JPH0218392B2 - - Google Patents

Info

Publication number
JPH0218392B2
JPH0218392B2 JP8738885A JP8738885A JPH0218392B2 JP H0218392 B2 JPH0218392 B2 JP H0218392B2 JP 8738885 A JP8738885 A JP 8738885A JP 8738885 A JP8738885 A JP 8738885A JP H0218392 B2 JPH0218392 B2 JP H0218392B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
tension
applying
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8738885A
Other languages
Japanese (ja)
Other versions
JPS61246376A (en
Inventor
Yoshiaki Iida
Ujihiro Nishiike
Kimimichi Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8738885A priority Critical patent/JPS61246376A/en
Publication of JPS61246376A publication Critical patent/JPS61246376A/en
Publication of JPH0218392B2 publication Critical patent/JPH0218392B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 鉄損の低い方向性けい素鋼板とその製造方法に
関して、この明細書に述べる技術内容は、けい素
鋼板表面の被膜とくにフオルステライト被膜上に
重ねて被成される張力付与型の絶縁コーテイング
被膜に不均一性を付与して該表面に異張力の働く
領域を区画形成させることにより、鉄損を向上さ
せることに関連している。 方向性けい素鋼板は、主として変圧器その他の
電気機器の鉄心として利用され、その磁化特性が
優れていること、とくに鉄損(W17/50で代表さ
れる)が低いことが要求されている。 このためには、第一に鋼板中の2次再結晶粒の
<001>粒方向を圧延方向に高度に揃えることが
必要であり、第二には、最終製品の鋼中に存在す
る不純物や析出物をできるだけ減少させる必要が
ある。かかる配慮の下に製造される方向性けい素
鋼板は、今日まで多くの改善努力によつて、その
鉄損値も年を追つて改善され、最近では板厚0.30
mmの製品でW17/50の値が1.05W/Kgの低鉄損の
ものが得られている。 しかし、数年前のエネルギー危機を境にして、
電力損失のより少ない電気機器を求める傾向が一
段と強まり、それらの鉄芯材料として、さらに鉄
損の低い方向性けい素鋼板が要請されるようにな
つてきた。 (従来の技術) ところで、方向性けい素鋼板の鉄損を下げる手
法としては、Si含有量を高める、製品板厚を薄く
する、2次再結晶粒を細かくする、不純物含有量
を低減する、そして(110)〔001〕方位の2次再
結晶粒をより高度に揃えるなど、主に冶金学的方
法が一般に知られているが、これらの手法は現行
の生産手段の上からはもはや限界に達していて、
これ以上の改善は極めて難しく、たとえ多少の改
善が認められたとしても、その努力の割には鉄損
改善の実効は僅かとなるに至つていた。 これらの方法とは別に、特公昭54−23647号公
報に開示されているように、鋼板表面に2次再結
晶阻止領域を形成させることにより、2次再結晶
粒を細粒化させる方法が提案されている。しかし
ながらこの方法は、2次再結晶粒径の制御が安定
していないため、実用的とは云いがたい。 その他特公昭58−5968号公報には、2次再結晶
後の鋼板の表面にボールペン状小球により、微小
歪を鋼板表層に導入することにより、磁区の幅を
微細化し、鉄損を低減する技術が、また、特公昭
57−2252号公報には、最終製品板表面に、圧延方
向にほぼ直角にレーザービームを数mm間隔に照射
し、鋼板表層の高転位密度領域を導入することに
より、磁区の幅を微細化し、鉄損を低減する技術
が提案されている。さらに、特開昭57−188810号
公報には、放電加工により鋼板表層に微小歪を導
入し、磁区幅を微細化し、鉄損を低減する同様の
技術が提案されている。 (発明が解決しようとする問題点) これら3種類の方法は、いずれも2次再結晶後
の鋼板の地鉄表層に微小な塑性歪を導入すること
により磁区幅を微細化し鉄損の低減を図るもので
あつて、均しく実用的であり、かつ鉄損低減効果
も優れているが、鋼板の打抜き加工、せん断加
工、巻き加工などの後の歪取り焼鈍や、コーテイ
ングの焼付け処理の如き熱処理によつて、塑性歪
導入による効果が減殺される欠点を伴う。なおコ
ーテイング処理後に微小な塑性歪の導入を行う場
合は、例えば、特開昭57−192223号公報に開示さ
れているごとく、絶縁性を維持するために絶縁コ
ーテイングの再塗布を行わねばならず歪付与工
程、再塗布工程と、工程の大幅増加になり、コス
トアツプをもたらす。 この発明は、上記した先行技術とは発想を異に
した磁区幅の細分化手段をもつて、高温における
歪取り焼鈍の後においても特性劣化を伴わずに、
製品の磁区幅細分化の実効を確保し得るようにし
た方向性けい素鋼板を与えることを目的とする。 (問題点を解決するための手段) この発明は、方向性けい素鋼板の表面被膜を構
成する通常のフオルステライト被膜の上に、磁気
特性や、表面特性の改善の目的で被成される張力
付与型コーテイング被膜において、張力付与型効
果の異なる領域を区画形成することにより、鋼板
の磁区幅細分化が、助長されることの新規知見に
立脚する。 まず解決手段の解明経緯について説明する。 方向性けい素鋼板の製造工程において、最終板
厚に冷間圧延された鋼板は有害な炭素を取除くた
め通常脱炭焼鈍が施される。かかる焼鈍によつて
鋼板は、内部に微細な分散第2相からなる抑制剤
を含有した1次再結晶集合組織となるが、同時に
鋼板表面層は微細なSiO2粒子が地鉄内に分散し
たサブスケール構造となる。この脱炭・1次再結
晶板には、その表面にMgOを主成分とする焼鈍
分離剤を塗布したのち、2次再結晶焼鈍ついでそ
れに引き続き1200℃前後での高温純化焼鈍が施さ
れる。この2次再結晶焼鈍によつて鋼板の結晶粒
は、(110)〔001〕方位の粗大は粒になる。また高
温純化焼鈍によつて鋼板内部に存在していた抑制
剤の1部であるSやSeやNなどは鋼板地鉄外に
除外される。 さらに、この純化焼鈍において、鋼板表層のサ
