JPS6039123A - Production of grain-oriented silicon steel sheet having low iron loss - Google Patents

Production of grain-oriented silicon steel sheet having low iron loss

Info

Publication number
JPS6039123A
JPS6039123A JP58145098A JP14509883A JPS6039123A JP S6039123 A JPS6039123 A JP S6039123A JP 58145098 A JP58145098 A JP 58145098A JP 14509883 A JP14509883 A JP 14509883A JP S6039123 A JPS6039123 A JP S6039123A
Authority
JP
Japan
Prior art keywords
annealing
polishing
silicon steel
grain
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58145098A
Other languages
Japanese (ja)
Inventor
Yasuo Yokoyama
横山 靖雄
Toshihiko Funabashi
敏彦 船橋
Isao Matoba
的場 伊三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58145098A priority Critical patent/JPS6039123A/en
Publication of JPS6039123A publication Critical patent/JPS6039123A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet having extremely low iron loss by subjecting the silicon steel sheet after cold rolling to decarburization annealing and final box annealing with the limited coating weight of oxygen then to direct polishing in an adequate range. CONSTITUTION:A silicon steel sheet after cold rolling to a desired final thickness is subjected to decarburization annealing and to final box annealing after an annealing separating agent consisting essentially of alumina is coated thereon to complete secondary recrystallization. The amt. of the alumina, etc. to be compounded in the above-mentioned annealing separating agent is adjusted to limit the amt. of the surface oxide to be formed in the stage of the final box annealing to <=0.3g/m<2> expressed in terms of the coating weight of oxygen per surface. The steel sheet after the annealing is removed of surface oxide and is then subjected directly to chemical polishing or electrolytic polishing without pickling in a shallow range of 2-10mum per surface then preferably to mirror finishing to the surface having 0.4mum smoothness expressed by Ra in center line average roughness, by which the grain-oriented silicon steel sheet having low iron loss is obtd.

Description

【発明の詳細な説明】 技術分野 鉄損の低い方向性けい素鋼σiの製漬方法に関してこの
明細書で述べる技術内容は、とくに最終箱焼なましを施
したのちに、化学研磨又は電解所間による鏡m1仕上げ
を有利に実現する企だてについての開発研究の成果に関
連し、方向性けい素鋼板の裂活の属する技術の分野を占
める。
[Detailed Description of the Invention] Technical Field The technical content described in this specification regarding the method for producing grain-oriented silicon steel σi with low core loss is particularly focused on the method of preparing grain-oriented silicon steel σi, which has a low core loss. The present invention relates to the results of research and development on an attempt to advantageously achieve a mirror M1 finish, and occupies the field of technology involving the cracking of grain-oriented silicon steel sheets.

背験技術とその間趙点 従来方向性けい素鋼板は、Si 4.0重量%(以下単
に%で示す)以下のけい素鋼素材を熱延し、均−化焼な
ましと、1回ま1こは中間焼なましを挾む2回以上の、
冷延工程によって、最終製品板厚の・冷延鋼板を得、こ
れに脱炭焼なましを施す際、鋼板表面に主として510
2からなる酸化膜を生成させ、ついでMyOを主成分と
する焼鈍分離剤を塗布してコイル状に巻き取り、最終1
回焼なま1−を施すことにより、(110)[0011
方位の二次再結晶集合組織を発璋させるのど同詩に絶縁
抜脱と゛してフォルステライト(2M、90・5102
)質の下地被嘆を形成させ、ときにはさらにりん酸塩系
処理剤の上塗りによって、絶縁コーティングを焼付は形
成するといった一連の製造工程を経て製品にされるのが
通例であった。
Background technology and the conventional grain-oriented silicon steel sheet is made by hot-rolling a silicon steel material containing 4.0% by weight of Si (hereinafter simply expressed as %), and then homogenizing and annealing it once. 1. Two or more times with intermediate annealing in between.
A cold-rolled steel plate with the final product thickness is obtained through the cold rolling process, and when decarburized and annealed, the surface of the steel plate mainly contains 510
After forming an oxide film consisting of 1.
(110)[0011
Forsterite (2M, 90.5102
) It was customary for the product to be made into a product through a series of manufacturing steps, including forming a high-quality base coat, sometimes using a phosphate-based treatment agent, and baking an insulating coating.

このような方向性けい素鋼板は、通常変圧器などの鉄芯
として汎用され、磁気特性としてflr!東密度が高く
、鉄損が低いことなどが要求されるところ、とくに近年
のエネルギーコストの上昇によりシ・・鉄損がより重要
視されてその値が一層低いことが要求されるようになっ
ている。すなわち方向性けい素鋼板の鉄損は、変圧器の
鉄芯として使用する際に、鉄芯内部で熱となって無駄に
消費されてしまうエネルギ一部分であり、従ってその低
減は、・近年の方向性けい素鋼板の最主要な改善方向で
ある。
This kind of grain-oriented silicon steel sheet is commonly used as the iron core of transformers, etc., and has excellent magnetic properties such as FLR! High east density and low iron loss are required, especially as energy costs have increased in recent years... Iron loss has become more important and lower values have become required. There is. In other words, the iron loss of grain-oriented silicon steel sheets is a portion of the energy that is wasted as heat inside the iron core when used as the iron core of a transformer. This is the most important direction for improvement of silicon steel sheets.

