JPH0663035B2 - Method for producing grain-oriented electrical steel sheet with extremely low iron loss - Google Patents

Method for producing grain-oriented electrical steel sheet with extremely low iron loss

Info

Publication number
JPH0663035B2
JPH0663035B2 JP62191520A JP19152087A JPH0663035B2 JP H0663035 B2 JPH0663035 B2 JP H0663035B2 JP 62191520 A JP62191520 A JP 62191520A JP 19152087 A JP19152087 A JP 19152087A JP H0663035 B2 JPH0663035 B2 JP H0663035B2
Authority
JP
Japan
Prior art keywords
polishing
grain
iron loss
steel sheet
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62191520A
Other languages
Japanese (ja)
Other versions
JPS6436727A (en
Inventor
氏裕 西池
康宏 小林
宏威 石飛
成子 筋田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP62191520A priority Critical patent/JPH0663035B2/en
Priority to EP88306781A priority patent/EP0302639B1/en
Priority to DE3889600T priority patent/DE3889600T2/en
Priority to US07/225,546 priority patent/US4906530A/en
Publication of JPS6436727A publication Critical patent/JPS6436727A/en
Priority to US07/380,991 priority patent/US4963197A/en
Publication of JPH0663035B2 publication Critical patent/JPH0663035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 鉄損の極めて低い方向性電磁鋼板を得るためには、仕上
焼鈍を経た電磁鋼帯の地鉄表面に、絶縁皮膜の被覆形成
に先立って研磨を施し中心線平均粗さ(Ra)0.3μm以下
の表面粗さまで平滑化することが有用な手法であるとこ
ろ、この明細書では、このような平滑面化をはかる研磨
手法の改善とくに機械研磨による能率的な平滑化の適合
についての開発成果に関連して以下に述べる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) In order to obtain a grain-oriented electrical steel sheet with extremely low iron loss, a base steel surface of a magnetic steel strip that has been subjected to finish annealing must be coated with an insulating film prior to formation. It is a useful technique to smooth the surface to a center line average roughness (Ra) of 0.3 μm or less by polishing, and in this specification, the improvement of the polishing technique for smoothing such a surface, particularly mechanical polishing. The following is related to the development results of the efficient smoothing adaptation by the.

いうまでもなく方向性電磁鋼板は主として変圧器その他
の電気機器の鉄心として利用され、その磁化特性が優れ
ていること、とくに鉄損(W17/50値で代表される。)が
極めて低いことの要求はますます強まっている。
Needless to say, the grain-oriented electrical steel sheet is mainly used as an iron core for transformers and other electrical equipment, and has excellent magnetization characteristics, and particularly has a very low iron loss (represented by W 17/50 value). The demand for is increasing.

このような要請に対し鋼板中の2次再結晶粒の〈100〉
粒方位を圧延方向に高度に揃えること、また最終製品中
の不純物を減少させることによるような、これまでの開
発努力によっても最近では、0.23mmの板厚でW17/50値が
0.9W/kg程度の低鉄損化が可能となった。
In response to this demand, secondary recrystallized grains <100> in the steel sheet
Recent development efforts such as highly aligning the grain orientation with the rolling direction and reducing impurities in the final product have recently led to a W 17/50 value of 0.23 mm.
It has become possible to reduce iron loss to about 0.9 W / kg.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器を求める傾向が一段と強まり、そ
れらの鉄芯材料として、さらに一層鉄損の低い、方向性
電磁鋼板が要請されるようになっている。
However, since the energy crisis of several years ago, the tendency to demand electric equipment with less power loss has become stronger, and as a core material for them, grain-oriented electrical steel sheets with even lower iron loss are required. It has become.

