sheet annealing.

【0038】そこでこの熱延板を、(1)1100℃に
30秒保持し、引き続き、900℃に30秒保持した後
急冷する熱延板焼鈍を施した。及び比較のため、(2)
熱延板焼鈍を施さない条件で処理した。しかる後、約8
5%の圧下率で冷延して、0.335mm厚の冷延板と
し、840℃で150秒保持する脱炭焼鈍(25%N2
+75%H2 、露点62℃)を施し、しかる後、770
℃で30秒保持する焼鈍を行い、焼鈍雰囲気中にNH3
ガスを混入させ鋼板に窒素を吸収せしめた。窒化後の鋼
板のN量は0.0218〜0.0229%であり、鋼板
の一次再結晶粒の平均粒径は、21〜25μmであっ
た。次いで、この鋼板にMgOを主成分とする焼鈍分離
剤を塗布し、公知の方法で、最終仕上焼鈍を施した。実
験条件と磁気特性の結果を表1に示す。
Therefore, the hot rolled sheet was (1) annealed at 1100 ° C. for 30 seconds and then at 900 ° C. for 30 seconds and then rapidly cooled. And for comparison, (2)
The hot rolled sheet was annealed under the condition that it was not annealed. After about 8
Cold rolling at a rolling reduction of 5% to form a 0.335 mm thick cold rolled sheet, and decarburization annealing (25% N 2
+ 75% H 2 , dew point 62 ° C), and then 770
Annealing is performed for 30 seconds at ℃, and NH 3 is added in the annealing atmosphere.
Gas was mixed and the steel sheet was made to absorb nitrogen. The N content of the steel sheet after nitriding was 0.0218 to 0.0229%, and the average grain size of the primary recrystallized grains of the steel sheet was 21 to 25 μm. Then, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed by a known method. Table 1 shows the experimental conditions and the results of magnetic properties.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例2 重量%で、Si:2.92%、C:0.030%、酸可
溶性Al:0.036%、N:0.0064%、Mn:
0.12%、S:0.005%を含有する250mm厚の
スラブを1080℃で、90分保持した後、7パスで4
0mm厚まで粗熱延し、しかる後、6パスで仕上熱延を行
い、2.3mm厚の熱延板とした。この熱延板のN as A
lNを分析し、N−N as AlN及び、(N as Al
N)/Nを計算すると、各々、0.0006%、0.9
1であった。この場合、図1から熱延板焼鈍を施すこと
による磁束密度向上が0.03T未満と予測された。
Example 2 By weight%, Si: 2.92%, C: 0.030%, acid-soluble Al: 0.036%, N: 0.0064%, Mn:
A 250 mm thick slab containing 0.12% and S: 0.005% was held at 1080 ° C for 90 minutes, and then 4 times in 7 passes.
Rough hot rolling was performed to a thickness of 0 mm, and then finish hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 2.3 mm. N as A of this hot rolled sheet
1N was analyzed to analyze N-N as AlN and (N as Al
N) / N is calculated to be 0.0006% and 0.9, respectively.
It was 1. In this case, it was predicted from FIG. 1 that the improvement of the magnetic flux density due to the hot-rolled sheet annealing was less than 0.03T.

【0041】そこで、この熱延板に熱延板焼鈍を施すこ
となく酸洗し、約88%の圧下率で冷延して、0.28
5mm厚の冷延板とした。しかる後、840℃に150秒
保持する脱炭焼鈍(25%N2 +75%H2 、露点62
℃)を施し、しかる後、750℃で30秒保持する焼鈍
を行い、焼鈍雰囲気中にNH3 ガスを混入させ鋼板に窒
素を吸収せしめた。窒化後の鋼板のN量は0.0235
%であり、鋼板の一次再結晶粒の平均粒径は、24μm
であった。次いで、この鋼板にMgOを主成分とする焼
鈍分離剤を塗布し、公知の方法で、最終仕上焼鈍を施し
た。この磁気特性の結果は、B8 (T)=1.91Tで
あった。
Therefore, this hot-rolled sheet was pickled without annealing the hot-rolled sheet, cold-rolled at a rolling reduction of about 88%, and then 0.28.
A cold rolled sheet having a thickness of 5 mm was used. Then, decarburization annealing (25% N 2 + 75% H 2 , holding at 840 ° C. for 150 seconds, dew point 62
° C.) alms, thereafter, subjected to annealing for holding 30 seconds at 750 ° C., was allowed to absorb nitrogen steel is mixed NH 3 gas into the annealing atmosphere. The N content of the steel sheet after nitriding is 0.0235.
%, And the average grain size of the primary recrystallized grains of the steel sheet is 24 μm.
Met. Then, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed by a known method. The result of this magnetic property was B 8 (T) = 1.91T.

