JP2000045052A - Low core loss and grain-oriented silicon steel sheet excellent in shape in edge part in width direction of coil and its production - Google Patents

Low core loss and grain-oriented silicon steel sheet excellent in shape in edge part in width direction of coil and its production

Info

Publication number
JP2000045052A
JP2000045052A JP10211041A JP21104198A JP2000045052A JP 2000045052 A JP2000045052 A JP 2000045052A JP 10211041 A JP10211041 A JP 10211041A JP 21104198 A JP21104198 A JP 21104198A JP 2000045052 A JP2000045052 A JP 2000045052A
Authority
JP
Japan
Prior art keywords
coil
width direction
steel sheet
grain
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10211041A
Other languages
Japanese (ja)
Other versions
JP3736125B2 (en
Inventor
Michiro Komatsubara
道郎 小松原
Toshito Takamiya
俊人 高宮
Kunihiro Senda
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21104198A priority Critical patent/JP3736125B2/en
Publication of JP2000045052A publication Critical patent/JP2000045052A/en
Application granted granted Critical
Publication of JP3736125B2 publication Critical patent/JP3736125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of a defect in shape in the edge parts in the width of a coil by high temp.-long time annealing including secondary recrystallization by previously subjecting both edge parts in the width direction of a grain-oriented silicon steel sheet coil contg. specified amounts of Si and Mn to secondary recrystallization promoting treatment and suppressing the formation of fine crystals. SOLUTION: A grain-oriented silicon steel sheet contg., by weight, 1.5 to 7.5% Si and 0.03 to 2.5% Mn is formed into a coiled shape and is subjected to a high temp.-long time annealing including secondary recrystallization to obtain the low core loss and grain-oriented silicon steel sheet. Before this high temp.-long time annealing, at least either the edge part in the width direction of the coil is subjected to additional secondary recrystallization promoting treatment. This treatment can be executed by controlling the coiling tension to >=3 kgf/mm2 and subjecting the primarily recrystallized <=2 mm in the region of >=30 mm from the coil edge part to grain refining or grain growth driving force strengthening. In this way, the distance at which the area ratio of the crystal grains of <=2 mm grain size is made 15% is controlled to <=30 mm from the coil edge part, by which the steel sheet excellent in the shapes in the edge parts in the width direction of the coil can be obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心などに利用される方向性電磁鋼板であって、特に
コイル幅方向端部の形状に優れる方向性けい素鋼板をそ
の製造方法と共に提案しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet used for an iron core of a transformer or a generator, and more particularly to a method for producing a grain-oriented silicon steel sheet having an excellent shape at an end portion in a coil width direction. It is intended to be proposed together with.

【0002】[0002]

【従来の技術】Siを含有し、かつ、結晶方位が(11
0)[001]方位や(100)[001]方位に配向
した方向性電磁鋼板は、優れた軟磁気特性を有すること
から商用周波数域での各種鉄心材料として広く用いられ
ている。この用途において、方向性電磁鋼板に要求され
る特性としては、一般に50Hzの周波数で1.7 T に磁化さ
せた場合の損失であるW17/50(W/kg)で表されるところの
鉄損が低いことが重要であり、また、一般には800 A/m
の磁化力における磁束密度B8(T) で表される磁束密度が
高いことが重要である。
2. Description of the Related Art Si has a crystal orientation of (11).
Grain-oriented electrical steel sheets oriented in the 0) [001] or (100) [001] orientation are widely used as various core materials in the commercial frequency range because of their excellent soft magnetic properties. In this application, the properties required for grain- oriented electrical steel sheets are, in general, the iron loss represented by W 17/50 (W / kg), which is the loss when magnetized to 1.7 T at a frequency of 50 Hz. Low is important, and generally 800 A / m
It is important that the magnetic flux density represented by the magnetic flux density B 8 (T) at the magnetizing force is high.

【0003】かかる方向性電磁鋼板は、鋼板中にAlN 、
MnSeやMnS などのインヒビターと呼称される析出物を微
細に分散させて一次再結晶粒の成長を抑え(その能力は
抑制力と呼称される。)、二次再結晶現象によってゴス
方位と呼ばれる(110)[001]方位に近い結晶粒
のみを選択的に成長させることで製造される。二次再結
晶後はインヒビターを分解し鋼板から除去するために12
00℃近傍での高温の加熱(一般に、純化焼鈍と呼ばれ
る。)を行うが、二次再結晶と純化焼鈍は通常、連続し
て行われるため、まとめて最終仕上げ焼鈍と呼称されて
いる。したがって、この最終仕上げ焼鈍は高温長時間の
焼鈍となるが、鋼板はコイル状に巻かれた状態で焼鈍さ
れるため、積層された鋼板相互の融着防止のため鋼板表
面に非金属物質からなる焼鈍分離剤を塗布してから最終
仕上げ焼鈍に供する。
[0003] Such a grain-oriented electrical steel sheet contains AlN,
Precipitates called inhibitors such as MnSe and MnS are finely dispersed to suppress the growth of primary recrystallized grains (the ability is called inhibitory force), and is called Goss orientation by the secondary recrystallization phenomenon ( 110) It is manufactured by selectively growing only crystal grains close to the [001] orientation. After secondary recrystallization, the inhibitor is decomposed to remove it from the steel sheet.
Although high-temperature heating at around 00 ° C. (generally called purification annealing) is performed, secondary recrystallization and purification annealing are usually performed continuously, and are collectively called final finish annealing. Therefore, this final finish annealing is a high temperature and long time annealing, but since the steel sheet is annealed in a coiled state, the surface of the steel sheet is made of a non-metallic material to prevent fusion between the laminated steel sheets. After applying the annealing separator, it is subjected to final finishing annealing.

【0004】しかしながら、高温長時間焼鈍の問題とし
て、コイル幅方向端部の形状不良の発生がある。すなわ
ち、鋼板表面に熱伝導度の低い非金属物質を塗布してコ
イル状に巻いているため、コイル外部から加熱すると、
熱伝導はコイル幅方向端部から進行し、コイルラジアル
方向の熱伝導は鋼板層間の焼鈍分離剤が断熱作用によっ
て抑制されている。したがって、コイルの昇温の際にコ
イル幅方向の端部と中心部とで大きな温度差が発生し、
コイル端部で相対的に大きな熱膨張を来すために該端部
に変形が生じて最終仕上げ焼鈍後の鋼板のコイル幅端部
の形状不良をもたらすことになるのである。このような
コイル幅方向端部の形状不良は、その後の未反応焼鈍分
離剤の除去やコーティング塗布/焼き付け工程などの後
工程の妨げとなるばかりでなく、磁気特性不良の原因と
なったり、変圧器の鉄心とするためのスリット処理のサ
イズを変化させて材料欠陥をもたらしたり、変圧器鉄心
の積み厚を変動させたりして工業的なトラブルの原因と
なっていた。
However, as a problem of high-temperature and long-time annealing, there is a defect in the shape of the end portion in the coil width direction. In other words, since the surface of the steel sheet is coated with a non-metallic material having low thermal conductivity and wound in a coil shape, when heated from outside the coil,
The heat conduction proceeds from the end in the coil width direction, and the heat conduction in the coil radial direction is suppressed by the heat insulating effect of the annealing separator between the steel sheet layers. Therefore, when the temperature of the coil rises, a large temperature difference occurs between the end and the center in the coil width direction,
Since relatively large thermal expansion occurs at the coil end, the end is deformed, resulting in a defective shape of the coil width end of the steel sheet after final finish annealing. Such a shape defect at the end in the coil width direction not only hinders subsequent processes such as removal of the unreacted annealing separating agent and a coating application / baking process, but also causes poor magnetic characteristics and a voltage change. The size of the slit treatment for forming the core of the transformer is changed to cause a material defect, and the thickness of the transformer core is varied to cause an industrial trouble.

【0005】このコイル幅方向端部の形状不良問題を解
決する従来法として、コイル端部側縁が凹凸形状になる
ように巻き取る技術が特公昭52−13169号公報
に、また、コイルの幅方向で巻き取り張力を変更する方
法が特公昭59−14522号公報にそれぞれ開示され
ている。この従来法のうち、特公昭52−13169号
公報の技術は、突起側縁に集中的に荷重が加わるため、
突起部の座屈を惹起し、逆に形状劣化を助長するおそれ
がある。また、特公昭59−14522号公報の技術
は、最終仕上げ焼鈍直前の焼鈍の冷却時にコイルの端部
側縁の任意幅を中央部よりも優先的かつ選択的に冷却
し、端部と中央部との温度差により端部に相対的な塑性
変形を生じさせ、コイル状に巻き取った際にコイル中央
部に比較し相対的に強い張力がコイル端部側縁にかかる
ようにして、これによって端部側縁に発生する歪を軽減
しようとするものである。しかしながら、この方法で
は、最終仕上げ前から存在するコイル端部側縁の歪がま
すます助長されることになり、逆にコイル端部形状が劣
化する結果となり、所望の効果を得ることは困難であ
る。
As a conventional method for solving the problem of the defective shape of the end portion in the coil width direction, Japanese Patent Publication No. 52-13169 discloses a technique of winding the coil end so that the side edge becomes uneven. A method of changing the winding tension in the direction is disclosed in Japanese Patent Publication No. 59-14522. Of the conventional methods, the technique disclosed in Japanese Patent Publication No. 52-13169 applies a concentrated load to the side edges of the projections.
There is a possibility that buckling of the protruding portion may be caused, and conversely, shape deterioration may be promoted. Further, the technique disclosed in Japanese Patent Publication No. 59-14522 discloses that the arbitrary width of the end side edge of the coil is preferentially and selectively cooled over the center portion at the time of annealing immediately before final finish annealing, and the end portion and the center portion are cooled. Due to the temperature difference between the coil and the end, relative plastic deformation is generated at the end, so that when wound into a coil, relatively strong tension is applied to the coil end side edge compared to the coil center, thereby The purpose is to reduce the distortion generated at the end side edge. However, in this method, the distortion of the coil end side edge existing before the final finishing is further promoted, and conversely, the coil end shape is deteriorated, and it is difficult to obtain a desired effect. is there.

【0006】[0006]

【発明が解決しようとする課題】前述のように、高温、
長時間処理である最終仕上げ焼鈍後に発生するコイル幅
方向端部の形状不良は、当該端部に切り込みを入れる方
法、端部を凹凸の形状とする方法、コイル端部に相対的
に強い張力を付加する方法といった従来の方法では解決
できなかった。そこで、この発明は、かかる困難な課題
を、端部形状不良が発生する原因まで遡り追求し、二次
再結晶の発現温度がコイル端部形状に大きな影響を及ぼ
すことを新規に知見し、そこから二次再結晶の制御技術
をコイル端部に適用することにより効果的に解決した、
コイル幅端部の形状に優れる低鉄損方向性電磁鋼板及び
その製造方法を提案することを目的とする。
As described above, high temperatures,
Defects in the end of the coil width direction that occur after the final annealing, which is a long-time treatment, can be caused by making a cut in the end, a method of forming the end into an uneven shape, and applying a relatively strong tension to the end of the coil. The conventional method such as the adding method cannot solve the problem. Therefore, the present invention has pursued such a difficult problem to the cause of the occurrence of the end shape defect, and has newly found that the temperature at which secondary recrystallization occurs has a great effect on the coil end shape. Effectively solved the problem by applying secondary recrystallization control technology to the coil end.
An object of the present invention is to propose a low iron loss grain-oriented electrical steel sheet excellent in the shape of a coil width end portion and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】発明者らは、最終仕上げ
焼鈍によってコイル幅方向端部の形状不良が発生する原
因を根本に遡って検討し、高温長時間焼鈍時にコイル端
部と中央部とで温度差が生じ、熱膨張量差によってコイ
ル中央部に対してコイル端部への変形力が作用したり、
焼鈍炉のペースプレートと接するコイル下端部ではコイ
ル重量がかかり、同じく変形力が作用したりするが、こ
のとき、一次再結晶粒からなる組織の場合は二次再結晶
粒からなる組織に比較して同一の変形力に対しクリープ
変形による変形量が大きく、この組織状態がコイル幅方
向端部における形状不良の真の原因であることを新規に
見い出した。
Means for Solving the Problems The inventors of the present invention retrospectively studied the cause of the shape failure of the end portion in the coil width direction due to the final finish annealing, and found that the end portion of the coil and the center portion during the high-temperature long-time annealing. Temperature difference, and the thermal expansion difference causes a deformation force to the coil end to the coil center,
At the lower end of the coil, which is in contact with the pace plate of the annealing furnace, the coil weight is applied and a deforming force is also applied.At this time, the structure composed of primary recrystallized grains is compared with the structure composed of secondary recrystallized grains. The amount of deformation due to creep deformation is large for the same deformation force, and it has been newly found that this structural state is the true cause of the shape failure at the end in the coil width direction.

【0008】すなわち、高温長時間焼鈍でのコイル幅方
向端部の形状不良を起こす高温変形を支配するものが、
高温クリープ変形であることを実験により見い出した。
二次再結晶組織の場合は、粒界密度が大幅に低下してい
るため、クリープ強度が大幅に増加する。したがって、
上記課題の解決法としては、コイルが高温になる前に変
形力を受けるコイル端部を優先的に二次再結晶させてお
くことが有効で、更に、発生する二次再結晶粒に関して
サイズが2 mm以下の結晶粒の割合を低減させた二次再結
晶組織にすることで、クリープ変形に対して大きな抵抗
力を付与することができ、これによって実質的な変形が
抑制されることを新規に知見した。
That is, what governs high-temperature deformation that causes defective shape of the end portion in the coil width direction during high-temperature long-time annealing is as follows:
It was found by experiments that it was a high temperature creep deformation.
In the case of the secondary recrystallized structure, the creep strength is greatly increased because the grain boundary density is greatly reduced. Therefore,
As a solution to the above-mentioned problem, it is effective to preferentially secondary recrystallize the coil end portion which receives the deforming force before the coil becomes high temperature. A new recrystallized structure with a reduced proportion of crystal grains of 2 mm or less can provide a large resistance to creep deformation, thereby suppressing substantial deformation. I found out.

【0009】また、このような最終仕上げ焼鈍後の二次
再結晶組織においては、次工程のコイルセットを矯正す
る平坦化焼鈍後においても、更に形状や占積率の点で優
れた結果を得ることを発見したものである。以上の発見
に加えて、二次再結晶を低温で発現させる工夫を凝らす
ことで、上記二次再結晶の効果を有効に活用できること
を発見し、前述の課題を解決し、この発明を完成させ
た。
Further, in the secondary recrystallized structure after the final finish annealing, even after flattening annealing for correcting the coil set in the next step, excellent results can be obtained in terms of shape and space factor. That is what I discovered. In addition to the above findings, the inventors have found that by devising a method of expressing secondary recrystallization at a low temperature, it is possible to effectively utilize the effect of the secondary recrystallization, solve the above-described problems, and complete the present invention. Was.