(従来の技術) ところで、方向性電磁鋼板の鉄損を下げる基本的な手法
としては、Si含有量を高めること、製品板厚を薄くする
こと、2次再結晶粒を細かくすること、不純物含有量を
低減すること、そして(100)〔001〕方位の2次再結晶
粒をより高度に揃えることなど、主に冶金学的方法が一
般に知られてはいるけれども、これらの手法は、現行の
生産手段の上からはもはや限界に達していて、これ以上
の改善は極めて難しく、たとえ多少の改善が認められる
にしても、その努力の割には鉄損改善の実効に乏しい状
況となるに至った。
(Prior Art) By the way, as a basic method for reducing the iron loss of grain-oriented electrical steel sheets, increasing the Si content, reducing the product sheet thickness, making secondary recrystallized grains finer, and containing impurities Although metallurgical methods are generally known, such as reducing the amount and making secondary recrystallized grains in the (100) [001] orientation more highly aligned, these methods are The production method has reached its limit, and further improvement is extremely difficult, and even if some improvement is recognized, iron loss improvement will be ineffective in spite of the efforts. It was

また一方で特公昭54-23647号公報に開示されているよう
に鋼板表面に2次再結晶阻止領域を形成させることによ
り、2次再結晶粒を細粒化させる方法も提案されている
がこの方法は、2次再結晶粒径の制御が安定していない
ため、実用的とは言いがたい。
On the other hand, as disclosed in Japanese Patent Publication No. 54-23647, there has been proposed a method of forming secondary recrystallization inhibiting regions on the surface of a steel sheet to make secondary recrystallization grains finer. The method is not practical because the control of the secondary recrystallized grain size is not stable.

その他、特公昭58-5968号公報には、2次再結晶後の鋼
板の表面にボールペン状小球にて、微小歪を鋼板表層に
導入することによって磁区の幅を微細化し、鉄損を低減
する技術が、また特公昭57-2252号公報には、最終製品
板表面に、圧延方向にほぼ直角にレーザービームを数mm
間隔に照射し、鋼板表層に高転位密度領域を導入するこ
とにより、磁区の幅を微細化し、鉄損を低減する技術が
提案されている。さらに、特開昭57-188810号公報に
は、放電加工により鋼板表層に微小歪を導入し、磁区幅
を微細化し、鉄損を低減する同様の技術が提案されてい
る。
In addition, in Japanese Patent Publication No. 58-5968, the width of the magnetic domain is reduced by introducing a microstrain into the surface layer of the steel sheet with a ball-point pen-shaped small ball on the surface of the steel sheet after secondary recrystallization to reduce iron loss In Japanese Patent Publication No. 57-2252, a laser beam is applied to the surface of the final product plate by a few mm at a right angle to the rolling direction.
A technique has been proposed in which the width of the magnetic domain is made fine and the iron loss is reduced by irradiating the gaps at intervals and introducing a high dislocation density region into the surface layer of the steel sheet. Further, Japanese Patent Application Laid-Open No. 57-188810 proposes a similar technique in which a minute strain is introduced into the surface layer of a steel sheet by electric discharge machining to make the magnetic domain width finer and reduce the iron loss.

これら3種類の方法は、いずれも2次再結晶後の鋼板の
地鉄表層に微小な塑性歪を導入することにより磁区幅を
微細化し鉄損の低減を図るものであって、均しく実用的
であり、かつ鉄損低減効果も優れているが、鋼板の打抜
き加工、せん断加工、巻き加工などの後の歪取り焼鈍
や、コーティングの焼付け処理の如き熱処理によって、
塑性歪導入による効果が滅殺される欠点を伴う。なおコ
ーティング処理後に微小な塑性歪の導入を行う場合は、
絶縁性を維持するために絶縁コーティングの再塗布を行
わねばならず歪付与工程、再塗布工程と、工程の大幅増
加になり、コストアップをもたらす。
These three types of methods all aim to reduce the magnetic domain width to reduce the iron loss by introducing a minute plastic strain into the surface layer of the base metal of the steel sheet after secondary recrystallization, and are equally practical. Although it is also excellent in iron loss reduction effect, by stress relief annealing after punching, shearing, winding, etc. of steel sheet, and heat treatment such as baking treatment of coating,
With the drawback that the effect of introducing plastic strain is destroyed. If a small amount of plastic strain is introduced after the coating process,
Insulation coating must be re-applied in order to maintain the insulating property, resulting in a large increase in the steps of strain application and re-application, resulting in cost increase.

さて、これらの技術とは別に特公昭52-24499鋼公報に
は、仕上焼鈍後のけい素鋼板表面を鏡面仕上げしておく
ことによって、磁気特性、特に鉄損が軽減することが開
示されている。
Separately from these techniques, Japanese Patent Publication No. 52-24499 discloses that magnetic properties, particularly iron loss, are reduced by mirror-finishing the surface of a silicon steel sheet after finish annealing. .

