JP2021025128A - Grain oriented electrical steel sheet - Google Patents

Grain oriented electrical steel sheet Download PDF

Info

Publication number
JP2021025128A
JP2021025128A JP2020117582A JP2020117582A JP2021025128A JP 2021025128 A JP2021025128 A JP 2021025128A JP 2020117582 A JP2020117582 A JP 2020117582A JP 2020117582 A JP2020117582 A JP 2020117582A JP 2021025128 A JP2021025128 A JP 2021025128A
Authority
JP
Japan
Prior art keywords
steel sheet
width
groove
less
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020117582A
Other languages
Japanese (ja)
Other versions
JP7147810B2 (en
Inventor
大村 健
Takeshi Omura
大村  健
義悠 市原
Yoshiharu Ichihara
義悠 市原
博貴 井上
Hirotaka Inoue
博貴 井上
重宏 ▲高▼城
重宏 ▲高▼城
Shigehiro Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021025128A publication Critical patent/JP2021025128A/en
Application granted granted Critical
Publication of JP7147810B2 publication Critical patent/JP7147810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a grain oriented electrical steel sheet having a linear groove formed on the surface of the steel sheet and excellent in threading performance.SOLUTION: The grain oriented electrical steel sheet is provided in which a groove is formed in the surface thereof, the groove extending in a direction intersecting a rolling direction and having a depth in a direction being a sheet thickness direction, the grain oriented electrical steel sheet has fine structures in the ranges of at least 10 mm from both ends in the width direction to the width center direction of the steel sheet. The fine structure in the range of at least 10 mm to the width center direction from both ends has an average grain size of 5 mm or less, and the existence frequency of a crystal grain having 10° or less of a deviation angle from a Goss orientation is 50% or less.SELECTED DRAWING: Figure 3

Description

本発明は、方向性電磁鋼板に関し、特に、鋼板表面に線状溝を形成した方向性電磁鋼板であって、通板性に優れる方向性電磁鋼板に関するものである。 The present invention relates to a grain-oriented electrical steel sheet, and more particularly to a grain-oriented electrical steel sheet having linear grooves formed on the surface of the steel sheet and having excellent sheet-passability.

磁気特性に優れる方向性電磁鋼板は、主に変圧器の鉄心用材料として用いられており、変圧器のエネルギー使用効率向上のため、その低鉄損化が求められている。方向性電磁鋼板を低鉄損化する手法としては、鋼板中の二次再結晶粒をGoss方位に高度に揃える方法(先鋭化)や、鋼板表面に形成された張力コーティングの被膜張力を増大させる方法、鋼板の薄手化などに加えて、鋼板の表面加工による方法が知られている。 Grain-oriented electrical steel sheets with excellent magnetic characteristics are mainly used as materials for iron cores of transformers, and in order to improve the energy use efficiency of transformers, it is required to reduce the iron loss. As a method for reducing the iron loss of the grain-oriented electrical steel sheet, a method of highly aligning the secondary recrystallized grains in the steel sheet in the Goss direction (sharpening) and an increase in the coating tension of the tension coating formed on the surface of the steel sheet. In addition to the method and thinning of the steel sheet, a method of surface processing of the steel sheet is known.

鋼板の表面加工による鉄損低減技術は、鋼板の表面に対して物理的な手法で不均一歪を導入し、磁区の幅を細分化して鉄損を低減するというものであり、その一つに、仕上げ焼鈍済みの鋼板表面に歯型ロールを用いて溝を形成する方法(突起ロール法)がある。この方法によれば、溝を形成することによって鋼板表面の磁区を細分化し、鋼板の鉄損を低減することができる。また、溝形成後に歪取り焼鈍等の熱処理を行った場合でも、導入した溝が消失しないため、鉄損低減効果が保持されることがわかっている。しかし、この方法には、歯型ロールの摩耗が激しいため溝形状が不均一になりやすいことに加え、歯型ロールの摩耗を抑制するためにロールを高温化したり潤滑剤を塗布したりすると製造コストが増大するという問題があった。 The iron loss reduction technology by surface processing of a steel sheet is to introduce non-uniform strain to the surface of the steel sheet by a physical method and subdivide the width of the magnetic domain to reduce the iron loss. , There is a method (projection roll method) of forming a groove on the surface of a steel sheet that has been finish-annealed by using a tooth mold roll. According to this method, the magnetic domain on the surface of the steel sheet can be subdivided by forming the groove, and the iron loss of the steel sheet can be reduced. Further, it is known that even when heat treatment such as strain removal annealing is performed after groove formation, the introduced groove does not disappear, so that the iron loss reduction effect is maintained. However, this method is manufactured by heating the roll or applying a lubricant to suppress the wear of the tooth mold roll, in addition to the fact that the groove shape tends to be uneven due to the heavy wear of the tooth mold roll. There was a problem that the cost increased.

そこで、歯型ロールのような機械的手段によらず、エッチングによって鋼板の表面に線状溝を形成する方法が開発されている。具体的には、フォルステライト被膜が形成される前の鋼板表面にレジストインキをパターン状に塗布した後、前記レジストインキが塗布されていない部分を、電解エッチング等の方法を用いて選択的にエッチングすることによって鋼板表面に溝が形成されるというものである。この方法では、装置の機械的な摩耗がほとんど無いため、歯型ロールを用いる方法に比べてメンテナンスが容易である。 Therefore, a method of forming a linear groove on the surface of a steel sheet by etching has been developed without using a mechanical means such as a tooth mold roll. Specifically, after applying a resist ink in a pattern on the surface of the steel sheet before the forsterite film is formed, the portion to which the resist ink is not applied is selectively etched by a method such as electrolytic etching. By doing so, grooves are formed on the surface of the steel sheet. In this method, since there is almost no mechanical wear of the device, maintenance is easier than in the method using a tooth mold roll.

ところで、このような線状溝が形成された方向性電磁鋼板は、線状溝が形成されていない方向性電磁鋼板よりも通板性に劣ることが知られている。これは溝形成部と溝未形成部の板厚が相違することに起因している。鋼板をコイルから払い出して通板する際には鋼板に張力を付与するが、溝未形成部の板厚にあわせて張力を設定すると、溝形成部の薄い部分は過度な応力が付与され、破断のリスクが高まる。一方、溝形成部に合わせて張力を設定すると、溝未形成部では張力不足となり、蛇行や形状不良を招いて通板性を劣化させる。 By the way, it is known that a grain-oriented electrical steel sheet in which such a linear groove is formed is inferior in sheet-passability to a grain-oriented electrical steel sheet in which the linear groove is not formed. This is due to the difference in plate thickness between the groove-formed portion and the groove-unformed portion. When the steel sheet is discharged from the coil and passed through, tension is applied to the steel sheet, but if the tension is set according to the thickness of the non-grooved portion, excessive stress is applied to the thin portion of the groove-formed portion and the steel plate breaks. Risk increases. On the other hand, if the tension is set according to the groove-formed portion, the tension becomes insufficient in the groove-formed portion, which causes meandering and poor shape and deteriorates the plate-passability.

通板性を改善させる手段として、コイル形状の劣化を防止して、形状矯正等に必要な張力を低減させることが有効である。コイル形状の劣化防止技術としては、仕上げ焼鈍時にコイル受け台と接するコイル下端部の側歪み変形(自重による座屈変形)を抑制させる技術が開示されている。 As a means for improving the plate-passability, it is effective to prevent deterioration of the coil shape and reduce the tension required for shape correction and the like. As a technique for preventing deterioration of the coil shape, a technique for suppressing lateral strain deformation (buckling deformation due to its own weight) at the lower end of the coil in contact with the coil cradle during finish annealing is disclosed.

例えば、特許文献1及び特許文献2では、側歪み変形を抑制するために、コイル下端部への細粒化剤の塗布や、突起物を付けたロール等により加工変形歪みを付与することによって、意図的にコイル下端部の結晶を細粒化させ、コイル下端部の機械的強度を変化させる技術が開示されている。この技術を適用すれば、コイル下端部の機械的強度が変化し、その部分が変形しにくくなり、側歪みは一定量抑制される。 For example, in Patent Document 1 and Patent Document 2, in order to suppress lateral strain deformation, a processing deformation strain is applied by applying a fine granulating agent to the lower end of the coil or by using a roll with protrusions or the like. A technique is disclosed in which the crystal at the lower end of the coil is intentionally made into fine particles to change the mechanical strength of the lower end of the coil. When this technique is applied, the mechanical strength of the lower end of the coil changes, that portion becomes less likely to be deformed, and lateral distortion is suppressed by a certain amount.

また、特許文献3〜6では、側歪み変形を抑制するために、コイル下端から一定幅の帯状部の二次再結晶を促進して、仕上げ焼鈍の早い時期に結晶粒径を大きくし、高温強度を向上させる方法が開示されている。さらに特許文献7にはレーザ照射によってコイル下端部に変形容易な溶融再凝固部を導入する技術が開示されている。これらの技術を適用するとある程度側歪みは抑制され、コイルから鋼板を払い出して通板する際に必要な張力は低減されるが、特に溝が形成された方向性電磁鋼板の通板性を改善させるには不十分であった。 Further, in Patent Documents 3 to 6, in order to suppress lateral strain deformation, secondary recrystallization of a strip-shaped portion having a constant width from the lower end of the coil is promoted, the crystal grain size is increased at an early stage of finish annealing, and the temperature is high. Methods for improving strength are disclosed. Further, Patent Document 7 discloses a technique for introducing a melt resolidification portion that is easily deformed at the lower end portion of the coil by laser irradiation. When these techniques are applied, lateral distortion is suppressed to some extent, and the tension required for feeding out the steel sheet from the coil and passing the sheet is reduced, but in particular, the sheet-passability of the grooved grain-oriented electrical steel sheet is improved. Was not enough.

特開昭63−100131号公報Japanese Unexamined Patent Publication No. 63-100131 特開昭64−42530号公報JP-A-64-42530 特開平2−97622号公報Japanese Unexamined Patent Publication No. 2-97622 特開平3−177518号公報Japanese Unexamined Patent Publication No. 3-177518 特開2000−38616号公報Japanese Unexamined Patent Publication No. 2000-38616 特開2001−323322号公報Japanese Unexamined Patent Publication No. 2001-323322 国際公開第2014−080763号International Publication No. 2014-080763

本発明は、上記事情に鑑みてなされたものであり、鋼板表面に線状溝が形成された方向性電磁鋼板であって、通板性に優れる前記方向性電磁鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a grain-oriented electrical steel sheet having linear grooves formed on the surface of the steel sheet and having excellent sheet-passability. To do.