【0042】実施例3 重量%で、Si:3.11%、C:0.040%、酸可
溶性Al:0.037%、N:0.0068%、Mn:
0.13%、S:0.007%を含有し、更に(1)S
n<0.005%、(2)Sn:0.07%を含有する
250mm厚の2種類のスラブを1150℃で、90分保
持した後、7パスで40mm厚まで粗熱延し、しかる後、
6パスで仕上熱延を行い、2.6mm厚の熱延板とした。
この熱延において、(A)粗熱延中に、強制水冷を行
い、仕上熱延開始温度をスラブ加熱温度より、90〜1
00℃降下させる熱延方法、(B)Aより軽度の水冷に
より、仕上熱延開始温度をスラブ加熱温度より、30〜
50℃降下させる熱延方法なる2通りの熱延を行った。
これらの熱延板のN as AlNを分析し、N−N asA
lN及び、(N as AlN)/Nを計算し、図1から熱
延板焼鈍を施すことによる磁束密度向上が0.03T以
上と予測された場合には、1000℃に180秒保持す
る熱延板焼鈍を行い、磁束密度向上が0.03T未満の
場合には、熱延板焼鈍を行わなかった。なお、熱延板焼
鈍を行う場合には、比較のため、熱延板焼鈍を行わない
条件でも後工程処理に供した。
Example 3 By weight%, Si: 3.11%, C: 0.040%, acid-soluble Al: 0.037%, N: 0.0068%, Mn:
0.13%, S: 0.007%, and (1) S
Two 250 mm thick slabs containing n <0.005% and (2) Sn: 0.07% were held at 1150 ° C. for 90 minutes, then roughly hot rolled to 40 mm thickness in 7 passes, and then ,
Finishing hot rolling was performed in 6 passes to obtain a hot rolled sheet having a thickness of 2.6 mm.
In this hot rolling, forced water cooling is performed during (A) rough hot rolling, and the finish hot rolling start temperature is 90 to 1 from the slab heating temperature.
The hot rolling method in which the temperature is lowered by 00 ° C., (B) by water cooling which is lighter than A, the finish hot rolling start temperature is 30 to 30
Two types of hot rolling, which are hot rolling methods of lowering the temperature by 50 ° C., were performed.
These hot rolled sheets were analyzed for N as AlN, and N-N asA
1N and (N as AlN) / N were calculated, and when it was predicted from FIG. 1 that the improvement of the magnetic flux density by performing hot-rolled sheet annealing was 0.03 T or more, the hot-rolling was performed at 1000 ° C. for 180 seconds. The sheet was annealed, and when the improvement in the magnetic flux density was less than 0.03T, the hot-rolled sheet was not annealed. When the hot-rolled sheet was annealed, it was subjected to a post-process even under the condition that the hot-rolled sheet was not annealed for comparison.