【0010】すなわち、この発明のコイル幅方向端部の
形状に優れる低鉄損方向性電磁鋼板はSi:1.5 〜7.0 wt
%、Mn:0.03〜2.5 wt%を含有する方向性電磁鋼板にお
いて、コイル幅方向端部から幅方向に一定距離を選び定
めた端部からの領域にて、粒径2 mm以下の結晶粒の該領
域に占める面積比率が15%となるその一定距離Lが、両
端部もしくは一方の端部から30mm以下であることを特徴
とし、また、Si:1.5 〜7.0 wt%、Mn:0.03〜2.5 wt%
を含有する方向性電磁鋼板において、コイル幅方向で両
端部もしくは一方の端部から30mmの距離までの領域にて
粒径が2 mmを超える結晶粒の面内方位ずれ角の平均値α
e が、コイル幅方向中央部100 mm幅の領域での粒径が2
mmを超える結晶粒の面内方位ずれ角αc よりも3 〜20度
大きいことを特徴とし、更に、Si:1.5 〜7.0 wt%、M
n:0.03〜2.5 wt%を含有する方向性電磁鋼板におい
て、コイル幅方向で両端部もしくは一方の端部から30mm
の距離までの領域にて粒径が2 mmを超える結晶粒の平均
粒径が、4 mm以上でかつコイル幅方向中央部100 mm幅の
領域での粒径が2 mmを超える結晶粒の平均粒径よりも3
mm以上小さいか3 mm以上大きいことを特徴とする。
That is, the low iron loss grain-oriented electrical steel sheet of the present invention having an excellent shape of the end portion in the coil width direction has a Si content of 1.5 to 7.0 wt.
%, Mn: In a grain-oriented electrical steel sheet containing 0.03 to 2.5 wt%, a certain distance in the width direction is selected from the end in the coil width direction. The constant distance L at which the area ratio in the region becomes 15% is 30 mm or less from both ends or one end, Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt% %
In the grain-oriented electrical steel sheet containing, the average value of the in-plane misorientation angle α of crystal grains having a grain size exceeding 2 mm in a region up to a distance of 30 mm from both ends or one end in the coil width direction.
e is 2 mm in the center area of 100 mm width in the coil width direction.
It is characterized by being 3 to 20 degrees larger than the in-plane misorientation angle αc of crystal grains having a diameter of more than 1 mm, and further, Si: 1.5 to 7.0 wt%, M
n: In a grain-oriented electrical steel sheet containing 0.03 to 2.5 wt%, 30 mm from both ends or one end in the coil width direction
The average grain size of crystal grains whose grain size exceeds 2 mm in the region up to the distance of 4 mm or more and the crystal grain size of which exceeds 2 mm in the region of 100 mm width in the center in the coil width direction is 3 than particle size
It is characterized by being smaller than mm or larger than 3 mm.

【0011】この発明のコイル幅方向端部の形状に優れ
る低鉄損方向性電磁鋼板の製造方法は、Si:1.5 〜7.0
wt%、Mn:0.03〜2.5 wt%を含有する方向性電磁鋼板コ
イルをコイル状にして二次再結晶を含む高温長時間焼鈍
するに当たり、該高温長時間焼鈍より以前にコイルの幅
方向両端部の領域もしくは一方の端部域に、幅方向中央
部域に比較して付加的な二次再結晶促進処理を施し、該
端部域における粒径2 mm以下の結晶粒の生成頻度を低減
することを特徴とする。
[0011] The method for producing a low iron loss grain-oriented electrical steel sheet having an excellent shape of the end portion in the coil width direction according to the present invention is as follows: Si: 1.5 to 7.0;
wt%, Mn: 0.03 to 2.5 wt% In order to perform high-temperature long-time annealing including secondary recrystallization by forming a coil of a grain-oriented electrical steel sheet containing 0.03 to 2.5 wt%, both ends in the width direction of the coil before the high-temperature long-time annealing. The region or one end region is subjected to an additional secondary recrystallization acceleration treatment as compared with the center region in the width direction to reduce the frequency of generation of crystal grains having a grain size of 2 mm or less in the end region. It is characterized by the following.

【0012】この発明の製造方法においては、二次再結
晶促進処理が、一次再結晶粒の細粒化処理又は一次再結
晶粒の粒成長駆動力強化処理であること、コイル状にす
るための巻き取り張力を3 kgf/mm2 以上とすること、二
次再結晶促進処理を施す領域が、コイル両端部もしくは
一方の端部からコイル幅方向に少なくとも30mmの領域で
あること、あるいはそれらの組み合わせが、より有利に
適合する。
In the manufacturing method of the present invention, the secondary recrystallization accelerating process is a process for refining primary recrystallized grains or a process for enhancing the driving force for grain growth of primary recrystallized grains. The take-up tension should be 3 kgf / mm 2 or more, and the area to be subjected to the secondary recrystallization acceleration treatment should be an area of at least 30 mm in the coil width direction from both ends or one end of the coil, or a combination thereof. Are more advantageously fitted.

【0013】[0013]

【発明の実施の形態】まず、この発明を完成させるに至
った経緯を調査と実験例とに基づいて以下に述べる。 (実験1:コイル温度分布の調査実験)幅1000mm、長さ
4 km、重量が約10t の脱炭焼鈍後のコイルの鋼板表面に
MgO を主成分とする焼鈍分離剤を塗布し、コイルの長手
方向中央位置の幅方向上端部、中央部及び下端部に熱電
対を設置し、コイル状に巻き取った。その後、このコイ
ルを特公昭62−56206号公報の実施例で示される
最終仕上げ焼鈍、すなわち、昇温速度20℃/hで1200℃ま
で昇温し、10時間この温度で保持した後、自然炉冷し
た。このときのコイル中央部とコイル上端部との温度差
ΔTL の経時変化を図1に示す。この図1のように、コ
イル幅方向中央部とコイル上端部とでは昇温途中におい
て、最大240 ℃の温度差が発生していることがわかっ
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the details of the present invention will be described below based on investigations and experimental examples. (Experiment 1: Investigation experiment of coil temperature distribution) Width 1000mm, length
4 km, weight of about 10 t
An annealing separator containing MgO as a main component was applied, and thermocouples were installed at the upper end, the center, and the lower end in the width direction at the center in the longitudinal direction of the coil, and the coil was wound into a coil. Thereafter, this coil was subjected to final finish annealing shown in Examples of Japanese Patent Publication No. 62-56206, that is, the temperature was raised to 1200 ° C. at a temperature rising rate of 20 ° C./h, and maintained at this temperature for 10 hours. Cooled down. FIG. 1 shows the change with time of the temperature difference ΔTL between the coil center and the coil upper end at this time. As shown in FIG. 1, it was found that a maximum temperature difference of 240 ° C. occurred between the central portion in the coil width direction and the upper end portion of the coil during the temperature increase.

【0014】ちなみに、このコイルのコイル幅方向端部
領域の形状不良の程度を、図2で示す波高:H(mm)と
形状不良の幅端部からの距離:D(mm)との積HDで表
すと、コイル長手方向での平均値で、コイル上端部側が
250 mm2 、コイル下端部側が380 mm2 であった。
Incidentally, the degree of the shape defect in the end area in the coil width direction of the coil is determined by the product HD of the wave height: H (mm) and the distance from the width end of the shape defect: D (mm) shown in FIG. The average value in the longitudinal direction of the coil,
The length was 250 mm 2 , and the lower end of the coil was 380 mm 2 .

【0015】従来より、コイル幅方向端部の形状不良
は、最終仕上げ焼鈍時のコイルが高温で軟化した際、コ
イル荷重のためコイルを受けるベースプレートと接する
側のコイル端部で座屈変形が生じるためとされていた。
しかしながら、この実験で認められるように、確かにベ
ースプレートと接触するコイル下端部側の形状不良は大
きいが、同様にコイル上端部側にも形状不良が発生して
おり、コイル荷重とコイルの高温軟化のみではこの結果
を説明できない。また、同一のサイズと重量を有するコ
イルを同一の焼鈍パターンで焼鈍しても端部形状の異な
るコイルが発生することがあるが、この原因もコイル荷
重とコイルの高温軟化説のみでは説明不可能である。
Conventionally, when the coil is softened at a high temperature at the time of the final finish annealing, buckling deformation occurs at the coil end in contact with the base plate receiving the coil due to the coil load. And it was
However, as can be seen in this experiment, although the shape defect at the lower end of the coil that is in contact with the base plate is large, the shape defect also occurs at the upper end of the coil, and the coil load and the softening of the coil at high temperatures. Alone cannot explain this result. Also, even if coils having the same size and weight are annealed with the same annealing pattern, coils with different end shapes may be generated, but this cannot be explained only by the theory of coil load and high temperature softening of the coil. It is.

【0016】したがって、発明者らは、形状不良を助長
する原因として、確かにコイル荷重の存在はあり得て
も、これは、高温長時間焼鈍を受けるコイル下端部のみ
に対応するものであって、コイル荷重が加わらない上端
部では、昇温時や高温保持時に中央部との温度差を生
じ、熱膨張量の差によってコイル上端部に変形を伴う応
力が加わるのではないかと考えた。したがって、いずれ
にしても高温長時間の最終仕上げ焼鈍時にコイル端部域
には、大きな変形応力が加わることになるので、コイル
幅方向端部の形状不良の程度がコイルごとに異なる真の
理由は、熱処理を受ける材料そのものに起因するもので
はないかと考え、次の実験を行った。
Therefore, the inventors of the present invention believe that although there may be a coil load as a cause for promoting the shape failure, this corresponds only to the lower end portion of the coil subjected to high-temperature and long-time annealing. At the upper end where the coil load is not applied, a temperature difference from the center occurs when the temperature is increased or the temperature is maintained at a high temperature, and it is considered that a stress accompanying deformation is applied to the upper end of the coil due to the difference in the amount of thermal expansion. Therefore, in any case, a large deformation stress is applied to the coil end region at the time of the final finish annealing at a high temperature for a long time, and the true reason that the degree of the shape defect at the end in the coil width direction differs for each coil is as follows. Then, the following experiment was carried out on the assumption that it might be caused by the material itself subjected to the heat treatment.

【0017】(実験2:3 %Si電磁鋼板の高温荷重引張
試験)3.3 wt%のSiと0.06wt%のMn及びインヒビター成
分として0.02wt%のSeと0.02wt%のAl及び0.02wt%のSb
を含有する0.22mm板厚の脱炭焼鈍板(記号A)と、これ
に最終仕上げ焼鈍した鋼板(最終仕上げ焼鈍板:記号
B)とを試料とした。脱炭焼鈍板Aの平均粒径は8.2 μ
m であり、また、最終仕上げ焼鈍板Bは完全に二次再結
晶しており、そのマクロ組織の平均結晶粒径は18.4mmで
あった。これらの試料を用いて800 〜1100℃における荷
重下(σ=0.75kgf/mm2 )での高温荷重引張試験(有効
長さ100 mm)を行った。その結果の一例(1000℃)を図
3に示し、図4に高温変形速度をまとめて示す。
(Experiment 2: High temperature load tensile test of 3% Si electrical steel sheet) 3.3 wt% of Si and 0.06 wt% of Mn and 0.02 wt% of Se and 0.02 wt% of Al and 0.02 wt% of Sb as inhibitor components
A 0.22 mm-thick decarburized annealed sheet (symbol A) containing this and a steel sheet (final annealed sheet: symbol B) which was finally and annealed to this sheet were used as samples. The average particle size of the decarburized annealed plate A is 8.2 μ
m, and the final finish-annealed sheet B was completely secondary recrystallized, and the average crystal grain size of its macrostructure was 18.4 mm. Using these samples, a high temperature load tensile test (effective length: 100 mm) was performed under a load (σ = 0.75 kgf / mm 2 ) at 800 to 1100 ° C. One example (1000 ° C.) of the result is shown in FIG. 3, and FIG. 4 collectively shows the high-temperature deformation rate.

【0018】図3の結果及び光学顕微鏡を用いた組織観
察により、これらの高温荷重下での変形が結晶粒界のす
べりによる高温クリープによって起こることがわかっ
た。したがって、結晶粒径の小さい脱炭焼鈍板ほど変形
速度は大きくなる。また、図4より950 ℃以上では、脱
炭焼鈍板の変形速度が最終仕上げ焼鈍板の変形速度より
も大きくなり、高温になればなるほどその差は大きくな
ることが分かる。
From the results shown in FIG. 3 and the structure observation using an optical microscope, it was found that these deformations under a high-temperature load were caused by high-temperature creep due to slip of crystal grain boundaries. Therefore, as the decarburized annealed sheet has a smaller crystal grain size, the deformation speed increases. Further, it can be seen from FIG. 4 that at 950 ° C. or higher, the deformation rate of the decarburized annealed sheet is higher than the deformation rate of the final finish annealed sheet, and the difference increases as the temperature increases.

【0019】この実験から、結晶粒径に大きな差がある
二次再結晶前と二次再結晶後では、高温時の変形量に大
きな差が生じること、及び二次再結晶の発現が高温にな
ればなるほど変形の程度がひどくなることが推定でき
る。とはいえ、二次再結晶挙動が同一のコイルであって
も、ときにコイル幅方向の端部形状が同一でないコイル
が得られる場合もあり、コイル自身に起因する因子や最
終仕上げ焼鈍条件に起因するものとは別の、例えば、コ
イルの巻き取り張力といった因子も多少は関係している
ことが推定された。これらの推定を実証するために、二
次再結晶促進剤として硫酸マグネシウムを用い、次の実
験を行った。
From this experiment, it can be seen that there is a large difference in deformation at high temperature between before and after secondary recrystallization, where there is a large difference in crystal grain size, and the occurrence of secondary recrystallization is high. It can be estimated that the degree of deformation becomes more severe as it becomes more and more. Nevertheless, even if the coil has the same secondary recrystallization behavior, sometimes a coil having the same end shape in the coil width direction may be obtained. It was presumed that factors other than the cause, such as coil winding tension, were also somewhat relevant. To verify these estimates, the following experiment was performed using magnesium sulfate as a secondary recrystallization accelerator.