本発明者らは、溝が表面に形成された方向性電磁鋼板の通板性の改善策を検討した結果、以下の知見を得た。なお、本明細書において、特に断りのない限り、鋼板またはコイルの「端部」は、鋼板またはコイルの幅方向の端部を意味するものとする。 As a result of investigating measures for improving the passability of grain-oriented electrical steel sheets having grooves formed on the surface, the present inventors have obtained the following findings. In the present specification, unless otherwise specified, the "end" of the steel plate or coil shall mean the end portion of the steel plate or coil in the width direction.

(1)破断トラブルは、方向性電磁鋼板の製造工程において、仕上げ焼鈍後(二次再結晶組織が形成されたあと)に多発しているので、仕上げ焼鈍後の鋼板について通板性を改善させることが重要である。 (1) Fracture troubles frequently occur after finish annealing (after the secondary recrystallization structure is formed) in the manufacturing process of grain-oriented electrical steel sheets, so that the sheet passability of the steel sheets after finish annealing is improved. This is very important.

(2)破断は、鋼板の端部が起点になるケースが多いので、鋼板の通板性を改善させるには、特に鋼板両端部の機械強度アップが有効であり、鋼板両端から幅中央方向に少なくとも10mmまでの範囲の組織を平均結晶粒径5mm以下に微細化することが重要となる。ただし、微細化していても各結晶粒の方位がほぼ同じ場合、すべり系が同じになるので、ある一定の方向に対する耐力しかアップしないので、できる限りランダムな結晶方位であることが好ましい。そのため、少なくともGoss方位からのずれ(ずれ角)が10°以下の結晶粒の存在頻度を50%以下とする必要がある。 (2) Since fractures often start from the ends of the steel sheet, increasing the mechanical strength of both ends of the steel sheet is particularly effective in improving the passability of the steel sheet, from both ends of the steel sheet toward the center of the width. It is important to refine the structure in the range of at least 10 mm to an average crystal grain size of 5 mm or less. However, even if the crystal grains are made finer, if the orientations of the crystal grains are almost the same, the slip system is the same, and only the yield strength in a certain direction is increased. Therefore, it is preferable that the crystal orientations are as random as possible. Therefore, it is necessary to set the abundance frequency of crystal grains having a deviation (deviation angle) of at least 10 ° or less from the Goss orientation to 50% or less.

(3)鋼板の通板性を改善させるのに有効な鋼板両端部の機械強度アップ手段として、鋼板両端部に溝が形成されていない溝非形成部を存在させることが有効である。より効果的に通板性をアップさせるためには、少なくとも鋼板両端から幅中央方向に1mmまでの範囲は、溝を形成しないことが好ましい。 (3) As a means for increasing the mechanical strength of both ends of the steel sheet, which is effective for improving the passability of the steel sheet, it is effective to have non-grooved portions having no grooves formed at both ends of the steel sheet. In order to improve the plate-passability more effectively, it is preferable that no groove is formed at least in the range from both ends of the steel sheet to 1 mm in the width center direction.

(4)鋼板両端部以外も、破断の起点になり得るので、表面に形成されている溝を連続的に圧延方向と交差する方向に延在させ、溝を不連続に形成させる際に発生しやすい、溝のラップ部による板厚の薄い領域増大を防止することも、通板性の改善に有効である。 (4) Since the starting point of fracture can be other than both ends of the steel sheet, it occurs when the grooves formed on the surface are continuously extended in the direction intersecting the rolling direction and the grooves are formed discontinuously. It is also effective to improve the plate-passability by preventing the area where the plate thickness is thin due to the wrapped portion of the groove, which is easy to increase.

本発明は、以上の知見に基づきなされたもので、以下の構成を有する。
[1]圧延方向と交差する方向に延在しかつ溝深さ方向が板厚方向となる溝が表面に形成された方向性電磁鋼板であって、
前記鋼板の幅方向の両端から幅中央方向に少なくとも10mmまでの範囲の組織が微細化されてなり、
前記両端から幅中央方向に10mmまでの微細化された組織は、平均結晶粒径が5mm以下であり、かつ、Goss方位からのずれ角が10°以下となる結晶粒の存在頻度が50%以下である、方向性電磁鋼板。
[2]鋼板表面の幅方向の両端から幅中央方向に少なくとも1mmまでの範囲には、溝が形成されていない、[1]に記載の方向性電磁鋼板。
[3]鋼板表面に形成された溝が、連続的に圧延方向と交差する方向に延在する、[1]または[2]に記載の方向性電磁鋼板。
The present invention has been made based on the above findings and has the following configurations.
[1] A grain-oriented electrical steel sheet in which a groove extending in a direction intersecting the rolling direction and having a groove depth direction in the plate thickness direction is formed on the surface.
The structure in the range from both ends in the width direction to at least 10 mm in the width center direction of the steel sheet is miniaturized.
In the finely divided structure from both ends to 10 mm in the center width direction, the abundance frequency of crystal grains having an average crystal grain size of 5 mm or less and a deviation angle from the Goss direction of 10 ° or less is 50% or less. A directional electromagnetic steel plate.
[2] The grain-oriented electrical steel sheet according to [1], wherein no groove is formed in the range from both ends of the steel sheet surface in the width direction to at least 1 mm in the width center direction.
[3] The grain-oriented electrical steel sheet according to [1] or [2], wherein the grooves formed on the surface of the steel sheet extend continuously in a direction intersecting the rolling direction.

本発明によれば、鋼板表面に線状溝が形成された方向性電磁鋼板であって、通板性に優れる前記方向性電磁鋼板を提供することができる。
本発明によれば、鋼板表面に溝が形成されている方向性電磁鋼板コイルの機械強度が大幅に向上するので、コイルから前記鋼板を払い出して通板する際、通板性が改善することで破断による生産性低下が防止される。
According to the present invention, it is possible to provide a grain-oriented electrical steel sheet having linear grooves formed on the surface of the steel sheet and having excellent sheet-passability.
According to the present invention, the mechanical strength of the directional electromagnetic steel plate coil in which the groove is formed on the surface of the steel plate is significantly improved. Therefore, when the steel plate is discharged from the coil and passed through the coil, the plate passing property is improved. Productivity reduction due to breakage is prevented.

図1は、各工程後の鋼板(組織)と破断発生張力比との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the steel plate (structure) and the fracture-generated tension ratio after each process. 図2は、仕上げ焼鈍後(二次再結晶組織)と張力コーティング形成後(二次再結晶組織)の鋼板について、鋼板端部からの研削幅と破断発生張力比との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the grinding width from the end of the steel sheet and the fracture-generated tension ratio for the steel sheet after finish annealing (secondary recrystallization structure) and after tension coating formation (secondary recrystallization structure). .. 図3は、鋼板端部領域の組織の平均結晶粒径と破断発生張力比との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the average crystal grain size of the structure of the end region of the steel sheet and the fracture-occurring tension ratio. 図4は、鋼板端部から幅中央方向に10mmの範囲の鋼板組織における二次再結晶粒の存在頻度と破断発生張力比との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the abundance frequency of secondary recrystallized grains and the fracture occurrence tension ratio in the steel sheet structure in the range of 10 mm from the end of the steel sheet to the center of the width. 図5は、溝未形成部の鋼板両端部から幅中央方向への幅と破断発生張力比との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the width of the non-grooved portion from both ends of the steel plate in the width center direction and the fracture-occurring tension ratio. 図6は、複数のレーザ照射装置を使用して線状溝を形成した際の線状溝の形成パターンを説明する図である。FIG. 6 is a diagram for explaining the formation pattern of the linear groove when the linear groove is formed by using a plurality of laser irradiation devices. 図7は、図6(c)の下側の図のラップ部の拡大図である。FIG. 7 is an enlarged view of the lap portion in the lower part of FIG. 6 (c). 図8は、ラップ代と破断発生張力比との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the lap allowance and the fracture occurrence tension ratio. 図9は、組織観察領域を説明する説明図である。FIG. 9 is an explanatory diagram illustrating a tissue observation area. 図10は、微細結晶組織の領域を判定する際に、基準となる二次再結晶組織の設定方法を説明する説明図である。FIG. 10 is an explanatory diagram illustrating a method of setting a secondary recrystallized structure as a reference when determining a region of a fine crystal structure. 図11は、各ピッチにおける圧延方向単位距離当たりの結晶粒界の交差数の計測方法を説明する説明図である。FIG. 11 is an explanatory diagram illustrating a method of measuring the number of intersections of grain boundaries per unit distance in the rolling direction at each pitch. 図12は、微細結晶組織の領域の判定方法を説明する説明図である。FIG. 12 is an explanatory diagram illustrating a method for determining a region of a fine crystal structure.

<実験1>
まず、鋼板端部の組織と機械強度の関係を明らかにした実験結果を説明する。表面にレジストインクを塗布した板厚0.23mm、板幅800mmの冷間圧延板にレーザを圧延方向と直交する向きに走査して、圧延方向に5mmの間隔を置いてレーザを照射してレジストインクを剥離した。なお、この方法では、レーザが照射された部分のレジストインクが剥離(除去)される。レーザ照射は、2台のシングルモードファイバーレーザを鋼板幅方向に設置し、ガルバノスキャナー方式によってレーザ照射エネルギー25J/m、レーザ走査幅400mmで実施し、鋼板の幅方向の一方の端から他端まで連続的にレジストインクを完全に剥離した。
<Experiment 1>
First, the experimental results that clarified the relationship between the structure of the end of the steel sheet and the mechanical strength will be described. A cold rolled plate with a plate thickness of 0.23 mm and a plate width of 800 mm coated with resist ink on the surface is scanned with a laser in a direction orthogonal to the rolling direction, and the laser is irradiated at intervals of 5 mm in the rolling direction to resist. The ink was peeled off. In this method, the resist ink in the portion irradiated with the laser is peeled off (removed). Laser irradiation is performed by installing two single-mode fiber lasers in the width direction of the steel sheet, using a galvano scanner method with a laser irradiation energy of 25 J / m and a laser scanning width of 400 mm, from one end to the other end in the width direction of the steel sheet. The resist ink was continuously completely peeled off.

