JP6003321B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6003321B2
JP6003321B2 JP2012159323A JP2012159323A JP6003321B2 JP 6003321 B2 JP6003321 B2 JP 6003321B2 JP 2012159323 A JP2012159323 A JP 2012159323A JP 2012159323 A JP2012159323 A JP 2012159323A JP 6003321 B2 JP6003321 B2 JP 6003321B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
grain
electrical steel
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012159323A
Other languages
Japanese (ja)
Other versions
JP2014019901A (en
Inventor
松田 広志
広志 松田
重宏 ▲高▼城
重宏 ▲高▼城
山口 広
山口  広
稔 高島
高島  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012159323A priority Critical patent/JP6003321B2/en
Publication of JP2014019901A publication Critical patent/JP2014019901A/en
Application granted granted Critical
Publication of JP6003321B2 publication Critical patent/JP6003321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、方向性電磁鋼板の製造方法および方向性電磁鋼板に関し、具体的には、電子ビームを照射し磁区細分化処理を施すことによって低鉄損の方向性電磁鋼板を製造する方法に関するものである。 The present invention relates to a manufacturing method and a grain-oriented electromagnetic steel sheet of a grain-oriented electrical steel sheet, specifically, in how to produce a grain-oriented electrical steel sheet of a low iron loss by irradiation with an electron beam subjected to magnetic domain refining treatment It is related.

方向性電磁鋼板は、主として変圧器や電気機器等の鉄心材料として用いられるものであるため、磁気特性に優れていること、特に、省エネルギーの観点から、鉄損特性に優れる(鉄損が低い)ことが強く求められている。方向性電磁鋼板の鉄損を低減するためには、二次再結晶粒を{110}<001>方位(いわゆる「ゴス方位」)に高度に揃えてやることや、製品鋼板中の不純物量をできる限り低減することが重要である。   The grain-oriented electrical steel sheet is mainly used as an iron core material for transformers, electrical devices, etc., and therefore has excellent magnetic properties, and particularly excellent iron loss properties (low iron loss) from the viewpoint of energy saving. There is a strong demand for that. In order to reduce the iron loss of grain-oriented electrical steel sheets, the secondary recrystallized grains are highly aligned in the {110} <001> orientation (so-called “Goth orientation”), and the amount of impurities in the product steel sheet is reduced. It is important to reduce as much as possible.

しかし、結晶方位の制御技術や、不純物の低減技術は、現在までにかなり高度なレベルまで到達しており、これ以上の改善は、製造コストとの兼ね合いから限界がある。そこで、鋼板の表面に、何らかの物理的な手法で不均一性(歪)を導入して磁区の幅を細分化することで鉄損を低減する磁区細分化技術が開発され、実用に供されている。   However, the crystal orientation control technology and the impurity reduction technology have reached a considerably high level so far, and further improvements are limited in view of the manufacturing cost. Therefore, a magnetic domain refinement technology that reduces iron loss by introducing non-uniformity (strain) into the surface of a steel sheet by some physical method and subdividing the width of the magnetic domain has been developed and put into practical use. Yes.

例えば、特許文献1には、方向性電磁鋼板の最終製品板にレーザビームを照射し、鋼板表層に線状の高転位密度領域(熱歪み領域)を導入し、磁区幅を狭くすることによって、鉄損を低減する技術が提案されている。レーザ照射を用いる磁区細分化技術は、その後、さらに改良されて、鉄損特性がより良好な方向性電磁鋼板が得られるようになってきている(特許文献2〜特許文献4参照。)。   For example, in Patent Document 1, a final product plate of a grain-oriented electrical steel sheet is irradiated with a laser beam, a linear high dislocation density region (thermal strain region) is introduced into the steel sheet surface layer, and the magnetic domain width is narrowed. Techniques for reducing iron loss have been proposed. Thereafter, the magnetic domain fragmentation technique using laser irradiation has been further improved to obtain grain-oriented electrical steel sheets with better iron loss characteristics (see Patent Documents 2 to 4).

また、レーザ照射以外の手段で熱歪領域を導入する方法としては、例えば、特許文献5には、鋼板表面にプラズマ炎を放射して線状の高転位密度領域を導入する方法が、また、特許文献6には、鋼板表面に電子ビームを照射して線状の高転位密度領域を導入する方法がそれぞれ提案されている。   In addition, as a method for introducing a thermal strain region by means other than laser irradiation, for example, in Patent Document 5, a method of introducing a linear high dislocation density region by radiating a plasma flame on a steel sheet surface, Patent Document 6 proposes a method of introducing a linear high dislocation density region by irradiating a steel plate surface with an electron beam.

しかし、電子ビームやレーザビームのような高いエネルギーを有するビームの照射は、鋼板表面に被成された絶縁被膜を溶融したり、破壊したりするため、絶縁被膜が薄くなったり、鋼板表面(地鉄)が露出したりする。その結果、高エネルギービームの照射によって磁区が細分化され、鉄損が低減されるものの、絶縁被膜の溶融や破壊によって、製品鋼板の絶縁性や防錆性(耐食性)が劣化してしまうという問題が発生する。   However, irradiation with a beam having a high energy such as an electron beam or a laser beam melts or destroys the insulating coating formed on the surface of the steel sheet. Iron) is exposed. As a result, magnetic domains are subdivided by irradiation with a high-energy beam, and iron loss is reduced. However, the insulation and rust prevention (corrosion resistance) of the product steel plate deteriorate due to melting and destruction of the insulating coating. Will occur.

このような問題点を解決するため、絶縁被膜の破損部を補修する技術が提案されている。例えば、特許文献7には、磁区細分化により破壊された被膜の上に、絶縁被膜を再塗布する技術が、また、特許文献8には、再塗布する被膜中に固形物を添加して鋼板のすべり性を改善する技術が開示されている。   In order to solve such a problem, a technique for repairing a damaged portion of the insulating coating has been proposed. For example, Patent Document 7 discloses a technique of recoating an insulating film on a film destroyed by magnetic domain fragmentation, and Patent Document 8 discloses a steel sheet in which a solid is added to the film to be recoated. A technique for improving the slipperiness of the image is disclosed.