【0043】次いで、約87%の圧下率で冷延して、
0.335mm厚の冷延板とした。しかる後、840℃に
150秒保持する脱炭焼鈍(25%N2 +75%H2
露点62℃)を施し、しかる後、750℃で30秒保持
する焼鈍を行い、焼鈍雰囲気中にNH3 ガスを混入させ
鋼板に窒素を吸収せしめた。窒化後の鋼板のN量は0.
0220〜0.0243%であり、鋼板の一次再結晶粒
の平均粒径は、21〜27μmであった。次いで、この
鋼板にMgOを主成分とする焼鈍分離剤を塗布し、公知
の方法で、最終仕上焼鈍を施した。実験条件と磁気特性
の結果を表2に示す。
Then, cold rolling is performed at a reduction rate of about 87%,
It was a cold-rolled sheet having a thickness of 0.335 mm. Then, decarburization annealing (25% N 2 + 75% H 2 , holding at 840 ° C. for 150 seconds,
Dew point was 62 ° C.), and then annealing was carried out at 750 ° C. for 30 seconds, and NH 3 gas was mixed into the annealing atmosphere to allow the steel sheet to absorb nitrogen. The N content of the steel sheet after nitriding was 0.
It was 0220 to 0.0243%, and the average grain size of the primary recrystallized grains was 21 to 27 μm. Then, an annealing separator having MgO as a main component was applied to this steel sheet, and final finish annealing was performed by a known method. Table 2 shows the experimental conditions and the results of magnetic properties.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】本発明においては、熱延板でのAlN析
出量を基に熱延板焼鈍の要否を判定し、一次再結晶粒の
平均粒径を制御し、熱延後、最終仕上焼鈍の二次再結晶
開始までの間に鋼板に窒化処理を施し、更には、Sn添
加を行うことにより、低温スラブ加熱でかつ熱延板焼鈍
を省略してもなお良好な磁気特性を安定して得ることが
できるので、その工業的効果は大である。
According to the present invention, the necessity of annealing the hot-rolled sheet is judged based on the amount of AlN precipitation in the hot-rolled sheet, the average grain size of the primary recrystallized grains is controlled, and after hot rolling, the final finishing is performed. By subjecting the steel sheet to nitriding treatment before the start of secondary recrystallization of annealing, and further by adding Sn, good magnetic characteristics can be stabilized even if low-temperature slab heating is performed and hot-rolled sheet annealing is omitted. Therefore, the industrial effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱延板でのN−N as AlN量、(N as Al
N)/Nの量と熱延板焼鈍を施すことによる磁束密度の
向上代の関係を表すグラフである。
FIG. 1 is an amount of N—N as AlN in a hot rolled sheet, (N as Al
It is a graph showing the relationship between the amount of N) / N and the margin of improvement of the magnetic flux density by performing hot-rolled sheet annealing.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.075%以下、 Si:2.2〜4.5%、 酸可溶性Al:0.010〜0.060%、 N :0.0130%以下、 S+0.405Se:0.014%以下、 Mn:0.05〜0.8%、 残部がFe及び不可避的不純物からなるスラブを128
0℃未満の温度で加熱し、熱延を行い、圧下率80%以
上の最終強圧下冷延を行い、次いで脱炭焼鈍、最終仕上
焼鈍を施して一方向性電磁鋼板を製造する方法におい
て、熱延板でのAlNとしてのN量(重量比)をN as
AlNとした時、N−N as AlN及び(N as Al
N)/Nの値を基に、熱延板焼鈍を施すかどうかを判定
し、脱炭焼鈍完了後、最終仕上焼鈍開始までの一次再結
晶粒の平均粒径を18〜35μmとし、熱延後、最終仕
上焼鈍の二次再結晶開始までの間に、鋼板に0.001
0重量%以上の窒素吸収を行わせる窒化処理を施すこと
を特徴とする磁気特性の優れた一方向性電磁鋼板の製造
方法。
1. By weight ratio, C: 0.075% or less, Si: 2.2-4.5%, acid-soluble Al: 0.010-0.060%, N: 0.0130% or less, S + 0. 405 Se: 0.014% or less, Mn: 0.05 to 0.8%, 128 slabs with the balance Fe and unavoidable impurities
In a method of producing a unidirectional electrical steel sheet by heating at a temperature of less than 0 ° C., hot rolling, final hot rolling at a rolling reduction of 80% or more, followed by decarburizing annealing and final finishing annealing, The N content (weight ratio) of AlN in the hot rolled sheet is N as
When AlN, N-N as AlN and (N as Al
Based on the value of N) / N, it is determined whether or not hot-rolled sheet annealing is performed, and after decarburization annealing is completed, the average grain size of primary recrystallized grains until the start of final finishing annealing is set to 18 to 35 μm, and hot rolling is performed. Then, before the secondary recrystallization of the final finish annealing, 0.001
A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, which comprises performing a nitriding treatment for absorbing 0% by weight or more of nitrogen.
【請求項2】 熱延板焼鈍を施す基準を熱延板の、N−
N as AlN≧0.0010%かつ(N as AlN)/
N≦0.75とし、かつその時の焼鈍温度を800〜1
200℃とすることを特徴とする請求項1記載の磁気特
性の優れた一方向性電磁鋼板の製造方法。
2. A N-based hot rolled sheet is used as a standard for annealing the hot rolled sheet.
N as AlN ≧ 0.0010% and (N as AlN) /
N ≦ 0.75 and the annealing temperature at that time is 800 to 1
The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1, wherein the temperature is 200 ° C.
【請求項3】 スラブの成分として、Sn:0.01〜
0.15%を含有せしめることを特徴とする請求項1ま
たは2記載の磁気特性の優れた一方向性電磁鋼板の製造
方法。
3. As a slab component, Sn: 0.01-
0.15% is contained, The manufacturing method of the grain-oriented electrical steel sheet excellent in the magnetic characteristic of Claim 1 or 2 characterized by the above-mentioned.
JP28666993A 1993-11-16 1993-11-16 Production of grain-oriented electrical steel sheet excellent in magnetic property Withdrawn JPH07138642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28666993A JPH07138642A (en) 1993-11-16 1993-11-16 Production of grain-oriented electrical steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28666993A JPH07138642A (en) 1993-11-16 1993-11-16 Production of grain-oriented electrical steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH07138642A true JPH07138642A (en) 1995-05-30

Family

ID=17707429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28666993A Withdrawn JPH07138642A (en) 1993-11-16 1993-11-16 Production of grain-oriented electrical steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH07138642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314823A (en) * 2006-05-24 2007-12-06 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314823A (en) * 2006-05-24 2007-12-06 Nippon Steel Corp Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP4714637B2 (en) * 2006-05-24 2011-06-29 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with high magnetic flux density

Similar Documents

Publication Publication Date Title
JPH07252532A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH0730397B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3065853B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH07138643A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3314844B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic properties and coating properties
JPH07138642A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP2521586B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP2878501B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH04154914A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH06145802A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130