しかし、この場合、鏡面仕上げのために、化学研磨又は
電解研磨を要するので非常にコスト高になり、実際に工
業的なプロセに適用するにはやはり難点があり、大量生
産工程に採用されるに至っていない。
However, in this case, since chemical polishing or electrolytic polishing is required for mirror finishing, the cost becomes very high, and it is still difficult to actually apply it to an industrial process, and it is not suitable for mass production process. I haven't arrived.

かかるコスト高な工程を例えば砥石等による機械研磨に
代えて経費負担を軽減しようとするとけい素鋼板中に研
磨加工による残留ひずみを与えて、鉄損を却って著しく
劣化させる不利のため実用不可能であった。
When trying to reduce the cost burden by replacing mechanical processes such as a grindstone with such a high-cost process, residual strain due to the polishing process is applied to the silicon steel plate, and iron loss is rather impaired, which makes it impractical. there were.

(発明が解決しようとする問題点) 仕上焼鈍を経た方向性電磁鋼帯の表面に、絶縁皮膜の被
覆形成に先立って研磨を施す際、工業化が容易でしかも
極めて鉄損の低い方向性電磁鋼板の製造に、とくに有利
な機械研磨方式の適用を可能にすることがこの発明の目
的である。
(Problems to be Solved by the Invention) A grain-oriented electrical steel sheet that is easy to industrialize and has extremely low iron loss when polishing the surface of a grain-oriented electrical steel strip that has been subjected to finish annealing prior to forming a coating of an insulating film. It is an object of the invention to enable the application of a particularly advantageous mechanical polishing system for the production of

(問題点を解決するための手段) この発明は、仕上焼鈍を経た方向性電磁鋼帯の地鉄表面
に研磨を施し、中心線平均粗さ(Ra)0.3μm以下の表面
粗さに平滑化するに当り、研磨工程として、遊離砥粒を
用いた合成樹脂のロール又はディスクによる機械研磨を
適用することを特徴とする、鉄損の極めて低い方向性電
磁鋼板の製造方法である。
(Means for Solving Problems) The present invention is to polish the base steel surface of the grain-oriented electrical steel strip that has been subjected to finish annealing to smooth the surface roughness to a center line average roughness (Ra) of 0.3 μm or less. In doing so, the method for producing a grain-oriented electrical steel sheet with extremely low iron loss is characterized by applying mechanical polishing with a roll or disk of synthetic resin using free abrasive grains as the polishing step.

発明者は、仕上焼鈍後の方向性電磁鋼帯表面の平滑面化
に適用する機械研磨の方法の如何によって磁気特性の劣
化の度合いが異なることに注目して、種々の研磨方法に
ついて検討を行った結果、磁気特性を良好ならしめる研
磨条件があることを見い出し、この知見に基いて上記し
たこの発明の構成を導いた。
The inventor has studied various polishing methods, noting that the degree of deterioration of magnetic properties is different depending on the method of mechanical polishing applied to the smoothing of the grain-oriented electrical steel strip surface after finish annealing. As a result, they have found that there is a polishing condition that provides good magnetic properties, and based on this finding, they have led to the above-described configuration of the present invention.

ここでとくに「遊離砥粒を用いた合成樹脂のロール又は
ディスクによる機械研磨」というのは、従来の研削とい
しや、研磨布、研磨紙、研磨ディスクないしは研磨ロー
ルなどのように研磨剤、とくに砥粒を、結合剤の助けを
かりて予め合成樹脂、布さらには紙などの基材に固着し
たものを用いる場合と比べて、砥粒の固着保持をしない
ことに特色づけられ、合成樹脂のロール又はディスク状
のブラッシや、スポンジの類を、研削をしようとする電
磁鋼帯表面上で高速回転させ乍ら砥粒微粉又はその分散
液を被研削面に向けて供給する、機械研磨方式を意味
し、ここに合成樹脂のロール又はディスクの基材として
はポリウレタンやナイロンなどのブラッシ、スポンジの
如きがまた砥粒には、炭化けい素質、アルミナ質、シリ
カ質、カーボン質等の研削材の如きが適合する。
Here, "mechanical polishing with synthetic resin rolls or discs using loose abrasive grains" means abrasives such as conventional grinding wheels, polishing cloths, polishing papers, polishing discs or polishing rolls. Compared with the case where abrasive grains are previously fixed to a synthetic resin, a cloth or even a substrate such as paper with the aid of a binder, it is characterized by not holding and holding the abrasive grains. A mechanical polishing method in which a roll or disk brush or sponge is rotated at high speed on the surface of the electromagnetic steel strip to be ground and fine abrasive powder or its dispersion is supplied toward the surface to be ground. As a base material for rolls or disks of synthetic resin, brushes such as polyurethane and nylon, sponges such as sponge, and abrasive grains include silicon carbide, alumina, silica, carbon, etc. Such as grinding material is compatible.