次に、このレジスト剥離したサンプルに電解エッチング処理を施し、鋼板表面に、深さ(板厚方向)20μm、幅100μmの溝を形成させ、820℃×120sec、N:H=40:60(体積比)、露点50℃で脱炭焼鈍を実施した。その後、鋼板両端部を研削して、鋼板表面に形成されたサブスケール性状を変化させた。このとき、鋼板の幅方向の両端から幅中央方向への研削幅は0〜100mmまで変化させた。ここでは鋼板両端部の研削幅(一方の端部の研削幅と、他方の端部の研削幅)は同じとした。その後、公知の方法で焼鈍分離剤塗布、仕上げ焼鈍、張力コーティング形成などを行って、方向性電磁鋼板を製造した。また、比較として、溝を形成しない方向性電磁鋼板も溝の形成以外の製造条件を同じくして製造した。 Next, the resist-peeled sample is subjected to electrolytic etching treatment to form a groove having a depth (plate thickness direction) of 20 μm and a width of 100 μm on the surface of the steel sheet, 820 ° C. × 120 sec, N 2 : H 2 = 40: 60. Decarburization annealing was carried out at a dew point of 50 ° C. (volume ratio). Then, both ends of the steel sheet were ground to change the subscale properties formed on the surface of the steel sheet. At this time, the grinding width from both ends in the width direction of the steel sheet to the center of the width was changed from 0 to 100 mm. Here, the grinding widths at both ends of the steel sheet (grinding width at one end and grinding width at the other end) are the same. Then, an annealing separator was applied, finish annealing, tension coating was formed, and the like by a known method to produce grain-oriented electrical steel sheets. For comparison, grain-oriented electrical steel sheets that do not form grooves were also manufactured under the same manufacturing conditions other than the formation of grooves.

上記の製造途中および最終工程完了後の鋼板、具体的には、エッチング後(冷間圧延組織)、脱炭焼鈍後(一次再結晶組織)、仕上げ焼鈍後(二次再結晶組織)、張力コーティング形成後(二次再結晶組織)の、溝を形成した鋼板、溝を形成しない鋼板に対し、試験的に破断が発生するまで張力(以下、破断発生張力とする)を付与し、破断発生張力と各工程後の鋼板(組織)の破断の関係を調査した。 Steel sheets during the above manufacturing process and after the completion of the final process, specifically, after etching (cold rolling structure), after decarburization annealing (primary recrystallization structure), after finish annealing (secondary recrystallization structure), tension coating After formation (secondary recrystallization structure), tension is applied to the grooved steel sheet and the non-grooved steel sheet until a test break occurs (hereinafter referred to as the break occurrence tension). And the relationship between the breakage of the steel sheet (structure) after each process was investigated.

結果は、溝を形成していない鋼板(溝なし)の破断発生張力に対する、溝を形成した鋼板(溝あり)の破断発生張力の比で表した(以下、破断発生張力比とする)。試験は室温25℃で行った。なお、鋼板両端部の研削を実施したのは、サブスケールの性状を変えることで、二次再結晶挙動を変化させ、鋼板両端部の組織変化による鋼板の機械強度変化を狙ったものである。 The result was expressed by the ratio of the fracture-generated tension of the grooved steel sheet (with grooves) to the fracture-generated tension of the steel sheet without grooves (hereinafter referred to as the fracture-generated tension ratio). The test was conducted at room temperature of 25 ° C. The grinding of both ends of the steel sheet was carried out with the aim of changing the secondary recrystallization behavior by changing the properties of the subscale and changing the mechanical strength of the steel sheet due to the change in the structure of both ends of the steel sheet.

図1に、研削なし(研削幅0mm)の鋼板について調査した各工程後の鋼板(組織)と破断発生張力比との関係を示す。図1から、鋼板表面に溝を形成した場合、二次再結晶組織(仕上げ焼鈍後)になると破断発生張力が大幅に低下しており、通板性改善対策は、鋼板が二次再結晶組織である場合に検討することが重要であることが分かる。 FIG. 1 shows the relationship between the steel sheet (structure) after each process and the fracture-generated tension ratio investigated for the steel sheet without grinding (grinding width 0 mm). From FIG. 1, when grooves are formed on the surface of the steel sheet, the tension generated at breakage is significantly reduced when the secondary recrystallization structure (after finish annealing) is obtained. As a measure for improving the passability, the steel sheet has a secondary recrystallization structure. It turns out that it is important to consider when.

図2に、仕上げ焼鈍後(二次再結晶組織)と張力コーティング形成後(二次再結晶組織)の鋼板について、鋼板端部からの研削幅と破断発生張力比との関係を示す。横軸は鋼板端部(両端)から幅中央方向へ研削した幅(mm)を示している。鋼板両端を少なくともそれぞれ10mm以上幅中央方向に研削することで、破断発生張力の低下が大幅に抑制され、通板性が改善していることが分かる。研削により通板性が改善した原因を調査するため、研削を施したそれぞれの鋼板を酸洗・エッチングして組織観察を行った。観察した結果、研削部(研削によりサブスケール性状に変化が現れた領域)の組織は、微細結晶組織になっており、平均結晶粒径が0.8mmであった。 FIG. 2 shows the relationship between the grinding width from the end of the steel sheet and the fracture-generated tension ratio for the steel sheet after finish annealing (secondary recrystallization structure) and after tension coating formation (secondary recrystallization structure). The horizontal axis represents the width (mm) ground from the ends (both ends) of the steel sheet toward the center of the width. It can be seen that by grinding both ends of the steel sheet in the direction of the center of the width of at least 10 mm or more, the decrease in the tension generated at breakage is significantly suppressed and the plate-passability is improved. In order to investigate the cause of the improvement in the plate-passability by grinding, each of the ground steel sheets was pickled and etched, and the structure was observed. As a result of observation, the structure of the ground portion (the region where the subscale properties changed due to grinding) was a fine crystal structure, and the average crystal grain size was 0.8 mm.

なお、本発明において、微細化された組織(微細結晶組織)の領域は以下の方法で判定される。本発明における微細結晶組織の領域の判定方法を図9〜12を参照しながら説明する。
(i)鋼板全幅×鋼板圧延方向100mmの領域を組織観察領域とする(図9)。板幅方向中央の[幅方向100mm]×[圧延方向100mm]の領域に関して組織観察および結晶方位測定を行う(図10)。
(ii)結晶方位測定結果から、上記[幅方向100mm]×[圧延方向100mm]の領域について、Goss方位からのずれ角が10°以下となる結晶粒の存在頻度が90%以上であれば、その領域を「基準となる二次再結晶組織」に設定する(図10)。
(iii)組織観察結果から、鋼板全幅にわたって5mmピッチで圧延方向に対して交差する結晶粒界を計測する(図11)。
(iv)各ピッチにおける圧延方向単位距離当たりの交差数を計算する(図11)。
(v)基準となる二次再結晶組織(領域)での平均交差数に対して、2倍以上の交差数となる点が連続的に出現する場合、その範囲(ピッチ間)を微細結晶組織の領域と判定する(図12)。
In the present invention, the region of the refined structure (fine crystal structure) is determined by the following method. The method for determining the region of the fine crystal structure in the present invention will be described with reference to FIGS. 9 to 12.
(I) A region of the total width of the steel plate x 100 mm in the rolling direction of the steel plate is defined as a structure observation region (FIG. 9). Structure observation and crystal orientation measurement are performed on a region of [width direction 100 mm] × [rolling direction 100 mm] at the center of the plate width direction (FIG. 10).
(Ii) From the crystal orientation measurement result, if the abundance frequency of crystal grains having a deviation angle from the Goss orientation of 10 ° or less is 90% or more in the above-mentioned region of [width direction 100 mm] × [rolling direction 100 mm], The region is set to the "reference secondary recrystallization structure" (FIG. 10).
(Iii) From the structure observation results, the grain boundaries intersecting the rolling direction are measured at a pitch of 5 mm over the entire width of the steel sheet (FIG. 11).
(Iv) The number of crossings per unit distance in the rolling direction at each pitch is calculated (FIG. 11).
(V) When points that have more than twice the average number of intersections in the reference secondary recrystallization structure (region) appear continuously, the range (between pitches) is defined as the fine crystal structure. (Fig. 12).

また、微細結晶組織について結晶方位解析を行ったところ、Goss方位からのずれ角が10°以下となる結晶粒の存在頻度が5%以下であり、大部分が二次再結晶組織ではなく、一次再結晶粒が、研削を施した後、仕上げ焼鈍によって正常粒成長したものであることが判明した。以上の結果より、二次再結晶組織が主組織である鋼板において、溝を形成した鋼板の破断発生張力の低下が大幅に抑制されたのは鋼帯両端部の細粒化組織による機械強度アップが原因と考えられる。 Further, when the crystal orientation analysis was performed on the fine crystal structure, the frequency of existence of crystal grains having a deviation angle from the Goss orientation of 10 ° or less was 5% or less, and most of them were not secondary recrystallized structures but primary. It was found that the recrystallized grains were grown normally by finish annealing after being ground. From the above results, in the steel sheet whose main structure is the secondary recrystallization structure, the decrease in the fracture-generated tension of the grooved steel sheet was significantly suppressed by the increased mechanical strength due to the fine-grained structure at both ends of the steel strip. Is thought to be the cause.

本発明における結晶方位測定は、X線ラウエ法を用いて1mmピッチで測定し、1つの結晶粒内の全測定点から結晶粒内の変動幅およびその結晶粒の平均結晶方位(α角、β角)を求めた。本発明においては、鋼板全幅×鋼板圧延方向100mmの領域に関して測定を行った(図9参照)。Goss方位からのずれ角が10°以下となる結晶粒の存在頻度は、板端から板幅中央の方向に10mmまでの領域において、Goss方位からのずれ角(ずれ量)が10°以下の結晶粒の面積をもとめ、その10mmまでの領域の面積との割合[(Goss方位からのずれ角が10°以下の結晶粒の面積/板端から幅中央方向10mmまでの領域の面積)×100]を存在頻度とし、ずれ角は√(α+β)で定義した。α角は二次再結晶粒方位の圧延面法線方向(ND)軸における(110)<001>理想方位からのずれ角、β角は二次再結晶粒方位の圧延直角方向(TD)軸における(110)<001>理想方位からのずれ角である。板端から幅中央方向10mmまでの領域における平均結晶粒径は、その領域内に存在する結晶粒を光学顕微鏡またはマイクロスコープで観察し、測定した結晶粒の個数とその領域の面積に基づき、円相当径により求めた。 The crystal orientation measurement in the present invention is measured at a pitch of 1 mm by using the X-ray Rawe method, and the fluctuation width in the crystal grains from all the measurement points in one crystal grain and the average crystal orientation (α angle, β) of the crystal grains. I asked for a corner). In the present invention, measurements were made in a region of the total width of the steel sheet × 100 mm in the rolling direction of the steel sheet (see FIG. 9). The frequency of existence of crystal grains having a deviation angle of 10 ° or less from the Goss orientation is such that the deviation angle (deviation amount) from the Goss orientation is 10 ° or less in the region from the plate edge to 10 mm in the direction of the center of the plate width. Find the area of the grain and its ratio to the area of the area up to 10 mm [(Area of crystal grains with a deviation angle from the Goss direction of 10 ° or less / Area of the area from the plate edge to the center of the width) x 100] Was defined as the frequency of existence, and the deviation angle was defined as √ (α 2 + β 2). The α angle is the deviation angle from the (110) <001> ideal orientation in the rolling surface normal direction (ND) axis of the secondary recrystallized grain orientation, and the β angle is the rolling perpendicular direction (TD) axis of the secondary recrystallized grain orientation. (110) <001> is the deviation angle from the ideal direction. The average crystal grain size in the region from the plate edge to the center width of 10 mm is a circle based on the number of crystal grains measured by observing the crystal grains existing in the region with an optical microscope or a microscope and the area of the region. Obtained from the equivalent diameter.