【0020】(実験3:コイル幅方向端部領域の二次再
結晶促進とコイル巻き取り張力変更実験)3.05wt%のS
i、0.07wt%のMn、0.02wt%のSe、0.02wt%のAl、0.02w
t%のSb、0.012 wt%のMo、0.008 wt%のNを含み、残
部は鉄及び不可避的不純物からなり、幅1200mm、厚み0.
22mm、重量15t の脱炭焼鈍後の方向性電磁鋼板を4 コイ
ル用意し、その表面に5 wt%のTiO2と2 wt%の水酸化ス
トロンチウムを添加したMgOからなる焼鈍分離剤を10g/m
2塗布した。このとき、一つのコイルは焼鈍分離剤を塗
布した後、巻き取り張力2 kgf/mm2で巻き取り、最終仕
上げ焼鈍前のコイルとした(条件a)。他の一つのコイ
ルは焼鈍分離剤を塗布した後、巻き取り張力8 kgf/mm2
で巻き取り、最終仕上げ焼鈍前のコイルとした(条件
b)。また、他の一つのコイルは焼鈍分離剤を塗布した
後、コイル幅方向の端部と端部から100 mmまでの距離と
の間のコイル両端部域に、硫化銅を焼鈍分離剤の上に更
に重ねて2 g/m2塗布し、巻き取り張力2 kgf/mm2で巻き
取り最終仕上げ焼鈍前のコイルとした(条件c)。残る
一つのコイルは、焼鈍分離剤を塗布した後、コイル幅方
向の端部と端部から100 mmまでとの距離の間のコイル両
端部域に、硫化銅を焼鈍分離剤の上に更に重ねて2 g/m2
塗布し、巻き取り張力8 kgf/mm2 で巻き取り最終仕上げ
焼鈍前のコイルとした(条件d)。
(Experiment 3: Experiment of promoting secondary recrystallization in coil width direction end region and changing coil winding tension) 3.05 wt% S
i, 0.07wt% Mn, 0.02wt% Se, 0.02wt% Al, 0.02w
It contains t% of Sb, 0.012 wt% of Mo, and 0.008 wt% of N, with the balance being iron and unavoidable impurities, 1200 mm wide and 0.1 mm thick.
22 mm, weight 15t prepared 4 coils oriented electrical steel sheet after decarburization annealing, annealing separator of 10 g / m of the surface thereof 5 wt% of TiO 2 and consisting of the added MgO to 2 wt% of strontium hydroxide
2 were applied. At this time, one coil was coated with an annealing separator and then wound with a winding tension of 2 kgf / mm 2 to obtain a coil before final annealing (condition a). The other coil has a winding tension of 8 kgf / mm 2 after applying an annealing separator.
To form a coil before final annealing (condition b). In addition, after applying the annealing separator to the other coil, copper sulfide is placed on the annealing separator in the coil end regions between the ends in the coil width direction and a distance of up to 100 mm from the ends. Further, 2 g / m 2 was applied in layers and wound at a winding tension of 2 kgf / mm 2 to obtain a coil before the final finish annealing (condition c). For the remaining coil, after applying the annealing separator, copper sulfide is further superimposed on the annealing separator in the coil end area between the ends in the coil width direction and a distance of 100 mm from the end. 2 g / m 2
The coil was applied and wound at a winding tension of 8 kgf / mm 2 to form a coil before final annealing (condition d).

【0021】最終仕上げ焼鈍は、ベースプレートの上に
各コイルを載せ、インナーカバーをかぶせて、ヒーター
付きのボックスに装入し回転炉床式炉で行った。最終仕
上げ焼鈍の条件は、850 ℃までN2中で平均30℃/hの昇温
速度で昇温し、同じくN2中、850 ℃で15時間保持した
後、25%のNH3 と75%のH2の雰囲気中で15℃/hの平均昇
温速度で1180℃まで昇温し、H2中で1180℃、5 時間保持
した後、降温したものである。その後、未反応の焼鈍分
離剤を除去し、コイル長手方向1 m ごとにコイルの幅方
向端部域の平均形状不良係数HDを測定し、各々の磁気
コイル長手方向全長における平均値を求めた。
The final annealing was carried out in a rotary hearth furnace with each coil placed on a base plate, covered with an inner cover, and charged in a box with a heater. Conditions of final finish annealing, the temperature was raised at a heating rate of average 30 ° C. / h in N 2 to 850 ° C., in also N 2, was held for 15 hours at 850 ° C., NH 3 25% 75% The temperature was raised to 1180 ° C. at an average rate of 15 ° C./h in an atmosphere of H 2 , kept at 1180 ° C. for 5 hours in H 2 , and then cooled. Thereafter, the unreacted annealing separating agent was removed, and the average shape defect factor HD in the end portion in the width direction of the coil was measured every 1 m in the coil longitudinal direction, and the average value in each magnetic coil longitudinal length was determined.

【0022】その結果を表1に、各コイルの磁気特性を
仕上げ焼鈍後の磁気特性として表2にそれぞれ示す。な
お、この実験と同一の脱炭焼鈍後の鋼板に、同じく5 wt
%のTiO2と2 wt%の水酸化ストロンチウムを添加したMg
O からなる焼鈍分離剤を10g/m2塗布した試料と、この上
に更に重ねて硫化銅を2 g/m2塗布した試料とを用意し、
研究室の実験炉で焼鈍し、二次再結晶温度を求めたとこ
ろ、前者の試料の二次再結晶温度は1020℃であったが、
硫化銅を追加塗布した後者の試料の二次再結晶温度は95
0 ℃に低下していた。
The results are shown in Table 1 and the magnetic properties of each coil are shown in Table 2 as the magnetic properties after finish annealing. The same steel plate after decarburization annealing as in this experiment was
Mg with the addition of 2 % TiO 2 and 2% by weight strontium hydroxide
Prepare a sample coated with 10 g / m 2 of an annealing separator composed of O and a sample further coated with 2 g / m 2 of copper sulfide on top of this.
Annealing in a laboratory experimental furnace and determining the secondary recrystallization temperature, the secondary recrystallization temperature of the former sample was 1020 ° C,
The secondary recrystallization temperature of the latter sample with additional application of copper sulfide was 95
It had dropped to 0 ° C.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1の結果より、コイル幅方向端部域に二
次再結晶促進剤である硫酸マグネシウムを塗布した条件
c及びdのコイルは、幅方向端部の形状が、極めて優れ
たものとなり、特に巻き取り張力を高め、8 kgf/mm2
した条件dではかつてない優れたものが得られ、大きな
改善効果が得られていることが分かる。コイル巻き取り
張力の、このような効果を調査したところ、張力が弱い
場合には、焼鈍中に鋼板層間での鋼板のずれが起こり易
く、このときには鋼板の一部に過剰な応力がかかりやす
くなるため局部的に大きな変形が起こりがちになること
がわかった。
From the results shown in Table 1, it is found that the coils under the conditions c and d in which magnesium sulfate as the secondary recrystallization accelerator is applied to the end portions in the coil width direction have extremely excellent end shapes in the width direction. In particular, under the condition d in which the winding tension was increased to 8 kgf / mm 2 , an unprecedented excellent product was obtained, and it was found that a great improvement effect was obtained. When investigating such an effect of coil winding tension, if the tension is weak, the steel sheet is likely to shift between the steel sheet layers during annealing, and at this time, excessive stress is likely to be applied to a part of the steel sheet Therefore, it was found that large deformation tends to occur locally.

【0026】したがって、コイル幅方向端部域の形状を
改善するためには、この領域での二次再結晶を促進さ
せ、高温変形に強い二次再結晶粒を低温から発現させる
ことが必要で、特に、この技術にコイル巻き取り張力を
高めて高温焼鈍時に各鋼板に均一に応力がかかるように
する技術を組み合わせることが効果的である。なお、磁
気特性は、表2に示すように4 種類の条件において差異
はない。
Therefore, in order to improve the shape of the end region in the coil width direction, it is necessary to promote secondary recrystallization in this region and to develop secondary recrystallized grains resistant to high-temperature deformation from a low temperature. In particular, it is effective to combine this technique with the technique of increasing the coil winding tension to uniformly apply stress to each steel sheet during high-temperature annealing. As shown in Table 2, there is no difference in the magnetic characteristics under the four conditions.

【0027】次に、この実験で得た4 種類のコイルにつ
いて、鋼板表面にリン酸マグネシウムとコロイダルシリ
カを主成分とする張力被膜を塗布し平坦化焼鈍を施し
た。このとき、各コイルを2 分割し、一方はコイルセッ
トが矯正される程度の0.4 kgf/mm2 を最小引張張力とし
て、各コイルの幅方向端部域の形状が矯正されるまでコ
イル端部域の形状不良の程度に応じて0.4 〜8 kgf/mm2
の張力を付加しつつ800℃で平坦化焼鈍し、残る一方の
コイルは一律8 kgf/mm2 の張力を付加しつつ800℃で平
坦化焼鈍した。前者の各コイルの磁気特性を平坦化焼鈍
後の磁気特性として表2に示す。また、後者の各コイル
のコイル幅方向両端部から300 mm幅で圧延方向の長さ1
m の鋼板を多数切り出し、これを100 枚積層して占積率
を測定し、更に800 ℃で3 時間の歪取り焼鈍を施した
後、再び占積率を測定した。これらの結果も表2に示
す。
Next, with respect to the four types of coils obtained in this experiment, a tension coating containing magnesium phosphate and colloidal silica as main components was applied to the surface of the steel sheet and flattened and annealed. At this time, each coil is divided into two, one a minimum tensile tension 0.4 kgf / mm 2 to the extent that the coil set is corrected, the coil end area to the shape of the end portion in the width direction area of each coil is corrected depending on the degree of shape defects 0.4 ~8 kgf / mm 2
The other coil was annealed at 800 ° C. while applying a uniform tension of 8 kgf / mm 2 while applying a tension of 800 kg. Table 2 shows the magnetic properties of the former coils as the magnetic properties after flattening annealing. In addition, the length of each coil in the rolling direction is 300 mm from both ends in the coil width direction.
A large number of steel sheets of m were cut out, 100 of them were laminated, and the space factor was measured. After performing strain relief annealing at 800 ° C. for 3 hours, the space factor was measured again. These results are also shown in Table 2.

【0028】表2に示されるように、コイル幅方向端部
域の形状の悪い条件aやbのコイルでは、平坦化焼鈍後
の磁気特性が大幅に劣化しているのに対し、形状の優れ
ている条件cやdのコイルではほとんど磁気特性の劣化
が認められない。これは、条件a、bのコイルはコイル
幅方向端部域の形状矯正のため鋼板を過剰に伸び変形さ
せたため、鋼板中に多くの転位が導入され磁気特性の劣
化を招いたためである。
As shown in Table 2, in the coils a and b where the shape of the end portion in the coil width direction is poor, the magnetic properties after the flattening annealing are significantly deteriorated, Under the conditions c and d, the deterioration of the magnetic characteristics is hardly recognized. This is because the coils under the conditions a and b excessively stretched and deformed the steel sheet in order to correct the shape of the end area in the coil width direction, so that many dislocations were introduced into the steel sheet and the magnetic properties were deteriorated.

【0029】また、平坦化焼鈍による矯正処理を同一条
件で行った後者の場合においても、コイル幅方向の端部
域から採取した鋼板について、条件aやbにおいては歪
取り焼鈍前(平坦化焼鈍後)で既に占積率が低下してお
り、更に歪取り焼鈍後では占積率が大幅に劣化してい
る。この原因を調査したところ、条件aやbではコイル
幅方向の端部域から採取した鋼板に2 mm以下の粒径から
なる二次再結晶の領域が多数あり、これがこうした現象
をもたらすものであることがわかった。表3に、コイル
幅方向中央部と端部域について鋼板のマクロエッチング
による組織観察の結果を、粒径2 mm以下の二次再結晶粒
の割合及び二次再結晶粒の平均結晶粒径で示す。
Also, in the latter case where the straightening treatment by the flattening annealing is performed under the same conditions, the steel sheet collected from the end area in the coil width direction is not subjected to the strain relief annealing (the flattening annealing) under the conditions a and b. After ()), the space factor has already decreased, and after the strain relief annealing, the space factor has significantly deteriorated. When investigating the cause, under the conditions a and b, the steel plate sampled from the end region in the coil width direction has many secondary recrystallization regions having a grain size of 2 mm or less, and this causes such a phenomenon. I understand. Table 3 shows the results of microstructural observation of the steel sheet by macro-etching in the center and end regions in the coil width direction, based on the ratio of secondary recrystallized grains having a grain size of 2 mm or less and the average crystal grain size of secondary recrystallized grains. Show.

【0030】[0030]

【表3】 [Table 3]

【0031】表3より、端部域の鋼板には上述の2 mm以
下の粒径の微細粒が二次再結晶組織内に多数存在するこ
とが分かった。最終仕上げ焼鈍時における二次再結晶前
に熱膨張差に起因して強い応力を受けるコイル幅方向の
端部域には、微細粒を有する二次再結晶組織が発生し易
い。発明者らの研究により、この微細粒が占積率低下を
来す原因であることが判明した。
From Table 3, it was found that a large number of fine grains having a grain size of 2 mm or less existed in the secondary recrystallized structure in the steel sheet in the end region. A secondary recrystallized structure having fine grains is likely to be generated in an end region in the coil width direction which receives a strong stress due to a difference in thermal expansion before the secondary recrystallization during the final annealing. According to the study of the inventors, it has been found that these fine grains are responsible for a decrease in the space factor.

【0032】ちなみに、平坦化焼鈍後の前述の鋼板a及
びcのマクロ組織における粒径2 mm以下の結晶粒の面積
比率を、コイル幅方向端部からの距離との関係で図5に
示す。ここに、2 mm以下の結晶粒とは、面積が等価な円
の相当径が2 mm以下の結晶粒のことであり、二次再結晶
不良の粒や2 mm以下の微細な二次再結晶を含む。図5に
おいて、コイル端部域の形状不良や、占積率不良をもた
らした鋼板aにおいては、2 mm以下の結晶粒の面積比率
が高く、この面積比率が15%となる点のコイル幅方向端
部からの距離L15は58mm及び63mmであり、これに対し
て、コイル端部域の形状や占積率に優れた鋼板cにおい
ては、微細粒の生成が抑制されており、L15の値は25mm
と21mmであることが分かった。
FIG. 5 shows the area ratio of crystal grains having a grain size of 2 mm or less in the macrostructures of the steel plates a and c after the flattening annealing in relation to the distance from the end in the coil width direction. Here, a crystal grain of 2 mm or less means a crystal grain having an equivalent diameter of an equivalent circle of 2 mm or less, a grain having a poor secondary recrystallization or a fine secondary recrystallization of 2 mm or less. including. In FIG. 5, in the steel sheet “a” in which the shape defect of the coil end region and the space factor were poor, the area ratio of crystal grains of 2 mm or less is high, and the point where the area ratio becomes 15% in the coil width direction The distance L15 from the end is 58 mm and 63 mm. On the other hand, in the steel sheet c excellent in the shape and the space factor of the coil end area, the generation of fine grains is suppressed, and the value of L15 is 25mm
And found to be 21mm.