ブスケール中のSiO2と表面に塗布された焼鈍分
離剤中のMgOとが、次式、 2MgO+SiO2→Mg2SiO4 のように反応して鋼板表面に、フオルステライト
(Mg2SiO4)の多結晶からなる被膜を形成する。
このとき、余剰のMgOは未反応物として鋼板と
鋼板との融着を防止する役割を果す。そして高温
純化焼鈍を終えた鋼板は未反応の焼鈍分離剤を取
除き、絶縁コーテイングの上塗りやコイルセツト
を取除くための処理を施して製品となすわけであ
る。 この時、絶縁コーテイングとしては、磁歪特性
や鉄損の改善の目的で張力付与型コーテイングが
施される場合が多い。この張力付与型コーテイン
グは、鋼板表面に被成された場合、けい素鋼の熱
膨張係数よりも、小さな熱膨張係数を呈するた
め、鋼板に張力を付与することができる。すなわ
ち、高温焼付時に無応力状態で鋼板表面に被成し
ていたものが、常温まで冷却される際、その熱膨
張係数の差に応じて鋼板の地鉄部とコーテイング
膜とで収縮量に差異が生じるため、鋼板の地鉄表
面には弾性的張力が、一方コーテイング膜には弾
性的圧縮力が働くのである。したがつて焼付け処
理は高温度で行うことが、張力付与効果の上で一
層有利なわけである。 この張力付与型絶縁コーテイング被膜によつて
鋼板の磁区の幅はある程度細分化されるが、発明
者らは、種々研究を重ねた結果、張力付与型絶縁
コーテイング被膜に局所的に、地鉄に対する張力
付与に実質的に寄与しない領域を区画形成するこ
とにより、さらに、鋼板の磁区の幅が細分化さ
れ、鋼板の鉄損が一層改善されることを突止めた
のである。 この発明は、上記の知見に由来するものであ
る。 すなわちこの発明は、含けい素鋼スラブを熱間
圧延して得られた熱延板に、1回または中間焼鈍
を挟む2回の冷間圧延を施して最終板厚としたの
ち、脱炭・1次再結晶焼鈍を施し、ついで鋼板表
面にMgOを主成分とする焼鈍分離剤を塗布して
から最終仕上げ焼鈍を施し、しかるのち上塗り絶
縁コーテイングを施す一連の工程よりなる方向性
けい素鋼板の製造方法において、 最終仕上げ焼鈍を経たフオルステライト被膜付
きの方向性けい素鋼板の表面に、上塗り絶縁コー
テイングとして張力付与型の絶縁コーテイング被
膜を被成するに際し、 該コーテイング処理液の塗布に先立つて、該コ
ーテイング処理液に対して撥液性を有しかつ非張
力付与型の絶縁被膜を連続または非連続の線状に
形成し、しかるのち該コーテイング処理液を塗布
ついで焼付けることにより、張力付与型絶縁コー
テイング被膜中に地鉄に対する張力付与に寄与し
ない線状異質領域を区画形成することからなる、
歪取り焼鈍による特性の劣化がない低鉄損方向性
けい素鋼板の製造方法である。 以下この発明について具体的に説明する。 さてこの発明鋼板において、張力付与型のコー
テイング被膜中に区画形成する異質領域の形状お
よび方位などが磁区の細分化に及ぼす影響につい
て調べたところ、形状としては、第1図イに示し
たような連続または非連続の線状形状がとくに鉄
損低減効果において有効であることが認められ
た。ただし非連続の線状領域においては、点と点
との間隔が0.5mm以上離れると効果は低減した。
この点、破線のように線の一部が少しづつ抜けて
いても鉄損低減効果は線状の場合とほぼ同様であ
つた。 また絶縁コーテイング被膜中の異質領域の方向
については、第1図ロや第2図に示したように、
圧延の方向に対し60〜90゜の角度とした場合がと
くに有効であつた。 さらに連続または非連続の線状領域の幅につい
ては、第3図に示したように0.015〜1.5mmの範囲
でとりわけ優れた効果が得られた。 なお異質領域は、圧延方向を横切る向きに繰返
し形成することが、鋼板全体の鉄損を下げる上で
有効で、たとえば第1図ハに示したような領域間
の間隔は、第4図に示した実験結果からも明らか
なような0.5mm〜15mmの範囲とすることが望まし
い。またかかる領域の形成は、鋼板の両面であつ
ても、片面にのみであつても、その効果にほとん
ど変わりはない。さらにこの発明において、線状
とは、厳密な意味での直線だけを指すものではな
く、曲率の小さい曲線や波線などをも含むもので
ある。 次に、線状異質領域を構成する非張力付与型の
絶縁被膜の熱膨張係数が鉄損低減効果に及ぼす影
響について調査したところ、第5図に示したよう
に、非張力付与型絶縁被膜の熱膨張係数として
は、8〜20×10-61/℃の範囲が好適であること
が判明した。 ここにかような撥液性を有する非張力付与型絶
縁被膜の形成剤としては、ボロシロキサン系樹脂
やチタン化合物、アルミナ化合物、コバルト化合
物を主原料とする無機質系耐熱接着剤などが有利
に適合する。 一方張力付与型絶縁コーテイング被膜の熱膨張
係数は、6×10-61/℃以下であることが望まし
く、そのための処理液としては、りん酸マグネシ
ウムおよびりん酸アルミニウムのうち少なくとも
一種と、コロイド状シリカと、無水クロム酸およ
びクロム酸塩のうち少なくとも一種とを主成分と
するコーテイング液が好適である。 またかかる絶縁コーテイング被膜の厚みは、磁
気特性、絶縁性、占積率および耐錆性などの点を
考慮すると、片面当り0.5〜10g/m2程度が望ま
しい。 なお第6図イ,ロに線状異質領域の好適な区画
形成例を示す。同図ロに示したように、線状異質
領域を形成する非張力付与型の絶縁被膜はその厚
さが張力付与型の絶縁コーテイング被膜と異なつ
ていても一向にかまわない。 次にこの発明に係る方向性けい素鋼板の製造方
法について説明する。 この発明の素材は、公知の製鋼方法、例えば転
炉電気炉などによつて製鋼し、さらに造塊―分塊
法または連続鋳造法などによつてスラブ(鋼片)
としたのち、熱間圧延によつて得られる熱延コイ
ルを用いる。 この熱延板は、Siを2.0〜4.0%程度含有する組
成である必要がある。というのは、Siが2.0%未
満では鉄損の劣化が大きく、また4.0%を超える
と、冷間加工性が劣化するからである。その他の
成分については方向性けい素鋼板の素材成分であ
れば、いずれも適用可能である。 次に冷間圧延により、最終目標板厚とされる
が、冷間圧延は、1回もしくは中間焼鈍を挾む2
回の冷間圧延により行なわれる。このとき必要に
応じて熱延板の均一化焼鈍や、冷間圧延に替わる
温間圧延を施すこともできる。 最終板厚とされた冷延板は、脱炭可能な程度の
酸化性雰囲気もしくはサブスケール形成可能な程
度の弱酸化性雰囲気中で1次再結晶焼鈍が施され
る。 ついで、鋼板表面MgOを主成分とする焼鈍分
離剤を塗布したのち、2次再結晶焼鈍ついで高温
純化焼鈍と続く最終仕上焼鈍を行なうことによ
り、フオルステライト被膜が形成される。 しかるのち、かくして得られた均一なフオルス
テライト被膜をそなえる方向性けい素鋼板の表面
に張力付与型の絶縁コーテイング被膜を被成する
わけであるが、この発明では、絶縁コーテイング
処理液の塗布に先立つて、該コーテイング処理液
に対して撥液性を有しかつ地鉄に対する張力付与
に実質的に寄与しない非張力付与型の絶縁被膜を
連続または非連続の線状に形成させておくことが
肝要である。 ついでかような非張力付与型絶縁被膜を連続ま
たは非連続の線状に形成させた鋼板の表面に、張
力付与型の絶縁コーテイング処理液を塗布ついで
焼付けて張力付与型絶縁コーテイング被膜を被成
する。 かくして地鉄に対する張力付与に実質的に寄与
しない異質領域が連続または非連続の線状に形成
された張力付与型絶縁コーテイング被膜が被成さ
れるわけである。 (作 用) かかる手法によつて、鉄損特性が改善される理
由は、次のとおりと考えられる。 すなわち、張力付与型絶縁コーテイング被膜に
線状異質領域を設けることにより鋼板表面には異
張力領域が生じるが、この異張力によつて鋼板表
面に弾性歪が導入され、その結果磁区が有効に細
分化されるためである。 鋼板の地鉄表層部に塑性歪領域やレーザー照射
痕のような高転位密度領域を存在させる従来法の
場合と異なり、人為的な塑性歪領域がみられない
ので、通常800℃前後で1分間から数時間にわた
つて施される歪取り焼鈍を施しても鉄損の劣化が
ないという特筆すべき利点がある。前者の場合は
地鉄表層部の塑性歪が、高温によつて消減してい
くので鉄損の劣化が生じるという最大欠点を有す
るが、この発明の場合は歪取り焼鈍の有無にかか
わらず良好な鉄損を示す。 (実施例) 実施例 1 Si:3.3wt%を含有し、表面に均一なフオルス
テライト被膜を有する仕上げ焼鈍済みの方向性け
い素鋼板(板厚:0.30mm)の表面に、ポロシロキ
サン系樹脂(ポロシロキサン樹脂100:シリロン
樹脂50:カオリナイト10)を、圧延方向と直角の
向きに幅:0.3mm、間隔:5mmの連続した直線状
に繰返し塗布したのち、300℃で乾燥させた。 ついで水100mlに、りん酸マグネシウム40g、
無水クロム酸3g、SiO2分15gを含むコロイド
状シリカおよびシリカ微粒子(50〜1000Å)0.8
gを含有する張力付与型の絶縁コーテイング液
(被膜形成後の熱膨張係数:4×10-61/℃)を、
鋼板表面に均一に塗布し、800℃で焼付けた。 かくして得られた製品板、さらには800℃、3
時間の歪取り焼鈍後における鉄損特性について調
べた結果を、表1に示す。 なお表1には比較のため、鋼板全面に均一な絶
縁コーテイング被膜を被成した場合(比較例A)、
またかかる鋼板の表面に、レーザー光を0.4mm間
隔で点の列状に、圧延方向と直角方向に向けて、
列と列との間隔:4mmの条件で照射した場合(比
較例B)の調査結果も合わせて示す。
(Industrial Application Field) Regarding grain-oriented silicon steel sheets with low iron loss and their manufacturing methods, the technical content described in this specification is to reduce the tensile strength formed over the coating on the surface of the silicon steel sheet, especially the forsterite coating. It is related to improving core loss by imparting non-uniformity to the applied insulating coating film and defining regions where different tensions act on the surface. Grain-oriented silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have excellent magnetization characteristics, especially low iron loss (represented by W17/50). For this purpose, firstly, it is necessary to align the <001> grain direction of the secondary recrystallized grains in the steel sheet to a high degree in the rolling direction, and secondly, it is necessary to align the <001> grain direction of the secondary recrystallized grains in the steel sheet with a high degree of alignment, and secondly, it is necessary to prevent impurities present in the final product steel. It is necessary to reduce precipitates as much as possible. Grain-oriented silicon steel sheets manufactured with this consideration have been improved over the years through many improvement efforts, and recently, the thickness of the grain-oriented silicon steel sheets has increased to 0.30.
mm product with a W17/50 value of 1.05W/Kg and low core loss. However, after the energy crisis a few years ago,