(作用) この発明におてい中心線平均粗さ(Ra)0.3μm以下の表
面粗さの平滑面を得るための研磨は、仕上げ焼鈍を経た
方向性電磁鋼帯表面に施す必要がある。なんとなればか
りに仕上焼鈍以前に平滑化処理を施したとしても仕上焼
鈍中に表面に形成される酸化物によって鋼帯表面は磁性
的に粗な面となるからである。また仕上焼鈍後の帯鋼表
面に施す上記研磨は、帯鋼に加えられたそれまでの工
程、すわちSi量、インヒビター量ないしは板厚の如何や
焼鈍分離剤の種類などにかかわらず、この発明で所期し
た効果をもたらすことはいうまでもない。
(Function) In the present invention, polishing for obtaining a smooth surface having a center line average roughness (Ra) of 0.3 μm or less needs to be applied to the surface of the grain-oriented electrical steel strip that has undergone finish annealing. This is because even if a smoothing treatment is performed before finish annealing, the surface of the steel strip becomes a magnetically rough surface due to the oxide formed on the surface during finish annealing. Further, the above-mentioned polishing applied to the surface of the strip steel after finish annealing is performed regardless of the steps applied to the strip steel, that is, the Si amount, the inhibitor amount or the plate thickness, the type of the annealing separator, etc. It goes without saying that the desired effect is brought about by.

すなわち、この発明の眼目は方向性電磁鋼帯の表面の平
滑化によって履歴損失が減少するという現象を活用する
ところにあり、それ故方向性電磁鋼板それ自体の製造工
程には全く依存しないのである。
That is, the eye of the present invention is to utilize the phenomenon that the hysteresis loss is reduced due to the smoothing of the surface of the grain-oriented electrical steel strip, and therefore does not depend on the manufacturing process of the grain-oriented electrical steel sheet itself. .

次に表面粗さに関し中心線平均粗さ(Ra)で0.3μm以下
を限定するのは、(Ra)が0.3μmを越えると履歴損失の
軽減に寄与すべき平滑化効果がもはや失われてしまうか
らである。
Next, regarding the surface roughness, the center line average roughness (Ra) is limited to 0.3 μm or less. When (Ra) exceeds 0.3 μm, the smoothing effect that should contribute to the reduction of hysteresis loss is lost. Because.

一般に機械研磨は、それによる加工変質層の生成を伴い
これによって磁気特性、とくに履歴損の劣化がもたらさ
れる。発明者らが、検討した結果によるとこの劣化は加
工時に地鉄表面に加わる研磨基剤及び砥粒の垂直モーメ
ントによる歪及び砥粒が加工時に研磨材から剥落ないし
圧潰して被研磨面表層へ埋め込まれることによる歪が主
たる原因であった。この発明に従う遊離砥粒による機械
研磨と、固着砥粒による機械研磨との比較を第1図に示
す。
In general, mechanical polishing is accompanied by the formation of a work-affected layer, which results in deterioration of magnetic properties, particularly hysteresis loss. According to the results of studies conducted by the inventors, this deterioration is caused by a vertical moment of the polishing base material and abrasive grains added to the surface of the base metal during processing, and the abrasive grains are peeled or crushed from the abrasive during processing to the surface layer to be polished. Distortion due to embedding was the main cause. FIG. 1 shows a comparison between mechanical polishing with loose abrasive grains according to the present invention and mechanical polishing with fixed abrasive grains.