【0033】ここで、このような結果を得た理由を考察
すると、2 mm以下の微細粒を含有する組織が粗大な二次
再結晶粒組織と混在していると、鋼板は平坦化焼鈍の矯
正時に不均一な内部歪を含有するようになるので歪取り
焼鈍後の鋼板形状は再び劣化し、結局、占積率の低下を
招くことになる。これに対し、二次再結晶促進剤を塗布
した条件cやdでは2 mmを超える二次再結晶がコイル幅
方向端部域まで進行するため、上述のような不利益は発
生しない。更に、表3に示されるように、コイル幅方向
端部における二次再結晶組織は平均的に二次再結晶が促
進されるため、幅方向中央部よりも平均粒径が小さくな
っており、このことは変形強度を高める上でも有利なの
で、更に優れた占積率が歪取り焼鈍後も維持されること
が期待できる。
Considering the reason for obtaining such a result, if the structure containing fine grains of 2 mm or less is mixed with the coarse secondary recrystallized grain structure, the steel sheet will not be subjected to flattening annealing. Since a non-uniform internal strain is contained at the time of straightening, the shape of the steel sheet after the strain relief annealing is deteriorated again, and eventually, the space factor is reduced. On the other hand, under the conditions c and d in which the secondary recrystallization accelerator is applied, since the secondary recrystallization exceeding 2 mm proceeds to the end portion in the coil width direction, the above disadvantage does not occur. Furthermore, as shown in Table 3, the secondary recrystallized structure at the end portion in the coil width direction has an average particle size smaller than that in the central portion in the width direction because secondary recrystallization is promoted on average. Since this is advantageous in increasing the deformation strength, it can be expected that a more excellent space factor will be maintained even after the strain relief annealing.

【0034】ところで、コイル幅方向端部の変形強度を
高め、優れた占積率が歪取り焼鈍後も維持されるこのよ
うな作用効果は、上述した二次再結晶の粒径を低減する
手法だけでなく、この他にも、二次再結晶粒の方位を低
下させることによっても可能である。すなわち、コイル
幅方向中央部の二次結晶粒の方位が通常のように(11
0)[001]方位に比較的揃っているのに対し、二次
再結晶促進剤を塗布した場所での二次再結晶粒の方位は
(110)[001]方位からずれる傾向を有する。こ
うした傾向は、変形に対して有利に作用するので変形強
度を更に高め、歪取り焼鈍後の占積率の劣化を抑制する
のに有効である。以上の実験と調査結果を基に鋭意研究
の結果、この発明は、完成されたものである。
By the way, such a function and effect that the deformation strength at the end portion in the coil width direction is increased and an excellent space factor is maintained after strain relief annealing is achieved by reducing the grain size of the secondary recrystallization described above. Not only this, but also by lowering the orientation of the secondary recrystallized grains. In other words, the orientation of the secondary crystal grains in the center part in the coil width direction is set to the normal (
0) While the orientation is relatively uniform in the [001] orientation, the orientation of the secondary recrystallized grains at the location where the secondary recrystallization accelerator has been applied tends to deviate from the (110) [001] orientation. Such a tendency is advantageous for deformation, so that the deformation strength is further increased and the deterioration of the space factor after strain relief annealing is suppressed. The present invention has been completed as a result of intensive studies based on the above experiments and survey results.

【0035】以下、この発明の方向性電磁鋼板の成分組
成や製造方法に関して、この発明の効果を有利に得るた
めの要件とその範囲及び作用について詳述する。まず、
この発明の方向性電磁鋼板の成分組成を限定した理由に
ついて説明する。 (Si:1.5 〜7.0 wt%)Siは、製品の電気抵抗を高め、
鉄損を低減するのに有効な成分であり、このために1.5
wt%以上を含有させるが、7.0 wt%を超えると硬度が高
くなり製造や加工が困難になる。したがって1.5 〜7.0
wt%の範囲で含有させる。 (Mn:0.03〜2.5 wt%)MnもSiと同じく電気抵抗を高め
る作用があり、また、製造に熱間加工を容易にする作用
がある。このためには0.03wt%以上を含有させる必要が
あるが、2.5 wt%を超えると熱処理時にγ変態を誘起し
て磁気特性を劣化させるので、0.03〜2.5 wt%の範囲で
含有させるものとする。
Hereinafter, with respect to the component composition and the production method of the grain-oriented electrical steel sheet of the present invention, the requirements for obtaining the advantageous effects of the present invention, the range thereof, and the operation will be described in detail. First,
The reason for limiting the component composition of the grain-oriented electrical steel sheet of the present invention will be described. (Si: 1.5 to 7.0 wt%) Si increases the electrical resistance of the product,
It is an effective ingredient for reducing iron loss.
If the content is more than 7.0 wt%, the hardness becomes high and the production and processing become difficult. Therefore 1.5-7.0
It is contained in the range of wt%. (Mn: 0.03 to 2.5 wt%) Mn also has the effect of increasing the electrical resistance like Si, and also has the effect of facilitating hot working in production. For this purpose, it is necessary to contain 0.03 wt% or more, but if it exceeds 2.5 wt%, γ transformation is induced during heat treatment to deteriorate magnetic properties. Therefore, the content should be 0.03 to 2.5 wt%. .

【0036】上記成分はいずれも含有させることが必須
の成分であるが、その他、インヒビターとして含有され
ており、最終仕上げ焼鈍によって純化され得ないもので
磁気特性を劣化させないものであれば、適宜含有させる
ことができる。また、C、Al、S、Nなどは磁気特性の
上で有害な成分であり、純化焼鈍あるいは脱炭焼鈍によ
って鋼中から除去できるものであるので、製品において
はできるだけ含有量を低減することが好ましい。このよ
うな成分を有する鋼板は、鋼板表面に通常各種の被膜を
有しているが、ときには被膜がない状態で使用される場
合もある。
It is essential that all of the above components are contained, but if they are contained as inhibitors and cannot be purified by final finishing annealing and do not deteriorate the magnetic properties, they may be appropriately contained. Can be done. In addition, C, Al, S, N, etc. are harmful components on magnetic properties and can be removed from steel by purifying annealing or decarburizing annealing. preferable. A steel sheet having such a component usually has various coatings on the surface of the steel sheet, but is sometimes used without a coating.

【0037】更に、方向性電磁鋼板の結晶組織について
は、下記のa)、b)及びc)のいずれかを満たすこと
が、この発明の方向性電磁鋼板には必要である。すなわ
ち、コイル幅方向端部域が二次再結晶の細粒組織である
場合には、下記のa)を満たすことが必要とされる。こ
こで、二次再結晶の細粒組織とは、通常の二次再結晶不
良と呼称される組織とは異なり、マクロエッチングした
対象領域において、各結晶粒の面積を等価面積の円に置
き換えたときの円の直径(円相当径)にして2 mm以下の
結晶粒の該領域に占める面積比率が15%以上であるよう
な二次再結晶粒の組織のことである。また、コイル幅方
向端部域が二次再結晶の細粒組織であるとは、コイル幅
方向から一定距離Lを選び定めたとき、二次再結晶の細
粒組織となるLが存在するということである。
Further, it is necessary for the grain-oriented electrical steel sheet of the present invention that the crystal structure of the grain-oriented electrical steel sheet satisfy any of the following a), b) and c). That is, when the end region in the coil width direction has a fine grain structure of secondary recrystallization, the following a) needs to be satisfied. Here, the fine grain structure of the secondary recrystallization is different from a structure called ordinary secondary recrystallization failure, and the area of each crystal grain is replaced with a circle having an equivalent area in the macro-etched target region. This is a structure of secondary recrystallized grains in which the area ratio of crystal grains having a diameter of 2 mm or less to the region in terms of the diameter of the circle (equivalent circle diameter) is 15% or more. Further, the term “the end region in the coil width direction having the fine grain structure of the secondary recrystallization” means that when a certain distance L is selected and determined from the coil width direction, there is L which becomes the fine grain structure of the secondary recrystallization. That is.

【0038】a)方向性電磁鋼板コイルにおいて、コイ
ル幅方向で端部から一定距離Lを選び定めたときのコイ
ル端部からLまでの幅の領域につき、Lが30mmを超える
値の場合には二次再結晶の細粒組織の出現が抑制されて
いることが必要である。Lが30mmを超える端部域におい
ても二次再結晶の細粒組織が出現する場合、端部域の形
状不良のため平坦化焼鈍による過剰の矯正を行う必要が
あり、これに起因する磁気特性の劣化や歪取り焼鈍後の
端部域の占積率の低下を招く結果となる。したがって、
このような不利益の発生を抑制するためには、上記二次
再結晶が細粒組織となる端部域に対応する距離Lの大き
さとして30mm以下に規制することが必要である。また、
このように規制した端部域はコイル両端部であっても、
一方の端部であっても効果が得られることはいうまでも
ない。
A) For a grain-oriented electrical steel sheet coil, when a certain distance L from the end in the coil width direction is selected and determined, if L is a value exceeding 30 mm for the area from the coil end to L, It is necessary that the appearance of the fine grain structure of the secondary recrystallization is suppressed. When the secondary recrystallization fine grain structure appears even in the edge region where L exceeds 30 mm, it is necessary to perform excessive correction by flattening annealing due to poor shape of the edge region, and the magnetic characteristics resulting from this This results in deterioration of the area and a decrease in the space factor of the end region after the strain relief annealing. Therefore,
In order to suppress the occurrence of such disadvantages, it is necessary to regulate the size of the distance L corresponding to the end region where the secondary recrystallization has a fine grain structure to 30 mm or less. Also,
Even if the end areas regulated in this way are both ends of the coil,
It goes without saying that the effect can be obtained even at one end.

【0039】次に、コイル幅方向端部域に二次再結晶の
細粒組織が認められない場合には、下記のb)もしくは
c)の組織とすることが必要である。すなわち、 b)L=30mm、すなわち、コイル端部から幅30mmまでの
コイル幅方向端部域の二次再結晶粒の平均粒径が4 mm以
上であり、かつ、その平均粒径が幅方向中央部100 mm幅
の領域での平均粒径よりも3 mm以上大きいか、3 mm以上
小さい組織とすることが、平坦化焼鈍による過剰の矯正
に起因する磁気特性の劣化や歪取り焼鈍後の占積率の低
下を更に抑制する上で必要である。この端部域での二次
再結晶粒の平均粒径が中央部100 mm幅の領域の二次再結
晶粒の平均粒径の値から±3 mm未満の範囲である場合
は、平坦化焼鈍による過剰の矯正に起因する磁気特性の
劣化や歪取り焼鈍後の占積率の低下を抑制する作用が現
れない。また、この端部域での二次再結晶粒の平均粒径
が4 mm未満であると二次再結晶組織全体がやはり細粒組
織の状態に近づくので逆にコイル形状が劣化する。ま
た、このように規制した端部域はコイル両端部であって
も、一方の端部であっても効果が得られることはいうま
でもない。なお、ここで、二次再結晶粒の平均粒径と
は、円相当径が2 mm以下の結晶粒を除いた残部領域につ
いて、通常行われているように、残部領域全体の面積を
残部領域に占める結晶粒の個数で除し、この値と等価な
円の面積の直径で表したものである。
Next, when a fine grain structure of secondary recrystallization is not recognized in the end region in the coil width direction, it is necessary to adopt the following structure b) or c). B) L = 30 mm, that is, the average grain size of the secondary recrystallized grains in the coil width direction end region from the coil end to the width of 30 mm is 4 mm or more, and the average grain size is in the width direction. The average grain size in the central 100 mm width region should be 3 mm or more larger or smaller than 3 mm or less in the structure. It is necessary to further suppress the decrease in the space factor. If the average grain size of the secondary recrystallized grains in the end region is less than ± 3 mm from the value of the average grain size of the secondary recrystallized grains in the central region having a width of 100 mm, flattening annealing is performed. The effect of suppressing the deterioration of the magnetic properties and the decrease in the space factor after the strain relief annealing due to the excessive correction due to the heat treatment does not appear. On the other hand, if the average grain size of the secondary recrystallized grains in this end region is less than 4 mm, the entire secondary recrystallized structure also approaches the state of the fine grained structure, and conversely, the coil shape is deteriorated. Also, it goes without saying that the effect can be obtained even if the end area regulated in this way is both ends of the coil or one end. Note that, here, the average particle size of the secondary recrystallized grains refers to the area of the entire remaining region, as is usually performed, for the remaining region excluding crystal grains having an equivalent circle diameter of 2 mm or less. Is divided by the number of crystal grains occupied by a circle, and is expressed by the diameter of the area of a circle equivalent to this value.

【0040】c)コイル幅方向端部域の二次再結晶の面
内方位ずれ角の平均値αe (但し、面内方位ずれ角とは
[001]方位の鋼板面内における(110)[00
1]からのずれ角、すなわち、通称α角と呼称されるも
のを示す。)が、幅方向中央部100 mmの幅の領域での二
次再結晶粒の面内方位ずれ角の平均値αc よりも3 〜20
度大きいことが、平坦化焼鈍による過剰の矯正に起因す
る磁気特性の劣化やコイル幅方向端部域での歪取り焼鈍
後の占積率の低下を抑制する上で必要である。このとき
の端部域は、コイル端部からコイル幅方向に30mmまでの
幅の領域とする。端部から30mmまでの幅の領域の面内方
位ずれ角の平均値αe が中央部100 mm幅の領域の面内方
位ずれ角の平均値αc の値を超えることが3 度未満とな
る場合には、平坦化焼鈍による過剰の矯正に起因する磁
気特性の劣化や端部域の歪取り焼鈍後の占積率の低下を
抑制することができない。また、αe がαc を20度を超
える程に大きな値である場合には、端部域の磁気特性の
過大な劣化を招き、電磁鋼板として使用できない。した
がって、コイル幅方向端部から30mmまでの幅の領域の面
内方位ずれ角の平均値αe の値は、コイル幅方向中央部
100 mmの幅の領域の面内方位ずれ角の平均値αc の値よ
りも3 〜20度大きい値とする。また、このように規制し
た端部域は、コイル両端部であっても、一方の端部であ
っても効果が得られることはいうまでもない。なお、面
内方位ずれ角の平均値は、結晶粒の面積平均をとったも
のであり、例えば二次元的に一定間隔で結晶方位を測定
し、この平均値をとる方法が適切である。
C) The average value αe of the in-plane misorientation angle of the secondary recrystallization in the end region in the coil width direction (where the in-plane misorientation angle is (110) [00] in the steel sheet plane having the [001] orientation.
1], that is, a so-called α angle. ) Is 3 to 20 times larger than the average value αc of the in-plane misorientation angle of the secondary recrystallized grains in the region having a width of 100 mm at the center in the width direction.
The large degree is necessary to suppress the deterioration of the magnetic properties due to the excessive correction by the flattening annealing and the decrease in the space factor after the strain relief annealing in the end region in the coil width direction. The end area at this time is an area having a width from the coil end to 30 mm in the coil width direction. When the average value of the in-plane misalignment angle αe of the area with a width of 30 mm from the end exceeds the value of the average value of the in-plane misalignment angle αc of the central area with a width of 100 mm is less than 3 degrees. Cannot suppress the deterioration of magnetic properties due to excessive correction by flattening annealing and the decrease of the space factor after strain relief annealing in the end region. On the other hand, if αe is larger than αc by more than 20 degrees, the magnetic properties in the end regions are excessively deteriorated, and cannot be used as an electromagnetic steel sheet. Therefore, the value of the average value αe of the in-plane azimuth misalignment angle of the region having a width of up to 30 mm from the end in the coil width direction is calculated at the center of the coil width direction
The value is 3 to 20 degrees larger than the average value αc of the in-plane misorientation angle in the region having a width of 100 mm. Also, it goes without saying that the effect can be obtained even if the end area regulated in this way is both ends of the coil or one end. The average value of the in-plane azimuth deviation angle is obtained by averaging the area of the crystal grains. For example, a method of measuring the crystal orientation at two-dimensional constant intervals and taking the average value is appropriate.