The trend for electrical equipment with lower power loss has become stronger, and grain-oriented silicon steel sheets with even lower core loss have been required as core materials for these devices. (Prior art) By the way, methods to reduce the iron loss of grain-oriented silicon steel sheets include increasing the Si content, reducing the thickness of the product sheet, making secondary recrystallized grains finer, and reducing the impurity content. Metallurgical methods are generally known, such as aligning secondary recrystallized grains with (110) [001] orientation to a higher degree, but these methods have reached their limits with current production methods. It has reached
Further improvement is extremely difficult, and even if some improvement is recognized, the effectiveness of iron loss improvement is small compared to the efforts made. Apart from these methods, as disclosed in Japanese Patent Publication No. 54-23647, a method has been proposed in which secondary recrystallization grains are made finer by forming a secondary recrystallization inhibiting region on the surface of the steel sheet. has been done. However, this method cannot be said to be practical because control of the secondary recrystallized grain size is not stable. In addition, Japanese Patent Publication No. 58-5968 discloses that micro-strain is introduced into the surface layer of the steel plate after secondary recrystallization using ballpoint pen-shaped balls, thereby making the width of the magnetic domain finer and reducing iron loss. The technology is also
Publication No. 57-2252 discloses that the width of the magnetic domain is refined by irradiating the surface of the final product sheet with a laser beam at intervals of several mm almost perpendicular to the rolling direction to introduce high dislocation density regions in the surface layer of the steel sheet. Techniques have been proposed to reduce iron loss. Further, JP-A-57-188810 proposes a similar technique of introducing micro-strain into the surface layer of a steel sheet by electrical discharge machining, thereby refining the magnetic domain width and reducing iron loss. (Problems to be Solved by the Invention) These three methods all introduce minute plastic strain into the surface layer of the steel sheet after secondary recrystallization to refine the magnetic domain width and reduce iron loss. Although it is uniformly practical and has an excellent iron loss reduction effect, heat treatment such as strain relief annealing after punching, shearing, and winding of steel plates, and baking treatment of coatings This has the disadvantage that the effect of introducing plastic strain is diminished. Note that if a minute plastic strain is introduced after the coating treatment, the insulating coating must be reapplied to maintain insulation, as disclosed in Japanese Patent Application Laid-open No. 57-192223, and the strain This results in a significant increase in the number of processes, including the application process and re-coating process, resulting in an increase in costs. This invention has a magnetic domain width refining means that is different from the above-mentioned prior art, and has no characteristic deterioration even after strain relief annealing at high temperature.
The object of the present invention is to provide a grain-oriented silicon steel sheet that can ensure the effectiveness of magnetic domain width refinement in a product. (Means for Solving the Problems) This invention is directed to a tensile strength coating formed on a normal forsterite coating constituting the surface coating of a grain-oriented silicon steel sheet for the purpose of improving magnetic properties and surface properties. This work is based on the new finding that the magnetic domain width refinement of the steel sheet is facilitated by forming regions with different tension-applying effects in the applying-type coating. First, I will explain how the solution was discovered. In the manufacturing process of grain-oriented silicon steel sheets, the steel sheets that have been cold-rolled to the final thickness are usually subjected to decarburization annealing to remove harmful carbon. Through such annealing, the steel sheet becomes a primary recrystallized texture containing an inhibitor consisting of a finely dispersed second phase, but at the same time, the surface layer of the steel sheet has fine SiO 2 particles dispersed within the base steel. It has a subscale structure. After applying an annealing separator containing MgO as a main component to the surface of this decarburized/primary recrystallized plate, it is subjected to secondary recrystallization annealing, followed by high-temperature purification annealing at around 1200°C. As a result of this secondary recrystallization annealing, the crystal grains of the steel sheet become coarse grains with (110) [001] orientation. Furthermore, some of the inhibitors such as S, Se, and N that were present inside the steel sheet due to high-temperature purification annealing are removed from the steel sheet base metal. Furthermore, in this purification annealing, SiO 2 in the subscale of the steel sheet surface layer and MgO in the annealing separator applied to the surface react as shown in the following formula, 2MgO + SiO 2 → Mg 2 SiO 4 and , a film made of polycrystalline forsterite (Mg 2 SiO 4 ) is formed.
At this time, excess MgO acts as an unreacted substance to prevent fusion between the steel plates. After high-temperature purification annealing, the steel sheet is processed to remove unreacted annealing separator and to remove the top coat of insulation coating and coil set. At this time, as the insulating coating, a tension-applying coating is often applied for the purpose of improving magnetostrictive properties and iron loss. When this tension-applying coating is formed on the surface of a steel sheet, it exhibits a coefficient of thermal expansion smaller than that of silicon steel, and therefore can apply tension to the steel sheet. In other words, when the material that forms on the surface of the steel sheet in a stress-free state during high-temperature baking is cooled to room temperature, the amount of shrinkage differs between the steel sheet base and the coating film, depending on the difference in their thermal expansion coefficients. As a result, an elastic tension force acts on the surface of the steel plate, while an elastic compression force acts on the coating film. Therefore, performing the baking treatment at a high temperature is more advantageous in terms of tension imparting effect. The width of the magnetic domain of the steel sheet is subdivided to some extent by this tension-applying insulating coating film, but as a result of various studies, the inventors have found that the tension-applying insulating coating film is able to locally apply tension to the base steel. They found that by defining regions that do not substantially contribute to the addition of magnetic particles, the width of the magnetic domains of the steel sheet is further subdivided, and the iron loss of the steel sheet is further improved. This invention is derived from the above knowledge. That is, in this invention, a hot-rolled sheet obtained by hot rolling a silicon-containing steel slab is subjected to cold rolling once or twice with intermediate annealing to achieve the final thickness, and then decarburized and A grain-oriented silicon steel sheet is produced by a series of steps of first recrystallization annealing, then applying an annealing separator containing MgO as a main component to the surface of the steel sheet, final annealing, and then applying a top insulating coating. In the manufacturing method, when applying a tension-applying insulation coating film as a top insulation coating on the surface of a grain-oriented silicon steel sheet with a forsterite coating that has undergone final finish annealing, prior to applying the coating treatment liquid, By forming a continuous or discontinuous linear insulating film that is liquid repellent to the coating treatment liquid and is non-tension-applying type, and then applying and baking the coating treatment liquid, a tension-applying type insulation coating is formed. It consists of forming linear heterogeneous regions in the insulating coating that do not contribute to imparting tension to the base steel.
This is a method for manufacturing grain-oriented silicon steel sheets with low iron loss that does not cause deterioration of properties due to strain relief annealing. This invention will be specifically explained below. In the steel sheet of this invention, we investigated the influence of the shape and orientation of the heterogeneous regions formed in the tension-applying coating on the subdivision of the magnetic domain, and found that the shape was as shown in Figure 1A. It has been found that continuous or discontinuous linear shapes are particularly effective in reducing iron loss. However, in discontinuous linear regions, the effect decreased when the distance between points was 0.5 mm or more.
In this respect, even if a portion of the line was gradually removed as in the case of a broken line, the effect of reducing iron loss was almost the same as in the case of a linear line. In addition, regarding the direction of the heterogeneous region in the insulating coating film, as shown in Figure 1B and Figure 2,
An angle of 60 to 90 degrees with respect to the direction of rolling was particularly effective. Furthermore, particularly excellent effects were obtained when the width of the continuous or discontinuous linear region was in the range of 0.015 to 1.5 mm, as shown in FIG. It is effective to repeatedly form the heterogeneous regions in a direction transverse to the rolling direction in order to reduce the core loss of the entire steel plate. For example, the spacing between the regions as shown in Fig. It is desirable to set it in the range of 0.5 mm to 15 mm as is clear from the experimental results. Further, the effect is almost the same whether such regions are formed on both sides of the steel plate or only on one side. Furthermore, in this invention, linear does not mean only straight lines in the strict sense, but also includes curves with small curvature, wavy lines, and the like. Next, we investigated the effect of the thermal expansion coefficient of the non-tensioned insulating coating that constitutes the linear heterogeneous region on the iron loss reduction effect, and found that the It has been found that a range of 8 to 20×10 −6 1/° C. is suitable for the coefficient of thermal expansion. Inorganic heat-resistant adhesives containing borosiloxane resins, titanium compounds, alumina compounds, and cobalt compounds as main raw materials are advantageously suitable as agents for forming such non-tension-applying insulating films with liquid repellency. do. On the other hand, it is desirable that the thermal expansion coefficient of the tension-applied insulating coating film is 6×10 -6 1/°C or less, and the treatment liquid for this purpose includes at least one of magnesium phosphate and aluminum phosphate, and a colloidal A coating liquid containing silica and at least one of chromic anhydride and chromate as a main component is suitable. Further, the thickness of the insulating coating film is desirably about 0.5 to 10 g/m 2 per side in consideration of magnetic properties, insulation, space factor, rust resistance, etc. Incidentally, FIGS. 6A and 6B show examples of suitable division formation of linear heterogeneous regions. As shown in FIG. 2B, it does not matter at all that the thickness of the non-tension-applied insulation coating forming the linear heterogeneous region is different from that of the tension-applied insulation coating. Next, a method for manufacturing a grain-oriented silicon steel sheet according to the present invention will be explained. The material of this invention is produced by a known steel-making method, such as a converter electric furnace, and then into a slab (steel billet) by an ingot-blowing method or a continuous casting method.
After that, a hot rolled coil obtained by hot rolling is used. This hot rolled sheet needs to have a composition containing approximately 2.0 to 4.0% Si. This is because if Si is less than 2.0%, the iron loss will deteriorate significantly, and if it exceeds 4.0%, cold workability will deteriorate. As for the other components, any material components of grain-oriented silicon steel sheets can be used. Next, cold rolling is performed to achieve the final target thickness, but cold rolling is performed once or twice with intermediate annealing.
This is done by cold rolling twice. At this time, if necessary, uniform annealing of the hot rolled sheet or warm rolling instead of cold rolling may be performed. The cold-rolled sheet having the final thickness is subjected to primary recrystallization annealing in an oxidizing atmosphere that allows decarburization or a weakly oxidizing atmosphere that allows subscale formation. Next, after applying an annealing separator mainly composed of MgO to the surface of the steel sheet, secondary recrystallization annealing, high-temperature purification annealing, and final finishing annealing are performed to form a forsterite coating. Thereafter, a tension-applying insulating coating film is applied to the surface of the grain-oriented silicon steel sheet having the uniform forsterite coating obtained in this way. Therefore, it is important to form a continuous or discontinuous linear insulating coating that is liquid repellent to the coating treatment liquid and does not substantially contribute to imparting tension to the base steel. It is. Next, on the surface of the steel plate on which such a non-tensioned insulation coating has been formed in a continuous or discontinuous line, a tensioned insulation coating treatment liquid is applied and then baked to form a tensioned insulation coating. . In this way, a tension-applying insulating coating film is formed in which heterogeneous regions that do not substantially contribute to imparting tension to the base iron are formed in continuous or discontinuous lines. (Function) The reason why the iron loss characteristics are improved by this method is considered to be as follows. In other words, by providing a linear heterogeneous region in the tension-applying insulating coating film, a region of different tension is created on the surface of the steel sheet, but this different tension introduces elastic strain to the surface of the steel sheet, and as a result, the magnetic domains are effectively subdivided. This is because it will be made into Unlike the conventional method in which plastic strain areas and high dislocation density areas such as laser irradiation marks are present in the surface layer of the steel plate, there are no artificial plastic strain areas, so it is usually heated to around 800℃ for 1 minute. It has the notable advantage that there is no deterioration in iron loss even after strain relief annealing is performed over several hours. In the former case, the plastic strain in the surface layer of the steel base disappears at high temperatures, leading to deterioration of iron loss, which is the biggest drawback. Indicates iron loss. (Example) Example 1 Polysiloxane resin ( Polysiloxane resin 100: silylon resin 50: kaolinite 10) was repeatedly applied in a continuous straight line perpendicular to the rolling direction with a width of 0.3 mm and an interval of 5 mm, and then dried at 300°C. Next, add 40g of magnesium phosphate to 100ml of water.
Colloidal silica and silica microparticles (50-1000 Å) containing 3 g of chromic anhydride, 15 g of SiO 2 min 0.8
A tension-applying insulating coating liquid (coefficient of thermal expansion after film formation: 4 × 10 -6 1/°C) containing g
It was applied uniformly to the surface of a steel plate and baked at 800℃. The product board thus obtained was further heated to 800℃, 3
Table 1 shows the results of investigating the iron loss characteristics after time stress relief annealing. For comparison, Table 1 shows the case where a uniform insulating coating was formed on the entire surface of the steel plate (Comparative Example A),
In addition, a laser beam is directed onto the surface of the steel plate in a row of dots at 0.4 mm intervals in a direction perpendicular to the rolling direction.
The investigation results obtained when irradiation was performed under the condition that the distance between rows was 4 mm (Comparative Example B) are also shown.

【表】 同表より明らかなように、この発明に従い得ら
れた製品板は、鉄損特性が格段に改善され、しか
もその効果は歪取り焼鈍後においても劣化するこ
とはなかつた。 これに対し、鋼板全面に単に絶縁コーテイング
被膜を被成した比較例Aでは十分満足のいく鉄損
低減効果が得られず、またレーザー光を利用した
比較例Bでは、レーザー光照射ままでは良好な鉄
損値が得られたものの、歪取り焼鈍後に鉄損特性
の大幅な劣化をきたした。 実施例 2 Si:3.3wt%を含有し、表面に均一なフオルス
テライト被膜を有する仕上焼鈍済みの方向性けい
素鋼板(板厚:0.30mm)の表面に、実施例1と同
じポロシロキサン系樹脂を繰返し塗布し、200℃
で乾燥させた。 ついで同じく実施例1と同様にして張力付与型
の絶縁コーテイング被膜を被成した。 かくして得られた製品板の絶縁コーテイング被
成処理前後、さらにはN2中にて800℃、5時間の
歪取り焼鈍を施した後の鉄損特性について調べた
結果を、表2に示す。 なお表2には比較のため、鋼板全面に均一な絶
縁コーテイング被膜を被成した場合(比較例C)、
またかかる鋼板の表面に、レーザー光を0.4mm間
隔で点の列状に、圧延方向と直角方向に向けて、
列と列との間隔:4mmの条件で照射した場合(比
較例D)の調査結果も合わせて示す。
[Table] As is clear from the table, the iron loss characteristics of the product sheets obtained according to the present invention were significantly improved, and this effect did not deteriorate even after strain relief annealing. On the other hand, Comparative Example A, in which an insulating coating was simply applied to the entire surface of the steel sheet, did not achieve a sufficiently satisfactory iron loss reduction effect, and Comparative Example B, in which laser light was used, did not achieve a satisfactory iron loss reduction effect with laser light irradiation. Although a good iron loss value was obtained, the iron loss characteristics significantly deteriorated after strain relief annealing. Example 2 The same porosiloxane resin as in Example 1 was applied to the surface of a finish-annealed grain-oriented silicon steel plate (thickness: 0.30 mm) containing 3.3 wt% Si and having a uniform forsterite coating on the surface. Repeated application and heating at 200℃
dried with. Then, in the same manner as in Example 1, a tension-applying insulating coating film was formed. Table 2 shows the results of examining the iron loss characteristics of the thus obtained product sheets before and after the insulation coating treatment and after strain relief annealing at 800° C. for 5 hours in N 2 . For comparison, Table 2 shows the case where a uniform insulating coating film is formed on the entire surface of the steel plate (Comparative Example C),
In addition, a laser beam is directed in a row of dots at 0.4 mm intervals on the surface of the steel plate in a direction perpendicular to the rolling direction.
The investigation results obtained when irradiation was performed under the condition that the distance between rows was 4 mm (Comparative Example D) are also shown.

【表】 同表より明らかなように、この発明に従い得ら
れた製品板は、鉄損特性が格段に改善され、しか
もその効果は歪取り焼鈍後においても劣化するこ
とはなかつた。 これに対し、鋼板全面に単に絶縁コーテイング
被膜を被成した比較例Cでは十分満足のいく鉄損
低減効果が得られず、またレーザー光を利用した
比較例Dでは、レーザー光照射ままでは良好な鉄
損値が得られたものの、歪取り焼鈍後に鉄損特性
の大幅な劣化をきたした。 (発明の効果) かくしてこの発明によれば、歪取り焼鈍を施し
た場合であつても特性の劣化を生じることがない
低鉄損の方向性けい素鋼板を得ることができる。
[Table] As is clear from the table, the iron loss characteristics of the product sheets obtained according to the present invention were significantly improved, and this effect did not deteriorate even after strain relief annealing. On the other hand, Comparative Example C, in which an insulating coating was simply applied to the entire surface of the steel sheet, did not achieve a sufficiently satisfactory iron loss reduction effect, and Comparative Example D, in which laser light was used, did not achieve a satisfactory iron loss reduction effect with laser light irradiation. Although a good iron loss value was obtained, the iron loss characteristics significantly deteriorated after strain relief annealing. (Effects of the Invention) Thus, according to the present invention, it is possible to obtain a grain-oriented silicon steel sheet with low iron loss that does not cause deterioration of properties even when subjected to strain relief annealing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ,ロおよびハはそれぞれ、絶縁コーテ
イング被膜に区画形成した異質領域の形状、圧延
方向に対する傾き具合および間隔の測定要領を示
した図、第2図は、線状異質領域と圧延方向との
なす角度が、鉄損特性に及ぼす影響を示したグラ
フ、第3図は、線状異質領域の幅と鉄損値との関
係を示したグラフ、第4図は、線状異質領域の間
隔と鉄損値との関係を示したグラフ、第5図は、
張力付与型絶縁コーテイング被膜中の異質領域の
熱膨張係数が鉄損特性に及ぼす影響を示したグラ
フ、第6図イ,ロはいずれも、張力付与型絶縁コ
ーテイング被膜が鋼板に異張力を及ぼす場合の有
効な異質領域区画形成例を示した図である。
Figure 1 A, B, and C are diagrams showing the measurement procedure for the shape, inclination to the rolling direction, and spacing of the heterogeneous regions formed in the insulating coating, respectively. Figure 2 shows the linear heterogeneity regions and the rolling direction. Figure 3 is a graph showing the relationship between the width of the linear heterogeneous region and the iron loss value, and Figure 4 is a graph showing the relationship between the width of the linear heterogeneous region and the iron loss characteristic. Figure 5 is a graph showing the relationship between spacing and iron loss value.
Figure 6 A and B, which are graphs showing the influence of the thermal expansion coefficient of the different regions in the tension-applied insulating coating film on the iron loss characteristics, both show the case where the tension-applying insulating coating film exerts different tension on the steel sheet. FIG. 3 is a diagram illustrating an example of effective heterogeneous region division formation.

Claims (1)

【特許請求の範囲】 1 含けい素鋼スラブを熱間圧延して得られた熱
延板に、1回または中間焼鈍を挟む2回の冷間圧
延を施して最終板厚としたのち、脱炭・1次再結
晶焼鈍を施し、ついで鋼板表面にMgOを主成分
とする焼鈍分離剤を塗布してから最終仕上げ焼鈍
を施し、しかるのち上塗り絶縁コーテイングを施
す一連の工程よりなる方向性けい素鋼板の製造方
法において、 最終仕上げ焼鈍を経たフオルステライト被膜付
きの方向性けい素鋼板の表面に、上塗り絶縁コー
テイングとして張力付与型の絶縁コーテイング被
膜を被成するに際し、 該コーテイング処理液の塗布に先立つて、該コ
ーテイング処理液に対して撥液性を有しかつ非張
力付与型の絶縁被膜を連続または非連続の線状に
形成し、しかるのち該コーテイング処理液を塗布
ついで焼付けることにより、張力付与型絶縁コー
テイング被膜中に地鉄に対する張力付与に寄与し
ない線状異質領域を区画形成することを特徴とす
る、歪取り焼鈍による特性の劣化がない低鉄損方
向性けい素鋼板の製造方法。
[Scope of Claims] 1. A hot-rolled plate obtained by hot rolling a silicon-containing steel slab is subjected to cold rolling once or twice with intermediate annealing to obtain the final thickness, and then de-rolled. Directed silicon consists of a series of steps: charcoal/primary recrystallization annealing, then applying an annealing separator mainly composed of MgO to the surface of the steel sheet, final annealing, and then applying a top insulating coating. In the method for producing a steel sheet, when a tension-applying insulation coating film is applied as a top insulation coating on the surface of a grain-oriented silicon steel sheet with a forsterite film that has undergone final finish annealing, prior to applying the coating treatment liquid. Then, by forming a continuous or discontinuous line-shaped insulating film that is liquid repellent to the coating solution and does not apply tension, the coating solution is applied and baked to create tension. A method for manufacturing a grain-oriented silicon steel sheet with low core loss, which does not cause deterioration in properties due to strain relief annealing, characterized by forming linear heterogeneous regions that do not contribute to imparting tension to the base steel in an imparted insulating coating film.
JP8738885A 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production Granted JPS61246376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8738885A JPS61246376A (en) 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8738885A JPS61246376A (en) 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production

Publications (2)

Publication Number Publication Date
JPS61246376A JPS61246376A (en) 1986-11-01
JPH0218392B2 true JPH0218392B2 (en) 1990-04-25

Family

ID=13913504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8738885A Granted JPS61246376A (en) 1985-04-25 1985-04-25 Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production

Country Status (1)

Country Link
JP (1) JPS61246376A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080352B (en) * 2010-08-06 2015-05-20 杰富意钢铁株式会社 Directional magnetic steel plate
KR101762339B1 (en) * 2015-12-22 2017-07-27 주식회사 포스코 Grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS61246376A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
KR100297046B1 (en) Very low iron loss oriented electrical steel sheet and its manufacturing method
EP0202339B1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
KR19990088437A (en) Grain oriented electromagnetic steel sheet and manufacturing method thereof
US4655854A (en) Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
JP2000045052A (en) Low core loss and grain-oriented silicon steel sheet excellent in shape in edge part in width direction of coil and its production
JPS6335684B2 (en)
JP5434524B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6332849B2 (en)
JPH0218392B2 (en)
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP4258202B2 (en) Oriented electrical steel sheet having no forsterite coating and method for producing the same
JPH0218391B2 (en)
JPS6331527B2 (en)
JP2013234342A (en) Method of magnetic domain refinement and grain-oriented electromagnetic steel sheet
JPH1017931A (en) Production of grain oriented silicon steel sheet
JPS6139395B2 (en)
JPS6089545A (en) Grain-oriented silicon steel sheet causing small iron loss
JPH02433B2 (en)
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet
KR920004949B1 (en) Making process for the electic steel plate
JP3148095B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6248755B2 (en)
WO2023068236A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same