特公昭57−002252号公報Japanese Patent Publication No.57-002252 特開2006−117964号公報JP 2006-117964 A 特開平10−204533号公報JP-A-10-204533 特開平11−279645号公報Japanese Patent Laid-Open No. 11-279645 特開昭62−096617号公報JP 62-096617 A 特開平01−281708号公報Japanese Patent Laid-Open No. 01-281708 特開昭56−105421号公報JP-A-56-105421 特開平04−165022号公報Japanese Patent Laid-Open No. 04-165022

しかしながら、上記特許文献7や特許文献8の技術のように、絶縁被膜を再コートする方法は、製造コストを上昇させるため極力回避したい。そのため、磁気特性の改善には最適ではないが、被膜破壊が起こらない条件で、高エネルギービームの照射が実施されているのが実情である。しかし、磁気特性を重視する場合には、敢えて被膜破壊が生ずる条件で高エネルギービームを照射しなければならない場合もある。   However, the method of recoating the insulating film as in the techniques of Patent Document 7 and Patent Document 8 described above should be avoided as much as possible in order to increase the manufacturing cost. Therefore, although it is not optimal for improving the magnetic characteristics, the actual situation is that irradiation with a high energy beam is performed under the condition that the coating film does not break. However, when emphasizing magnetic characteristics, there are cases where it is necessary to irradiate a high energy beam under conditions that cause film destruction.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、磁気特性の向上効果を十分に享受し得る条件で高エネルギービームを照射しても、被膜破壊を抑制することができ、しかも、絶縁被膜を再塗布する必要がない方向性電磁鋼板の製造方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to suppress film destruction even when irradiated with a high-energy beam under conditions where the effect of improving magnetic properties can be fully enjoyed. it can be, moreover, in a Turkey proposes a manufacturing method of the grain-oriented electrical steel sheet not having to re-applying an insulating coating.

発明者らは、上記の課題を解決するべく、高エネルギービームの中で、特に電子ビーム照射による熱歪導入方法に着目して鋭意検討を重ねた。その結果、仕上焼鈍後、張力絶縁被膜を形成した方向性電磁鋼板を、所定の温度に加熱した後、その表面に電子ビームを照射して熱歪み領域を導入してやることが、絶縁皮膜の破壊の抑制に極めて有効であることを見出し、本発明を完成するに到った。   In order to solve the above-mentioned problems, the inventors made extensive studies by paying attention to a method for introducing thermal strain by electron beam irradiation in a high energy beam. As a result, after finishing annealing, the grain-oriented electrical steel sheet on which the tensile insulating film is formed is heated to a predetermined temperature, and then the surface is irradiated with an electron beam to introduce a thermal strain region. The present inventors have found that it is extremely effective for suppression and have completed the present invention.

すなわち、本発明は、二次再結晶焼鈍後の鋼板表面に常温における被膜張力が5MPa以上である張力絶縁被膜を形成してなる方向性電磁鋼板の表面に対して、圧延方向と交差する向きに電子ビームを照射し、点状もしくは線状の熱歪み領域を導入して磁区細分化処理を施す方向性電磁鋼板の製造方法において、前記電子ビームの照射を、鋼板表面を50〜500℃の温度に加熱して行うことを特徴とする方向性電磁鋼板の製造方法である。
である。
That is, the present invention is directed to the direction crossing the rolling direction with respect to the surface of the grain-oriented electrical steel sheet formed by forming a tension insulating film having a film tension at room temperature of 5 MPa or more on the steel sheet surface after secondary recrystallization annealing. In the method for manufacturing a grain-oriented electrical steel sheet that irradiates an electron beam, introduces a point-like or linear thermal strain region, and performs magnetic domain subdivision treatment, the electron beam irradiation is performed at a temperature of 50 to 500 ° C. on the steel sheet surface. It is the manufacturing method of the grain-oriented electrical steel sheet characterized by performing by heating.
It is.

本発明の方向性電磁鋼板の製造方法は、上記電子ビームの照射を、圧縮応力を付与した鋼板表面に対して行うことを特徴とする。   The grain-oriented electrical steel sheet manufacturing method of the present invention is characterized in that the electron beam irradiation is performed on a steel sheet surface to which a compressive stress is applied.

また、本発明の方向性電磁鋼板の製造方法は、上記電子ビームを照射した鋼板表面に、絶縁被膜を再塗布しないことを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that an insulating coating is not re-applied on the steel sheet surface irradiated with the electron beam.

本発明によれば、方向性電磁鋼板の磁区細分化による鉄損低減効果を十分に享受し得る高いエネルギービームを照射しても、絶縁被膜の破壊を抑制することができるので、絶縁被膜を再塗布する必要のない低鉄損の方向性電磁鋼板を提供することが可能となる。   According to the present invention, since the destruction of the insulating coating can be suppressed even by irradiation with a high energy beam that can sufficiently enjoy the iron loss reduction effect due to the magnetic domain fragmentation of the grain-oriented electrical steel sheet, the insulating coating can be reused. It becomes possible to provide a grain-oriented electrical steel sheet with low iron loss that does not need to be applied.

捩じり変形して鋼板に湾曲部を形成する方法を説明する図である。It is a figure explaining the method of twisting and forming a curved part in a steel plate.

まず、本発明は、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を施すことによって得られた方向性電磁鋼板の表面に、張力絶縁被膜を被成した後、その鋼板表面に電子ビームを照射して点状もしくは線状の熱歪領域を導入して磁区細分化処理を施す方向性電磁鋼板の製造方法である。   First, in the present invention, a tension insulating coating is formed on the surface of a grain-oriented electrical steel sheet obtained by performing finish annealing that combines secondary recrystallization annealing and purification annealing, and then an electron beam is applied to the steel sheet surface. This is a method for producing a grain-oriented electrical steel sheet that is irradiated to introduce a point-like or linear heat-strain region to perform a magnetic domain refinement process.

ここで、本発明において第一に重要なことは、上記電子ビームの照射は、仕上焼鈍と張力絶縁被膜の被成後に行う必要があることである。これは、方向性電磁鋼板の素材鋼板に二次再結晶を起こさせ、ゴス方位粒を優先成長させる仕上焼鈍工程、および、絶縁被膜に張力付与効果を発現させる被膜焼付工程は、いずれも高温で熱処理を施す工程であるため、電子ビームの照射で熱歪を付与しても、それらの熱処理によって上記熱歪が減少または消滅し、磁区細分化の効果が消失してしまうからである。   Here, the first important thing in the present invention is that the electron beam irradiation needs to be performed after finish annealing and deposition of a tensile insulating coating. This is because both the finish annealing process that causes secondary recrystallization to the raw steel sheet of grain-oriented electrical steel sheet and preferentially grows goth-oriented grains, and the film baking process that expresses the effect of imparting tension to the insulating film, both at high temperatures. This is because it is a heat treatment step, and even if thermal strain is applied by electron beam irradiation, the thermal strain is reduced or eliminated by the heat treatment, and the effect of subdividing the magnetic domain is lost.