【0041】以上、通常コイルの幅方向端部の形状不良
は、製品の出荷の際には切れ捨てられるが、これでも、
形状不良の部分がしばしば製品に混入し、占積率の低下
や不均一などによる変圧器などの加工工程での大きなト
ラブルの原因となっていたが、最終仕上げ焼鈍後の状態
において、上記特徴をそなえる鋼板を実現することによ
って、製品の形状品質の向上と製品歩留りの大幅な向
上、並びに変圧器などの加工工程におけるトラブルの解
消が実現した。なお、この発明における方向性電磁鋼板
は、発明の目的からして当然のことではあるが、製品を
幅方向に分割してスリットコイルを意味するものではな
い。
As described above, the defective shape of the end of the coil in the width direction is usually cut off when the product is shipped.
Defects in the shape are often mixed into the product, causing a major trouble in the processing of transformers due to a decrease in space factor or unevenness.In the state after final finish annealing, the above characteristics The realization of a steel sheet that has been provided has improved the product's shape quality, greatly improved the product yield, and eliminated troubles in the processing process of transformers and the like. Note that the grain-oriented electrical steel sheet in the present invention does not mean a slit coil by dividing a product in the width direction, as a matter of course from the object of the invention.

【0042】次に、この発明に従う方向性電磁鋼板の製
造方法について説明する。まず、素材の成分組成につい
てその限定理由について述べる。 (Si:1.5 〜7.0 wt%)Siは、電気抵抗を増加させ、鉄
損を低減するのに有効に寄与するが、1.5 wt%に満たな
いとその効果に乏しく、一方、7.0 wt%を超えると加工
性が劣化し、製造それ自体や製品の加工が極めて困難に
なるので、1.5 〜7.0 wt%の範囲に限定する。 (Mn:0.03〜2.5 wt%)MnもSiと同じく電気抵抗の向上
に有用なだけでなく、熱間加工性の改善にも有効に寄与
するが、0.03wt%に満たないとその添加効果に乏しく、
2.5 wt%を超えると熱処理時にγ変態を誘起して磁気特
性の劣化を招くので、0.03〜2.5 wt%の範囲に限定し
た。
Next, a method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described. First, the reasons for limiting the component composition of the material will be described. (Si: 1.5 to 7.0 wt%) Si effectively increases the electrical resistance and reduces iron loss, but its effect is poor when it is less than 1.5 wt%, while it exceeds 7.0 wt% Therefore, the workability is deteriorated, and the production itself and the processing of the product become extremely difficult. Therefore, the range is limited to 1.5 to 7.0 wt%. (Mn: 0.03 to 2.5 wt%) Like Si, Mn is not only useful for improving electrical resistance, but also effectively contributes to improving hot workability. Poor,
If the content exceeds 2.5 wt%, γ transformation is induced during heat treatment to cause deterioration of magnetic properties, so the range is limited to the range of 0.03 to 2.5 wt%.

【0043】鋼中には、上記の成分の他に二次再結晶を
誘起するための公知のインヒビター成分を含有させる。
すなわち、インヒビター成分として、Al、B、Bi、Sb、
Te、Se、S、Sn、P、Ge、As、Nb、Cr、Ti、Cu、Pb、Zn
及びInなどが知られている。また、インヒビター添加成
分としては、一種類のみでも単独で作用を発揮するが、
好ましくは二種類以上の複合添加がより好ましい結果を
得る。
In the steel, a known inhibitor component for inducing secondary recrystallization is contained in addition to the above components.
That is, as inhibitor components, Al, B, Bi, Sb,
Te, Se, S, Sn, P, Ge, As, Nb, Cr, Ti, Cu, Pb, Zn
And In are known. In addition, as an inhibitor additive component, only one type exerts an action alone,
Preferably, two or more kinds of composite additions obtain more preferable results.

【0044】その他の成分については、公知の方向性電
磁鋼板用の成分組成が全て適合するが、特に、下記の成
分については有利となる範囲が存在する。Cの含有量に
ついて、0.120 wt%を超えると脱炭焼鈍で十分に除去で
きず磁気特性が劣化する傾向となり、一方、0.010 wt%
未満では組織改善効果が劣り、二次再結晶が不完全とな
りがちで、やはり磁気特性が劣化する傾向となる。した
がって、Cは0.010 〜0.120 wt%の範囲が好ましい。
As for other components, all known component compositions for grain-oriented electrical steel sheets are suitable, but particularly, the following components have advantageous ranges. When the content of C exceeds 0.120 wt%, it cannot be sufficiently removed by decarburizing annealing, and the magnetic properties tend to deteriorate. On the other hand, 0.010 wt%
If it is less than 30, the effect of improving the structure is inferior, secondary recrystallization tends to be incomplete, and the magnetic properties also tend to deteriorate. Therefore, C is preferably in the range of 0.010 to 0.120 wt%.

【0045】その他の添加成分については、高磁束密度
を得るためには必ずしも必要とされるものではないが、
例えば、Moの添加などは鋼板の表面性状を改善する効果
があるので適宜含有させることは可能である。
The other additional components are not necessarily required to obtain a high magnetic flux density,
For example, the addition of Mo and the like have the effect of improving the surface properties of the steel sheet, so that it is possible to appropriately add Mo.

【0046】以上の成分に調整した鋼は公知の方向性電
磁鋼板の熱延方法によって熱延鋼板としたのち、必要に
応じて熱延板焼鈍を施し、1 回もしくは中間焼鈍をはさ
む2回以上の冷間圧延で最終板厚とする。なお、上記の
圧延に際し、公知の温間圧延やパス間時効処理を組み合
わせることは、この発明でも有効である。また、最終圧
延後、磁区細分化のために鋼板表面に線状の溝を設ける
ことも可能である。更に、熱延板焼鈍や中間焼鈍の際に
弱脱炭処理を施すことも可能である。
The steel adjusted to the above-mentioned components is made into a hot-rolled steel sheet by a known hot-rolling method for a grain-oriented electrical steel sheet, and then, if necessary, is subjected to hot-rolled sheet annealing, once or twice or more with intermediate annealing. To the final thickness by cold rolling. It is to be noted that a combination of known warm rolling and inter-pass aging treatment is also effective in the present invention. After the final rolling, it is also possible to provide a linear groove on the surface of the steel sheet for subdividing the magnetic domains. Furthermore, it is also possible to perform a weak decarburization treatment during hot-rolled sheet annealing or intermediate annealing.

【0047】次いで、一次再結晶焼鈍を施すが、このと
き、必要に応じて同時に脱炭処理も兼備させ、C量を所
定の値以下まで低減する。一次再結晶焼鈍後には、鋼板
表面に焼鈍分離剤を塗布し、コイル状に巻き取り最終仕
上げ焼鈍を施す。このとき、3 kgf/mm2 以上のコイル巻
き取り張力でコイルを巻き取ることによって、この発明
の効果が相乗的に高まる。すなわち、コイル巻き取り張
力は、最終仕上げ焼鈍時のコイルの熱的変形による座屈
を抑制しつつ、相乗的にこの発明の目的であるコイル幅
方向端部域の形状を改善する作用があるので、特に重要
な技術である。
Next, primary recrystallization annealing is performed. At this time, if necessary, a decarburizing treatment is simultaneously performed to reduce the C content to a predetermined value or less. After the primary recrystallization annealing, the steel sheet surface is coated with an annealing separating agent, wound into a coil shape, and subjected to final finish annealing. At this time, by winding the coil with a coil winding tension of 3 kgf / mm 2 or more, the effect of the present invention is synergistically enhanced. That is, the coil winding tension acts synergistically to improve the shape of the end portion in the coil width direction, which is the object of the present invention, while suppressing buckling due to thermal deformation of the coil during final finish annealing. Is a particularly important technology.

【0048】また、焼鈍分離剤としては、最終仕上げ焼
鈍時にフォルステライト被膜を形成させる場合にはMgO
を主成分とする粉末をスラリー化したものを塗布する
が、被膜形成を抑制する場合にはAl2O3 など、MgO 以外
の物質の主成分を用いることもよく知られており、この
発明に適用できることはいうまでもない。最終仕上げ焼
鈍は、二次再結晶と純化とを目的とした焼鈍であり、通
常両者は同一の焼鈍で行われる。しかし、ときに二つの
焼鈍に分離して行われる場合もあり、この場合でもこの
発明の方法が適用できる。最終仕上げ焼鈍後は未反応の
焼鈍分離剤を除去して、必要に応じて平坦化焼鈍を兼ね
て絶縁コーティングを塗布焼き付けて製品とする。ま
た、製品にはレーザーやプラズマジェットを局部的に照
射したり、突起ロールで微少歪を局部的に導入して磁区
細分化処理を施すこともできる。
As an annealing separator, MgO is used for forming a forsterite film at the time of final finish annealing.
It is well-known that the main component of a substance other than MgO, such as Al 2 O 3 , is used to suppress the formation of a film. It goes without saying that it can be applied. The final finish annealing is annealing for the purpose of secondary recrystallization and purification, and both are usually performed by the same annealing. However, sometimes the annealing is performed separately in two cases, and even in this case, the method of the present invention can be applied. After the final annealing, the unreacted annealing separator is removed, and if necessary, an insulating coating is applied and baked to serve as a flattening anneal to obtain a product. Further, the product may be locally irradiated with a laser or a plasma jet, or may be subjected to a magnetic domain refining treatment by locally introducing a minute strain with a projection roll.

【0049】このような方向性電磁鋼板の製造工程にお
いて、二次再結晶を目的とした高温長時間焼鈍より以前
において、コイル幅方向両端部もしくは一方の端部域に
中央部領域に比較して付加的な二次再結晶促進処理を施
し、コイル幅方向端部の形状を改善することが、この発
明の方向性電磁鋼板の製造方法の最も主要をなす構成要
件である。
In the manufacturing process of such a grain-oriented electrical steel sheet, before the high-temperature long-time annealing for the purpose of secondary recrystallization, both ends or one end region in the coil width direction are compared with the central region. Improving the shape of the end portion in the coil width direction by performing an additional secondary recrystallization acceleration treatment is the most important component of the method for manufacturing a grain-oriented electrical steel sheet according to the present invention.

【0050】ここで、二次再結晶促進処理とは、二次再
結晶の発現を早期化、低温化させるための処理であり、
コイル巻き取った後、幅方向の端面を高温のアンモニア
雰囲気にさらし窒化させるなどの処理が該当するが、最
も有効な方法としては、1)一次再結晶粒を細粒化する
処理、2)強い抑制力のもと一次再結晶粒の粒成長を抑
制した状態のもと、一次再結晶粒への20%までの歪付与
処理といったような一次再結晶粒の粒成長の駆動力を強
化する処理や、3)インヒビターの抑制力を強化して、
二次再結晶を促進する処理、がある。
Here, the secondary recrystallization accelerating process is a process for speeding up the onset of secondary recrystallization and lowering the temperature.
After winding the coil, a process such as exposing the end face in the width direction to a high-temperature ammonia atmosphere and nitriding is applicable, but the most effective methods are 1) a process for reducing primary recrystallized grains and 2) a strong process. A process that enhances the driving force of primary recrystallized grain growth, such as applying strain to the primary recrystallized grains up to 20% while suppressing the growth of primary recrystallized grains under a restraining force. And 3) strengthen the inhibitory power of inhibitors,
Treatment to promote secondary recrystallization.

【0051】このうち、1)の一次再結晶粒を細粒化す
る処理や、2)の一次再結晶粒の粒成長の駆動力を強化
する処理は、特にコイル幅方向端部の形状を改善する効
果が高く、かつ安定しており、工業的に実施することが
容易であり優れている。かかる処理をコイル幅方向端部
域に、すなわち幅方向に局部的に行う。更に、上記の方
法について、より具体的方法を述べると、局部的な一次
再結晶粒径の微細化処理の方法としては、鋼板の焼鈍時
においてコイル幅方向端部域の温度を低下させる方法、
温間圧延時においては、コイル幅方向端部域の温度を高
める方法、表層弱脱炭処理時においてコイル幅方向端部
域の表層脱炭を抑制する方法がある。
Among them, 1) the process of making the primary recrystallized grains finer and 2) the process of strengthening the driving force for the grain growth of the primary recrystallized grains particularly improve the shape of the end portion in the coil width direction. The effect is high and stable, and it is easy and excellent to implement industrially. Such processing is performed locally in the end area in the coil width direction, that is, in the width direction. Furthermore, regarding the above method, to describe a more specific method, as a method of localizing the primary recrystallized grain size, a method of lowering the temperature of the coil width direction end region during annealing of the steel sheet,
In the warm rolling, there are a method of increasing the temperature in the end region in the coil width direction, and a method of suppressing surface decarburization in the end region in the coil width direction during the weak surface decarburization treatment.

【0052】また、一次再結晶粒への歪付与処理として
は、一次再結晶焼鈍後に、コイル幅方向端部域に圧延な
どの方法で歪を付与する方法がある。しかしながら20%
を超える歪を付与すると、逆に微細な二次再結晶粒が増
加し、不適合となる。
As a treatment for imparting strain to the primary recrystallized grains, there is a method in which after the primary recrystallization annealing, strain is imparted to the end region in the coil width direction by a method such as rolling. However, 20%
On the contrary, when a strain exceeding? Is given, fine secondary recrystallized grains increase, and it becomes incompatible.