この試験で供試鋼板の組成はC:0.002%,Si:3.1%で
あって一般的なフォルステライト膜を絶縁皮膜とした製
品の鉄損W17/50値との差をたて軸にあらわした。なお化
学研磨後の絶縁皮膜としてはりん酸塩のコーチングを行
った。
In this test, the composition of the steel sheet tested was C: 0.002%, Si: 3.1%, and the difference from the iron loss W 17/50 value of the product with a general forsterite film as the insulating film is shown on the vertical axis. It was The insulating coating after chemical polishing was coated with phosphate.

何れの場合も圧縮ヤング率10kg/cm2以下にて柔軟
なポリウレタンのスポンジロールを基材とした。
In each case, a flexible polyurethane sponge roll having a compressive Young's modulus of 10 4 kg / cm 2 or less was used as a base material.

このような基材を用いたのは垂直衝撃力が板面に加わる
のを小さくするためである。砥粒は#1000の緑色炭
化けい素質研削材(GC)を用いた。
The use of such a base material is to reduce the vertical impact force applied to the plate surface. As the abrasive grains, # 1000 green silicon carbide abrasive (GC) was used.

遊離砥粒による機械研磨では研削液に砥粒を混入分散さ
せて被研磨面に供給し、また砥粒入ロールとしてはポリ
ウレタン中に砥粒を混入した。
In the mechanical polishing with loose abrasive grains, the abrasive grains were mixed and dispersed in the grinding liquid and supplied to the surface to be polished, and the abrasive grains were mixed in polyurethane as a roll containing abrasive grains.

ロールの板面への押圧力は3kg/cm2とした。何れの場合
も砥粒による研磨は研削代を2μmに揃え、その後は、
3%ふっ酸(HF)+エチルアルコールを研磨液とする化学
研磨によって研削代のトータル値で12μmに至るまでの
種々な研削代で順次板厚を減じていた結果を第1図に比
較して示した。上記の場合ともに化学研磨後のRaは、0.
2μm台であって、均しく鉄損の低下に寄与するが遊離
砥粒による機械研磨の方が改善幅は著しく大きいことが
注目される。
The pressing force applied to the plate surface of the roll was 3 kg / cm 2 . In either case, the grinding allowance is adjusted to 2 μm for polishing with abrasive grains, and thereafter,
Compared with the results in Fig. 1, the plate thickness was sequentially reduced by various grinding allowances up to 12 μm in total value of the grinding allowance by chemical polishing using 3% hydrofluoric acid (HF) + ethyl alcohol as a polishing liquid. Indicated. In both of the above cases, Ra after chemical polishing is 0.
It is on the order of 2 μm, and contributes evenly to the reduction of iron loss, but it is noted that mechanical polishing with free abrasive grains has a significantly greater improvement.

トータルの研削代で片面当り12μmに達したとき機械研
磨のやり方に拘らず鉄損はほぼ同一になるがより少ない
研削代の段階での鉄損は、遊離砥粒による機械研磨を行
ったときの方が良好であって、これは機械研磨で生成す
る加工変質層の厚みが砥粒入りロールによる場合に比し
はるかに薄いことを意味し、それというのは、砥粒の地
鉄中への埋め込みが少ないためと考えられる。
When the total grinding allowance reaches 12 μm per side, the iron loss is almost the same regardless of the mechanical polishing method, but the iron loss in the lesser grinding allowance is the same as when performing mechanical polishing with loose abrasive grains. Better, it means that the thickness of the work-affected layer produced by mechanical polishing is much thinner than that by the roll with abrasive grains, which means that the abrasive grains are not This is probably because there is little embedding.

このような傾向は、砥粒入ブラシと遊離砥粒をブラシと
ともに用いた場合との比較でもほぼ同様の結果が得られ
た。
This tendency was almost the same in the comparison between the case in which the abrasive grain-containing brush and the free abrasive grain were used together with the brush.

なおちなみに第2図は#1000の回転砥石(ビトリファイ
ド砥石)で研磨を施した場合と、エメリー研磨した場
合、および化学研磨だけを行なった場合とを鉄損W17/50
値に及ぼす影響について比較したものである。この場合
供試鋼板は上掲の実験の場合と同様とした。
By the way, Fig. 2 shows iron loss W 17/50 when polishing with # 1000 rotating grindstone (vitrified grindstone), emery polishing, and chemical polishing only.
This is a comparison of the effects on the values. In this case, the test steel plate was the same as in the above-mentioned experiment.