また、本発明において第二に重要なことは、上記張力絶縁被膜は、下地のフォルステライトを主体とするガラス質の被膜と、仕上焼鈍後に被成した絶縁被膜との合計で5MPa以上の引張応力を付与するものであることである。5MPa未満では、鉄損低減効果が十分に得られないからである。   In addition, the second important thing in the present invention is that the tensile insulating film has a tensile stress of 5 MPa or more in total of a glassy film mainly composed of underlying forsterite and an insulating film formed after finish annealing. Is to give. This is because if it is less than 5 MPa, the effect of reducing iron loss cannot be obtained sufficiently.

そして、本発明の特徴である第三に重要なことは、上記電子ビームの照射を、鋼板を50〜500℃の温度に加熱した状態で行うことによって絶縁被膜の破壊を防止することである。鋼板を加熱して電子ビームを照射することで、被膜の破壊が抑制される理由は、現時点では、まだ十分明確にはできていないが、発明者らは以下のように考えている。
電子ビームの照射を受けた部分は、急激に加熱されるが、この際、地鉄と絶縁被膜との間の熱膨張差によって、被膜に過度な引張応力が付与され、被膜破壊が生ずる。そこで、鋼板を加熱しておくことによって、被膜の延性が向上するとともに、地鉄と被膜の熱膨張率差による応力も緩和されるので、被膜破壊が抑制される。その結果、本発明を適用した場合には、電子ビームを照射して磁区細分化処理を施した後も、絶縁被膜の絶縁性や耐食性が温存されるので、絶縁被膜を再塗布する必要がない。
The third important feature of the present invention is to prevent destruction of the insulating coating by performing the irradiation of the electron beam in a state where the steel plate is heated to a temperature of 50 to 500 ° C. The reason why the destruction of the coating is suppressed by heating the steel sheet and irradiating the electron beam has not been clarified yet at present, but the inventors consider as follows.
The portion irradiated with the electron beam is rapidly heated. At this time, an excessive tensile stress is applied to the coating due to a difference in thermal expansion between the ground iron and the insulating coating, and the coating is broken. Therefore, by heating the steel plate, the ductility of the coating is improved, and stress due to the difference in thermal expansion coefficient between the base iron and the coating is also relieved, so that coating failure is suppressed. As a result, when the present invention is applied, the insulation and corrosion resistance of the insulating film are preserved even after the magnetic domain fragmentation treatment is performed by irradiating the electron beam, so that it is not necessary to re-apply the insulating film. .

次に、本発明の方向性電磁鋼板の成分組成について説明する。
本発明の磁区細分化処理を施す方向性電磁鋼板は、従来公知の成分組成を有するものであればよく、例えば、下記の成分組成を有するものであることが好ましい。
Si:2.0〜8.0mass%
Siは、鋼の電気抵抗を高め、鉄損を低減するのに有効な元素であるが、含有量が2.0mass%に満たないと、十分な鉄損低減効果が得られない。一方、8.0mass%を超えると、加工性が著しく低下するだけでなく、磁束密度も低下する。よって、Siは2.0〜8.0mass%の範囲とするのが好ましい。より好ましくは2.5〜6.0mass%の範囲である。
Next, the component composition of the grain-oriented electrical steel sheet according to the present invention will be described.
The grain-oriented electrical steel sheet to which the magnetic domain subdivision treatment of the present invention is applied may have any conventionally known component composition, and for example, preferably has the following component composition.
Si: 2.0 to 8.0 mass%
Si is an element effective for increasing the electrical resistance of steel and reducing iron loss. However, if the content is less than 2.0 mass%, a sufficient effect of reducing iron loss cannot be obtained. On the other hand, if it exceeds 8.0 mass%, not only the workability is remarkably lowered but also the magnetic flux density is lowered. Therefore, Si is preferably in the range of 2.0 to 8.0 mass%. More preferably, it is the range of 2.5-6.0 mass%.

C:0.0050mass%以下
製品板中に含まれるCは、磁気時効を起こして磁気特性を劣化させる元素であるため、0.0050mass%以下であることが好ましい。
なお、本発明の方向性電磁鋼板の素材となるスラブ中に含まれるCは、0.0050mass%以下でも二次再結晶が可能であるので下限を設ける必要はないが、熱延板組織を改善する効果があるため、0.0050mass%超え含有させてもよい。一方、0.15mass%を超えて含有させると、製造工程で磁気時効の起こらない0.0050mass%以下までCを低減することが難しくなるので、上限は0.15mass%以下とするのが好ましい。より好ましくは0.0050〜0.10mass%の範囲である。
C: 0.0050 mass% or less C contained in the product plate is an element that causes magnetic aging and deteriorates magnetic properties, and is preferably 0.0050 mass% or less.
In addition, since C contained in the slab used as the material of the grain-oriented electrical steel sheet of the present invention can be recrystallized even if it is 0.0050 mass% or less, there is no need to provide a lower limit, but the hot rolled sheet structure is improved. Therefore, it may be contained in excess of 0.0050 mass%. On the other hand, if the content exceeds 0.15 mass%, it becomes difficult to reduce C to 0.0050 mass% or less where magnetic aging does not occur in the production process. Therefore, the upper limit is preferably 0.15 mass% or less. More preferably, it is the range of 0.0050-0.10 mass%.

Mn:0.005〜1.0mass%
Mnは、鋼の熱間加工性を向上させるために必要な元素であるが、0.005mass%未満では上記添加効果に乏しく、一方、1.0mass%を超えると、磁束密度が低下するようになる。よって、Mnは0.005〜1.0mass%の範囲とするのが好ましい。より好ましくは0.01〜0.3mass%の範囲である。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability of steel. However, if it is less than 0.005 mass%, the effect of addition is poor, whereas if it exceeds 1.0 mass%, the magnetic flux density is lowered. Become. Therefore, Mn is preferably in the range of 0.005 to 1.0 mass%. More preferably, it is the range of 0.01-0.3 mass%.