【0053】また、コイル幅方向端部域の鋼板表面をめ
っきで覆い、二次再結晶前における鋼板表面からのイン
ヒビターの消失を抑制する方法や、焼鈍分離剤塗布の
前、あるいは後においてコイル幅方向端部域に抑制力強
化剤を塗布したり、焼鈍分離剤中に抑制力強化剤を添加
するといった抑制力強化剤を使用する方法がある。ここ
で、抑制力強化剤とは、セレン酸塩やセレン化物など、
セレンを含有する物質、テルルを含有する物質、リン酸
カルシウム、リン酸アンモニウムなどの燐を含有する物
質、酸化スズなどスズを含有する物質、窒化鉄や窒化マ
ンガンなどの窒化物というように、インヒビター成分を
含有する物質のうち、特に二次再結晶を促進し、2 mm以
下の微細結晶粒の二次再結晶の出現を抑制する物質の総
称である。
Further, the steel sheet surface in the end area in the coil width direction is covered with plating to suppress the disappearance of the inhibitor from the steel sheet surface before the secondary recrystallization, or the coil width before or after the application of the annealing separating agent. There is a method of using a suppressive strength enhancer such as applying a suppressive strength enhancer to a direction end region or adding a suppressive strength enhancer to an annealing separator. Here, the suppressive power enhancer is, for example, selenate or selenide.
Inhibitor components such as selenium-containing substances, tellurium-containing substances, phosphorus-containing substances such as calcium phosphate and ammonium phosphate, tin-containing substances such as tin oxide, and nitrides such as iron nitride and manganese nitride Among the contained substances, it is a general term for substances that particularly promote secondary recrystallization and suppress the appearance of secondary recrystallization of fine crystal grains of 2 mm or less.

【0054】また、このような二次再結晶促進処理を施
す端部域の幅としては、30mm以下とすることが、コイル
幅方向端部の形状を改善する効果が顕著となりより好ま
しい。
It is more preferable that the width of the end region to be subjected to such a secondary recrystallization acceleration treatment be 30 mm or less, since the effect of improving the shape of the end portion in the coil width direction becomes remarkable.

【0055】コイル幅方向両端部域もしくは一方の端部
域に、上述のような付加的な二次再結晶促進処理を施し
た場合に形成される二次再結晶の組織は、一次再結晶後
の鋼板のインヒビターと一次再結晶粒径とのバランスに
おいてさまざまの形態をとる。すなわち、一次再結晶後
の鋼板のインヒビターが強く、したがって一次再結晶粒
径が小さい場合に二次再結晶促進処理を施すと、二次再
結晶粒の面内方位ずれ角:αが増大する方向に変化す
る。また、一次再結晶後の鋼板のインヒビターが強く、
かつ、一次再結晶粒径が大きい場合に二次再結晶促進処
理を施すと、二次再結晶の平均粒径が減少する。更に、
一次再結晶後の鋼板のインヒビターが弱く、したがって
一次再結晶粒径が大きい場合には、二次再結晶促進処理
によって二次再結晶の細粒組織が低減する。また、一次
再結晶後の鋼板のインヒビターが弱く、かつ、一次再結
晶粒径が小さい場合に二次再結晶促進処理を施すと、二
次再結晶の平均粒径が増加する。以上のように、一次再
結晶焼鈍後の方向性電磁鋼板の組織の状態に応じてさま
ざまな形態の二次再結晶組織が出現するが、いずれもコ
イル幅方向端部域の形状不良を改善するのに有効であ
る。
The structure of secondary recrystallization formed when the above-described additional secondary recrystallization acceleration treatment is applied to both end regions or one end region in the coil width direction is as follows: Takes various forms in the balance between the inhibitor of the steel sheet and the primary recrystallized grain size. That is, when the secondary recrystallization acceleration treatment is performed when the inhibitor of the steel sheet after the primary recrystallization is strong, and thus the primary recrystallization grain size is small, the in-plane misorientation angle α of the secondary recrystallized grains increases. Changes to In addition, the inhibitor of the steel sheet after primary recrystallization is strong,
Further, when the secondary recrystallization acceleration treatment is performed when the primary recrystallization particle size is large, the average particle size of the secondary recrystallization decreases. Furthermore,
When the inhibitor of the steel sheet after the primary recrystallization is weak, and thus the primary recrystallization particle size is large, the secondary recrystallization acceleration treatment reduces the fine grain structure of the secondary recrystallization. Further, when the secondary recrystallization acceleration treatment is performed when the inhibitor of the steel sheet after the primary recrystallization is weak and the primary recrystallization particle size is small, the average particle size of the secondary recrystallization increases. As described above, various forms of the secondary recrystallized structure appear depending on the state of the structure of the grain-oriented electrical steel sheet after the primary recrystallization annealing, but all improve the shape defect in the end portion in the coil width direction. It is effective for

【0056】[0056]

【実施例】(実施例1) C:0.08wt%、Si:3.32wt%、Mn:0.07wt%、Al:0.02
wt%、Sb:0.025 wt%、N:0.008 wt%を含み、残部は
鉄及び不可避的不純物からなる重量20t の鋼スラブ2 本
を、1420℃に加熱した後、常法により2.2 mm厚の熱延鋼
板とした。次いで、1000℃、30秒の熱延板焼鈍後、酸洗
し、1.6 mm厚に冷間圧延した。その後、1080℃で40秒間
の中間焼鈍を施したが、その際、1 本はコイル幅方向に
均一の1080℃の温度で焼鈍し(比較例)、他の1 本はコ
イル幅方向両端部域として端部から100 mmまでの領域の
温度を炉内遮蔽板により30℃低下させ1050℃として焼鈍
した(発明例)。この後、双方とも200 ℃の鋼板温度で
の温間圧延により0.22mmの最終板厚とした。次いで、脱
脂処理後、850 ℃で2 分間の脱炭焼鈍を施した後、5 %
のTiO2と2 %のSrSO4 を添加したMgO を焼鈍分離剤とし
て12g/m2塗布したが、このとき、各々のコイルを均等に
二分割し、一方は2 kgf/mm2 でコイル状に巻き取り、も
う一方は6 kgf/mm2 でコイル状に巻き取った。このとき
の一次再結晶粒の平均粒径を測定したところ、コイル幅
方向中央部でいずれのコイルも8 〜9 μm の範囲内であ
った。
[Example] (Example 1) C: 0.08 wt%, Si: 3.32 wt%, Mn: 0.07 wt%, Al: 0.02
Two 20t steel slabs containing wt%, Sb: 0.025wt% and N: 0.008wt%, the balance being iron and unavoidable impurities, were heated to 1420 ° C, and then heated to 2.22mm thickness by the usual method. It was a rolled steel sheet. Next, after annealing the hot-rolled sheet at 1000 ° C. for 30 seconds, it was pickled and cold-rolled to a thickness of 1.6 mm. After that, intermediate annealing was performed at 1080 ° C for 40 seconds. At this time, one was annealed at a uniform temperature of 1080 ° C in the coil width direction (comparative example), and the other one was at both ends in the coil width direction. The temperature in the region from the end to 100 mm from the end was lowered by 30 ° C. by the furnace shield plate to 1050 ° C. and annealed (invention example). Thereafter, both were warm-rolled at a steel sheet temperature of 200 ° C. to a final thickness of 0.22 mm. Then, after degreasing, decarburizing annealing was performed at 850 ° C for 2 minutes, followed by 5%
Of TiO 2 and 2% of SrSO 4 was applied as an annealing separator at 12 g / m 2 , and at this time, each coil was equally divided into two, and one was coiled at 2 kgf / mm 2 The other was wound into a coil at 6 kgf / mm 2 . When the average grain size of the primary recrystallized grains at this time was measured, all the coils were in the range of 8 to 9 μm at the center in the coil width direction.

【0057】次いで、最終仕上げ焼鈍を施したが、その
条件としてはN2中で850 ℃まで30℃/hの昇温速度で昇温
し、850 ℃で25時間保持した後、25%のN2と75%のH2
混合雰囲気中で15℃/hの昇温速度で1200℃まで昇温し、
更にH2中で5 時間保持した後、降温した。その後、これ
らのコイルは未反応の焼鈍分離剤を除去した後、50%の
コロイダルシリカを含有する張力コーティングを塗布
し、1.0 kgf/mm2 の張力を付加しつつ平坦化焼鈍を兼ね
て800 ℃で1 分間焼き付け、製品とした。
Next, final finish annealing was performed. The condition was that the temperature was raised to 850 ° C. at a rate of 30 ° C./h in N 2 , and the temperature was maintained at 850 ° C. for 25 hours. In a mixed atmosphere of 2 and 75% H 2, the temperature was raised to 1200 ° C at a rate of 15 ° C / h,
After further keeping in H 2 for 5 hours, the temperature was lowered. Then, after removing the unreacted annealing separating agent, these coils were coated with a tension coating containing 50% colloidal silica, and 800 ° C. was used as a flattening annealing while applying a tension of 1.0 kgf / mm 2. For 1 minute.

【0058】これらの製品の磁気特性とコイルの幅方向
端部域の平均形状不良係数HDを測定し、各々のコイル
の長手方向全長における平均値を求めた。また、コイル
幅方向両端部から300 mm幅で圧延方向の長さ1 m の鋼板
を多数切り出し、これを100枚積層して800 ℃で3 時間
の歪取り焼鈍を施した後の占積率を測定した。これらの
測定値を表4に示す。更に、コイル幅方向両端部域(両
端部30mm幅)のマクロエッチング後の結晶組織を幅方向
中央部域100 mm幅の結晶組織と比較して表4に併記す
る。表4から明らかなように、この発明の方向性電磁鋼
板を用いた場合、磁気特性やコイル幅方向端部の形状に
優れ、かつ、コイル端部域の鋼板の占積率についても良
好な値が得られる。
The magnetic properties of these products and the average shape defect factor HD in the end area in the width direction of the coil were measured, and the average value of each coil in the entire length in the longitudinal direction was obtained. In addition, a large number of steel sheets of 300 mm width and 1 m length in the rolling direction were cut out from both ends in the coil width direction, 100 sheets of these were laminated, and the space factor after strain relief annealing at 800 ° C for 3 hours was measured. It was measured. Table 4 shows these measured values. Further, the crystal structure after macro-etching at both end regions (30 mm width at both ends) in the coil width direction is also shown in Table 4 in comparison with a crystal structure at 100 mm width at the center region in the width direction. As is clear from Table 4, when the grain-oriented electrical steel sheet of the present invention is used, the magnetic properties and the shape of the coil width direction end are excellent, and the space factor of the steel sheet in the coil end area is also a good value. Is obtained.

【0059】[0059]

【表4】 [Table 4]

【0060】(実施例2) C:0.04wt%、Si:3.05wt%、Mn:0.06wt%、S:0.01
6 wt%、Cu:0.15wt%、Mo:0.010 wt%及びSb:0.015
wt%を含み、残部は鉄及び不可避的不純物からなる重量
20t の鋼スラブ5 本を、1400℃に加熱した後、常法によ
り2.4 mm厚の熱延鋼板とした。次いで、900 ℃、30秒の
熱延板焼鈍後、酸洗し、冷間圧延により0.74mm厚の中間
板厚とした後、1000℃で50秒間の中間焼鈍を施した。更
に、冷間圧延によって0.27mmの最終板厚とした後、脱脂
処理を施し、850 ℃で2 分間の脱炭焼鈍を施した後、Mg
O を主成分とする焼鈍分離剤を10g/m2塗布した。この
後、1 つのコイルはこのまま4 kgf/mm2 の張力でコイル
状に巻き取った(従来例)。他の4 コイルはコイル幅方
向端部の片側に、それぞれ幅方向に10mm、20mm、30mm及
び40mmの領域で第1リン酸アンモニウムを2 g/m2塗布
し、4 kgf/mm2 の張力でコイル状に巻き取った(発明
例)。
(Example 2) C: 0.04 wt%, Si: 3.05 wt%, Mn: 0.06 wt%, S: 0.01
6 wt%, Cu: 0.15 wt%, Mo: 0.010 wt% and Sb: 0.015
wt%, balance is iron and unavoidable impurities
Five 20-ton steel slabs were heated to 1400 ° C, and then turned into 2.4 mm-thick hot-rolled steel sheets by an ordinary method. Next, after the hot rolled sheet was annealed at 900 ° C. for 30 seconds, it was pickled, cold rolled to an intermediate sheet thickness of 0.74 mm, and then subjected to intermediate annealing at 1000 ° C. for 50 seconds. Furthermore, after a final thickness of 0.27 mm was obtained by cold rolling, degreasing was performed, and decarburization annealing was performed at 850 ° C. for 2 minutes.
An annealing separator containing O 2 as a main component was applied at 10 g / m 2 . Thereafter, one coil was wound into a coil with a tension of 4 kgf / mm 2 (conventional example). For the other four coils, apply 1 g / m 2 of monobasic ammonium phosphate to one side of the end in the coil width direction in the width direction of 10 mm, 20 mm, 30 mm and 40 mm, respectively, and apply a tension of 4 kgf / mm 2 It was wound up in a coil shape (inventive example).

【0061】これらのコイルは第1リン酸アンモニウム
を2 g/m2塗布した端部側をベースプレートと接触する下
端側に設置し、最終仕上げ焼鈍としてN2中で850 ℃まで
30℃/hの昇温速度で昇温し、ついで100 %H2の雰囲気中
にて25℃/hの昇温速度で1200℃まで昇温し、更にH2中で
5 時間保持した後、降温した。その後、これらのコイル
は未反応の焼鈍分離剤を除去した後、60%のコロイダル
シリカを含有する張力コーティングを塗布し、0.7 kgf/
mm2 の張力を付加しつつ平坦化焼鈍を兼ねて800 ℃で1
分間焼き付け、プラズマジェットで磁区細分化処理を施
し製品とした。
These coils were placed at the lower end in contact with the base plate at the end coated with 2 g / m 2 of monobasic ammonium phosphate, and subjected to a final finishing annealing in N 2 at 850 ° C.
The temperature was raised at a rate of 30 ° C./h, then in a 100% H 2 atmosphere to 1200 ° C. at a rate of 25 ° C./h, and further in H 2
After holding for 5 hours, the temperature was lowered. The coils were then coated with a tension coating containing 60% colloidal silica after removal of unreacted annealing separator and 0.7 kgf /
1 mm at 800 ℃ with flattening annealing while applying a tension of 2 mm2
The product was baked for a minute and subjected to a magnetic domain refining treatment using a plasma jet.