同図に示すように、研磨の際に不要な歪を地鉄表面に加
えてしまう回転砥石およエメリ研磨では鉄損の不所望な
劣化がみられ、これに反し化学研磨では鉄損が低減して
いる。したがって従来は機械研磨ではなく化学研磨又は
電解研磨を用いざるを得なかったわけであるが、これら
の研磨はコストが非常に高く工業生産には不向きであっ
たのである。
As shown in the same figure, undesired deterioration of iron loss was observed in rotating grindstones and emery polishing, which add unnecessary strain to the ground iron surface during polishing, whereas iron loss is reduced in chemical polishing. is doing. Therefore, in the past, chemical polishing or electrolytic polishing had to be used instead of mechanical polishing, but these polishing methods were very expensive and unsuitable for industrial production.

この発明に従い遊離砥粒による機械研磨をもってした平
滑化処理で得られたけい素鋼薄板の表面に絶縁皮膜を常
法により形成して製品とするがこの際とくに張力皮膜を
形成すると鉄損は極めて良くなり、これは平滑化処理面
で張力効果が大きく作用するようになっているためと考
えられる。
According to the present invention, an insulating film is formed by a conventional method on the surface of a silicon steel thin plate obtained by a smoothing treatment by mechanical polishing with loose abrasive grains to obtain a product. It is considered to be improved, and it is considered that this is because the tension effect is large on the smoothed surface.

(実施例) 実施例1 MnSe+MnS系のインヒビターを用いた次の化学組成C:
0.001%,Si 3.2%に成るけい素鋼熱延板を一般的な方
向性電磁鋼板の加工手順に従って冷間圧延した上でその
板面に焼鈍分離材としてMgOを適用して得られる0.20mm
板厚の仕上焼鈍を経た方向性電磁鋼帯の素材(A)と焼鈍
分離剤としてとくにAl2O3を用い、0.18mm板厚にした以
外は同様の手順で得られた仕上焼鈍後の素材(B)ととも
に、ビトリファイト砥石(比較例1)、ウレタンの#80
0の砥粒入りロール(比較例2)、砥粒無しの単なるウ
レタンロール(比較例3)、および比較例3と同じウレ
タンロールに#800砥粒入研削液を使用することとした
この発明による適合例についていずれもRaが0.2μm以
下まで研磨した。ただし比較例3についてはRaで0.35〜
0.4μmにしかならなかった。
Example 1 Example 1 The following chemical composition C using an MnSe + MnS-based inhibitor:
0.20mm obtained by cold rolling a hot-rolled silicon steel sheet with 0.001% and Si 3.2% according to the general procedure for processing grain-oriented electrical steel sheets, and then applying MgO as an annealing separator on the sheet surface.
Material (A) of the grain-oriented electrical steel strip that has been subjected to finish annealing of the plate thickness and the material after the finish annealing that was obtained by the same procedure except that Al 2 O 3 was used as the annealing separating agent and the plate thickness was 0.18 mm. Along with (B), vitrified grindstone (Comparative Example 1), urethane # 80
No. 0 abrasive grain-containing roll (Comparative Example 2), simple urethane roll without abrasive grains (Comparative Example 3), and the same urethane roll as Comparative Example 3 were used with # 800 abrasive grain-containing grinding liquid. In each of the conforming examples, Ra was polished to 0.2 μm or less. However, for Comparative Example 3, Ra is 0.35 to
It was only 0.4 μm.

その後平滑化表面に絶縁皮膜としてりん酸塩コーティン
グを行って得られた方向性けい素鋼板製品の磁気特性を
表1に示す。
Table 1 shows the magnetic characteristics of the grain-oriented silicon steel sheet product obtained by subjecting the smoothed surface to phosphate coating as an insulating film.

なお上記の各研磨を施した後の平滑化表面張力付与コー
トとしてTiN(膜厚1μm)をイオンプレーティイグし
た場合の結果を表2に示す。
Table 2 shows the results when ion-plating TiN (film thickness: 1 μm) as a smoothing surface tension imparting coat after each of the above polishing.