上にのべた工程で製造される方向性けい素鋼板の鉄損を
改善する方策として各種の技術が提案されている。近年
提案されたこれらの低鉄損化技術・の主なものは、 ■鋼中Sl量の増加 ■製品板厚の減少 ■レーザー照射などによる磁区細分化 などであり、鉄損改善に一応の成果が得られている。し
かし、さらなる低鉄撰材の開発の要請はま(″まず強く
なっている。
Various techniques have been proposed as measures to improve the iron loss of grain-oriented silicon steel sheets manufactured by the process described above. The main technologies that have been proposed in recent years to reduce iron loss are: ■Increasing the amount of Sl in steel ■Decreasing product plate thickness ■Refining magnetic domains by laser irradiation, etc., and these have shown some results in improving iron loss. is obtained. However, the demand for the development of further low-iron materials is becoming stronger.

従来技術とその難点 方向性けい素鋼板の鉄損を改善するために、前1・・述
の方法以外にも例えば表面鏡面化について、特公昭52
−24499号9%公昭56−4150号各公報に開示
されている。
Prior art and its drawbacks In order to improve the iron loss of grain-oriented silicon steel sheets, in addition to the methods described in 1.1 above, for example, surface mirror polishing was proposed.
-24499, 9% Publication No. 56-4150.

この方法は、上記の最終箱焼なましによる2次再結晶を
終えたあと、酸洗によって表面酸化物を・除去し、化学
研磨又は電解研磨により表向を平滑にして鏡面に加工す
るものであり、これによりかなり大幅な鉄損の改善が達
成される。
In this method, after completing the secondary recrystallization by the final box annealing described above, surface oxides are removed by pickling, and the surface is smoothed and mirror-finished by chemical polishing or electrolytic polishing. This results in a fairly significant improvement in iron loss.

しかし従来表面鏡面化のための酸洗と引続く化学研磨又
は電解研磨条件について詳細な検討がな、・されていな
かった。それ故酸洗がもしも不充分だ□と、表面鏡面化
による鉄損改善がわずかであったり、また逆に充分な酸
洗を行ったときには、表面の荒れが増大するため、化学
研磨又は電解研磨において数拾μにもわたって深く研磨
しなければ必要す鏡面が得られず、そのため鋼板の歩留
り低下と薬品消耗量の増大によって著るしいコスト上昇
を招くなど鏡面化による鉄損改善技術の実用化は回船で
あった。
However, in the past, detailed studies have not been made on the conditions for pickling and subsequent chemical polishing or electrolytic polishing to make the surface mirror-finished. Therefore, if pickling is insufficient□, the iron loss improvement due to surface mirror polishing may be slight, and conversely, if sufficient pickling is performed, surface roughness will increase, so chemical polishing or electrolytic polishing The required mirror surface cannot be obtained unless the steel plate is polished to a depth of several tens of microns, resulting in a significant cost increase due to a decrease in the yield of steel sheets and an increase in the amount of chemical consumption. It was a turnaround.

発明の目的 上記酸洗を省略し得る最終箱焼なましに一連する表面性
状の制御手段を講じることに加え、化学研磨又は電解研
磨における最適な研磨餡(深さ)さらにはその状態(平
滑さ)を究明してコストの1あまシかからない方法で鉄
損の著しく低い方向性けい素鋼板を製造する方法を提供
することがこの発明の目的である。
Purpose of the Invention In addition to providing a series of surface property control means for the final box annealing that can omit the pickling process, it is also possible to determine the optimum polishing fill (depth) and its state (smoothness) in chemical polishing or electrolytic polishing. It is an object of the present invention to provide a method for producing a grain-oriented silicon steel sheet with extremely low iron loss without incurring any cost.

発明の構成 上記の目的は次の事項を骨子とする手順をもって有利に
成就される。
Structure of the Invention The above object is advantageously achieved by a procedure consisting of the following points.

所望の最終板厚への冷間圧延後、脱炭焼なましと焼鈍分
離剤塗布を経る最終箱焼なましを施して2次再結晶を完
了させ、次いで表面酸化物を除去し化学研磨又は電解研
磨を施す段階より成る方向性けい素鋼板の製造方法にお
いて、アルミナを主成分とする焼鈍分離剤を用いて最終
箱焼なまし時1・・に生成する表面酸化物の量を、片面
当りの酸素目付1辻であられしてO−:3E/m”以下
に制限すること、酸洗なしに、直接化学研磨又は電解研
磨を片面当たり2〜10μmの範囲で施すこと、の結合
からなる鉄損の低い方向性けい素鋼板の製造方法(第1
1発明)。
After cold rolling to the desired final thickness, final box annealing is performed through decarburization annealing and application of an annealing separator to complete secondary recrystallization, and then surface oxides are removed and chemical polishing or electrolytic polishing is performed. In a method for manufacturing grain-oriented silicon steel sheets that includes a polishing step, the amount of surface oxide produced during final box annealing is determined by using an annealing separator containing alumina as the main component. Iron loss consists of the combination of limiting the oxygen basis weight to O-: 3E/m or less per cross section, and applying direct chemical polishing or electrolytic polishing to a range of 2 to 10 μm per side without pickling. Method for producing grain-oriented silicon steel sheet with low
1 invention).

所望の最終板Jシへの冷間圧延後、脱炭焼なましと焼鈍
分離剤塗布を経る最終箱焼なましを施して2次再結晶を
完了させ、次いで表面酸化物を除去し化学研I又は′電
解研磨を施す段階より成る方向。
After cold rolling to the desired final sheet J, final box annealing is performed through decarburization annealing and application of an annealing separator to complete secondary recrystallization, and then surface oxides are removed and Kagakuken I or 'A direction consisting of a step of applying electrolytic polishing.

性けい素鋼板の製貸方法において、アルミかを主□成分
とする焼鈍分離剤を用いて最終箱焼なまし時に生成する
表面酸化物の世を、片面当りの酸素目付量であられして
0.81/m2以下に制限すること、酸洗なしに、直接
化学研磨又は電解研磨を、片面当たり2〜lOμmの範
囲で施すこと、および研磨表面にコロイド状シリカ−り
ん酸塩系処理液を塗布し500〜750°Cの温度範囲
で熱処理して、張力付加型絶縁コーティングを施すこと
、の結合からなる鉄損の低い方向性けい素鋼板の製造方
法1・(第2発明)。
In the manufacturing method of silicon steel sheets, an annealing separator containing aluminum as the main component is used to eliminate surface oxides generated during final box annealing by reducing the amount of oxygen per surface to 0. .81/m2 or less, direct chemical polishing or electrolytic polishing without pickling in the range of 2 to 10 μm per side, and applying a colloidal silica-phosphate treatment solution to the polished surface. Method 1 for producing a grain-oriented silicon steel sheet with low core loss (second invention), comprising: heat-treating at a temperature range of 500 to 750°C and applying a tension-applied insulating coating.

なお、各発明における化学研す又は電解研心は、中心線
平均粗さRaで表わして0.4μm以下の表面の平滑さ
とすることが実施態様として推奨される。
In addition, it is recommended as an embodiment that chemical polishing or electrolytic polishing in each invention has a surface smoothness of 0.4 μm or less in terms of center line average roughness Ra.

ここに脱炭焼なましのあと、最終箱焼なましに1先e1
ってアルミナを主成分とする焼鈍分離剤をとくに用いて
最終箱焼なまし時に生成する表面酸化物の量を片面当り
の酸素目利16で表わして0.39 /m ”以下に制
限することを第1の要件としており、次いで片面2−1
0μmの範囲で化学ω■磨あ、。
After decarburization annealing, final box annealing is carried out by e1.
Therefore, the amount of surface oxide produced during the final box annealing should be limited to 0.39/m2 or less, expressed as an oxygen ratio of 16 per side, by particularly using an annealing separator containing alumina as the main component. is the first requirement, followed by one-sided 2-1
Chemical ω■ polishing in the range of 0 μm.

るいは電解研磨を行うことを第2の要件としてぃ゛る。The second requirement is to perform electrolytic polishing.

従来はこの種の表面酸化物の量を定量的に評価すること
に考え及んではいなかったため、生成量の如何を問わず
最終箱焼なまし後に必ず酸洗が適・用され、そのため前
に触れたように引続く鏡面化のための化学研磨又は電解
研磨を酸洗による表面荒れを除去すべき深すぎる研磨式
でももって行わねばならず、不経済、非効率であったわ
けである。
Previously, no consideration had been given to quantitatively evaluating the amount of this type of surface oxide, so pickling was always applied after the final box annealing, regardless of the amount produced, and therefore As mentioned above, the subsequent chemical polishing or electrolytic polishing for mirror polishing had to be carried out using a polishing method that was too deep to remove the surface roughness caused by pickling, which was uneconomical and inefficient.

なお最終箱焼なまし時に表面酸化物の生成を抑l・・制
する目的で焼鈍分離剤の主成分としてA12o8の粉末
を用いる方法自体はすでに米国特許第8785882号
明細書に開示のように粗粒の高純度AJ208を使用す
るもの、ならびにその改良に係る特開昭58−2211
8号公報および特開昭55−!・89428号公報に開
示のごときA12o8に蛇紋岩。
Note that the method of using A12o8 powder as the main component of an annealing separator for the purpose of suppressing the formation of surface oxides during final box annealing has already been proposed in US Pat. No. 8,785,882. JP-A-58-2211 which uses high-purity AJ208 grains and its improvement
Publication No. 8 and JP-A-55-! - Serpentine in A12o8 as disclosed in Publication No. 89428.

Ca (OH) 2などを配合するものなどがやはり仰
られている。
Those containing Ca (OH) 2 and the like are also being talked about.

しかしこれらの方法或はAl2O8とMyOを混合して
用いる方法では、その配合状如何により、表面、1酸化
物の生成量は異なるものとなるがその定量的′な評価は
従来行われてはいない。
However, in these methods or in the method using a mixture of Al2O8 and MyO, the surface and amount of monooxide produced differs depending on the mixture, but a quantitative evaluation has not been performed to date. .

この発明ではとくに生成酸化物の量を酸素目付量であら
れすこととして鋼板の片面当り0 、8 、!i’ /
m”以下に抑制し得る条件を限定して使用する。
In this invention, the amount of generated oxide is expressed as oxygen basis weight, which is 0,8,! per one side of the steel plate. i'/
Conditions that can be suppressed to below m'' are used.

このようにして従来鏡面仕上のために従来不可欠とされ
た酸洗工程なしに鋼板の片面に2〜10μmにわたる程
度に浅い化学@磨又は電解研磨のみによシ容易に鏡面仕
上げが成就され得るわけである。
In this way, a mirror finish can be easily achieved on one side of a steel plate only by shallow chemical polishing or electrolytic polishing over a depth of 2 to 10 μm, without the need for a pickling process, which was conventionally considered indispensable for achieving a mirror finish. It is.

ここに化学研磨又は電解+iJ)磨後の鋼板表面の平滑
さにつき中心線平均粗さくRa)で表わして0.4μm
以下とすることによってより効果的に鉄損の低い方向性
けい素鋼板の製造ができる。
Chemical polishing or electrolytic polishing + iJ) The smoothness of the steel plate surface after polishing is expressed as center line average roughness (Ra) of 0.4 μm.
A grain-oriented silicon steel sheet with low core loss can be more effectively manufactured by following the procedure below.

こうした方向性けい素鋼板は実際の使用によυ1適合さ
せるため、上記の研び表−にコロイド状シリカ−りん酸
塩系の処理液を塗布し、500〜750°Cの温度範囲
で熱処理を行なって張力付加型の絶縁コーティングを形
成才るを可とする。
In order to make these grain-oriented silicon steel sheets compatible with υ1 for actual use, a colloidal silica-phosphate treatment solution is applied to the above-mentioned polished surface, and heat treatment is performed in a temperature range of 500 to 750°C. It can be used to form tensioned insulating coatings.

次にこの発明の成功を導いた実験例について説明を加え
ると次のとおりである。
Next, an explanation of an experimental example that led to the success of this invention is as follows.

実験例 l G O,045%、 Si 8.82%、 Mn O,
065%。
Experimental example l G O, 045%, Si 8.82%, Mn O,
065%.

S O,004%、 Se O,019%およびSb 
O,021%を含み残部は実質的にFeよりなる組成の
けい素鋼坤、を8u厚にまで熱間圧延し、950°C,
5分間の均−化焼なましを施したのち、900°Cで8
分間の中間焼なましをはさむ2回の冷間圧延を行ない、
0.80mの最終板厚とした。
S O,004%, Se O,019% and Sb
A silicon steel sheet containing 21% O and the remainder substantially Fe was hot rolled to a thickness of 8u and heated at 950°C.
After 5 minutes of homogenization annealing, it was heated to 900°C for 8
Cold rolling is performed twice with an intermediate annealing of 1 minute in between.
The final plate thickness was 0.80 m.

次いで820°C,8分間にわたり湿濶水素雰囲j・・
気中で脱炭焼なましを行ない、この鋼板表面にAA!2
08と、主として高搗焼成したM、Oとからなる種々の
焼鈍分離剤を塗布して1180°C10hrH2中で最
終釉焼なましを行なった。
Then, at 820°C for 8 minutes in a humid hydrogen atmosphere...
Decarburization annealing is performed in the air, and the surface of this steel plate is AA! 2
A final glaze annealing was carried out at 1180°C and 10hrH2 by coating various annealing separators consisting of 08 and mainly high-temperature fired M and O.

この焼なまし後表向を水洗して残留した焼鈍分・離削を
除去したのち、HF + H2O2中で化学研磨を行な
いその片面当りの研磨量を8μm、7μmとなるように
それぞれ処理しエプスタイン法で鉄損(W□?150)
を測定した。
After this annealing, the surface surface was washed with water to remove residual annealing material and abrasion, and then chemical polishing was performed in HF + H2O2 so that the polishing amount per side was 8 μm and 7 μm, respectively. Iron loss by law (W□?150)
was measured.

この化学研磨処理の前徐にわたる鉄損差すなわ、・ち化
学研特による実測鉄4ij改善)、4(ΔW□7150
)に□及ぼす分離剤の配合条件、っまシ生成した表1r
■酸化物の酸素目付量の影扉を表1に示す。
The iron loss difference before this chemical polishing treatment is 4 (ΔW□7150
) The mixing conditions of the separating agent on □, Table 1r
■Table 1 shows the shadow of the oxygen basis weight of oxides.

酸素目付量で表わし”ic OJ fl/m2以下の酸
化物形成量が71(ν足される暁鈍分1怖剤黒8,4及
び5を用いることにより化学研磨後の鉄損改善−附を大
幅に増加していることが明らかである。
The amount of oxide formed below 71 (ν) expressed in terms of oxygen basis weight is 71 (ν).Improvement of iron loss after chemical polishing by using Akatsuki Minute 1 Dangerous Agent Black 8, 4 and 5. It is clear that there has been a significant increase.

° 第1図は表1扁8,4及び5の条件の試料にっ′い
て7μm目標で化学研磨した場合の鉄損改善量に対する
中心線平均粗さくRa)の影響を多数枚の試料について
単板鉄損測定法(SST)で調べた結果を示している。
° Figure 1 shows the influence of center line average roughness (Ra) on the iron loss improvement amount when chemical polishing is performed with a target of 7 μm on the samples under the conditions of 8, 4, and 5 in Table 1. The results are shown using the sheet iron loss measurement method (SST).

化学研磨後の表面の平滑さを中・心線平均粗さくRa)
で表わして0.4μm以下にすることが鉄損改善により
有利に寄与することがわかる。
The smoothness of the surface after chemical polishing is defined as the center line average roughness (Ra)
It can be seen that reducing the thickness to 0.4 μm or less contributes more advantageously to improving iron loss.

実験例 2 実験例1で実験に供したム5の条件の最終釉焼1・・な
まし後の試料なHF + H20□中で種々の段階に化
学研磨を行い、鉄損への影響を詳細に調べた。
Experimental Example 2 The final glaze firing 1 under the conditions of Mu5 used in the experiment in Experimental Example 1...The sample after annealing was chemically polished at various stages in HF + H20□, and the effect on iron loss was investigated in detail. I looked into it.

第2図は実測鉄損(W□7150)と板厚補正鉄損(W
□7/、。)に及ぼす化学研磨による研磨量の影響を同
一試料について調べた結果を示している。 l第2図か
ら明らかなように実測鉄損(W17150)はわずかの
世の化学研磨により大きく改善され、10μmをこえる
研磨によってもさらに見かけ上改善される。
Figure 2 shows the measured iron loss (W□7150) and the thickness-corrected iron loss (W
□7/. ) shows the results of investigating the effect of the amount of chemical polishing on the same sample. As is clear from FIG. 2, the measured iron loss (W17150) is greatly improved by a small amount of chemical polishing, and even by polishing exceeding 10 μm, the apparent improvement is further improved.

一方板厚補正鉄tfl (W、、* 15o) ILつ
いては10 、、。
On the other hand, for plate thickness correction iron tfl (W,,*15o) IL, it is 10,,.

μmをこえる研INをしてもほとんど改善されなく □
なることがわかる。
There is almost no improvement even if the polishing exceeds μm □
I know what will happen.

加えて103mをこえる過度な研磨は鋼材の歩留り低下
と化学研1%Fの薬品代によるコスト上昇となるだけで
板厚補正鉄損という実質上の鉄損の改善にはならず意味
がないことが、この実験から明らかになった。
In addition, excessive polishing exceeding 103 m will only reduce the yield of the steel material and increase the cost due to chemical costs for Kagakuken 1% F, but it will not actually improve iron loss (thickness correction iron loss) and is meaningless. became clear from this experiment.

一方第2図によると、2 ttm未満の研l#量では鉄
損の改善量がわずがしかtrいことがわかり、これらの
実験事実に則りこの発明では研@用を2〜I・・10μ
mに限定した。
On the other hand, according to Fig. 2, it can be seen that the amount of polishing l# less than 2 ttm results in only a slight improvement in iron loss, and based on these experimental facts, in this invention, the amount of grinding l# is less than 2 ttm. 10μ
m.

上肖己の実験結果はHF + H2O2中の化学研磨に
よる実験に基く成績でもって示したが電解研磨例えば0
rb8+ H3P0.中の電解研磨によっても同情な結
果が得られた。
Although the results of the above-mentioned experiments are based on experiments with chemical polishing in HF + H2O2, electrolytic polishing, for example 0
rb8+ H3P0. Comparable results were also obtained by electrolytic polishing.

鋼板の最表層部分を研磨除去して平滑化するときに何故
一定の研四深さの範囲においてのみ鉄損が著しく改善さ
れるかという点については以下のように推定される。
The reason why iron loss is significantly improved only within a certain polishing depth range when the outermost layer of a steel plate is polished and smoothed is estimated as follows.

すなわち最終釉焼なましの純化過程においてN、。Namely, N in the purification process of final glaze annealing.

S、5efJ″−鋼中から排除されるところ、完全には
 ゛除かれ得ないので最終釉焼なまし後の鋼板のとくに
最表層部分に窒化物、 MnS 、 MnSeさらには
MnS −MnSe固溶体となって析出し、残留してい
る。
S, 5efJ'' - Since it cannot be completely removed from the steel, it forms nitrides, MnS, MnSe, and MnS-MnSe solid solutions especially in the outermost layer of the steel sheet after final glaze annealing. It precipitates and remains.

こうした析出物は、鉄損、なかでも履歴損失を大幅に増
加させていると老えられ、そのためにこうした析出物が
存在している表層部分を研磨除去することは、鉄損改善
に効果があると推定できる。
These precipitates are said to significantly increase iron loss, especially hysteresis loss, so polishing away the surface layer where these precipitates exist is effective in improving iron loss. It can be estimated that

本とより表面平滑化、鏡面化それ自身も鉄41改善に大
きく寄与していることは従来から知られてい1・・ると
おりである。
It has been known for a long time that surface smoothing and mirror polishing themselves greatly contribute to the improvement of iron 411.

この発明によって得られろ表面平滑化した方向性けい累
銅板を用いて、さらにコロイド状シリカ・りん酸塩系の
コーティング処理液を塗布し、500〜750°Cの温
度範囲で焼付は処理を行な1つて御飯表面に張力付加型
の上塗り絶縁コーティングを形成してより@ましい製品
とすることができる(第2発明)。
Using a grain-oriented silica plate with a smooth surface obtained by this invention, a colloidal silica/phosphate coating treatment solution is further applied, and baking is performed at a temperature range of 500 to 750°C. Furthermore, a more desirable product can be obtained by forming a tension-applying top insulating coating on the surface of the rice (second invention).

コロイド状シリカ−りん酸塩系の張力付加型コーティン
グの処理qp7−とじては、特公昭56− 、、、。
For the treatment of colloidal silica-phosphate tension coating qp7-, Japanese Patent Publication No. 1986-.

5211、7号、特開昭52−25296@各公報に開
1示されるコロイド状シリカ−りん酸マグネシウム系の
コーティング処理液がこの発明に好適である。
Colloidal silica-magnesium phosphate coating treatment liquids disclosed in Patent Publications No. 5211, No. 7 and JP-A-52-25296 are suitable for this invention.

第2発明にあっては、こうした張力付加型コーティング
の焼付は温度として500〜750℃の範囲に限定され
る。この温度範囲に限定する理由は、500’Cよりも
低い温度では張力付加型のコーティングの形成ができず
、逆に750”Cよりも高い温度では、張力は充分発生
してもコーティングの密着性が良くないからである。
In the second invention, baking of such a tension coating is limited to a temperature range of 500 to 750°C. The reason for limiting this temperature range is that a tension-applied coating cannot be formed at temperatures lower than 500'C, and conversely, at temperatures higher than 750'C, even if sufficient tension is generated, the adhesion of the coating is poor. This is because it is not good.

以下この発明を実施例について居、明−1−る。Examples of this invention will be described below.

実施例 G O,043%、 Si 8.05%、 Mn 0.
060%。
Example GO O, 043%, Si 8.05%, Mn 0.
060%.

s o、ooa%、 Se O,018%およびSb 
O,024%を含み残部は実g的にFeの組成よりなる
けい素帖素1材を8朋厚に熱間圧延し、中間魂なましを
はさんで2回の冷間圧延を施してO,aO龍の最終板片
とし、湿潤水素雰囲気1中で脱炭焼なましを行ったのち
、A1080車量部とM、9020重量部からなる8 焼鈍分離剤を塗布し、1180″Cで10 Hr HB
中で最終釉焼なまl−を行なった。
s o, ooa%, Se O, 018% and Sb
A silicon material having a composition of 24% O,024% and the remainder being Fe was hot rolled to a thickness of 8 mm, and then cold rolled twice with an intermediate annealing in between. After decarburizing the O, aO dragon plate and annealing it in a wet hydrogen atmosphere, it was coated with an annealing separator consisting of 8 parts by weight of A1080 and 9020 parts by weight of M, and then annealed at 1180''C for 10 minutes. Hr HB
The final glaze annealing was carried out inside.

その緩表面に残留する焼鈍分離剤を水洗で除去した。The annealing separating agent remaining on the loose surface was removed by washing with water.

この状態で表面酸化物の計は酸素目付帽で表わして片面
当たり0.1g/mであった。
In this state, the total amount of surface oxide, expressed as an oxygen cap, was 0.1 g/m per side.

ついで50℃のHPO−P O−Cr0a系の研磨8 
4 25 液中で電、解1il)F暦を施こした。
Then, HPO-P O-Cr0a polishing at 50°C 8
4 25 Electrolysis and dissolution 1il) F calendar were applied in the liquid.

表2に同一試料の各研磨段階についてぞ国定した碍気特
性に及ぼす雷、解研廟量1表面粗さの影響を示す。
Table 2 shows the influence of surface roughness on the nationally determined insulating properties of the same sample at each polishing stage.

表 2 (注)※:重量減から換算した板厚 表2に示すように、第1発明によって鋼板の極最表層部
分を研磨するのみで、鉄損の極めて低い方向性けい素鋼
板の製造ができる。
Table 2 (Note) *: Sheet thickness calculated from weight reduction As shown in Table 2, the first invention makes it possible to manufacture grain-oriented silicon steel sheets with extremely low iron loss by simply polishing the outermost layer of the steel sheet. can.

次に表2の実施例に示す試料表面に下記に示す張力付加
型のコーティング処理液を焼付後片面8μmの膜厚とな
るように塗布し、400°Cで2分間大気中で乾燥した
後600°Cで1分間N2中で焼付けた。
Next, the tension-applied coating treatment solution shown below was applied to the surface of the sample shown in the example in Table 2 to a film thickness of 8 μm on one side after baking, and after drying in the air at 400°C for 2 minutes, Baked in N2 for 1 minute at °C.

コーティング処理液組成 焼付後の鉄損も、電解研磨後の鉄損と変わらず、コーテ
ィングの密着性も良好であった。
The iron loss after baking of the coating treatment solution composition was the same as the iron loss after electrolytic polishing, and the adhesion of the coating was also good.

発明の効果 この発明によれば、脱炭焼なまし後最終釉焼なましに先
立ってアルミナを主成分とする焼鈍分離剤を鋼板面に塗
布することによって、最終釉焼な・まし時に生成する表
面酸化物の消を、片面当シの1酸素目付量で0.8 C
1/m2以下に制御することができ、かくして従来の鏡
面仕上げに不可欠とされた酸洗工程を経る必要なしに直
接化学細い又は電解研磨に供することができてぞの研判
代を酸洗による表向荒れのある場合に比(7てはるか眞
少く、しかも鉄損の改善に自著に奏効する2〜lOμm
の研嘴代により容易に鏡面仕上げが成就できる。
Effects of the Invention According to the present invention, by applying an annealing separator containing alumina as a main component to the steel sheet surface after decarburization annealing and prior to final glaze annealing, the surface generated during final glaze annealing is reduced. The oxidation of oxides is 0.8 C per oxygen basis per side.
1/m2 or less, and thus can be directly subjected to chemical fine polishing or electrolytic polishing without the need to go through the pickling process that is indispensable for conventional mirror finishing. 2 to 10 μm, which is much smaller than when there is roughness, and is effective in improving iron loss.
A mirror finish can be easily achieved with the sharpening beak.

また、第2発明ではさらに張力付加型コーティングの密
着性が有利に改善されろ。
Further, in the second invention, the adhesion of the tension coating is further advantageously improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は7μmの研磨量にて化学研磨を施した方向性け
い素鋼板表面の中心線平均粗さと実測鉄損改善蝋との関
係な示す図表、 第2図は化学研磨による研磨量に対する実測鉄1゜損と
板厚補正鉄損の相関関係を示す図表である。 0、f O,2θ3 (1,!i (15θ6中C采襞
千均超さくRα)(μ割) 第2図
Figure 1 is a chart showing the relationship between the center line average roughness of the surface of a grain-oriented silicon steel plate chemically polished with a polishing amount of 7 μm and the measured iron loss improving wax. It is a chart showing the correlation between iron 1° loss and plate thickness corrected iron loss. 0,f O,2θ3 (1,!i (15θ6 inside C-fold 1,000-yen super Rα) (μ division) Fig. 2

Claims (1)

【特許請求の範囲】 1 所望の最終板厚への冷間圧延後、脱炭焼なましE焼
鈍分離剤塗布を経る最終箱焼なましとを施して2次再結
晶を完了させ、次いで表面酸化物を除去し、化学研磨又
は電解研磨を施す段階より成る方向性けい素鋼板の製造
方法において、 アルミナを主成分とする焼鈍分離剤を用いて最終箱焼な
まし時に生成する表面酸化物の量を、片面当りの酸素目
付量であられして0.8I!/@2以下に制限すること
、酸洗なしに、直接化学研磨又は電解研磨を1゜片面当
り2〜10μmの範囲で施すこと、の結合を特徴とする
鉄損の低い方向性けい素鋼板の製造方法。 λ 化学研磨又は電解研磨が中心線平均粗さくRa’)
で表わして0.4μm以下の表面の平滑さ、。 とするものである特許請求の範囲l記載の方□法。 & 所望の最終板厚への冷間圧延後、脱炭焼なましと焼
鈍分離剤塗布を経る最”終釉焼なましを施して2次再結
晶を完了させ、次いで表面酸化物を除去し化学研磨又は
電解研磨を施す段階より成る方向性けい素鋼板の製造方
法において、 アルミナを主w分とする焼鈍分離剤を用いて最終箱焼な
まし時に生成する表面酸化物の・・・量を、片面当りの
酸素目付量であられして0.8 、!7/m”以下に制
限すること、酸洗なしに、直接化学研磨又は′11解(
tJf磨を片面当たり2−10μmの範囲で施すこと、
および@暦表面にコロイド状シリカーシん1酸塩系処理
液を塗布し500〜750°Cの温度範囲で熱処理して
、張力付加型絶縁コーティングを施すこと、 の結合を特徴とする鉄損の低い方向性けい素鋼板の製f
?方法。
[Claims] 1. After cold rolling to the desired final plate thickness, decarburization annealing and final box annealing via application of an annealing separator are performed to complete secondary recrystallization, and then surface oxidation is performed. The amount of surface oxide produced during final box annealing using an alumina-based annealing separator in a method for producing grain-oriented silicon steel sheets comprising the steps of removing materials and applying chemical polishing or electrolytic polishing. The oxygen basis weight per side is 0.8I! /@2 or less, direct chemical polishing or electrolytic polishing without pickling in the range of 2 to 10 μm per 1° side. Production method. λ Chemical polishing or electrolytic polishing increases center line average roughness (Ra')
Surface smoothness of 0.4 μm or less. The method □ according to claim 1, which is & After cold rolling to the desired final plate thickness, a final glaze annealing is performed through decarburization annealing and application of an annealing separator to complete secondary recrystallization, and then surface oxides are removed and chemical In a method for producing a grain-oriented silicon steel sheet comprising a step of polishing or electrolytic polishing, the amount of surface oxide generated during final box annealing is determined using an annealing separator mainly containing alumina. The amount of oxygen per side must be limited to 0.8,!7/m” or less, and direct chemical polishing or '11 solution (
Apply tJf polishing in the range of 2-10 μm per side,
and applying a colloidal silica monochloride-based treatment solution to the surface and heat-treating it at a temperature range of 500 to 750°C to apply a tension-applied insulating coating. Made of grain-oriented silicon steel plate
? Method.
JP58145098A 1983-08-10 1983-08-10 Production of grain-oriented silicon steel sheet having low iron loss Pending JPS6039123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145098A JPS6039123A (en) 1983-08-10 1983-08-10 Production of grain-oriented silicon steel sheet having low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145098A JPS6039123A (en) 1983-08-10 1983-08-10 Production of grain-oriented silicon steel sheet having low iron loss

Publications (1)

Publication Number Publication Date
JPS6039123A true JPS6039123A (en) 1985-02-28

Family

ID=15377322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145098A Pending JPS6039123A (en) 1983-08-10 1983-08-10 Production of grain-oriented silicon steel sheet having low iron loss

Country Status (1)

Country Link
JP (1) JPS6039123A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253380A (en) * 1985-05-02 1986-11-11 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet
US5125991A (en) * 1987-09-10 1992-06-30 Kawasaki Steel Corporation Silicon steel sheets having low iron loss and method of producing the same
WO1993023577A1 (en) * 1992-05-08 1993-11-25 Nippon Steel Corporation Process for producing mirror-finished directional electric sheet
US5509976A (en) * 1995-07-17 1996-04-23 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having a mirror surface and improved core loss
US7371291B2 (en) 2001-01-19 2008-05-13 Jfe Steel Corporation Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253380A (en) * 1985-05-02 1986-11-11 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet
US5125991A (en) * 1987-09-10 1992-06-30 Kawasaki Steel Corporation Silicon steel sheets having low iron loss and method of producing the same
WO1993023577A1 (en) * 1992-05-08 1993-11-25 Nippon Steel Corporation Process for producing mirror-finished directional electric sheet
US5782998A (en) * 1992-05-08 1998-07-21 Nippon Steel Corporation Grain oriented electrical steel sheet having specular surface
US5509976A (en) * 1995-07-17 1996-04-23 Nippon Steel Corporation Method for producing a grain-oriented electrical steel sheet having a mirror surface and improved core loss
US7371291B2 (en) 2001-01-19 2008-05-13 Jfe Steel Corporation Grain-oriented magnetic steel sheet having no undercoat film comprising forsterite as primary component and having good magnetic characteristics

Similar Documents

Publication Publication Date Title
JPH07118750A (en) Production of mirror finished grain oriented silicon steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPS6039123A (en) Production of grain-oriented silicon steel sheet having low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JP2674917B2 (en) Method for producing high magnetic flux density grain-oriented silicon steel sheet without forsterite coating
JPH08333640A (en) Grain oriented silicon steel sheet extremely excellent in heat resistance and adhesion and formation of insulating film on it
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP2002173715A (en) Method for producing grain-oriented silicon steel plate having low iron-loss and decarburization-annealing furnace
JP2678850B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP3415379B2 (en) Insulating coating on grain-oriented silicon steel sheet and method of forming the same
JP2719266B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
RU2776246C1 (en) Anisotropic electrical steel sheet and its production method
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JPH07126751A (en) Production of mirror finished grain oriented silicon steel sheet with superior film adhesion
JPH02301571A (en) Production of grain-oriented electrical steel sheet having uniform glassy coating film
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS62133021A (en) Grain oriented electrical steel sheet having good adhesiveness of glass film and low iron loss and production thereof
JPH0741958A (en) Formation of insulating coating film on grain-oriented silicon steel sheet
JPS6318087A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH0327629B2 (en)