<実験2>
次に、平均結晶粒径と破断張力の関係を調査した。実験1と異なる点は以下のとおりである。今回の実験では研削は実施せず、代わりに、焼鈍分離剤を塗布した後、各鋼板端部から幅中央方向に10mmの範囲にホウ酸水溶液をノズルで追加吹付けし、その後に焼き付け処理を行った。その際、ホウ酸水溶液の濃度を0質量%〜10質量%に変化させた。それ以外は実験1と同様の方法で実験を行った。ホウ酸水溶液を塗布したのは、ホウ素が仕上げ焼鈍中に鋼板に浸入し、二次再結晶挙動に影響を与えることを狙ったためである。
<Experiment 2>
Next, the relationship between the average crystal grain size and the breaking tension was investigated. The differences from Experiment 1 are as follows. In this experiment, grinding was not performed. Instead, after applying an annealing separator, an aqueous boric acid solution was additionally sprayed with a nozzle within a range of 10 mm from the end of each steel sheet toward the center of the width, and then the baking process was performed. went. At that time, the concentration of the boric acid aqueous solution was changed to 0% by mass to 10% by mass. Other than that, the experiment was carried out in the same manner as in Experiment 1. The boric acid aqueous solution was applied because it was intended that boron would infiltrate the steel sheet during finish annealing and affect the secondary recrystallization behavior.

図3に、張力コーティング形成後の鋼板について、ホウ酸水溶液を吹付けた範囲(鋼板端部から幅中央方向に10mmの範囲)の平均結晶粒径と破断発生張力比との関係を示す。前記範囲の平均結晶粒径が5mm以下では破断発生張力比が大きくばらついた。しかし、平均結晶粒径が少なくとも5mm超では破断発生張力の低下を抑制できないことが分かった。また、平均結晶粒径が2〜5mmの範囲では破断発生張力比のバラつきが大きく、平均結晶粒径以外の因子が影響を及ぼしていることが示唆された。 FIG. 3 shows the relationship between the average crystal grain size and the fracture-generated tension ratio in the range in which the boric acid aqueous solution is sprayed (the range of 10 mm from the end of the steel sheet to the center of the width) of the steel sheet after the tension coating is formed. When the average crystal grain size in the above range was 5 mm or less, the rupture generation tension ratio varied greatly. However, it was found that the decrease in the breaking tension cannot be suppressed when the average crystal grain size exceeds at least 5 mm. In addition, when the average crystal grain size was in the range of 2 to 5 mm, the rupture occurrence tension ratio varied widely, suggesting that factors other than the average crystal grain size had an effect.

前記範囲の平均結晶粒径が2〜5mmの組織を観察すると、二次再結晶粒と一次再結晶粒が混在している場合が多いことが判明した。一方、平均結晶粒径が1mm以下では、一次再結晶組織が支配的であり、平均結晶粒径が5mm超では二次再結晶組織が支配的になっていた。このように組織に変化が見られたのは、ホウ酸添加の影響と考えられる。そこで、前記範囲の平均結晶粒径が5mmと3mmのサンプルに関して、二次再結晶粒(ここではGoss方位からのずれ角が10°以内の結晶粒)の存在頻度と破断発生張力比の関係を調査した。図4に結果を示すが、二次再結晶粒の存在頻度が50%以下であれば、溝を形成した鋼板の破断発生張力の低下が抑制でき、通板性の改善が顕著になることが判明した。 When observing a structure having an average crystal grain size of 2 to 5 mm in the above range, it was found that secondary recrystallized grains and primary recrystallized grains were often mixed. On the other hand, when the average crystal grain size was 1 mm or less, the primary recrystallized structure was dominant, and when the average crystal grain size was more than 5 mm, the secondary recrystallized structure was dominant. This change in the tissue is considered to be due to the addition of boric acid. Therefore, for samples with average crystal grain sizes of 5 mm and 3 mm in the above range, the relationship between the abundance frequency of secondary recrystallized grains (here, crystal grains with a deviation angle of 10 ° or less from the Goss orientation) and the fracture occurrence tension ratio is examined. investigated. The results are shown in FIG. 4. When the abundance frequency of the secondary recrystallized grains is 50% or less, the decrease in the fracture-generated tension of the grooved steel sheet can be suppressed, and the improvement of the plate-passability can be remarkable. found.

<実験3>
更なる通板性改善策として、鋼板両端部の領域に意図的に溝を形成しないことを検討した。溝を形成しないと磁区細分化効果が得られないので、磁気特性が劣化する問題が発生するが、鋼板両端部では、もともと鋼板を巻き取ってコイルとして載置したときのコイル下端部ではコイル重量による座屈変形、コイル上端部ではコイル焼鈍時の過加熱による温度分布差により発生する応力起因の変形が起こり、鋼板両端部からある程度の範囲は不可避的に製品が採取できない部分となる。よって、通板性改善に必要な溝の未形成部が大きくなければ、そのような製品が採取できない部分に溝の未形成部が収まるので、実現性が高いと考え、検討を行った。
<Experiment 3>
As a further measure to improve the passability, it was examined not to intentionally form grooves in the regions at both ends of the steel sheet. If the groove is not formed, the effect of subdividing the magnetic zone cannot be obtained, which causes a problem that the magnetic characteristics deteriorate. However, at both ends of the steel sheet, the coil weight at the lower end of the coil when the steel sheet is originally wound and placed as a coil. Due to buckling deformation due to the above, deformation due to stress caused by the temperature distribution difference due to overheating during coil annealing occurs at the upper end of the coil, and a certain range from both ends of the steel sheet is inevitably a part where the product cannot be collected. Therefore, if the unformed portion of the groove required for improving the plate-passability is not large, the unformed portion of the groove will fit in the portion where such a product cannot be collected, and the feasibility is considered to be high.

公知の方法により得た板厚0.18mm、板幅800mmの冷間圧延板に公知のグラビアオフセット印刷によりレジストインクを塗布した。その際、鋼板の圧延方向と交差する方向に延在する未塗布部を有する塗布パターンとし、かつ、鋼板両端部に関しては意図的に鋼板両端から幅中央方向に0〜15mmの範囲で前記未塗布部を形成しない範囲を設けた。すなわち、その後の電解エッチングにより、鋼板両端から幅中央方向に0〜15mmの範囲に溝が形成されない溝未形成部が形成されるように塗布パターンを調整した。その後、電解エッチングおよびアルカリ液中でのレジスト剥離により、幅:200μm、深さ:25μmの線状溝を、圧延方向と直交する向きに対し7.5°の傾斜角度にて4.5mm間隔で形成した。ついで、エッジヒーターにより鋼板両端部から幅中央方向に10mmの範囲に対して追加加熱処理を行い、その部分のインヒビター状態および一次再結晶粒径を変化させた。その後、雰囲気酸化度P(HO)/P(H)=0.55、均熱温度:840℃で60秒保持する脱炭焼鈍を施したのち、公知の方法で焼鈍分離剤塗布、仕上げ焼鈍、張力コーティング塗布などを行って製品とした。なお、破断発生張力の評価は実験1、2と同じ方法で実施した。 A resist ink was applied to a cold-rolled plate having a plate thickness of 0.18 mm and a plate width of 800 mm obtained by a known method by a known gravure offset printing. At that time, the coating pattern has an uncoated portion extending in a direction intersecting the rolling direction of the steel sheet, and both ends of the steel sheet are intentionally uncoated in a range of 0 to 15 mm from both ends of the steel sheet in the width center direction. A range was provided so as not to form a portion. That is, the coating pattern was adjusted so that the non-grooved portion in which the groove was not formed was formed in the range of 0 to 15 mm in the width center direction from both ends of the steel sheet by the subsequent electrolytic etching. After that, by electrolytic etching and resist peeling in an alkaline solution, linear grooves having a width of 200 μm and a depth of 25 μm are formed at intervals of 4.5 mm at an inclination angle of 7.5 ° with respect to the direction orthogonal to the rolling direction. Formed. Then, an edge heater was used to perform additional heat treatment on a range of 10 mm from both ends of the steel sheet in the width center direction to change the inhibitor state and the primary recrystallization particle size of that portion. Then, after performing decarburization annealing in which the atmospheric oxidation degree P (H 2 O) / P (H 2 ) = 0.55 and the soaking temperature: 840 ° C. for 60 seconds, an annealing separator was applied by a known method. Finish annealing, tension coating application, etc. were performed to obtain a product. The evaluation of the breaking tension was carried out by the same method as in Experiments 1 and 2.

図5に、溝未形成部の鋼板両端部から幅中央方向への幅と破断発生張力比との関係を示す。今回の評価サンプルは、エッジヒーターで加熱した両端部より10mmの範囲の組織は、二次再結晶粒の存在頻度が20%、平均結晶粒径が4mmであった。図5に示すように、溝未形成部がなくても(溝未形成部の幅が0mm)、溝を形成した鋼板の破断発生張力の大幅な低下は抑制され、通板性の大幅劣化は抑制されているが、鋼板端部からの溝未形成部の幅を1mm以上とすることで、溝を形成した鋼板の破断発生張力の低下がより抑制され、通板性の劣化が抑制されることが明らかになった。鋼板端部からの溝未形成部の幅は、好ましくは2mm以上である。 FIG. 5 shows the relationship between the width of the non-grooved portion from both ends of the steel plate toward the center of the width and the fracture-occurring tension ratio. In this evaluation sample, in the structure within a range of 10 mm from both ends heated by the edge heater, the abundance frequency of secondary recrystallized grains was 20%, and the average crystal grain size was 4 mm. As shown in FIG. 5, even if there is no groove-unformed portion (the width of the groove-unformed portion is 0 mm), a significant decrease in the fracture-generated tension of the groove-formed steel sheet is suppressed, and the plate-passability is significantly deteriorated. Although it is suppressed, by setting the width of the non-grooved portion from the end of the steel plate to 1 mm or more, the decrease in the fracture-generated tension of the steel plate having the groove is further suppressed, and the deterioration of the plate-passability is suppressed. It became clear. The width of the non-grooved portion from the end of the steel plate is preferably 2 mm or more.