実施例2 AlN系のインヒビターを用いた次の化学組成C:0.002
%,Si:3.1%に成る方向性けい素鋼熱延板を一般的な
方向性電磁鋼板の加工手順に従って冷間圧延した上でそ
の板面に焼鈍分離材としてMgOを適用して得られる0.30m
m板厚の仕上焼鈍を経た方向性電磁鋼板の素材(C)とMnSe
+MnS系のインヒビターを用いた化学組成C:0.001%,
Si:3.2%に成る方向性けい素鋼熱延板を一般的な方向
性電磁鋼板の加工手順に従って冷間圧延した上でその板
面に焼鈍分離材としてMgOを適用して得られる0.15mm板
厚の仕上焼鈍を経た方向性電磁鋼板の素材(D)とを、#1
000の砥粒入ブラシロール(比較例4)、砥粒無しブラ
シロール(比較例5)および#1000の砥粒をスラリーと
して、板面に塗面した後に比較例5と同じ砥粒無ブラシ
ロールを使用(適合例)していずれもRaが0.2μm以下
まで研磨した。なお比較例5のRaは0.35〜0.4μmにし
かならなかった。
Example 2 The following chemical composition using an AlN-based inhibitor C: 0.002
%, Si: 3.1%, obtained by cold rolling a hot-rolled grain-oriented silicon steel sheet according to the general procedure for grain-oriented electrical steel sheet, and then applying MgO as an annealing separator to the sheet surface. m
Material (C) and MnSe of grain-oriented electrical steel sheet after finishing annealing of m thickness
+ Cn composition using MnS inhibitor C: 0.001%,
0.15 mm plate obtained by cold rolling a grain-oriented silicon steel hot-rolled sheet with Si: 3.2% according to the general procedure for processing grain-oriented electrical steel sheets, and then applying MgO as an annealing separator on the sheet surface. With the material (D) of grain-oriented electrical steel sheet that has undergone thick finish annealing,
000 abrasive-containing brush rolls (Comparative Example 4), abrasive-free brush rolls (Comparative Example 5), and # 1000 abrasive particles as a slurry, which were applied to the plate surface and then the same abrasive-free brush rolls as Comparative Example 5 (Compatible example) was used to polish Ra to 0.2 μm or less. Ra of Comparative Example 5 was only 0.35 to 0.4 μm.

その後平滑化表面に絶縁皮膜としてりん酸塩コーティン
グを行って得られた方向性けい素鋼板製品の磁気特性を
表3に示す。
Table 3 shows the magnetic characteristics of the grain-oriented silicon steel sheet product obtained by applying phosphate coating on the smoothed surface as an insulating coating.

なお、また研磨後の素材表面に張力付与コートとしてSi
3N4をイオンプレーティイグした結果を表4に示す。
In addition, as a tension applying coat on the material surface after polishing,
Table 4 shows the result of ion plating of 3 N 4 .