【0062】これらの製品の磁気特性とベースプレート
と接する側のコイルの幅方向端部域の平均形状不良係数
HDを測定し、各々のコイルの長手方向全長における平
均値を求めた。また、ベースプレートと接する側のコイ
ル幅方向両端部から300 mm幅で圧延方向の長さ1 m の鋼
板を多数切り出し、これを100 枚積層して800 ℃で3時
間の歪取り焼鈍を施した後の占積率を測定した。これら
の測定値を表5に示す。更に、ベースプレートと接する
側のコイル幅方向両端部域(両端部30mm幅)のマクロエ
ッチング後の結晶組織を幅方向中央部域100 mm幅の結晶
組織と比較して表5に併記する。コイル幅方向中央部に
おいては細粒組織の面積比率は3 %以下であったが、端
部域においてはコイル端部から細粒組織が発達してい
た。そこで、粒径2 mm以下の結晶粒の面積比率が15%と
なるコイル端部から幅方向での距離L15(両端部域の平
均値)を各製品について求め表5に併記した。各製品の
L15と端部形状不良係数との関係を図6に示す。表5及
び図6から明らかなように、この発明の方向性電磁鋼板
を用いた場合、磁気特性やコイル幅方向端部の形状に優
れ、かつ、コイル端部域の鋼板の占積率についても良好
な値が得られる。
The magnetic properties of these products and the average shape defect factor HD in the end portion in the width direction of the coil in contact with the base plate were measured, and the average value of each coil in the entire length in the longitudinal direction was obtained. Also, a large number of steel plates of 300 mm width and 1 m length in the rolling direction were cut out from both ends in the coil width direction on the side in contact with the base plate, and 100 of these were laminated and subjected to strain relief annealing at 800 ° C for 3 hours. Was measured. Table 5 shows these measured values. Table 5 also shows the crystal structure after macro-etching of both end regions (30 mm width at both ends) in the coil width direction on the side in contact with the base plate in comparison with a crystal structure having a width of 100 mm in the center region in the width direction. The area ratio of the fine-grained structure was less than 3% at the center in the coil width direction, but the fine-grained structure was developed from the end of the coil in the end region. Therefore, the distance L15 (average value of both end regions) in the width direction from the coil end where the area ratio of the crystal grains having a grain size of 2 mm or less is 15% was obtained for each product and is shown in Table 5. FIG. 6 shows the relationship between L15 of each product and the end shape defect factor. As is clear from Table 5 and FIG. 6, when the grain-oriented electrical steel sheet of the present invention is used, the magnetic properties and the shape of the end portion in the coil width direction are excellent, and the space factor of the steel sheet in the coil end area is also high. Good values are obtained.

【0063】[0063]

【表5】 [Table 5]

【0064】(実施例3) C:0.08wt%、Si:3.37wt%、Mn:0.07wt%、Al:0.02
wt%、S:0.015 wt%、Sn:0.15wt%、N:0.008 wt%
を含み、残部は鉄及び不可避的不純物からなる重量20t
の鋼スラブ3 本を、1400℃に加熱した後、常法により2.
2 mm厚の熱延鋼板とした。次いで、1200℃、30秒の熱延
板焼鈍後、酸洗し、200 ℃での鋼板温度での温間圧延に
より0.26mmの最終板厚とした。次いで、脱脂処理後、磁
区細分化処理として、幅:50μm 、深さ:25μm の線状
の溝をコイル幅方向から15度の角度で、コイル長手方向
の繰り返しピッチ:4 mmで設けた後、850 ℃で2 分間の
脱炭焼鈍を施し、更に、5 %のアンモニアを含有するN2
雰囲気中で800 ℃で窒化処理を行い、鋼中窒素含有量を
更に100 〜150 ppm 増加させた。また、脱炭焼鈍後の平
均一次結晶粒径は、いずれも16〜17μm の範囲内であっ
た。後、5 %のTiO2と2 %のSrSO4 を添加したMgO を焼
鈍分離剤として12g/m2塗布したが、このとき、各々のコ
イルを均等に二分割し、一方は2 kgf/mm2 でコイル状に
巻き取り、もう一方は6 kgf/mm2 でコイル状に巻き取っ
た。このときの一次再結晶粒の平均粒径を測定したとこ
ろ、コイル幅方向中央部でいずれのコイルも8〜9 μm
の範囲内であった。
(Example 3) C: 0.08 wt%, Si: 3.37 wt%, Mn: 0.07 wt%, Al: 0.02
wt%, S: 0.015 wt%, Sn: 0.15 wt%, N: 0.008 wt%
And the balance is iron and unavoidable impurities, weight 20t
After heating three steel slabs at 1400 ° C,
A hot-rolled steel sheet having a thickness of 2 mm was used. Next, after hot-rolled sheet annealing at 1200 ° C. for 30 seconds, the sheet was pickled and warm-rolled at a steel sheet temperature of 200 ° C. to a final sheet thickness of 0.26 mm. Next, after the degreasing treatment, as a magnetic domain subdivision treatment, a linear groove having a width of 50 μm and a depth of 25 μm was provided at an angle of 15 degrees from the coil width direction and a repetition pitch in the coil longitudinal direction: 4 mm. Decarburization annealing at 850 ° C for 2 minutes, followed by N 2 containing 5% ammonia
Nitriding was performed at 800 ° C in an atmosphere to further increase the nitrogen content in the steel by 100 to 150 ppm. The average primary crystal grain size after decarburization annealing was all in the range of 16 to 17 μm. Thereafter, 12 g / m 2 of MgO to which 5% TiO 2 and 2% SrSO 4 were added was applied as an annealing separating agent. At this time, each coil was equally divided into two parts, one of which was 2 kgf / mm 2 And the other was coiled at 6 kgf / mm 2 . When the average particle size of the primary recrystallized grains at this time was measured, each coil was 8 to 9 μm
Was within the range.

【0065】次いで、1 本のコイルは7 %のTiO2を添加
したMgO を焼鈍分離剤として14g/01 2 、コイル幅方向に
均一に塗布し2 kgf/mm2 の張力でコイル状に巻き取った
(従来例)。更に1 本のコイルは、コイル幅方向端部域
50mmの幅には5 %のFeN と7%のTiO2を添加したMgO
を、残りの領域には7 %のTiO2を添加したMgO を、焼鈍
分離剤としてそれぞれ14g/m2塗布し、2 kgf/mm2 の張力
でコイル状に巻き取った(発明例1)。また、残り1 本
のコイルは、コイル幅方向端部域50mmの幅には10%のFe
N と7 %のTiO2を添加したMgO を、残りの領域には7 %
のTiO2を添加したMgO を、焼鈍分離剤としてそれぞれ14
g/m2塗布し、2 kgf/mm2 の張力でコイル状に巻き取った
(発明例2)。
[0065] Then, wound into a single coil 14 g / 01 2 a MgO added with TiO 2 7% as annealing separator, coiled tension was uniformly applied to the coil width direction 2 kgf / mm 2 (Conventional example). One more coil is located in the end area in the coil width direction.
The width of 50 mm 5 percent FeN and 7% of MgO was added TiO 2
The remaining area was coated with MgO containing 7% TiO 2 at 14 g / m 2 as an annealing separator, and wound into a coil at a tension of 2 kgf / mm 2 (Invention Example 1). The remaining one coil has 10% Fe in the width of 50 mm in the end area in the coil width direction.
MgO with N and 7% TiO 2 added, 7% in the remaining area
MgO to which TiO 2 was added was used as an annealing separator
g / m 2 was applied and wound into a coil with a tension of 2 kgf / mm 2 (Invention Example 2).

【0066】これらのコイルは、最終仕上げ焼鈍とし
て、N2中で850 ℃まで30℃/hの昇温速度で昇温し、850
℃で25時間保持した後、25%のN2と75%のH2の混合雰囲
気中で15℃/hの昇温速度で1200℃まで昇温し、更にH2
で5 時間保持した後、降温した。その後、これらのコイ
ルは未反応の焼鈍分離剤を除去した後、50%のコロイダ
ルシリカを含有する張力コーティングを塗布し、1.5 kg
f/mm2 の張力を付加しつつ平坦化焼鈍を兼ねて800 ℃で
1 分間焼き付け、製品とした。
These coils were heated in N 2 to 850 ° C. at a rate of 30 ° C./h as final finish annealing.
After holding at 25 ° C for 25 hours, the temperature was raised to 1200 ° C at a heating rate of 15 ° C / h in a mixed atmosphere of 25% N 2 and 75% H 2 , and further kept in H 2 for 5 hours. , Temperature dropped. The coils were then stripped of unreacted annealed separating agent and then applied with a tension coating containing 50% colloidal silica, for 1.5 kg.
at 800 ° C. also serves as a flattening annealing while adding tension of f / mm 2
Bake for 1 minute to make the product.

【0067】これらの製品の磁気特性とコイルの幅方向
端部域の平均形状不良係数HDを測定し、各々のコイル
の長手方向全長における平均値を求めた。また、コイル
幅方向両端部から300 mm幅で圧延方向の長さ1 m の鋼板
を多数切り出し、これを100枚積層して800 ℃で3 時間
の歪取り焼鈍を施した後の占積率を測定した。これらの
測定値を表6に示す。更に、コイル幅方向両端部域(両
端部30mm幅)のマクロエッチング後の結晶組織を幅方向
中央部域100 mm幅の結晶組織と比較して表6に併記す
る。表6から明らかなように、この発明の方向性電磁鋼
板を用いた場合、磁気特性やコイル幅方向端部の形状に
優れ、かつ、コイル端部域の鋼板の占積率についても良
好な値が得られる。
The magnetic properties of these products and the average shape defect factor HD in the end portions in the width direction of the coil were measured, and the average value of each coil in the entire length in the longitudinal direction was obtained. In addition, a large number of steel sheets of 300 mm width and 1 m length in the rolling direction were cut out from both ends in the coil width direction, 100 sheets of these were laminated, and the space factor after strain relief annealing at 800 ° C for 3 hours was measured. It was measured. Table 6 shows these measured values. Further, the crystal structure after macro-etching at both end regions (30 mm width at both ends) in the coil width direction is also shown in Table 6 in comparison with the crystal structure at 100 mm width at the center region in the width direction. As is clear from Table 6, when the grain-oriented electrical steel sheet of the present invention is used, the magnetic properties and the shape of the coil width direction end are excellent, and the space factor of the steel sheet in the coil end area is also a good value. Is obtained.

【0068】[0068]

【表6】 [Table 6]

【0069】(実施例4) C:0.05wt%、Si:3.17wt%、Mn:0.07wt%、Al:0.02
wt%、Sb:0.025 wt%を含み、残部は鉄及び不可避的不
純物からなる重量20t の鋼スラブ5 本を、1160℃に加熱
した後、常法により2.4 mm厚の熱延鋼板とした。次い
で、900 ℃、30秒の熱延板焼鈍後、酸洗し、150 ℃の鋼
板温度での温間圧延により0.34mmの最終板厚とした。次
いで、脱脂処理後、820 ℃で2 分間の脱炭焼鈍を施し
た。このときの平均一次結晶粒径は14〜21μm の範囲内
であった。次いでこれらのコイルは1 本はそのまま2 %
の酸化錫を添加した焼鈍分離剤を塗布し5 kgf/mm2 の張
力でコイル状に巻き取り(従来例)、他の4 コイルはコ
イル幅方向両端部域50mmの幅の領域にロール圧下により
それぞれ1.0 %、2.5 %、4.3 %、5.7 %の変形を加
え、焼鈍分離剤として抑制力強化のため、酸化錫の含有
量を5 %まで増加させた焼鈍分離剤を両端部域に塗布
し、5.0 kgf/mm2 の張力でコイルに巻き取った(発明
例)。
(Example 4) C: 0.05 wt%, Si: 3.17 wt%, Mn: 0.07 wt%, Al: 0.02
Five steel slabs, each containing 0.25 wt% and 0.025 wt% of Sb, the balance being iron and unavoidable impurities, were heated to 1160 ° C., and then turned into 2.4 mm-thick hot-rolled steel sheets. Next, after the hot rolled sheet was annealed at 900 ° C. for 30 seconds, it was pickled and warm rolled at a steel sheet temperature of 150 ° C. to a final thickness of 0.34 mm. Next, after degreasing, decarburizing annealing was performed at 820 ° C. for 2 minutes. The average primary crystal grain size at this time was in the range of 14 to 21 μm. Then one of these coils stays at 2%
Apply an annealing separator with tin oxide added to it and wind it into a coil with a tension of 5 kgf / mm 2 (conventional example). For the other four coils, apply a roll pressure to a 50 mm wide area at both ends in the coil width direction. Apply 1.0%, 2.5%, 4.3%, 5.7% deformation, respectively, and apply an annealing separator with tin oxide content increased to 5% to both end areas to increase the suppression power as an annealing separator. It was wound around a coil with a tension of 5.0 kgf / mm 2 (invention example).

【0070】これらのコイルは最終仕上げ焼鈍としてN2
中で850 ℃まで30℃/hの昇温速度で昇温し、次いで20%
のN2と80%のH2の混合雰囲気中で25℃/hの昇温速度で12
00℃まで昇温し、更にH2中で5 時間保持した後、降温し
た。その後、これらのコイルは未反応の焼鈍分離剤を除
去した後、60%のコロイダルシリカを含有する張力コー
ティングを塗布し、1.5 kgf/mm2 の張力を付加しつつ平
坦化焼鈍を兼ねて800 ℃で1 分間焼き付け、製品とし
た。
These coils were treated with N 2 as final finish annealing.
Temperature up to 850 ° C at a rate of 30 ° C / h, then 20%
At a rate of 25 ° C./h in a mixed atmosphere of N 2 and 80% H 2
The temperature was raised to 00 ° C., further kept in H 2 for 5 hours, and then lowered. Thereafter, these coils to remove the annealing separator of the unreacted tension coating containing 60% colloidal silica was applied, serves to 800 ° C. The flattening annealing while adding tension of 1.5 kgf / mm 2 For 1 minute.

【0071】これらの製品の磁気特性とコイルの幅方向
端部域の平均形状不良係数HDを測定し、各々のコイル
の長手方向全長における平均値を求めた。また、コイル
幅方向両端部から300 mm幅で圧延方向の長さ1 m の鋼板
を多数切り出し、これを100枚積層して800 ℃で3 時間
の歪取り焼鈍を施した後の占積率を測定した。これらの
測定値を表7に示す。更に、コイル幅方向両端部域(両
端部30mm幅)のマクロエッチング後の結晶組織を幅方向
中央部域100 mm幅の結晶組織と比較して表7に併記す
る。表7から明らかなように、この発明の方向性電磁鋼
板を用いた場合、磁気特性やコイル幅方向端部の形状に
優れ、かつ、コイル端部域の鋼板の占積率についても良
好な値が得られる。
The magnetic properties of these products and the average shape defect factor HD in the end portions in the width direction of the coil were measured, and the average value of each coil in the entire length in the longitudinal direction was obtained. In addition, a large number of steel sheets of 300 mm width and 1 m length in the rolling direction were cut out from both ends in the coil width direction, 100 sheets of these were laminated, and the space factor after strain relief annealing at 800 ° C for 3 hours was measured. It was measured. Table 7 shows these measured values. Further, the crystal structure after macro-etching in both end regions (width 30 mm at both ends) in the coil width direction is also shown in Table 7 in comparison with a crystal structure having a width 100 mm width in the center region in the width direction. As is clear from Table 7, when the grain-oriented electrical steel sheet of the present invention is used, the magnetic properties and the shape of the end portion in the coil width direction are excellent, and the space factor of the steel sheet in the coil end area is also a good value. Is obtained.