<実験4>
鋼板の端部領域の組織改善により、通板性は大幅に改善することが明らかになったが、二次再結晶組織中の溝形成挙動の改善によりさらに改善が可能かの検討を行った。溝形成は、図6(c)に示すように1本の連続溝(圧延方向と交差する方向に途切れなく連続的に延在する溝)で形成される場合もあるが、レーザ照射などでレジストを剥離した後エッチングで溝を形成する場合は複数のレーザ照射装置を使用して線状のレジスト剥離をつなぎ合わせる場合もある。すなわち、それぞれの照射装置から照射されるレーザが鋼板全幅にわたって走査される必要はなく、各照射装置による走査範囲の和が、鋼板全幅をカバーするように製造すればよい。この場合、溝の延伸方向に対して溝が不連続となる部分が生じる。この場合、図6(b)のように溝を形成すると鉄損が劣化するために、図6(a)に示すように板幅方向に隣り合う溝が、溝幅方向と直交する投影面上で重なるように溝を形成するのが一般的である。なお、以下、板幅方向に隣り合う溝を、溝幅方向と直交する投影面上に投射したときに溝同士が重なる領域をラップ部という(図6(a)参照)。ラップ部を有するように溝を形成した場合、ラップ部では板厚が薄い領域が大きくなるため、通板性が劣化する可能性があると考え、不連続な溝形成と通板性の関係を調査することとした。
<Experiment 4>
It was clarified that the passability was significantly improved by improving the structure of the edge region of the steel sheet, but it was examined whether further improvement could be achieved by improving the groove formation behavior in the secondary recrystallization structure. As shown in FIG. 6 (c), the groove formation may be formed by one continuous groove (a groove that extends continuously in the direction intersecting the rolling direction), but the resist is formed by laser irradiation or the like. When a groove is formed by etching after peeling, a plurality of laser irradiation devices may be used to join the linear resist peeling. That is, it is not necessary for the laser irradiated from each irradiation device to be scanned over the entire width of the steel sheet, and the sum of the scanning ranges of each irradiation device may be manufactured so as to cover the entire width of the steel sheet. In this case, there is a portion where the groove is discontinuous with respect to the extending direction of the groove. In this case, if the grooves are formed as shown in FIG. 6B, the iron loss deteriorates. Therefore, as shown in FIG. 6A, the adjacent grooves in the plate width direction are on the projection plane orthogonal to the groove width direction. It is common to form grooves so that they overlap with each other. Hereinafter, the region where the grooves overlap when the grooves adjacent to each other in the plate width direction are projected onto the projection plane orthogonal to the groove width direction is referred to as a lap portion (see FIG. 6A). When the groove is formed so as to have the lap portion, the area where the plate thickness is thin becomes large in the lap portion, so that the plate-passability may be deteriorated, and the relationship between the discontinuous groove formation and the plate-passability is considered. I decided to investigate.

表面にレジストインクを塗布した公知の方法により得た板厚0.20mm、板幅1200mmの冷間圧延板に公知のレーザ加工法で3台のレーザ発振器を用いて、隣接する溝とのラップ代を変化させながら溝形成を行った。ここで、ラップ代(%)とは、(ラップ幅/溝幅)×100で示され、前記ラップ幅は、幅方向に隣接する溝同士が溝幅方向で重なった場合の溝幅方向の重なり幅を示す(図6(c)の下側の図および図7のラップ部の拡大図を参照)。例えば、図6(c)の上側の図のように、隣接する溝が溝幅方向に完全に重なった場合はラップ代は100%であり、図6(a)のように板幅方向に隣接する溝同士が溝幅方向に離間している場合はラップ代は0%となる。溝は、幅:50μm、深さ(板厚方向):15μmの線状溝を、圧延方向と直交する向きに対し3.0°の傾斜角度にて圧延方向に3.0mm間隔で形成した。ついで、エッジヒーターにより鋼板両端部から幅中央方向に10mmの範囲に対して追加加熱処理を行い、その部分のインヒビター状態および一次再結晶粒径を変化させた。その後、雰囲気酸化度P(HO)/P(H)=0.55、均熱温度:840℃で60秒保持する脱炭焼鈍を施したのち、公知の方法で焼鈍分離剤塗布、仕上げ焼鈍、張力コーティング塗布などを行って製品とした。なお、破断発生張力の評価は実験1、2と同じ方法で実施した。エッジヒーターで加熱した各端部より幅中央方向10mmの範囲の組織は、二次再結晶粒の存在頻度が5%、平均結晶粒径が2mmであった。 A cold rolled plate having a plate thickness of 0.20 mm and a plate width of 1200 mm obtained by a known method in which a resist ink is applied to the surface is used with three laser oscillators by a known laser processing method to provide a wrapping allowance with an adjacent groove. Grooves were formed while changing. Here, the lap allowance (%) is indicated by (wrap width / groove width) × 100, and the lap width is the overlap in the groove width direction when adjacent grooves in the width direction overlap in the groove width direction. The width is shown (see the lower view of FIG. 6 (c) and the enlarged view of the lap portion of FIG. 7). For example, as shown in the upper diagram of FIG. 6 (c), when adjacent grooves completely overlap in the groove width direction, the lap allowance is 100%, and as shown in FIG. 6 (a), they are adjacent in the plate width direction. When the grooves to be formed are separated from each other in the groove width direction, the lap allowance is 0%. The grooves were formed by forming linear grooves having a width of 50 μm and a depth (plate thickness direction) of 15 μm at intervals of 3.0 mm in the rolling direction at an inclination angle of 3.0 ° with respect to the direction orthogonal to the rolling direction. Then, an edge heater was used to perform additional heat treatment on a range of 10 mm from both ends of the steel sheet in the width center direction to change the inhibitor state and the primary recrystallization particle size of that portion. Then, after performing decarburization annealing in which the atmospheric oxidation degree P (H 2 O) / P (H 2 ) = 0.55 and the soaking temperature: 840 ° C. for 60 seconds, an annealing separator was applied by a known method. Finish annealing, tension coating application, etc. were performed to obtain a product. The evaluation of the breaking tension was carried out by the same method as in Experiments 1 and 2. In the structure in the range of 10 mm in the width center direction from each end heated by the edge heater, the abundance frequency of secondary recrystallized grains was 5%, and the average crystal grain size was 2 mm.

評価結果を図8に示す。図6(a)のような隣接する溝の端部同士が重ならないラップ部(ラップ代0%)が存在することで、破断発生張力比は低下する(通板性が劣化)する傾向が認められたが、ラップ代が大きくなるにつれて破断発生張力比の低下が抑制された。以上より、ラップ代は5%以上が好ましく、より好ましくは、連続溝(ラップ代100%)を形成することであることが判明した。 The evaluation result is shown in FIG. The presence of a lap portion (wrap allowance 0%) in which the ends of adjacent grooves do not overlap each other as shown in FIG. 6A tends to reduce the fracture-generated tension ratio (deteriorate the plate-passability). However, as the lap allowance increased, the decrease in the fracture tension ratio was suppressed. From the above, it was found that the wrap allowance is preferably 5% or more, and more preferably a continuous groove (wrap allowance 100%) is formed.

以上の結果を踏まえ、本発明について具体的に説明する。なお、以下の説明は、本発明の好適な一実施態様を示すものであり、本発明は、以下の説明によって何ら限定されるものではない。 Based on the above results, the present invention will be specifically described. The following description shows a preferred embodiment of the present invention, and the present invention is not limited to the following description.

[方向性電磁鋼板]
本発明は、表面に溝が形成された方向性電磁鋼板に関するものである。以下、本発明の方向性電磁鋼板の鋼素材(スラブ)の成分組成について説明する。前記方向性電磁鋼板としては、特に限定されず任意のものを用いることができるが、鉄損低減の観点からSiを2.0〜8.0質量%の範囲で含有する成分組成を有することが好ましく、加えて通板性の観点からSiを2.5〜4.5質量%の範囲で含有する成分組成を有することがより好ましい。
[Directional magnetic steel sheet]
The present invention relates to a grain-oriented electrical steel sheet having grooves formed on its surface. Hereinafter, the component composition of the steel material (slab) of the grain-oriented electrical steel sheet of the present invention will be described. As the grain-oriented electrical steel sheet, any one can be used without particular limitation, but from the viewpoint of reducing iron loss, it may have a component composition containing Si in the range of 2.0 to 8.0% by mass. It is preferable, and in addition, it is more preferable to have a component composition containing Si in the range of 2.5 to 4.5% by mass from the viewpoint of plate-passability.

なお、本発明の方向性電磁鋼板の製造に用いる鋼素材(スラブ)として好適な、Si以外の成分組成は、次のとおりである。勿論、以下の成分組成に限定されることはなく、どのような電磁鋼板であっても本発明の適用により適用前の鋼板よりも通板性は確実に改善される。 The composition of components other than Si, which is suitable as a steel material (slab) used for producing the grain-oriented electrical steel sheet of the present invention, is as follows. Of course, the composition is not limited to the following, and the applicability of any electromagnetic steel sheet is surely improved as compared with the steel sheet before application by applying the present invention.

C:0.01〜0.08質量%
Cは、一次再結晶時の集合組織の改善のために必要な元素であり、その効果を得るためには0.01質量%以上含有させるのが好ましい。一方、Cが0.08質量%を超えると、脱炭焼鈍で、磁気時効の起こらない0.0050質量%以下に低減することが難しくなる。よって、Cは0.01〜0.08質量%の範囲とするのが好ましい。より好ましくは0.03〜0.07質量%の範囲である。
C: 0.01 to 0.08% by mass
C is an element necessary for improving the texture at the time of primary recrystallization, and is preferably contained in an amount of 0.01% by mass or more in order to obtain the effect. On the other hand, if C exceeds 0.08% by mass, it becomes difficult to reduce it to 0.0050% by mass or less, which does not cause magnetic aging due to decarburization annealing. Therefore, C is preferably in the range of 0.01 to 0.08% by mass. More preferably, it is in the range of 0.03 to 0.07% by mass.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を改善するのに有効な元素であるが、0.005質量%未満では、上記効果は得られず、一方、1.0質量%を超えると、磁束密度が低下するようになる。よって、Mnは0.005〜1.0質量%の範囲とすることが好ましい。より好ましくは0.010〜0.2質量%の範囲である。
Mn: 0.005 to 1.0% by mass
Mn is an element effective for improving hot workability, but if it is less than 0.005% by mass, the above effect cannot be obtained, while if it exceeds 1.0% by mass, the magnetic flux density decreases. Will be. Therefore, Mn is preferably in the range of 0.005 to 1.0% by mass. More preferably, it is in the range of 0.010 to 0.2% by mass.

また、本発明の方向性電磁鋼板の製造に用いる鋼素材の上記成分以外の基本成分は、二次再結晶を起こさせるためにインヒビターを利用する場合と、利用しない場合とで別れる。 Further, the basic components other than the above components of the steel material used for producing the grain-oriented electrical steel sheet of the present invention are divided into a case where an inhibitor is used for causing secondary recrystallization and a case where it is not used.

二次再結晶を起こさせるためにインヒビターを用いる場合には、例えば、AlN系インヒビターを利用するときには、AlおよびNをそれぞれAl:0.01〜0.065質量%、N:0.005〜0.012質量%の範囲で含有させることが好ましく、また、MnS・MnSe系インヒビターを利用するときには、Seおよび/またはSを、それぞれS:0.005〜0.03質量%、Se:0.005〜0.03質量%の範囲で含有させることが好ましい。 When an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are added to Al: 0.01 to 0.065% by mass and N: 0.005 to 0, respectively. It is preferable to contain it in the range of .012% by mass, and when MnS / MnSe-based inhibitors are used, Se and / or S are contained in S: 0.005 to 0.03% by mass and Se: 0.005, respectively. It is preferably contained in the range of ~ 0.03% by mass.

一方、二次再結晶を起こさせるためにインヒビターを利用しない場合には、インヒビター形成成分であるAl、N、SおよびSeは、それぞれAl:0.0100質量%以下、N:0.0050質量%以下、S:0.0050質量%以下、Se:0.0050質量%以下に低減するのが好ましい。 On the other hand, when an inhibitor is not used to cause secondary recrystallization, the inhibitor-forming components Al, N, S and Se are Al: 0.0100% by mass or less and N: 0.0050% by mass, respectively. Hereinafter, it is preferable to reduce S: 0.0050% by mass or less and Se: 0.0050% by mass or less.

また、本発明の方向性電磁鋼板の製造に用いる鋼素材は、上記した基本成分の他に、磁気特性の改善を目的として、上記成分組成に加えてさらに、Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選ばれる1種または2種以上を含有させてもよい。 Further, the steel material used for producing the grain-oriented electrical steel sheet of the present invention has Ni: 0.03 to 1.50 in addition to the above-mentioned component composition for the purpose of improving the magnetic characteristics in addition to the above-mentioned basic components. Mass%, Sn: 0.01 to 1.50 mass%, Sb: 0.005 to 1.50 mass%, Cu: 0.03 to 3.0 mass%, P: 0.03 to 0.50 mass% , Mo: 0.005 to 0.10% by mass and Cr: 0.03 to 1.50% by mass may be contained in one or more selected from.

Niは、熱延板組織を改善して磁気特性を向上させるのに有用な元素である。しかし、0.03質量%未満では上記効果が小さく、一方、1.50質量%を超えると、二次再結晶が不安定となり、磁気特性が劣化する。また、Sn、Sb、Cu、P、MoおよびCrは、磁気特性の向上に有用な元素であるが、いずれも上記の各下限値未満では磁気特性向上効果が小さく、一方、上記した各上限値を超えると、二次再結晶粒の発達が阻害されるようになるため、それぞれ上記範囲で含有させることが好ましい。 Ni is an element useful for improving the hot-rolled plate structure and improving the magnetic properties. However, if it is less than 0.03% by mass, the above effect is small, while if it exceeds 1.50% by mass, the secondary recrystallization becomes unstable and the magnetic characteristics deteriorate. Further, Sn, Sb, Cu, P, Mo and Cr are elements useful for improving the magnetic characteristics, but all of them have a small effect of improving the magnetic characteristics below the above lower limit values, while the above upper limit values are small. If it exceeds, the development of secondary recrystallized grains will be inhibited, so it is preferable to contain each in the above range.

本発明の方向性電磁鋼板の製造に用いる鋼素材において、上記成分以外の残部は、Feおよび不可避的不純物である。なお、Cは一次再結晶焼鈍で脱炭され、Al、N、SおよびSeは仕上げ焼鈍において純化されるため、仕上げ焼鈍後の鋼板(製品である方向性電磁鋼板)では、これらの成分は不可避的不純物程度の含有量に低減される。 In the steel material used for producing the grain-oriented electrical steel sheet of the present invention, the balance other than the above components is Fe and unavoidable impurities. Since C is decarburized by primary recrystallization annealing and Al, N, S and Se are purified by finish annealing, these components are unavoidable in the steel sheet after finish annealing (directional electromagnetic steel sheet which is a product). The content is reduced to the extent of target impurities.

[加熱]
上記成分組成を有するスラブを、常法に従い加熱する。加熱温度は、1150〜1450℃が好ましい。
[heating]
The slab having the above composition is heated according to a conventional method. The heating temperature is preferably 1150 to 1450 ° C.

[熱間圧延]
上記加熱後に、熱間圧延を行う。鋳造後、加熱せずに直ちに熱間圧延を行ってもよい。薄鋳片の場合には、熱間圧延を行うこととしてもよく、あるいは、熱間圧延を省略してもよい。熱間圧延を実施する場合は、粗圧延最終パスの圧延温度を900℃以上、仕上げ圧延最終パスの圧延温度を700℃以上で実施することが好ましい。
[Hot rolling]
After the above heating, hot rolling is performed. After casting, hot rolling may be performed immediately without heating. In the case of thin slabs, hot rolling may be performed, or hot rolling may be omitted. When hot rolling is carried out, it is preferable that the rolling temperature of the rough rolling final pass is 900 ° C. or higher and the rolling temperature of the finish rolling final pass is 700 ° C. or higher.

[熱延板焼鈍]
その後、必要に応じて熱延板焼鈍を施す。このとき、ゴス組織を製品板において高度に発達させるためには、熱延板焼鈍温度として800〜1100℃の範囲が好適である。熱延板焼鈍温度が800℃未満であると、熱間圧延でのバンド組織が残留し、整粒した一次再結晶組織を実現することが困難になり、二次再結晶の発達が阻害される。一方、熱延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の結晶粒径が粗大化しすぎるために、整粒した一次再結晶組織の実現が極めて困難となる。
[Annealed hot-rolled plate]
Then, if necessary, hot-rolled sheet is annealed. At this time, in order to highly develop the Goth structure in the product plate, the hot-rolled plate annealing temperature is preferably in the range of 800 to 1100 ° C. If the hot-rolled plate annealing temperature is less than 800 ° C., the band structure in hot rolling remains, it becomes difficult to realize a sized primary recrystallization structure, and the development of secondary recrystallization is hindered. .. On the other hand, when the hot-rolled plate annealing temperature exceeds 1100 ° C., the crystal grain size after hot-rolled plate annealing becomes too coarse, and it becomes extremely difficult to realize a sized primary recrystallized structure.

[冷間圧延]
その後、1回または中間焼鈍を挟む2回以上の冷間圧延を施す。中間焼鈍温度は800℃以上1150℃以下が好適である。また、中間焼鈍時間は、10〜100秒程度とすることが好ましい。
[Cold rolling]
After that, cold rolling is performed once or twice or more with intermediate annealing in between. The intermediate annealing temperature is preferably 800 ° C. or higher and 1150 ° C. or lower. The intermediate annealing time is preferably about 10 to 100 seconds.

[脱炭焼鈍]
その後、脱炭焼鈍を行う。脱炭焼鈍では、焼鈍温度を750〜900℃とし、酸化性雰囲気P(HO)/P(H)を0.25〜0.60とし、焼鈍時間を50〜300秒程度とすることが好ましい。
[Decarburization annealing]
After that, decarburization annealing is performed. In decarburization annealing, the annealing temperature should be 750 to 900 ° C., the oxidizing atmosphere P (H 2 O) / P (H 2 ) should be 0.25 to 0.60, and the annealing time should be about 50 to 300 seconds. Is preferable.

[焼鈍分離剤の塗布]
その後、焼鈍分離剤を塗布する。焼鈍分離剤は、主成分をMgOとし、塗布量を8〜15g/m程度とすることが好適である。
[Application of annealing separator]
Then, an annealing separator is applied. It is preferable that the main component of the annealing separator is MgO and the coating amount is about 8 to 15 g / m 2.

[仕上げ焼鈍]
その後、二次再結晶およびフォルステライト被膜の形成を目的として仕上げ焼鈍を施す。焼鈍温度は1100℃以上とし、焼鈍時間は30分以上とすることが好ましい。
[Finish annealing]
Then, finish annealing is performed for the purpose of secondary recrystallization and formation of a forsterite film. The annealing temperature is preferably 1100 ° C. or higher, and the annealing time is preferably 30 minutes or longer.

[平坦化焼鈍および張力コーティング形成]
張力コーティングを形成する際のコーティング液の塗布・焼き付け処理にて平坦化焼鈍も同時に行い、形状を矯正することも可能である。平坦化焼鈍は、焼鈍温度を750〜950℃とし、焼鈍時間10〜200秒程度で実施するのが好適である。
[Flatration annealing and tension coating formation]
It is also possible to correct the shape by performing flattening and annealing at the same time by applying and baking the coating liquid when forming the tension coating. The flattening annealing is preferably carried out at an annealing temperature of 750 to 950 ° C. and an annealing time of about 10 to 200 seconds.

なお、本発明では、平坦化焼鈍前または後に、鋼板表面に張力コーティングを形成する。ここでの張力コーティングとは、鉄損低減のために、鋼板に張力を付与するコーティング(張力コーティング)を意味する。張力コーティングとしては、絶縁性の張力コーティングが挙げられる。また、張力コーティングとしては、シリカを含有するリン酸塩系コーティングや物理蒸着法、化学蒸着法等によるセラミックコーティング等が挙げられる。 In the present invention, a tension coating is formed on the surface of the steel sheet before or after flattening and annealing. The tension coating here means a coating (tension coating) that applies tension to a steel sheet in order to reduce iron loss. Examples of the tension coating include an insulating tension coating. Further, examples of the tension coating include a phosphate-based coating containing silica, a ceramic coating by a physical vapor deposition method, a chemical vapor deposition method, and the like.

[溝形成工程]
本実施形態に係る方向性電磁鋼板への溝形成方法は、特に限定されるものではなく、レーザ法、プレス機械法、エッチング法等の公知の方法により溝を形成することができる。溝形成タイミングについても特に限定されるものではなく、最終板厚になった冷延板や脱炭焼鈍後の一次再結晶焼鈍板、あるいは仕上げ焼鈍後の二次再結晶焼鈍板いずれでも可能である。以上の3つでは、最終の平坦化焼鈍で溝加工による歪を除去できるので、工程削減の観点から好ましい。ただし、張力コーティング形成後の製品板に溝加工を行っても本発明の効果が損なわれることはない。
[Groove formation process]
The method for forming a groove on the grain-oriented electrical steel sheet according to the present embodiment is not particularly limited, and the groove can be formed by a known method such as a laser method, a press machine method, or an etching method. The groove formation timing is not particularly limited, and either a cold-rolled plate having a final plate thickness, a primary recrystallization annealed plate after decarburization annealing, or a secondary recrystallization annealed plate after finish annealing is possible. .. The above three methods are preferable from the viewpoint of process reduction because the strain due to grooving can be removed by the final flattening annealing. However, the effect of the present invention is not impaired even if the product plate after forming the tension coating is grooved.

鋼板の両端部から幅中央方向に1mm以上の範囲に溝未形成部ができるように溝形成することで、すなわち、鋼板の両端部から幅中央方向に少なくとも1mmまでの範囲に溝が形成されないように溝形成することで、通板性はより改善する。溝未形成部は、磁気特性の劣化を招くが、例えば特許文献1に示されているようなコイル形状対策を実施しても、鋼板端部から幅中央方向に15〜35mmの範囲の形状不良発生は不可避である。よって、本発明の溝未形成部の形成が新たな歩留り低下要因にはならない。また、溝は鋼板の幅方向に途切れなく、すなわち鋼板の幅方向に連続的に形成させる方が、板厚の薄い領域の割合が減少するので、通板性改善にはより好適である。 By forming grooves so that ungrooved portions are formed in a range of 1 mm or more in the width center direction from both ends of the steel sheet, that is, grooves are not formed in a range of at least 1 mm in the width center direction from both ends of the steel sheet. By forming a groove in the sheet, the plate-passability is further improved. The non-grooved portion causes deterioration of magnetic characteristics, but even if the coil shape countermeasure as shown in Patent Document 1 is implemented, the shape defect in the range of 15 to 35 mm in the width center direction from the steel plate end portion is defective. Occurrence is inevitable. Therefore, the formation of the non-grooved portion of the present invention does not become a new factor for lowering the yield. Further, it is more preferable to form the grooves without interruption in the width direction of the steel sheet, that is, continuously in the width direction of the steel sheet, because the proportion of the thin region is reduced, and thus the passability is improved.

[鋼板(コイル)端部微細化工程]
本発明の最も重要なポイントは、(a)鋼板(コイル)両端の機械強度アップが有効であり、鋼板両端から幅中央方向に少なくとも10mmまでの範囲において、鋼板組織を平均結晶粒径5mm以下に微細化させること、(b)微細化していても各結晶粒の方位がほぼ同じ場合、すべり系が同じになるため、ある一定の方向に対する耐力しかアップしないので、できる限りランダムな結晶方位であることが好ましいことから、少なくともGoss方位からのずれ角が10°以下の結晶粒の存在頻度を50%以下とすることである。
[Steel plate (coil) end miniaturization process]
The most important points of the present invention are (a) it is effective to increase the mechanical strength at both ends of the steel sheet (coil), and the average crystal grain size of the steel sheet structure is reduced to 5 mm or less in the range from both ends of the steel sheet to at least 10 mm in the center width direction. If the orientation of each crystal grain is almost the same even if it is refined, (b) the slip system will be the same, so only the resistance to a certain direction will increase, so the crystal orientation will be as random as possible. Therefore, the abundance frequency of crystal grains having a deviation angle from at least the Goss direction of 10 ° or less is 50% or less.

この平均結晶粒径を5mm以下およびGoss方位からのずれ角が10°以下の結晶粒の存在頻度を50%以下にする方法は特に限定されないが、二次再結晶挙動に影響を与える手段を採用し、一次再結晶粒の正常粒成長を促進させることが、より好ましい。二次再結晶粒に影響を与える手段としては、(a)サブスケール性状を研削やレーザ照射による酸化によって変化させ、仕上げ焼鈍時の窒化やインヒビターの分解挙動を、鋼板端部の特定範囲のみ変化させること、(b)鋼板端部の対象範囲のみに、焼鈍分離剤塗布工程中に、二次再結晶に影響をあたえる元素として知られているBやTi、Sr、Snなどを新たに添加する。あるいは既に添加されている場合は添加量を変化させる。添加量を変化させる手法も特には限定されないが、一度全面に通常の焼鈍分離剤を塗布し、その後ノズルなどから鋼板端部の対象範囲に追加で上記元素を供給することが好適である。(c)インヒビター性状および一次再結晶粒径を粗大化させることも有効で、手法としては、エッジヒーターなどを用いて鋼板端部領域のみ過加熱状態にしたり、熱延板焼鈍や一次再結晶焼鈍時に鋼板(コイル)両端部側から加熱したりすることで、鋼板幅方向に温度傾斜をつけ、鋼板端部領域を過加熱状態にすることも有効である。なお、通板性改善に必要な微細化範囲(微細結晶組織の領域)は鋼板端部からの幅で10mmあれば十分であり、先にも述べたが仕上げ焼鈍の実施により、コイルには両端15〜35mmの形状不良発生は不可避である。よって、上述のような溝未形成部を形成しても新たな歩留り低下要因にはならない。なお、上記平均結晶粒径は、好ましくは3mm以下であり、より好ましくは1mm以下である。上記結晶粒の存在頻度は、好ましくは35%以下であり、より好ましくは20%以下である。また、微細化範囲の上限は特に限定されないが、例えば、鋼板の両端から幅中央方向に35mmの範囲の組織を微細化することができ、鋼板の両端から幅中央方向に25mmの範囲の組織を微細化することができる。 The method for reducing the abundance frequency of crystal grains having an average crystal grain size of 5 mm or less and a deviation angle from the Goss direction of 10 ° or less to 50% or less is not particularly limited, but a means that affects the secondary recrystallization behavior is adopted. However, it is more preferable to promote the normal grain growth of the primary recrystallized grains. As a means for affecting the secondary recrystallized grains, (a) the subscale properties are changed by oxidation by grinding or laser irradiation, and the nitriding and inhibitor decomposition behavior during finish annealing are changed only in a specific range at the end of the steel sheet. (B) B, Ti, Sr, Sn, etc., which are known as elements that affect secondary recrystallization, are newly added only to the target range of the end of the steel sheet during the annealing separator coating process. .. Alternatively, if it has already been added, the amount added is changed. The method of changing the addition amount is not particularly limited, but it is preferable to once apply a normal annealing separator to the entire surface, and then additionally supply the above elements to the target range of the steel sheet end portion from a nozzle or the like. (C) It is also effective to coarsen the inhibitor properties and the primary recrystallization particle size. As a method, only the end region of the steel sheet is overheated by using an edge heater or the like, hot-rolled sheet annealing or primary recrystallization annealing. It is also effective to give a temperature gradient in the width direction of the steel sheet by sometimes heating from both ends of the steel sheet (coil) to overheat the end region of the steel sheet. It should be noted that the miniaturization range (region of the fine crystal structure) required for improving the plate-passability is sufficient if the width from the end of the steel sheet is 10 mm, and as mentioned above, due to the finish annealing, both ends of the coil are covered. It is inevitable that a shape defect of 15 to 35 mm will occur. Therefore, even if the groove-unformed portion as described above is formed, it does not become a new factor for lowering the yield. The average crystal grain size is preferably 3 mm or less, more preferably 1 mm or less. The abundance frequency of the crystal grains is preferably 35% or less, more preferably 20% or less. The upper limit of the miniaturization range is not particularly limited, but for example, the structure in the range of 35 mm from both ends of the steel sheet in the width center direction can be miniaturized, and the structure in the range of 25 mm from both ends of the steel sheet in the width center direction can be miniaturized. It can be miniaturized.

次に、実施例に基づいて本発明を具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。本発明の実施形態は、本発明の趣旨に適合する範囲で適宜変更することが可能であり、それらは何れも本発明の技術的範囲に包含される。 Next, the present invention will be specifically described based on Examples. The following examples show a suitable example of the present invention, and the present invention is not limited to the above examples. The embodiments of the present invention can be appropriately modified within a range suitable for the gist of the present invention, and all of them are included in the technical scope of the present invention.

方向性電磁鋼板としては、C:0.02質量%、Si:3.25質量%、Mn:0.09質量%、Al:0.012質量%、N:0.008質量%、S:0.005質量%およびSe:0.01質量%からなる成分組成を有し、インヒビター形成成分を含む鋼スラブを常法に従って熱間圧延し、900℃、60秒の熱延板焼鈍を施した後、冷間圧延して0.23mmの冷延板とした。その後、(a)グラビアオフセット印刷+電解エッチング法、(b)突起ロール法、および(c)レーザ加工法(レーザ照射+電解エッチング)により溝を形成させた。形成した溝の、溝幅、溝深さ、ラップ部の有無、ラップ代といった溝形状に関する情報を表1、2に記載した。 As the directional electromagnetic steel sheet, C: 0.02% by mass, Si: 3.25% by mass, Mn: 0.09% by mass, Al: 0.012% by mass, N: 0.008% by mass, S: 0 A steel slab having a component composition of .005% by mass and Se: 0.01% by mass and containing an inhibitor-forming component is hot-rolled according to a conventional method and annealed at 900 ° C. for 60 seconds. , Cold rolled to obtain a 0.23 mm cold rolled plate. Then, a groove was formed by (a) gravure offset printing + electrolytic etching method, (b) protrusion roll method, and (c) laser processing method (laser irradiation + electrolytic etching). Information on the groove shape such as the groove width, the groove depth, the presence / absence of the lap portion, and the lap allowance of the formed groove is shown in Tables 1 and 2.

ついで、均熱温度830℃で300秒保持する脱炭焼鈍を施し、その後、MgOを主成分とする焼鈍分離剤を塗布し、二次再結晶・フォルステライト被膜形成および純化を目的とした仕上げ焼鈍を1200℃、30時間の条件で実施した。そして、未反応分離剤を除去した後に、60質量%のコロイダルシリカとリン酸アルミニウムからなるコーティング液を塗布し、800℃にて焼付けて、張力コーティングを形成した。このコーティング塗布処理は、平坦化焼鈍も兼ねている。 Then, decarburization annealing is performed at a soaking temperature of 830 ° C. for 300 seconds, and then an annealing separator containing MgO as a main component is applied, and finish annealing is performed for the purpose of secondary recrystallization / forsterite film formation and purification. Was carried out at 1200 ° C. for 30 hours. Then, after removing the unreacted separating agent, a coating liquid composed of 60% by mass of colloidal silica and aluminum phosphate was applied and baked at 800 ° C. to form a tension coating. This coating coating process also serves as flattening annealing.

鋼板両端部領域の細粒化手段としては、(a)脱炭焼鈍後の対象範囲へのレーザ照射による追加酸化処理、(b)焼鈍分離剤塗布後の対象範囲へのTiOの追加添加、(c)熱延板焼鈍後にエッジヒーターにて鋼板端部を均熱時間20秒の追加熱処理をすることで実現した。細粒化範囲やGoss方位からのずれ10°以下となる結晶粒の存在頻度は、レーザ照射範囲・レーザ照射エネルギー、追加TiOの塗布範囲・塗布量、追加加熱範囲・加熱温度をそれぞれ変更させることで実現した。仕上げ焼鈍後の鋼板よりサンプルを採取し、細粒化(微細化)範囲(微細結晶組織の領域)や平均結晶粒径、Goss方位からのずれ角が10°以下の結晶粒頻度を実験1で述べた方法と同様の方法で評価した。 As means for finely granulating the regions at both ends of the steel sheet, (a) additional oxidation treatment by laser irradiation to the target area after decarburization annealing, (b) additional addition of TiO 2 to the target area after application of the annealing separator, (C) This was achieved by performing additional heat treatment on the edges of the steel sheet with an edge heater after annealing the hot-rolled sheet for a soaking time of 20 seconds. The abundance frequency of crystal grains having a deviation of 10 ° or less from the fine graining range and the Goss direction changes the laser irradiation range / laser irradiation energy, the coating range / coating amount of the additional nitro 2 , and the additional heating range / heating temperature, respectively. It was realized by that. Samples were taken from the steel sheet after finish annealing, and the grain frequency with a fine grain (fine graining) range (region of fine crystal structure), average crystal grain size, and deviation angle from the Goss orientation of 10 ° or less was measured in Experiment 1. Evaluation was performed in the same manner as described.

表1、2に示す細粒化範囲の組織における平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)は、両端から幅中央方向10mmまでの微細化された組織における平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)をそれぞれ示す。なお、鋼板の幅方向の一方の端(端1)から幅中央方向10mmまでの組織と、鋼板の幅方向の他方の端(端2)から幅中央方向10mmまでの組織において、平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)が異なる場合には、それぞれの最大値を示す。また、微細化された組織が両端から幅中央方向10mm未満である場合は、両端から幅中央方向10mmまでの領域のうち微細化された組織における平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)を示す。例えば、表1のNo.1−7の細粒化範囲の組織における平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)は、端1から幅中央方向5mmまでの組織と、端2から幅中央方向5mmまでの組織における平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)それぞれの最大値を示し、No.1−9の細粒化範囲の組織における平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)は、端1から幅中央方向10mmまでの組織の平均結晶粒径(mm)、Goss方位からのずれ角10°以下の結晶粒の存在頻度(%)をそれぞれ示す。 The average crystal grain size (mm) and the abundance frequency (%) of crystal grains with a deviation angle of 10 ° or less from the Goss orientation in the structure of the fine grained range shown in Tables 1 and 2 are fine from both ends to 10 mm in the center width direction. The average crystal grain size (mm) and the abundance frequency (%) of crystal grains having a deviation angle of 10 ° or less from the Goss orientation in the transformed structure are shown. The average crystal grain size in the structure from one end (end 1) in the width direction of the steel sheet to 10 mm in the center width direction and the structure from the other end (end 2) in the width direction of the steel sheet to 10 mm in the center width direction. When (mm) and the abundance frequency (%) of crystal grains having a deviation angle of 10 ° or less from the Goss direction are different, the maximum values of each are shown. When the refined structure is less than 10 mm in the width center direction from both ends, the average crystal grain size (mm) and the deviation from the Goss orientation in the refined structure in the region from both ends to the width center direction 10 mm. The abundance frequency (%) of crystal grains having an angle of 10 ° or less is shown. For example, No. 1 in Table 1. The average crystal grain size (mm) in the structure in the fine graining range of 1-7 and the abundance frequency (%) of crystal grains with a deviation angle of 10 ° or less from the Goss orientation are the structure from the edge 1 to the width center direction 5 mm. The maximum values of the average crystal grain size (mm) in the structure from the edge 2 to the width center direction of 5 mm and the abundance frequency (%) of crystal grains having a deviation angle of 10 ° or less from the Goss orientation are shown. The average crystal grain size (mm) in the structure in the fine graining range of 1-9 and the abundance frequency (%) of crystal grains having a deviation angle of 10 ° or less from the Goss orientation are as follows: in the structure from the edge 1 to the center width of 10 mm. The average crystal grain size (mm) and the abundance frequency (%) of crystal grains having a deviation angle of 10 ° or less from the Goss orientation are shown.

ここでは、仕上げ焼鈍後(途中工程材)、張力コーティング形成後(製品板)の破断発生張力(溝未形成の鋼板の破断発生張力に対する比)を調査した。評価結果を表1、2に示す。なお、表1、2に示す破断発生張力比は、上記仕上げ焼鈍後と張力コーティング形成後の破断発生張力のうち、大きい方の値を用いて求めたものである。なお、この破断発生張力比は1に近い方が破断発生張力が高く、通板性が良好と評価できる。 Here, the fracture-generated tension (ratio to the fracture-generated tension of the ungrooved steel sheet) after finish annealing (intermediate process material) and after tension coating formation (product plate) was investigated. The evaluation results are shown in Tables 1 and 2. The fracture-generated tension ratios shown in Tables 1 and 2 are obtained by using the larger value of the fracture-generated tension after finish annealing and after forming the tension coating. When the fracture-generated tension ratio is closer to 1, the fracture-generated tension is higher and it can be evaluated that the plate-passability is good.

表1、2に示した結果から分かるように、本発明の要件を満たす方向性電磁鋼板は、溝の形成方法や鋼板端部領域の細粒化方法によらず、本発明範囲外のものよりも破断発生張力比が高く、良好な通板性を有していることが分かる。 As can be seen from the results shown in Tables 1 and 2, the grain-oriented electrical steel sheet satisfying the requirements of the present invention is more than the one outside the scope of the present invention regardless of the method of forming the groove or the method of granulating the end region of the steel sheet. It can be seen that the rupture occurrence tension ratio is high and the plate has good passability.

Figure 2021025128
Figure 2021025128

Figure 2021025128
Figure 2021025128

Claims (3)

圧延方向と交差する方向に延在しかつ溝深さ方向が板厚方向となる溝が表面に形成された方向性電磁鋼板であって、
前記鋼板の幅方向の両端から幅中央方向に少なくとも10mmまでの範囲の組織が微細化されてなり、
前記両端から幅中央方向10mmまでの微細化された組織は、平均結晶粒径が5mm以下であり、かつ、Goss方位からのずれ角が10°以下となる結晶粒の存在頻度が50%以下である、方向性電磁鋼板。
A grain-oriented electrical steel sheet in which a groove extending in a direction intersecting the rolling direction and having a groove depth direction in the plate thickness direction is formed on the surface.
The structure in the range from both ends in the width direction to at least 10 mm in the width center direction of the steel sheet is miniaturized.
In the finely divided structure from both ends to 10 mm in the center width direction, the presence frequency of crystal grains having an average crystal grain size of 5 mm or less and a deviation angle from the Goss direction of 10 ° or less is 50% or less. There is a directional electromagnetic steel plate.
鋼板表面の幅方向の両端から幅中央方向に少なくとも1mmまでの範囲には、溝が形成されていない、請求項1に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1, wherein no groove is formed in a range from both ends in the width direction of the surface of the steel sheet to at least 1 mm in the center direction of the width. 鋼板表面に形成された溝が、連続的に圧延方向と交差する方向に延在する、請求項1または2に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1 or 2, wherein the grooves formed on the surface of the steel sheet extend continuously in a direction intersecting the rolling direction.
JP2020117582A 2019-07-31 2020-07-08 Oriented electrical steel sheet Active JP7147810B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019140968 2019-07-31
JP2019140968 2019-07-31

Publications (2)

Publication Number Publication Date
JP2021025128A true JP2021025128A (en) 2021-02-22
JP7147810B2 JP7147810B2 (en) 2022-10-05

Family

ID=74662206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117582A Active JP7147810B2 (en) 2019-07-31 2020-07-08 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7147810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167303A1 (en) * 2022-03-02 2023-09-07 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269563A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Production of grain-oriented silicon steel strip and electrolytic etching equipment
JP2000045052A (en) * 1998-07-27 2000-02-15 Kawasaki Steel Corp Low core loss and grain-oriented silicon steel sheet excellent in shape in edge part in width direction of coil and its production
JP2012036446A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Grain-oriented electrical steel sheet and method for producing the same
WO2013160955A1 (en) * 2012-04-26 2013-10-31 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2016171130A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented magnetic steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269563A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Production of grain-oriented silicon steel strip and electrolytic etching equipment
JP2000045052A (en) * 1998-07-27 2000-02-15 Kawasaki Steel Corp Low core loss and grain-oriented silicon steel sheet excellent in shape in edge part in width direction of coil and its production
JP2012036446A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Grain-oriented electrical steel sheet and method for producing the same
WO2013160955A1 (en) * 2012-04-26 2013-10-31 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2016171130A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented magnetic steel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167303A1 (en) * 2022-03-02 2023-09-07 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP7147810B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP5240334B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
CA2807447C (en) Grain oriented electrical steel sheet and method for manufacturing the same
EP2602340B1 (en) Oriented electromagnetic steel plate and production method for same
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP5594437B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2716772B1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
KR102575805B1 (en) Method of producing grain-oriented electrical steel sheet and annealing separator application line
JP5928607B2 (en) Directional electrical steel sheet and method of manufacturing the grain oriented electrical steel sheet
JP2021025128A (en) Grain oriented electrical steel sheet
CN115605624B (en) Grain oriented electromagnetic steel sheet
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
CN114222828B (en) Method for forming linear groove and method for manufacturing oriented electromagnetic steel sheet
JP7040585B1 (en) A method for forming a groove on the surface of a metal strip and a method for manufacturing a grain-oriented electrical steel sheet.
JP7006851B1 (en) Directional electrical steel sheet and its manufacturing method
WO2023167303A1 (en) Method for producing grain-oriented electromagnetic steel sheet
EP4335939A1 (en) Method for manufacturing oriented electrical steel sheet
JPH07188755A (en) Method for reducing iron loss in grain-oriented silicon steel sheet
JP2003277830A (en) Method for manufacturing grain-oriented magnetic steel sheet having magnetic property uniform in sheet-width direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R150 Certificate of patent or registration of utility model

Ref document number: 7147810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150