(発明の効果) この発明によれば、工業的にコストが安く大量生産が可
能である機械研磨に際し、鋼板表面の平滑面仕上げに、
遊離砥粒による機械研磨を適用して鉄損の著しい改善が
低コストで達成され得る。
(Effects of the Invention) According to the present invention, in mechanical polishing, which is industrially inexpensive and can be mass-produced, for smooth surface finishing of the steel plate surface,
Applying mechanical polishing with loose grains can achieve significant improvement in iron loss at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は砥粒入ロール研磨した時と、遊離砥粒を用いて
研磨した時の比較を示すグラフ、 第2図は素材表面を各種研磨した時の磁気特性を示すグ
ラフである。
FIG. 1 is a graph showing a comparison between the case of roll polishing with abrasive grains and the case of polishing with free abrasive grains, and FIG. 2 is a graph showing magnetic properties when various types of surface polishing of the material are performed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 筋田 成子 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭62−1821(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nariko Sueda 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Headquarters (56) References JP 62-1821 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】仕上焼鈍を経た方向性電磁鋼帯の地鉄表面
に研磨を施し、中心線平均粗さ(Ra)0.3μm以下の
表面粗さに平滑化するに当り、 研磨工程として、遊離砥粒を用いた合成樹脂のロール又
はディスクによる機械研磨を適用することを特徴とす
る、鉄損の極めて低い方向性電磁鋼板の製造方法。
Claims: 1. When polishing the surface of the base iron of the grain-oriented electrical steel strip that has undergone finish annealing to smooth it to a surface roughness of center line average roughness (Ra) of 0.3 μm or less A method for producing a grain-oriented electrical steel sheet having an extremely low iron loss, characterized by applying mechanical polishing using a roll or disc of synthetic resin using abrasive grains.
JP62191520A 1987-08-01 1987-08-01 Method for producing grain-oriented electrical steel sheet with extremely low iron loss Expired - Lifetime JPH0663035B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62191520A JPH0663035B2 (en) 1987-08-01 1987-08-01 Method for producing grain-oriented electrical steel sheet with extremely low iron loss
EP88306781A EP0302639B1 (en) 1987-08-01 1988-07-22 Grain oriented electromagnetic steel sheets having a very low iron loss and method of producing the same
DE3889600T DE3889600T2 (en) 1987-08-01 1988-07-22 Grain-oriented electrical sheets with very low iron losses and processes for producing these sheets.
US07/225,546 US4906530A (en) 1987-08-01 1988-07-28 Grain oriented electromagnetic steel sheets having a very low iron loss
US07/380,991 US4963197A (en) 1987-08-01 1989-07-17 Grain oriented electromagnetic steel sheets having a very low iron loss and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62191520A JPH0663035B2 (en) 1987-08-01 1987-08-01 Method for producing grain-oriented electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JPS6436727A JPS6436727A (en) 1989-02-07
JPH0663035B2 true JPH0663035B2 (en) 1994-08-17

Family

ID=16276024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62191520A Expired - Lifetime JPH0663035B2 (en) 1987-08-01 1987-08-01 Method for producing grain-oriented electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JPH0663035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619064B2 (en) * 1989-08-03 1997-06-11 川崎製鉄株式会社 Method for producing grain-oriented silicon steel sheet with good punchability
JP2007255461A (en) * 2006-03-20 2007-10-04 Ntn Corp Constant velocity universal joint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621821A (en) * 1985-03-05 1987-01-07 Kawasaki Steel Corp Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing

Also Published As

Publication number Publication date
JPS6436727A (en) 1989-02-07

Similar Documents

Publication Publication Date Title
JPS585968B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
EP0225619A2 (en) Grain-oriented electrical steel sheet having improved glass film properties and low watt loss and a process for producing same
JPS61149433A (en) Method and apparatus for reducing iron loss in crystal grainorientation type silicon steel
JPH0663035B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JPS5858226A (en) Reducing device for iron loss of directional electrical steel plate
US4906530A (en) Grain oriented electromagnetic steel sheets having a very low iron loss
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
JP2634991B2 (en) Manufacturing method of surface treated stainless steel sheet
JPS5814851B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
JPH07118409B2 (en) Grain-oriented silicon steel sheet with extremely low iron loss
JPS63274718A (en) Manufacture of grain-oriented silicon steel sheet minimal in iron loss
JPH0680175B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties
JP3277039B2 (en) Method for producing grain-oriented silicon steel sheet having homogeneous forsterite coating
JPS6013788B2 (en) Precision processing method for single crystal ferrite
JPH0680173B2 (en) Method for producing grain-oriented silicon steel sheet with extremely low iron loss
JP3885341B2 (en) Method for removing oxide scale from silicon steel surface
JPS62151521A (en) Manufacture of low iron loss grain oriented electrical sheet superior in glass film characteristic
JPH0598398A (en) High silicon grain-oriented silicon steel sheet and its manufacture
JPH02200737A (en) Manufacture of low iron loss grain-oriented silicon steel sheet free from deterioration of properties caused by stress relieving annealing
JPH0733546B2 (en) High magnetic flux density bi-directional electrical steel sheet manufacturing method
JPH03146211A (en) Manufacture of preliminarily treated stainless steel strip for cold rolling
JPH0327630B2 (en)
JPH0224050A (en) Method and device for machine polishing with less surfacing affected layer to be generated
JPS62151520A (en) Manufacture of low iron loss grain oriented electrical sheet superior in adhesive strength of glass film
JPS6396217A (en) Production of grain oriented electrical steel sheet having excellent glass film adhesiveness and magnetic characteristic