本発明の方向性電磁鋼板において、上記Si,CおよびMn以外の成分は、二次再結晶を生じさせるために、インヒビターを利用する場合と、しない場合とで分けられる。
まず、二次再結晶を生じさせるためにインヒビターを利用する場合で、例えば、AlN系インヒビターを利用するときには、AlおよびNを、Al:0.01〜0.065mass%、N:0.005〜0.012mass%の範囲で含有させるのが好ましい。また、MnS・MnSe系インヒビターを利用するときには、前述した量のMnと、Seおよび/またはSを、それぞれS:0.005〜0.03mass%、Se:0.005〜0.03mass%の範囲で含有させるのが好ましい。なお、AlN系とMnS・MnSe系インヒビターを併用してもよい。
In the grain-oriented electrical steel sheet of the present invention, components other than Si, C, and Mn are divided into cases where an inhibitor is used and cases where an inhibitor is not used in order to cause secondary recrystallization.
First, when an inhibitor is used to cause secondary recrystallization, for example, when an AlN-based inhibitor is used, Al and N are changed to Al: 0.01 to 0.065 mass%, N: 0.005. It is preferable to make it contain in 0.012 mass%. When using an MnS / MnSe-based inhibitor, the above-mentioned amounts of Mn and Se and / or S are in the range of S: 0.005 to 0.03 mass% and Se: 0.005 to 0.03 mass%, respectively. It is preferable to contain. AlN and MnS / MnSe inhibitors may be used in combination.

一方、二次再結晶を生じさせるためにインヒビターを利用しない場合には、上述したインヒビター形成成分であるAl,N,SおよびSeの含有量を極力低減し、Al:0.01mass%以下、N:0.0050mass%以下、S:0.0050mass%以下およびSe:0.0050mass%以下に制限するのが好ましい。   On the other hand, when an inhibitor is not used to cause secondary recrystallization, the content of Al, N, S and Se, which are the above-described inhibitor forming components, is reduced as much as possible, Al: 0.01 mass% or less, N : 0.0050 mass% or less, S: 0.0050 mass% or less, and Se: 0.0050 mass% or less are preferable.

本発明の方向性電磁鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、磁気特性の改善を目的として、Ni:0.03〜1.50mass%、Sn:0.01〜1.50mass%、Sb:0.005〜1.50mass%、Cu:0.03〜3.0mass%、P:0.03〜0.50mass%、Mo:0.005〜0.10mass%およびCr:0.03〜1.50mass%のうちから選ばれる1種または2種以上を添加してもよい。   The balance other than the above components in the grain-oriented electrical steel sheet of the present invention is Fe and inevitable impurities. However, for the purpose of improving magnetic properties, Ni: 0.03-1.50 mass%, Sn: 0.01-1.50 mass%, Sb: 0.005-1.50 mass%, Cu: 0.03-3 0.0 mass%, P: 0.03 to 0.50 mass%, Mo: 0.005 to 0.10 mass% and Cr: 0.03 to 1.50 mass% May be.

上記Niは、熱延板の組織を改善して磁気特性を向上させるのに有用な元素であるが、0.03mass%未満では、上記磁気特性の向上効果が小さく、一方、1.5mass%を超えると、二次再結晶が不安定になり、磁気特性が劣化するため、0.03〜1.5mass%の範囲とするのが好ましい。   Ni is an element useful for improving the magnetic properties by improving the structure of the hot-rolled sheet. However, if it is less than 0.03 mass%, the effect of improving the magnetic properties is small, while 1.5 mass% is reduced. If it exceeds, secondary recrystallization will become unstable and the magnetic properties will deteriorate, so it is preferable to be in the range of 0.03 to 1.5 mass%.

また、Sn,Sb,Cu,P,MoおよびCrは、いずれも磁気特性の向上に有効な元素であるが、上記した下限値に満たない添加量では磁気特性の向上効果が小さく、一方、上記した上限値を超える添加は、二次再結晶粒の発達を阻害するようになる。よって、上記元素は、それぞれ、上記の範囲で含有させるのが好ましい。   Sn, Sb, Cu, P, Mo, and Cr are all effective elements for improving the magnetic properties. However, if the addition amount is less than the lower limit, the effect of improving the magnetic properties is small. Addition exceeding the above upper limit inhibits the development of secondary recrystallized grains. Therefore, each of the above elements is preferably contained in the above range.

次に、本発明の方向性電磁鋼板の製造方法について、具体的に説明する。
本発明の方向性電磁鋼板の製造方法は、上述した成分組成に調整した鋼を溶製し、鋼素材(スラブ)とした後、熱間圧延して熱延板とし、必要に応じて熱延板焼鈍を施し、冷間圧延して最終板厚の冷延板とし、一次再結晶焼鈍または脱炭を兼ねた一次再結晶焼鈍し、鋼板表面に焼鈍分離剤を塗布し、その後、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を施した後、鋼板表面に張力絶縁被膜を被成する従来公知の方法で製造した方向性電磁鋼板に対して磁区細分化処理を施す一連の工程からなる。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated concretely.
The method for producing a grain-oriented electrical steel sheet according to the present invention involves melting steel adjusted to the above-described component composition to obtain a steel material (slab), then hot rolling to obtain a hot rolled sheet, and hot rolling as necessary. It is subjected to sheet annealing, cold rolled to a cold-rolled sheet with the final thickness, primary recrystallization annealing that also serves as primary recrystallization annealing or decarburization, an annealing separator is applied to the steel sheet surface, and then secondary recrystallization is performed. It consists of a series of steps to perform magnetic domain refinement treatment on grain-oriented electrical steel sheets manufactured by a conventionally known method of applying a tension insulating coating on the steel sheet surface after finishing annealing that combines crystal annealing and purification annealing. .

上記製造方法において、鋼の溶製方法は常法に従って行えばよく、特に制限はない。また、鋼素材(スラブ)を製造する方法は、連続鋳造法、造塊−分塊圧延法のいずれの方法を用いてもよく、また、薄スラブ鋳造法を用いてもよい。   In the above production method, the method for melting steel may be carried out according to a conventional method, and there is no particular limitation. Moreover, the method of manufacturing a steel raw material (slab) may use any method of a continuous casting method and an ingot-making-slabbing method, and may use a thin slab casting method.

次いで、上記鋼素材を常法で熱間圧延して熱延板とする。この熱間圧延する前のスラブ加熱温度は、インヒビター形成成分を含有する場合には、それらの成分を固溶させるため1300℃以上とするのが好ましい。一方、インヒビター形成成分を含有しない場合には、熱間圧延が可能であれば、上記温度より低くてもよく、また、加熱炉で再加熱することなく、連続鋳造後、直ちに熱間圧延に供してもよい。さらに、鋼素材が薄スラブである場合には、熱間圧延してもよいし、省略してもよい。   Next, the steel material is hot-rolled by a conventional method to obtain a hot-rolled sheet. The slab heating temperature before hot rolling is preferably 1300 ° C. or higher in order to dissolve these components when they contain inhibitor forming components. On the other hand, if it does not contain an inhibitor-forming component, it may be lower than the above temperature as long as it can be hot-rolled, and it is immediately subjected to hot rolling after continuous casting without reheating in a heating furnace. May be. Furthermore, when the steel material is a thin slab, it may be hot-rolled or omitted.

熱間圧延後の熱延板は、必要に応じて熱延板焼鈍を施す。この熱延板焼鈍の温度は、800〜1200℃の範囲とするのが好ましい。焼鈍温度が800℃未満では、熱間圧延で形成されたバンド組織が残留し、一次再結晶組織を整粒化するのが難しく、二次再結晶粒の成長が阻害されて、製品板のゴス組織を高度に発達させることができなくなる。一方、焼鈍温度が1200℃を超えると、結晶粒が粗大化し過ぎ、却って一次再結晶組織を整粒化することが困難となるからである。   The hot-rolled sheet after hot rolling is subjected to hot-rolled sheet annealing as necessary. The temperature of this hot-rolled sheet annealing is preferably in the range of 800 to 1200 ° C. If the annealing temperature is less than 800 ° C., the band structure formed by hot rolling remains, it is difficult to adjust the primary recrystallized structure, the growth of the secondary recrystallized grains is hindered, and the goth of the product plate The organization cannot be highly developed. On the other hand, if the annealing temperature exceeds 1200 ° C., the crystal grains are excessively coarsened, and on the contrary, it is difficult to adjust the primary recrystallized structure.

次いで、上記熱延板は、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とした後、一次再結晶焼鈍あるいは脱炭焼鈍を兼ねた一次再結晶焼鈍を施してから、例えば、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布、乾燥した後、二次再結晶させるとともに、フォルステライト被膜の形成および純化を図ること目的とした仕上焼鈍を施す。なお、上記一次再結晶焼鈍中あるいは一次再結晶焼鈍後から二次再結晶開始までの間に、インヒビターを強化する目的で、鋼板に窒化処理を施してもよい。   Next, the hot-rolled sheet is made into a cold-rolled sheet having a final thickness by one or more cold rollings with intermediate annealing, and then subjected to primary recrystallization annealing also serving as primary recrystallization annealing or decarburization annealing. After the application, for example, an annealing separator mainly composed of MgO is applied to the steel sheet surface, dried, and then subjected to secondary recrystallization and finish annealing for the purpose of forming and purifying the forsterite film. Note that the steel sheet may be subjected to nitriding treatment for the purpose of strengthening the inhibitor during the primary recrystallization annealing or after the primary recrystallization annealing until the start of the secondary recrystallization.

仕上焼鈍を施した鋼板は、その後、鋼板表面に絶縁被膜処理液を塗布し、形状矯正を兼ねた平坦化焼鈍で焼き付けて張力絶縁被膜を被成する。なお、張力被膜の焼き付けは、平坦化焼鈍の前または後で行ってもよい。   The steel sheet that has been subjected to finish annealing is then coated with an insulating coating treatment liquid on the surface of the steel sheet and baked by flattening annealing that also serves as shape correction to form a tension insulating coating. Note that the tension film may be baked before or after the flattening annealing.

ここで、上記張力絶縁被膜とは、下地のフォルステライト質の被膜と合わせて5MPa以上の引張張力を鋼板に対して付与することができる絶縁被膜のことをいう。被膜の種類としては、従来公知のシリカおよびリン酸塩を主成分とするものや、ホウ酸塩とアルミナゾルを用いたコーティング、複合水酸化物を用いたものでもよいが、リン酸アルミニウムまたはリン酸マグネシウム等のリン酸塩とシリカを主成分とするガラス質の張力絶縁被膜を用いるのが好ましい。   Here, the tension insulating coating refers to an insulating coating capable of applying a tensile tension of 5 MPa or more to the steel sheet together with the underlying forsterite coating. As the kind of the coating, a conventionally known silica and phosphate as a main component, a coating using borate and alumina sol, or a composite hydroxide may be used, but aluminum phosphate or phosphoric acid may be used. It is preferable to use a vitreous tension insulating coating mainly composed of a phosphate such as magnesium and silica.

上記張力絶縁被膜を被成した方向性電磁鋼板は、その後、鋼板表面に電子ビームを照射して点状もしくは線状の熱歪領域を導入し、磁区細分化処理を施す。ここで、本発明において重要なことは、上記電子ビームの照射を、鋼板を50〜500℃の温度に加熱した状態で行う必要があることである。鋼板を加熱する方法は、特に制限はなく、例えば、誘導加熱や赤外線加熱、雰囲気炉での加熱もしくはロール加熱(加熱したロールからの熱伝導による加熱)等の方法を用いることができる。   The grain-oriented electrical steel sheet on which the tension insulating coating is formed is then subjected to a magnetic domain refinement process by irradiating the steel sheet surface with an electron beam to introduce a dotted or linear thermal strain region. Here, what is important in the present invention is that the electron beam irradiation needs to be performed in a state where the steel sheet is heated to a temperature of 50 to 500 ° C. The method for heating the steel plate is not particularly limited, and for example, methods such as induction heating, infrared heating, heating in an atmospheric furnace or roll heating (heating by heat conduction from a heated roll) can be used.

電子ビーム照射による熱歪み領域の導入は、圧延方向と交差する方向、好ましくは圧延方向と直交する方向に行うのが望ましい。なお、上記熱歪み領域の形態は線状あるいは点状のいずれでもよく、歪み導入深さは5〜30μm程度とするのが好ましい。また、導入する熱歪み領域の間隔(走査間隔)は、磁区細分化による鉄損低減効果を効果的に発現させる観点から、圧延方向に2〜20mmの間隔とするのが好ましい。   The introduction of the thermal strain region by the electron beam irradiation is desirably performed in a direction intersecting with the rolling direction, preferably in a direction orthogonal to the rolling direction. The thermal strain region may be linear or dot-shaped, and the strain introduction depth is preferably about 5 to 30 μm. Moreover, it is preferable to set the space | interval (scanning space | interval) of the thermal-strain area | region to introduce | transduce the space | interval of 2-20 mm in a rolling direction from a viewpoint of expressing the iron loss reduction effect by magnetic domain subdivision effectively.

また、上記電子ビーム照射は、上述した鋼板を加熱することに加えて、鋼板表面に圧縮応力を付与した状態で行うことでより一層の効果が得られる。斯かる効果が得られる理由は、現時点ではまだ十分に明確となっていないが、発明者らは以下のように考えている。
張力絶縁被膜が形成された鋼板表面に電子ビームを照射した場合、被照射部の絶縁被膜は、溶融されたり、急速加熱や急速冷却を受けたりする。ここで、絶縁被膜が溶融したときには、絶縁被膜によって付与されている引張応力によって被膜が破壊され、地鉄が露出しやすくなる。また、絶縁被膜が急速加熱や急速冷却を受けたときには、地鉄と被膜の間の熱膨張差によって絶縁被膜に過大な引張応力が残留し、被膜破壊を引き起こしやすくなる。そこで、絶縁被膜に予め圧縮応力を付与しておくことによって、引張応力が緩和され、被膜の破壊が抑制されるものと考えられる。したがって、圧縮応力付与による被膜破壊抑制効果は、被膜張力が大きいほど大きい。
Further, in addition to heating the steel plate described above, the electron beam irradiation can be performed in a state in which a compressive stress is applied to the steel plate surface, thereby obtaining a further effect. The reason why such an effect is obtained is not yet clear at present, but the inventors consider as follows.
When an electron beam is irradiated onto the steel plate surface on which the tensile insulating coating is formed, the insulating coating on the irradiated portion is melted or subjected to rapid heating or rapid cooling. Here, when the insulating coating is melted, the coating is broken by the tensile stress applied by the insulating coating, and the ground iron is easily exposed. In addition, when the insulating coating is subjected to rapid heating or rapid cooling, an excessive tensile stress remains in the insulating coating due to the difference in thermal expansion between the ground iron and the coating, and the coating is liable to be broken. Therefore, it is considered that by applying a compressive stress to the insulating coating in advance, the tensile stress is relaxed and the destruction of the coating is suppressed. Accordingly, the effect of suppressing the coating film destruction by applying the compressive stress is larger as the film tension is larger.

なお、板表面に圧縮応力を付与する方法については、特に限定しないが、例えば、図1に示したように、鋼板を円柱等に巻き付けたような形状に捩じり変形させて鋼板を湾曲させ、その湾曲部の内面に圧縮応力を生じさせる方法が好ましい。この方法は、鋼板の通板経路(パスライン)を屈曲させるだけで鋼板を容易に湾曲させることが可能であり、また、鋼板を湾曲させるのに要する長さも短くできるなどのメリットがある。   The method for applying compressive stress to the plate surface is not particularly limited. For example, as shown in FIG. 1, the steel plate is bent by being twisted and deformed into a shape in which the steel plate is wound around a cylinder or the like. A method of generating a compressive stress on the inner surface of the curved portion is preferable. This method has the merit that the steel plate can be easily bent only by bending the plate passage (pass line) of the steel plate, and the length required for bending the steel plate can be shortened.

ここで、鋼板を湾曲させて圧縮応力を付与する場合、湾曲部の曲率半径は板厚の10000倍以下とするのが好ましい。板厚の10000倍を超える曲率半径では、湾曲部の内面に生じる圧縮応力が小さくなり、本発明の損傷低減効果が得られ難い。一方、曲率半径を小さくし過ぎて、湾曲部の内面に生じる圧縮応力が鋼板の降伏応力の90%を超えると、鋼板が塑性変形を起こして磁気特性の劣化が生じる易くなる。よって、鋼板を湾曲させるときの曲率半径は、板厚の10000倍以下とし、かつ、鋼板に付与される圧縮応力が降伏応力の90%以下となるように下限値を設定することが好ましい。   Here, when applying a compressive stress by curving a steel plate, the curvature radius of the curved portion is preferably 10,000 times or less of the plate thickness. When the radius of curvature exceeds 10,000 times the plate thickness, the compressive stress generated on the inner surface of the curved portion becomes small, and it is difficult to obtain the damage reducing effect of the present invention. On the other hand, if the radius of curvature is made too small and the compressive stress generated on the inner surface of the curved portion exceeds 90% of the yield stress of the steel plate, the steel plate is likely to be plastically deformed, resulting in deterioration of magnetic properties. Therefore, it is preferable to set the lower limit value so that the radius of curvature when bending the steel sheet is 10,000 times or less of the plate thickness and the compressive stress applied to the steel sheet is 90% or less of the yield stress.

ここで、湾曲させた鋼板表面に付与される圧縮応力は、下記(1)式で求めることができる。

σ=E・ε=E・(t/2R) ・・・(1)
ここで、E:鋼板の<100>方向(圧延方向)のヤング率E(=1.4×10MPa)
ε:鋼板表面の歪量(板厚中心でε=0)
R:曲率半径(mm)
t:板厚(mm)
Here, the compressive stress given to the curved steel sheet surface can be obtained by the following equation (1).
Σ = E · ε = E · (t / 2R) (1)
Here, E: Young's modulus E (= 1.4 × 10 5 MPa) in the <100> direction (rolling direction) of the steel plate
ε: amount of strain on the steel sheet surface (ε = 0 at the center of the plate thickness)
R: radius of curvature (mm)
t: Plate thickness (mm)

また、鋼板を湾曲させる場合、特に規定はしないが、鋼板の圧延方向(進行方向)と湾曲面の母線とがなす角度は、5°未満では、鋼板を湾曲させるのに必要な長さが長くなるため設備が長大化するため、5°以上とするのが好ましい。   Further, when the steel plate is bent, there is no particular limitation, but if the angle formed by the rolling direction (traveling direction) of the steel plate and the generatrix of the curved surface is less than 5 °, the length necessary for bending the steel plate is long. Therefore, it is preferable to set the angle to 5 ° or more in order to lengthen the equipment.

ところで、磁区細分化処理の効果は、方向性電磁鋼板の二次再結晶のゴス方位への集積度が高いほど大きいことが知られている。方向性電磁鋼板における方位集積度の目安としては、一般に磁束密度B(800A/mで磁化した際の磁束密度)がよく用いられるが、本発明を適用する方向性電磁鋼板としては、Bが1.88T以上であることが好ましく、1.92T以上であることがより好ましい。また、磁区細分化による鉄損低減効果は、被膜直下の地鉄の表面粗さが小さいほど大きいことが知られており、算術平均粗さRaで0.5μm以下とするのが好ましい。 By the way, it is known that the effect of the magnetic domain refinement treatment increases as the degree of integration in the Goth orientation of the secondary recrystallization of the grain-oriented electrical steel sheet increases. As a guide for the degree of orientation integration in a grain-oriented electrical steel sheet, a magnetic flux density B 8 (magnetic flux density when magnetized at 800 A / m) is generally used, but as a grain-oriented electrical steel sheet to which the present invention is applied, B 8 Is preferably 1.88T or more, and more preferably 1.92T or more. Moreover, it is known that the iron loss reduction effect by magnetic domain fragmentation is so large that the surface roughness of the base iron directly under a film is small, and it is preferable that arithmetic mean roughness Ra shall be 0.5 micrometer or less.

Siを3.3mass%含有する最終板厚0.23mmに冷間圧延した冷延板に、脱炭と一次再結晶焼鈍を兼ねた焼鈍を施した後、MgOを主成分とする焼鈍分離剤を塗布・乾燥してコイルに巻き取り、二次再結晶過程と純化過程を含む最終仕上焼鈍を施した後、50mass%のコロイダルシリカとリン酸マグネシウムからなる絶縁被膜液を塗布し、形状矯正を兼ねた800℃の平坦化焼鈍で焼き付け、鋼板表面にフォルステライト被膜と絶縁被膜の合計で約14MPaの引張張力を付与した。なお、この方向性電磁鋼板の降伏応力は348MPaであった。次いで、上記焼鈍後の鋼板から、圧延方向を長手方向とする500mmL×300mmCおよび500mmL×150mmCの2種類の試験片を切り出し、前者の試験片は圧延方向と湾曲部の母線とがなす角度を10〜30°として曲率半径100mm以上で湾曲させ、一方、後者の試験片は圧延方向と湾曲部の母線とがなす角度を10〜30°として曲率半径100mm未満で湾曲させ、鋼板表面に圧縮応力または引張応力を付与した状態とし、さらに赤外線で種々の温度に昇温した後、表1に示した条件で電子ビームを照射し、磁区細分化処理を施した。なお、一部の試験片には湾曲付与や昇温は行わなかった。
ここで、上記電子ビームの照射は、加速電圧:150kV、ビーム径:0.1mmφ、走査速度:10m/secの条件で行い、この際の電子ビームの出力は、鋼板表面1cm当たりの熱量に換算した。電子ビームの走査方向は、圧延方向に対して直角方向(90°)とし、圧延方向に対する照射間隔(走査間隔)は5mmとした。
A cold-rolled sheet cold-rolled to a final sheet thickness of 0.23 mm containing 3.3 mass% of Si is subjected to annealing that combines decarburization and primary recrystallization annealing, and then an annealing separator mainly composed of MgO. After coating and drying, winding it on a coil, applying final finish annealing including secondary recrystallization process and purification process, and then applying an insulating coating solution consisting of 50mass% colloidal silica and magnesium phosphate, also for shape correction The steel plate was baked by flattening annealing at 800 ° C., and a tensile tension of about 14 MPa was applied to the steel plate surface in total for the forsterite coating and the insulating coating. The yield stress of this grain-oriented electrical steel sheet was 348 MPa. Next, two types of test pieces of 500 mmL × 300 mmC and 500 mmL × 150 mmC whose longitudinal direction is the rolling direction are cut out from the steel plate after the annealing, and the former test piece has an angle formed by the rolling direction and the generatrix of the curved portion of 10 mm. The latter test piece is bent at a curvature radius of less than 100 mm with an angle formed by the rolling direction and the generatrix of the bending portion being set at 10 to 30 °, and compressive stress or After the tensile stress was applied and the temperature was raised to various temperatures with infrared rays, an electron beam was irradiated under the conditions shown in Table 1 to perform magnetic domain fragmentation. Some test pieces were not curved or heated.
Here, the electron beam irradiation is performed under the conditions of an acceleration voltage of 150 kV, a beam diameter of 0.1 mmφ, and a scanning speed of 10 m / sec. The output of the electron beam at this time is an amount of heat per 1 cm 2 of the steel plate surface. Converted. The scanning direction of the electron beam was perpendicular to the rolling direction (90 °), and the irradiation interval (scanning interval) with respect to the rolling direction was 5 mm.

Figure 0006003321
Figure 0006003321

上記のようにして得た電子ビーム照射後の試験片を以下の評価試験に供した。
<鉄損W17/50の測定>
磁区細分化処理を施した各試験片の長さ方向および幅方向中央部から、300mmL×100mmCの磁気測定用試験片を採取し、単板磁気測定装置SSTで励磁条件1.7Tおよび50Hzにおける鉄損W17/50を測定した。因みに、電子ビーム照射前の鋼板の磁気特性を測定したところ、鉄損W17/50は0.89W/kg、そして磁化力800A/mにおける磁束密度Bは1.93Tであった。
<層間抵抗の測定>
磁区細分化処理を施した各試験片の長さ、幅中央部から、400mmL×150mmCの試料を採取し、JIS C2550に記載のA法に準拠して層間抵抗を測定した。
<耐錆性>
磁区細分化処理を施した各試験片の長さ、幅中央部から、100mmL×50mmCの試料を採取し、温度:50℃、露点:50℃の大気中で50時間保持した後、試料表面に発生した錆の発生率を目視で測定した。
The test piece after electron beam irradiation obtained as described above was subjected to the following evaluation test.
<Measurement of iron loss W 17/50 >
300 mmL × 100 mmC magnetic measurement test specimens were collected from the length direction and width direction central parts of each test piece subjected to the magnetic domain subdivision treatment, and the iron under the excitation conditions of 1.7 T and 50 Hz was obtained with the single plate magnetic measurement apparatus SST. The loss W 17/50 was measured. Incidentally, when the magnetic properties of the steel sheet before electron beam irradiation were measured, the iron loss W 17/50 was 0.89 W / kg, and the magnetic flux density B 8 at a magnetizing force of 800 A / m was 1.93 T.
<Measurement of interlayer resistance>
A sample of 400 mmL × 150 mmC was taken from the center of the length and width of each test piece subjected to the magnetic domain fragmentation treatment, and the interlayer resistance was measured according to the A method described in JIS C2550.
<Rust resistance>
A sample of 100 mmL × 50 mmC is taken from the center of the length and width of each test piece subjected to magnetic domain subdivision treatment, and kept in the atmosphere at a temperature of 50 ° C. and a dew point of 50 ° C. for 50 hours, and then on the sample surface. The rate of occurrence of generated rust was measured visually.

上記測定の結果を表1に併記した。この結果から、本発明に適合する条件で加熱して磁区細分化処理を施した鋼板は、従来のように平坦な状態で磁区細分化処理を施した鋼板に比べて、絶縁性や耐錆性に優れていることがわかる。さらに、鋼板を湾曲させてその内側、すなわち鋼板に圧縮応力をかけた状態で電子ビームを照射した場合には、上記効果がより高まることがわかる。   The results of the above measurements are also shown in Table 1. From this result, the steel plate that has been subjected to the magnetic domain refinement treatment by heating under the conditions suitable for the present invention is more insulative and rust-resistant than the steel plate that has been subjected to the magnetic domain refinement treatment in a flat state as in the past. It turns out that it is excellent in. Furthermore, it can be seen that when the steel plate is bent and irradiated with an electron beam on the inner side, that is, in a state where compressive stress is applied to the steel plate, the above effect is further enhanced.

本発明の技術は、方向性電磁鋼板のみならず、冷延鋼板や表面処理鋼板、ステンレス鋼板、銅板、アルミニウム板等への電子ビーム、レーザビーム等の照射にも適用することができる。   The technology of the present invention can be applied not only to grain-oriented electrical steel sheets, but also to cold-rolled steel sheets, surface-treated steel sheets, stainless steel sheets, copper plates, aluminum plates and the like with electron beams and laser beams.

Claims (3)

二次再結晶焼鈍後の鋼板表面に常温における被膜張力が5MPa以上である張力絶縁被膜を形成してなる方向性電磁鋼板の表面に対して、圧延方向と交差する向きに電子ビームを照射し、点状もしくは線状の熱歪み領域を導入して磁区細分化処理を施す方向性電磁鋼板の製造方法において、
前記電子ビームの照射を、鋼板表面を50〜500℃の温度に加熱して行うことを特徴とする方向性電磁鋼板の製造方法。
Irradiate an electron beam in a direction intersecting with the rolling direction on the surface of the grain-oriented electrical steel sheet formed with a tension insulating film having a film tension of 5 MPa or more at room temperature on the steel sheet surface after secondary recrystallization annealing, In the method of manufacturing a grain-oriented electrical steel sheet in which a dotted or linear thermal strain region is introduced and subjected to magnetic domain subdivision processing,
A method for producing a grain-oriented electrical steel sheet, wherein the irradiation with the electron beam is performed by heating the steel sheet surface to a temperature of 50 to 500 ° C.
前記電子ビームの照射を、圧縮応力を付与した鋼板表面に対して行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The method of manufacturing a grain-oriented electrical steel sheet according to claim 1, wherein the electron beam irradiation is performed on a steel sheet surface to which a compressive stress is applied. 前記電子ビームを照射した鋼板表面に、絶縁被膜を再塗布しないことを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein an insulating coating is not reapplied to the surface of the steel sheet irradiated with the electron beam.
JP2012159323A 2012-07-18 2012-07-18 Method for producing grain-oriented electrical steel sheet Active JP6003321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012159323A JP6003321B2 (en) 2012-07-18 2012-07-18 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012159323A JP6003321B2 (en) 2012-07-18 2012-07-18 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2014019901A JP2014019901A (en) 2014-02-03
JP6003321B2 true JP6003321B2 (en) 2016-10-05

Family

ID=50195152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012159323A Active JP6003321B2 (en) 2012-07-18 2012-07-18 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6003321B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063317A1 (en) 2014-10-23 2016-04-28 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and process for producing same
JP6465054B2 (en) * 2016-03-15 2019-02-06 Jfeスチール株式会社 Production method and production equipment row of grain-oriented electrical steel sheets
JP6245296B2 (en) * 2016-03-22 2017-12-13 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186422A (en) * 1985-02-15 1986-08-20 Nippon Steel Corp Improvement of iron loss of grain oriented electrical steel sheet strip and steel sheet
JPH01298118A (en) * 1988-05-27 1989-12-01 Kawasaki Steel Corp Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH0250918A (en) * 1988-08-11 1990-02-20 Kawasaki Steel Corp Production of grain-oriented electrical steel sheet having small iron loss
JPH03287725A (en) * 1990-04-04 1991-12-18 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JP2700277B2 (en) * 1990-06-01 1998-01-19 株式会社半導体エネルギー研究所 Method for manufacturing thin film transistor
JPH0459930A (en) * 1990-06-29 1992-02-26 Kawasaki Steel Corp Continuous irradiation method for high-energy beam
JPH04231415A (en) * 1990-12-27 1992-08-20 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JPH062042A (en) * 1992-06-16 1994-01-11 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JP5927754B2 (en) * 2010-06-29 2016-06-01 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5998424B2 (en) * 2010-08-06 2016-09-28 Jfeスチール株式会社 Oriented electrical steel sheet
JP5527094B2 (en) * 2010-08-06 2014-06-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2014019901A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5115641B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US10294543B2 (en) Method for producing grain-oriented electrical steel sheet
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5927754B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10294544B2 (en) Method for producing grain-oriented electrical steel sheet
JP6084351B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP5760506B2 (en) Method for producing grain-oriented electrical steel sheet
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003197B2 (en) Magnetic domain subdivision processing method
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JP6137490B2 (en) Method for predicting primary recrystallization texture and method for producing grain-oriented electrical steel sheet
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
WO2023074908A1 (en) Method of manufacturing grain-oriented magnetic steel sheet, and grain-oriented magnetic steel sheet
JP5533348B2 (en) Method for producing grain-oriented electrical steel sheet
JP2018087366A (en) Production method of grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6003321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250