【0072】[0072]

【表7】 [Table 7]

【0073】[0073]

【発明の効果】かくして、この発明によれば、方向性電
磁鋼板の製品コイルの持つ優れた磁気特性を損なうこと
なく、最終仕上げ焼鈍後の鋼板コイル状態におけるコイ
ル幅方向端部の形状及びこれによるコイル端部域の歪取
り焼鈍後の良好な占積率をえることができ、形状不良の
部分がしばしば製品に混入して占積率の低下を招いたり
不均一による変圧器などの加工工程での大きなトラブル
の原因になるといった問題が解消される。
Thus, according to the present invention, the shape of the end portion in the coil width direction in the state of the steel sheet coil after the final finish annealing can be achieved without impairing the excellent magnetic properties of the product coil of the grain-oriented electrical steel sheet. A good space factor after strain relief annealing in the coil end area can be obtained, and defective shapes are often mixed into the product, leading to a decrease in the space factor or unevenness in the processing process of transformers due to unevenness. The problem of causing major troubles is solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】最終仕上げ焼鈍時のコイル内中央部と上端部の
位置の差異による温度差の経時変化を示す図である。
FIG. 1 is a diagram showing a temporal change of a temperature difference due to a difference in a position between a central portion and an upper end portion in a coil during final finish annealing.

【図2】最終仕上げ焼鈍後のコイルもしくは製品コイル
の幅方向端部における形状不良とその評価指標である波
高H並びに形状不良の幅端部からの距離Dの説明図であ
る。
FIG. 2 is an explanatory diagram of a shape defect at a width direction end of a coil or a product coil after final finish annealing, a wave height H as an evaluation index thereof, and a distance D from the width end of the shape defect.

【図3】高温荷重引張試験の測定結果により脱炭焼鈍板
の平均結晶粒径の差が高温変形の強度差に及ぼす影響を
示す図である。
FIG. 3 is a diagram showing the effect of a difference in average crystal grain size of a decarburized annealed sheet on a difference in strength of high-temperature deformation based on a measurement result of a high-temperature load tensile test.

【図4】引張高温変形速度の結晶粒径による変化を示す
図である。
FIG. 4 is a diagram showing a change in tensile hot deformation rate depending on a crystal grain size.

【図5】鋼板a及びcのマクロ組織における粒径2 mm以
下の結晶粒の面積比率を、コイル幅方向端部からの距離
との関係で示す図である。
FIG. 5 is a diagram showing an area ratio of crystal grains having a grain size of 2 mm or less in a macrostructure of steel plates a and c in relation to a distance from an end in a coil width direction.

【図6】粒径2 mm以下の結晶粒の面積比率が15%となる
コイル端部から幅方向までの距離L15と端部形状不良係
数との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a distance L15 from the coil end to the width direction where the area ratio of crystal grains having a grain size of 2 mm or less is 15% and an end shape defect coefficient.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千田 邦浩 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 CA03 CA09 DA01 FA01 FA13 HA03 JA04 LA00 MA03 PA09 RA04 SA02 SA03 TA01 TA04 5E041 AA02 AA11 AA19 CA02 HB11 NN01 NN06 NN17  ──────────────────────────────────────────────────続 き Continued on the front page (72) Kunihiro Senda 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. MA03 PA09 RA04 SA02 SA03 TA01 TA04 5E041 AA02 AA11 AA19 CA02 HB11 NN01 NN06 NN17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Si:1.5 〜7.0 wt%、Mn:0.03〜2.5 wt
%を含有する方向性電磁鋼板において、コイル幅方向端
部から幅方向に一定距離を選び定めた端部からの領域に
て、粒径2 mm以下の結晶粒の該領域に占める面積比率が
15%となるその一定距離Lが、両端部もしくは一方の端
部から30mm以下であることを特徴とするコイル幅方向端
部の形状に優れる低鉄損方向性電磁鋼板。
1. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%
%, The area ratio of crystal grains having a grain size of 2 mm or less in the region from the end determined by selecting a fixed distance in the width direction from the end in the coil width direction is occupied in the region.
A low iron loss directional electrical steel sheet having an excellent shape at an end portion in a coil width direction, wherein the predetermined distance L of 15% is 30 mm or less from both end portions or one end portion.
【請求項2】 Si:1.5 〜7.0 wt%、Mn:0.03〜2.5 wt
%を含有する方向性電磁鋼板において、コイル幅方向で
両端部もしくは一方の端部から30mmの距離までの領域に
て粒径が2 mmを超える結晶粒の面内方位ずれ角の平均値
αe が、コイル幅方向中央部100 mm幅の領域での粒径が
2 mmを超える結晶粒の面内方位ずれ角αc よりも3 〜20
度大きいことを特徴とするコイル幅方向端部の形状に優
れる低鉄損方向性電磁鋼板。
2. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%
%, The average value αe of the in-plane misorientation angle of crystal grains having a grain size of more than 2 mm in a region up to 30 mm from both ends or one end in the coil width direction in the direction of the coil width. , The particle size in the area of 100 mm width in the center of the coil width direction
3 to 20 than the in-plane misorientation angle αc of crystal grains exceeding 2 mm
Low iron loss grain-oriented electrical steel sheet with an excellent shape at the end in the coil width direction characterized by a large degree.
【請求項3】 Si:1.5 〜7.0 wt%、Mn:0.03〜2.5 wt
%を含有する方向性電磁鋼板において、コイル幅方向で
両端部もしくは一方の端部から30mmの距離までの領域に
て粒径が2 mmを超える結晶粒の平均粒径が、4 mm以上で
かつコイル幅方向中央部100 mm幅の領域での粒径が2 mm
を超える結晶粒の平均粒径よりも3 mm以上小さいか3 mm
以上大きいことを特徴とするコイル幅方向端部の形状に
優れる低鉄損方向性電磁鋼板。
3. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%
%, The average grain size of crystal grains exceeding 2 mm in the region up to a distance of 30 mm from both ends or one end in the coil width direction is 4 mm or more, and 2 mm particle size in 100 mm width area at the center of coil width direction
3 mm or smaller than the average grain size of crystal grains exceeding 3 mm
A low iron loss grain-oriented electrical steel sheet having an excellent shape at an end portion in a coil width direction characterized by being larger than the above.
【請求項4】 Si:1.5 〜7.0 wt%、Mn:0.03〜2.5 wt
%を含有する方向性電磁鋼板コイルをコイル状にして二
次再結晶を含む高温長時間焼鈍するに当たり、 該高温長時間焼鈍より以前にコイルの幅方向両端部の領
域もしくは一方の端部域に、幅方向中央部域に比較して
付加的な二次再結晶促進処理を施し、該端部域における
粒径2 mm以下の結晶粒の生成頻度を低減することを特徴
とするコイル幅方向端部の形状に優れる低鉄損方向性電
磁鋼板の製造方法。
4. Si: 1.5 to 7.0 wt%, Mn: 0.03 to 2.5 wt%
% Of the grain-oriented electrical steel sheet coil and subjected to high-temperature long-time annealing including secondary recrystallization, before the high-temperature long-time annealing, in the region at both ends in the width direction of the coil or at one end region. An additional secondary recrystallization accelerating process as compared with the central portion in the width direction to reduce the generation frequency of crystal grains having a grain size of 2 mm or less in the edge portion. Method for producing low iron loss grain-oriented electrical steel sheet with excellent part shape.
【請求項5】 二次再結晶促進処理が、一次再結晶粒の
細粒化処理又は一次再結晶粒の粒成長駆動力強化処理で
ある請求項4記載のコイル幅方向端部の形状に優れる低
鉄損方向性電磁鋼板の製造方法。
5. The shape of the end portion in the coil width direction according to claim 4, wherein the secondary recrystallization accelerating process is a process of refining primary recrystallized grains or a process of enhancing a driving force for growing grains of primary recrystallized grains. Manufacturing method of low iron loss grain oriented electrical steel sheet.
【請求項6】 コイル状にするための巻き取り張力を3
kgf/mm2 以上とする請求項4又は5記載のコイル幅方向
端部の形状に優れる低鉄損方向性電磁鋼板の製造方法。
6. The winding tension for forming a coil is 3
method of manufacturing low core loss oriented electrical steel sheet excellent in shape of the coil end portion in the width direction of the claims 4 or 5, wherein the kgf / mm 2 or more.
【請求項7】 二次再結晶促進処理を施す領域が、コイ
ル両端部もしくは一方の端部からコイル幅方向に少なく
とも30mmの領域である請求項4、5又は6記載のコイル
幅方向端部の形状に優れる低鉄損方向性電磁鋼板の製造
方法。
7. The coil width direction end according to claim 4, 5 or 6, wherein the region to be subjected to the secondary recrystallization acceleration treatment is at least 30 mm in the coil width direction from both ends or one end of the coil. Manufacturing method of low iron loss oriented electrical steel sheet with excellent shape.
JP21104198A 1998-07-27 1998-07-27 Oriented electrical steel sheet Expired - Fee Related JP3736125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21104198A JP3736125B2 (en) 1998-07-27 1998-07-27 Oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21104198A JP3736125B2 (en) 1998-07-27 1998-07-27 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2000045052A true JP2000045052A (en) 2000-02-15
JP3736125B2 JP3736125B2 (en) 2006-01-18

Family

ID=16599404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21104198A Expired - Fee Related JP3736125B2 (en) 1998-07-27 1998-07-27 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3736125B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235472A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor
WO2012017689A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
RU2526642C1 (en) * 2010-09-30 2014-08-27 ДжФЕ СТИЛ КОРПОРЕЙШН Texturised electric steel sheet
RU2540244C2 (en) * 2010-08-06 2015-02-10 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet from textured electric steel
EP2602346A4 (en) * 2010-08-06 2017-06-07 JFE Steel Corporation Directional magnetic steel plate and production method therefor
JP2017125260A (en) * 2016-01-12 2017-07-20 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet excellent in magnetic characteristics
CN109147873A (en) * 2018-07-13 2019-01-04 江西理工大学 A method of prediction micro alloyed steel weld coarse crystal region crystallite dimension
WO2019182004A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2021025128A (en) * 2019-07-31 2021-02-22 Jfeスチール株式会社 Grain oriented electrical steel sheet
CN115066508A (en) * 2020-06-24 2022-09-16 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235472A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp Grain-oriented electrical steel sheet and manufacturing method therefor
WO2012017689A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
JP2012036447A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Grain-oriented magnetic steel sheet and method of manufacturing the same
CN103080351A (en) * 2010-08-06 2013-05-01 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and process for producing same
RU2524026C1 (en) * 2010-08-06 2014-07-27 ДжФЕ СТИЛ КОРПОРЕЙШН Texture electric steel sheet and method of its production
RU2540244C2 (en) * 2010-08-06 2015-02-10 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet from textured electric steel
US9396872B2 (en) 2010-08-06 2016-07-19 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
EP2602346A4 (en) * 2010-08-06 2017-06-07 JFE Steel Corporation Directional magnetic steel plate and production method therefor
EP2602345A4 (en) * 2010-08-06 2017-08-02 JFE Steel Corporation Grain-oriented magnetic steel sheet and process for producing same
RU2526642C1 (en) * 2010-09-30 2014-08-27 ДжФЕ СТИЛ КОРПОРЕЙШН Texturised electric steel sheet
JP2017125260A (en) * 2016-01-12 2017-07-20 Jfeスチール株式会社 Production method of grain oriented magnetic steel sheet excellent in magnetic characteristics
CN111868272A (en) * 2018-03-20 2020-10-30 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
RU2755918C1 (en) * 2018-03-20 2021-09-22 Ниппон Стил Корпорейшн Method for producing electrotechnical steel sheet with oriented grain structure and electrotechnical steel sheet with oriented grain structure
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
KR20200123471A (en) * 2018-03-20 2020-10-29 닛폰세이테츠 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN111868273A (en) * 2018-03-20 2020-10-30 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
US11661636B2 (en) 2018-03-20 2023-05-30 Nippon Steel Corporation Method for manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR20200124295A (en) * 2018-03-20 2020-11-02 닛폰세이테츠 가부시키가이샤 Method of manufacturing grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR102517647B1 (en) 2018-03-20 2023-04-05 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet manufacturing method and grain-oriented electrical steel sheet
JPWO2019182004A1 (en) * 2018-03-20 2021-03-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JPWO2019181952A1 (en) * 2018-03-20 2021-03-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
KR102499994B1 (en) * 2018-03-20 2023-02-15 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet manufacturing method and grain-oriented electrical steel sheet
WO2019182004A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
RU2759625C1 (en) * 2018-03-20 2021-11-16 Ниппон Стил Корпорейшн Method for manufacturing electrotechnical steel sheet with oriented grain structure and electrotechnical steel sheet with oriented grain structure
JP7006772B2 (en) 2018-03-20 2022-01-24 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP7036194B2 (en) 2018-03-20 2022-03-15 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN111868273B (en) * 2018-03-20 2022-12-13 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
CN111868272B (en) * 2018-03-20 2022-11-15 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
CN109147873B (en) * 2018-07-13 2021-09-21 江西理工大学 Method for predicting grain size of micro-alloy steel welding coarse crystal area
CN109147873A (en) * 2018-07-13 2019-01-04 江西理工大学 A method of prediction micro alloyed steel weld coarse crystal region crystallite dimension
JP7147810B2 (en) 2019-07-31 2022-10-05 Jfeスチール株式会社 Oriented electrical steel sheet
JP2021025128A (en) * 2019-07-31 2021-02-22 Jfeスチール株式会社 Grain oriented electrical steel sheet
CN115066508A (en) * 2020-06-24 2022-09-16 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP3736125B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
WO2018117671A1 (en) Method for producing grain-oriented electrical steel sheet
US4994120A (en) Process for production of grain oriented electrical steel sheet having high flux density
US4938807A (en) Process for production of grain oriented electrical steel sheet having high flux density
US4773948A (en) Method of producing silicon iron sheet having excellent soft magnetic properties
KR950013287B1 (en) Method of making non-viented magnetic steel strip
CN113166836B (en) Oriented electrical steel sheet and method for manufacturing the same
WO2017111509A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP3736125B2 (en) Oriented electrical steel sheet
KR930005892B1 (en) Cold-rolled steel sheet &amp; the method for its producing
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
US11459633B2 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
KR102088405B1 (en) Manufacturing method of oriented electrical steel sheet
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP4259025B2 (en) Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
KR20140062833A (en) Grain-orinented electrical steel sheet and method for manufacturing the same
JPS6331527B2 (en)
US20240183011A1 (en) Method for producing grain-oriented electrical steel sheet
JP2883224B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
US20240150875A1 (en) Method for producing grain-oriented electrical steel sheet
CN114616353A (en) Non-oriented electromagnetic steel sheet
JPS6256205B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees