JPS6089545A - Grain-oriented silicon steel sheet causing small iron loss - Google Patents

Grain-oriented silicon steel sheet causing small iron loss

Info

Publication number
JPS6089545A
JPS6089545A JP19619183A JP19619183A JPS6089545A JP S6089545 A JPS6089545 A JP S6089545A JP 19619183 A JP19619183 A JP 19619183A JP 19619183 A JP19619183 A JP 19619183A JP S6089545 A JPS6089545 A JP S6089545A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
silicon steel
grain
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19619183A
Other languages
Japanese (ja)
Other versions
JPH0332889B2 (en
Inventor
Masao Iguchi
征夫 井口
Michiro Komatsubara
道郎 小松原
Ujihiro Nishiike
西池 氏裕
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19619183A priority Critical patent/JPS6089545A/en
Publication of JPS6089545A publication Critical patent/JPS6089545A/en
Publication of JPH0332889B2 publication Critical patent/JPH0332889B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a grain-oriented silicon steel sheet causing a small iron loss and capable of ensuring the practical effect of the fractionization of the magnetic domain of an article in the lateral direction without deteriorating the characteristic by forming a region where different tensions act on the surface of a steel sheet. CONSTITUTION:An uneven region is formed on the surface of a grain-oriented silicon steel sheet in the rolling direction by a chemical or mechanical means after finishing secondary recrystallization annealing. The steel sheet is then coated and heat treated to apply an elastic strain for different tensions to the surface of the steel sheet by the difference in the coefft. of thermal expansion between the steel sheet and the resulting surface film. The elastic strain can be applied by forming a region having different thicknesses in the insulating film or by other means. The treated grain-oriented silicon steel sheet causing a small iron loss undergoes no deterioration in the characteristics during conventional strain relief annealing.

Description

【発明の詳細な説明】 (技術分野) 鉄損の極めて低い一方向性けい素鋼板に関してこの明細
書に述べる技術同容は、異張カの働く領域を銅板表面に
区画形成させることにより、歪取り焼鈍によって磁気特
性が劣化しない一方向性けい素鋼板を与えようとするも
れである。
Detailed Description of the Invention (Technical Field) The technology described in this specification regarding a unidirectional silicon steel sheet with extremely low iron loss reduces strain by forming areas on the surface of the copper sheet where different tension forces act. This is an attempt to create a grain-oriented silicon steel sheet whose magnetic properties do not deteriorate through annealing.

〔技術的背景〕[Technical background]

一方向性けい素鋼板は主として変圧器その他の電気機器
の鉄心として利用され、その磁化特性が優れていること
、すなわち鉄損(W 1.7 / 50で代表される)
が低いことが要求されている。
Unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and have excellent magnetization characteristics, i.e. iron loss (represented by W 1.7/50).
is required to be low.

このためには、第一に鋼板中の2次゛再結晶粒の<00
1>粒方位を圧延方向に高度に揃えることが必要であり
、第二には、最終製品の劇中に存在する不純物や析出物
をできるたけ減少させる必要がある。これらの点の綿密
な留意の下で製造される一方向性けい素鋼板は今日まで
多くの改善努力によって、その鉄損値も年を追って改善
され、最近では板厚0.80.msの製品でW1715
0の値が1.0 s W/に9の低鉄損のものが製造さ
れている。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet should be
1> It is necessary to highly align grain orientation in the rolling direction, and secondly, it is necessary to reduce as much as possible impurities and precipitates present in the final product. The unidirectional silicon steel sheets manufactured under careful consideration of these points have been improved over the years due to many improvement efforts to date, and recently the sheet thickness has been reduced to 0.80. ms product W1715
Low iron loss products with a zero value of 1.0 s W/9 have been manufactured.

しかし、数年前のエネルギー危機を境にして、電力損失
のより少ない電気機器をめる傾向が一段と強まり、そn
らの鉄芯材料として、さらに鉄損の低い一方向性けい素
鋼板の製造が要請されるようになっている。
However, after the energy crisis a few years ago, there was a growing trend to install electrical equipment with less power loss.
There is a growing demand for the production of unidirectional silicon steel sheets with even lower iron loss as the iron core material.

(従来技術とその問題点) ところで、一方向性けい素鋼板の鉄損を下げるには、 S1含有量を高める、 製品板厚を薄くする、 2次再結晶粒を細かくする、 不純物含有層を低減する、 (]、 10 ) (o 01 )方位の2次再結晶粒
をより高度に揃える など、主に冶金学的な手法が一般に知られているが、こ
れらの手法は、現行の生産手段での限界値に達し、もは
やそれ以上の改善は極めて、難しく、たとえ、多少の改
善が認められても、その努力の割には鉄損改善の実効は
僅かとなるに至った。
(Prior art and its problems) By the way, in order to reduce the iron loss of grain-oriented silicon steel sheets, there are several methods: increasing the S1 content, reducing the thickness of the product sheet, making the secondary recrystallized grains finer, and creating an impurity-containing layer. Mainly metallurgical methods are generally known, such as reducing and aligning secondary recrystallized grains with (], 10) (o 01 ) orientation to a higher degree, but these methods are difficult to achieve with current production methods. It has reached its limit value, and it is extremely difficult to improve it any further, and even if some improvement is recognized, the effective effect of iron loss improvement will be small compared to the efforts made.

これらの方法とは別に、特公昭54−28647号公報
に、開示されているように、鋼板表面に・2次再結晶阻
止領域を形成させることにより、2次再結晶粒を細粒化
させることが提案されている。
Apart from these methods, as disclosed in Japanese Patent Publication No. 54-28647, secondary recrystallization grains are made finer by forming a secondary recrystallization inhibiting region on the surface of the steel sheet. is proposed.

しかし、この技術は2次再結晶粒径の制御が安定してい
ないため、実用的とは云いがたい。
However, this technique cannot be said to be practical because control of the secondary recrystallized grain size is not stable.

一方、特公昭58−5968号公報には、2次再結晶後
の鋼板の表面にボールペン状小球によって微小歪を鋼板
表層に導入することにより、磁区・の幅を微細化し、鉄
損を低減する技術、またさらに、特公昭57−2.25
2号公報には、最終製品板表面に圧延方向とほぼ直角に
レーザービームを数量間隔にて照射し、鋼板表層に高転
位密度領域を導入することにより磁区の幅を微細化し、
鉄損を低減する技術も続いて提案され、そしてまた、特
開昭57−18881’O号公報では、放電加工により
鋼板表層に微少歪な導入して磁区幅を微細化し、鉄損を
低減する同様な技術が提案さねている。これら3種類の
方法は、いずわも、2次再結晶後の鋼板の地鉄表面に微
少な塑性歪を導入することにより、磁区幅を微細化して
鉄損の低減を図るものであって、均しく実用的であり、
かつ鉄損低減効果も優nているが、鋼板の打抜き加工、
せん断加工や、巻き加工後の歪取り焼鈍その他コーティ
ングの焼付は処理の如き熱処理Gこよって、塑性歪導入
による効果が減殺される欠点を伴う。なおコーティング
処理後に徽少な塑性歪を導入する場合は、絶縁性を維持
するために、絶縁コーティングを再塗装せねばならず歪
付与工程、再塗装工程と、■椀の大幅増加になり、コス
トアップをもたらす。
On the other hand, Japanese Patent Publication No. 58-5968 discloses that by introducing micro-strain into the surface layer of the steel plate after secondary recrystallization using ballpoint pen-shaped small balls, the width of the magnetic domain is made finer and the iron loss is reduced. Furthermore, the technology to
Publication No. 2 discloses that the width of the magnetic domain is refined by irradiating the surface of the final product plate with a laser beam at numerical intervals almost perpendicular to the rolling direction to introduce high dislocation density regions into the surface layer of the steel plate.
Techniques for reducing iron loss were subsequently proposed, and in JP-A-57-18881'O, a method was proposed in which microstrain was introduced into the surface layer of a steel sheet by electric discharge machining to refine the magnetic domain width and thereby reduce iron loss. Similar technologies have been proposed. All three of these methods aim to reduce iron loss by reducing the magnetic domain width by introducing a small amount of plastic strain to the surface of the base steel of the steel sheet after secondary recrystallization. , equally practical,
It also has an excellent iron loss reduction effect, but the punching process of steel plates,
Shearing, strain relief annealing after winding, and baking of coatings have the disadvantage that the effect of introducing plastic strain is diminished by heat treatment such as G treatment. In addition, if a small amount of plastic strain is introduced after the coating process, the insulation coating must be repainted in order to maintain insulation properties, resulting in a significant increase in the strain imparting process, repainting process, and bowl, increasing costs. bring about.

(発明の目的) 上記の先行技術とは発想を異にした磁区幅の細分化手段
をもって、高温における歪取り焼鈍後においても特性劣
化を伴わずに、製品の研区幅細分化の実効を確保し得る
ようにした一方向性けい素鋼板を与えることがこの発明
の目的である。
(Purpose of the Invention) By using a method for refining the magnetic domain width which is different in concept from the above-mentioned prior art, it is possible to ensure the effective refining of the domain width of the product without deterioration of characteristics even after strain relief annealing at high temperatures. It is an object of the present invention to provide a unidirectional silicon steel sheet that can be used.

(解決手段の解明経緯) これより先に発明者らは、鉄損低下を1指して、一方向
性けい素鋼の製造工程途中における集合組織およびイン
ヒビター分散状況に新たな検討を加え、脱炭・1次再結
晶焼鈍前又は2次再結晶焼鈍前の鋼板表面上に圧延方向
とほぼ直角に脱炭促進領域と脱炭遅滞領域とを交互に区
画し、かくして不均質の2次再結晶粒を発達させること
により、鉄損を低下させる新しい一方向性けい素鋼板の
製造が可能であることを見出し、特願昭58−1457
68号をもって既に特許出願を行なった。
(History of the elucidation of the solution) The inventors first conducted a new study on the texture and inhibitor dispersion during the manufacturing process of unidirectional silicon steel, with the aim of reducing iron loss.・Decarburization promotion regions and decarburization retardation regions are alternately divided approximately perpendicular to the rolling direction on the steel sheet surface before primary recrystallization annealing or before secondary recrystallization annealing, thus forming heterogeneous secondary recrystallization grains. It was discovered that it was possible to manufacture a new unidirectional silicon steel sheet with lower iron loss by developing
A patent application has already been filed with No. 68.

このような2次再結晶粒の不均質化を優先形成さiると
いう新規着想を、他の諸工程段階に応用する広範囲の基
礎実験を行ない検討を始めた。
We conducted a wide range of basic experiments to apply this novel idea of preferentially forming non-uniform secondary recrystallized grains to other process steps.

その一つの展開として、一方向性けい素鋼板の2次再結
晶焼鈍後に、′鋼板表面に区画形成された実張力の働く
領域をつくることによって製品の磁区幅を細分化するな
らば、著しく超低鉄損化を図り得ることが、新たに発見
さnたのである。ここに鋼板表面上で実張力の働く領域
はたとえば、鋼板の圧延方向を横切る向きに化学研魔卆
の如きを施して得られる、圧延方向に沿った板面凹凸が
、張力付与型の絶倫被膜によって、該凹凸のパターンに
従う実張力を生じるように区画形成することができる。
As one development, after secondary recrystallization annealing of a unidirectional silicon steel sheet, if the magnetic domain width of the product is subdivided by creating zones on the surface of the steel sheet where the actual tension acts, it is possible to significantly It was newly discovered that it is possible to reduce iron loss. Here, the area where actual tension acts on the surface of the steel plate is, for example, the unevenness of the plate surface along the rolling direction obtained by applying something like a chemical polisher in a direction transverse to the rolling direction of the steel plate, and the tension-applying Zetsurin coating. Accordingly, it is possible to form sections so as to generate an actual tension according to the pattern of the unevenness.

(発明の構成) この発明は鋼板表面に区画形成された、実張力の働く領
域を有することを特徴とする、低鉄損一方向性けい素鋼
板である。
(Structure of the Invention) The present invention is a low iron loss unidirectional silicon steel plate characterized by having a region on the surface of the steel plate defined in which actual tension acts.

次にこの発明による成功が導かれるに至った経過および
発明の基本思想について説明する。
Next, the process that led to the success of this invention and the basic idea of the invention will be explained.

o O,0413% 、 si L35%、 Se O
,018%。
o O, 0413%, si L35%, Se O
,018%.

Sb O,025%、MOo、013%を含有する鋼塊
から熱間圧延により2.7闘厚の熱延板を得た。その後
900℃で8分間力−化焼鈍後圧下率約70%の1次冷
延を施し、950℃で3分間の中間焼鈍後圧下率約65
%の2次冷延を施して0.3+wm厚の最終冷延板とし
た。
A hot-rolled sheet with a thickness of 2.7 was obtained by hot rolling from a steel ingot containing 25% of SbO, 0.013% of MOo. Thereafter, primary cold rolling with a rolling reduction of about 70% was performed after force annealing at 900°C for 8 minutes, and intermediate annealing at 950°C for 3 minutes with a rolling reduction of about 65%.
% secondary cold rolling to obtain a final cold rolled sheet with a thickness of 0.3+wm.

その後鋼板表面を脱脂後820℃の湿水素中で脱炭・1
次再結晶焼鈍したあと、常法に従い850℃で50時間
の2次再結晶焼鈍と1200℃で5時間水素中での純化
焼鈍を施した。
After that, the steel plate surface was degreased and decarburized in wet hydrogen at 820℃.
After the secondary recrystallization annealing, secondary recrystallization annealing was performed at 850° C. for 50 hours and purification annealing in hydrogen at 1200° C. for 5 hours according to a conventional method.

次に溶融IJaOH溶液でフォルステライト被膜を除去
し、ついで8%HFとH3O2液中で化学研摩を、第1
図に鋼板表面をあられした模式図に仮想線で示す区画に
従って施した、第2図のta)〜(d)の区分にて、順
次実験を吹のようにして行なった。
The forsterite coating was then removed with molten IJaOH solution, followed by chemical polishing in 8% HF and H3O2 solution.
Experiments were carried out sequentially in sections ta) to (d) in FIG. 2, which were carried out according to the sections indicated by imaginary lines in the schematic diagram showing the surface of the steel plate.

まず鋼板表面を化学研摩しただけの試料(a)に圧延方
向の引張り力Tをかけて磁気特性変化を測定、した。そ
のとき平均的な引張応力σに依存した磁気特性の変化を
第3図にてプロット(勾に示す。次に鋼板の片面で圧延
方向とほぼ直角に10mm間隔で5間幅のビニールテー
プを順次にはりっけ、他面は全面ビニールテープをはり
っけ上記の化学研摩を行ない、約5〜10μm深さの片
面凹凸をもつ試料(b)を作成しこれも同じく引張り力
Tに依存した磁気特性の変化を測定し、第3図にてプロ
ット(b)に示す結果を得た。
First, a tensile force T in the rolling direction was applied to sample (a) whose surface had only been chemically polished, and changes in magnetic properties were measured. At that time, the change in magnetic properties depending on the average tensile stress σ is plotted in Figure 3. The other side was coated with vinyl tape and subjected to the chemical polishing described above to create a sample (b) with unevenness on one side approximately 5 to 10 μm deep. Changes in properties were measured, and the results shown in plot (b) in FIG. 3 were obtained.

次に鋼板の平滑な他面についても、第2図の(b)の条
件と同様、10間間隔で5間幅のビニールテープを順次
はりつけるとともに、既に凹凸のついている片面には全
面にビニールテープをはりつけて地面に化学研摩を行な
い、約5〜10μの凹凸を形成した。このようにして鋼
板の両面に凹凸なつけた試料(0〕につき、引張り力T
に依存した磁気特性の変化を測定した結果も第8図のプ
ロン) (C)に示す。
Next, on the other smooth side of the steel plate, under the same conditions as shown in Figure 2 (b), vinyl tape of 5 widths is sequentially applied at 10 intervals, and on the other side, which is already uneven, vinyl tape is applied to the entire surface. was applied to the ground and chemically polished to form irregularities of approximately 5 to 10 μm. For a sample (0) with unevenness on both sides of the steel plate in this way, the tensile force T
The results of measuring changes in magnetic properties depending on the magnetic properties are also shown in Figure 8 (C).

最後には、両面凹凸に加えて圧延方向と直角5閤間隔で
レーザー照射を行ない、微少塑性歪を導入した試料((
11につき引張力Tに依存した磁気特性の変化を測定し
、その結果を第8図にてプロット(山をもって示す。
Finally, in addition to the unevenness on both sides, a sample ((
For No. 11, changes in magnetic properties depending on the tensile force T were measured, and the results are plotted in FIG. 8 (indicated by crests).

なお第8図は各試料の鉄損につき、重量補正を行なった
後の結果をプロットして示したものである。
Note that FIG. 8 is a plot of the iron loss of each sample after weight correction.

第2図と第8図から、試料表面が平滑な状態で一様な引
張応力が加わると、たとえば(T、 yamamo t
o IS、Taguch土+ A、5akakura 
and T、Nozawa : 工EEETran、s
; Magt M 8 (1972) 、 P、 67
7 ) &、:述べられたと同様に、鉄損が低下する。
From Fig. 2 and Fig. 8, when a uniform tensile stress is applied to the sample surface in a smooth state, for example, (T, yamamoto t
o IS, Taguch soil + A, 5akakura
and T, Nozawa: 工EEETran, s
; Magt M 8 (1972), P, 67
7) &,: As stated above, iron loss decreases.

なおこの製品の2次粒径が8.5間と小さいために鉄損
の低下度は引張応力が0.2ψ−で0.08W/7C9
と小さいが、鋼板の片面あるいは両面に圧延方向にほぼ
直角に凹凸をつけた(b)および(01の試料に引張り
力Tを加えると、鉄損が急激に低下することが注目され
る。とくに平均的な引張応力が0.2−、i程度での鉄
損の低下度はtb)の片面凹凸試料で0.09 WA9
・(C)の両面凹凸試料で0.11WApも低下するこ
とがわかる。
Furthermore, since the secondary particle size of this product is as small as 8.5, the degree of decrease in iron loss is 0.08W/7C9 at a tensile stress of 0.2ψ-.
Although it is small, it is noteworthy that when tensile force T is applied to samples (b) and (01) in which one or both sides of the steel plate have unevenness approximately perpendicular to the rolling direction, the iron loss decreases rapidly. When the average tensile stress is 0.2-, the degree of decrease in iron loss at about i is 0.09 WA9 for a single-sided uneven sample with tb).
- It can be seen that the sample (C) with uneven surfaces on both sides has a decrease of 0.11 WAp.

また鋼板両面に凹凸をつけた後、レーザー照射により高
転位密度領域を導入した試料(dJは、引張力Tを作用
させ、ない状態でレーザー照射による鉄損低下がo 、
o 8 WA9程度に生じたがその後に引張力Tを加え
てもあまり鉄損が低下しないことが注目される。
In addition, a sample in which a high dislocation density region was introduced by laser irradiation after roughening both sides of the steel plate (dJ is a sample in which a tensile force T is applied and the iron loss decrease due to laser irradiation is o,
It is noteworthy that although this occurred at about 8 WA9, the iron loss did not decrease much even if the tensile force T was applied thereafter.

上記の実験結果は従来公知の鋼板表面全体に均一な圧延
方向の弾性歪を導入する方法(つまり第2図(alに従
う第8図のプロット((転))および微少な塑性歪領域
又はレーザー照射による高転位密度領域を導入する方法
(つまり第2図(d)に従う第3図のブロン) (a)
 )よりも、異張力による弾性歪を導入する方法(つま
り第2図(b) 、 tc)に従う第3図のプロン) 
(bJ (0) ) &こて極めて効果的に鉄損を低下
させることが可能であることを示している。すなわち、
有効な磁区の細分化方法は鋼板表面に異張力による弾性
歪の導入によって達成されることが新規に見出されたの
である。
The above experimental results are based on the conventionally known method of introducing uniform elastic strain in the rolling direction over the entire surface of the steel sheet (that is, the plot of FIG. 8 according to FIG. A method of introducing a high dislocation density region according to (i.e., the block diagram in Fig. 3 according to Fig. 2(d)) (a)
) rather than the method of introducing elastic strain due to different tension (i.e., the prong in Figure 3 following Figure 2(b), tc))
(bJ (0) ) & iron This shows that it is possible to reduce iron loss extremely effectively. That is,
It has been newly discovered that an effective method for refining magnetic domains can be achieved by introducing elastic strain to the surface of the steel plate by applying different tensions.

このような異張力弾性歪を附加したγ方向性けい素鋼板
においては従来の地鉄表層部に塑性歪領域やレーザー照
射痕のような高転位密度領域を存在させる手法の場合と
異なり、人為的な塑性歪領域が存在しないので、通常s
 o o ’c前後で1分間から数時間にわたってなさ
れる歪取焼鈍を施しても鉄損が劣化しないという利点が
ある。
Unlike the conventional method of creating high dislocation density regions such as plastic strain regions or laser irradiation marks in the surface layer of the steel, unlike the conventional method of creating γ-oriented silicon steel sheets with such different tensile elastic strain, artificial Since there is no plastic strain region, usually s
There is an advantage that the iron loss does not deteriorate even if strain relief annealing is performed for one minute to several hours around o o 'c.

従来の塑性歪やレーザー照射痕の高転位密度領域を存在
させる方法では地鉄表層部のを性歪が高温によって消滅
していくので鉄損の劣化が起るという欠点があるが、こ
の発明の場合歪取り焼鈍の有無にかかわらず良好な鉄損
を示す。
Conventional methods of creating high dislocation density regions due to plastic strain or laser irradiation marks have the disadvantage that the plastic strain in the surface layer of the steel base disappears at high temperatures, leading to deterioration of iron loss. In this case, good iron loss is shown with or without strain relief annealing.

以上この発明に係るけい素鋼板を従来の鋼板と対比して
説明したところがら明らかなように、この発明は先行公
知技術とは本質的思想を異にするものでありあとで実施
例で検証するように効果もはるかに優れている。
As is clear from the above explanation of the silicon steel sheet according to the present invention in comparison with a conventional steel sheet, the present invention is essentially different in concept from the prior art, and will be verified later with examples. The effect is also much better.

次にこの発明におけるけい素鋼板の素材および製造工程
について説明する。
Next, the material and manufacturing process of the silicon steel plate in this invention will be explained.

まず出発素材は公知の製鋼方法、例えば転炉、電気炉な
どによって製鋼し、さらに造塊又は連続鋳造などによっ
てスラブとした後為熱間圧延にょつて得られる熱延コイ
ルを用いる。
First, the starting material is a hot-rolled coil obtained by manufacturing steel by a known steel-making method, such as a converter or electric furnace, and then converting it into a slab by ingot-forming or continuous casting, followed by hot rolling.

この熱延板の成分組成は、従来公知の一方向性けい素鋼
板と同じく、例えば■Si 2−0−4.0%。
The composition of this hot rolled sheet is the same as that of conventionally known unidirectional silicon steel sheets, for example, ■Si 2-0-4.0%.

MO0,005〜0.05 % 、 Sb O,005
〜0.25%。
MO0,005~0.05%, SbO,005
~0.25%.

Sあるいはse o、o o 5〜0.05%を含有す
るけい素鋼板、■si 2.0〜4.0%、 i (1
,01〜0.05% 、S O,005〜 0.0 5
 % 、N O,001〜 0.0 1%を含有するけ
い素鋼板又は■st 2.0−4.0%。
Silicon steel plate containing S or se o, o o 5 to 0.05%, ■si 2.0 to 4.0%, i (1
,01~0.05%,SO,005~0.05
%, silicon steel plate containing NO,001-0.01% or ■st 2.0-4.0%.

S O,005〜0.05%、 B O,0008〜0
.0040%+No・001〜0.01%を含有するけ
い素鋼板の如きにおいても適用可能である。
SO, 005~0.05%, BO, 0008~0
.. It is also applicable to silicon steel sheets containing 0.040%+No.001 to 0.01%.

熱延板は800°C〜1100 ℃で均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又は通常
850℃から1050 ℃の中間焼鈍をはさんで最初の
圧下率は50%から80%程度、最終の圧下率は50%
から80%程度で冷延する2回法のいずれかにて0.2
mQがらO,85am厚の最終板厚程度とする2回冷延
−法とすることができるが通常仕上り板厚は0.8mt
rr厚とされることが多&)最終冷延を終り、製品板厚
に仕上げた鋼板は湿水集中で750℃から850℃で2
〜15分程度の脱炭・1次再結焼鈍が施される。
Hot-rolled sheets are either uniformly annealed at 800°C to 1100°C and then cold-rolled once to achieve the final thickness, or they are usually subjected to intermediate annealing at 850°C to 1050°C before being rolled. The reduction rate is about 50% to 80%, the final reduction rate is 50%.
0.2 in either of the two-step cold rolling methods at a rate of about 80% from
It can be cold-rolled twice to give a final thickness of about 0.85am, but the usual finished thickness is 0.8mt.
After the final cold rolling, the steel plate finished to the product thickness is heated at 750°C to 850°C with wet water concentration.
Decarburization and primary reconsolidation annealing are performed for ~15 minutes.

その後鋼板表面にMgOを主成分とする焼鈍分離剤を塗
布し、最終焼鈍が施される。この最終焼鈍は(IIQ)
(001)方位の2次再結晶粒を充分発達させるため施
されるもので通常箱焼鈍によって直ちに1000℃以上
に昇温しその温度に保持することによって行なわれるが
、(110)〔001〕方位に高度に揃った2次再結晶
組織を発達させるためには820℃から900℃の低温
で保定焼鈍する方が有利であり、そのほか例えば0.5
〜15″C/11の昇温速度での除熱焼鈍でも良い。
Thereafter, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, and final annealing is performed. This final annealing is (IIQ)
This is carried out to sufficiently develop secondary recrystallized grains in the (001) orientation, and is usually performed by box annealing, which immediately raises the temperature to 1000°C or higher and maintains it at that temperature. In order to develop a highly uniform secondary recrystallized structure, it is advantageous to perform retention annealing at a low temperature of 820°C to 900°C;
Heat-removal annealing at a temperature increase rate of ~15''C/11 may also be used.

この処理後の鋼板表面上に圧延方向にほぼ直角に凹凸領
域を区画形成するが、この区画領域は通常1〜50闘間
隔にて、そのほぼ半幅にて区画形成する。また深さは1
〜20μ程度であれば充分効果を発揮し、このような区
画形成は片面でも充分効果を発揮するが、通常鋼板の両
面に区画形成する方がより効果的である。この鋼板表面
に凹凸を作る手法は、従来公知の化学的あるいは機械的
手法等を用いて良い。
After this treatment, uneven regions are formed on the surface of the steel sheet at approximately right angles to the rolling direction, and the uneven regions are usually formed at intervals of 1 to 50 mm and approximately half the width thereof. Also, the depth is 1
A thickness of about 20 μm can be sufficiently effective, and such partition formation can be sufficiently effective even on one side, but it is usually more effective to form partitions on both sides of the steel plate. A conventionally known chemical or mechanical method may be used to create the unevenness on the surface of the steel plate.

このように鋼板表面を凹凸に区画形成した鋼板に張力附
加型コーテング処理を行なう。このコーテング処理は従
来の一方向性けい素鋼板のコーテンダ液を用いて約85
0°C以上の温度で塗布焼付は後または塗布焼付けの工
程巾約800°C〜9(10℃の温度で熱処理すること
により、鋼板表面の張力は鋼板と表面被膜との熱膨張率
の差によって鋼板表面に区画された異張力の弾性歪を与
える。
A tension coating treatment is performed on the steel plate whose surface is thus partitioned into irregularities. This coating process uses a conventional coattender solution for unidirectional silicon steel sheets to
By applying heat treatment at a temperature of 0°C or higher, the coating and baking process width is approximately 800°C to 9 (10°C), and the tension on the steel plate surface is reduced by the difference in thermal expansion coefficient between the steel plate and the surface coating. gives a differentiated tension elastic strain on the surface of the steel plate.

このようにして鋼板表面に異張力弾性歪を有する一方向
けい素鋼板が得らnるが、上述の仕上焼鈍後の鋼板それ
自体に凹凸を形成する手法以外にも同等の効果を達成す
る他の手法としては、■仕上焼鈍中に鋼板表面上に形成
さnるフォルステライト系絶縁被膜に実理の領域を区画
形成させる方法。
In this way, a unidirectional raw steel plate having different tensile elastic strains on the surface of the steel plate can be obtained, but the same effect can be achieved by other methods other than the above-mentioned method of forming irregularities on the steel plate itself after finish annealing. The method is as follows: (1) A method in which the forsterite-based insulating film formed on the surface of the steel sheet during final annealing is divided into actual regions.

■のに張力コーテングする方法・ ■銅板表面上にフォルステライト系絶縁被膜が存在する
領域と存在しない領域を区画形成させる方法・ ■■に張力コーテングする方法。
■Method of applying tension coating to ■■Method of forming sections on the surface of the copper plate into areas where forsterite-based insulating film exists and areas where it does not exist.Method of applying tension coating to ■■.

■鋼板表面上に形成されるフォルテライト系絶縁被膜の
組成を変えた領域を区画形成させる方法■■に張力コー
テングする方法・ ■鋼板表面と7オルステライト被膜との間に異相を区画
形成する方法。
■Method of forming regions with different compositions of the forterite-based insulating coating formed on the surface of the steel plate■Method of applying tension coating to ■Method of forming zones of different phases between the steel plate surface and the 7-orsterite coating .

■■に張力コーテングする方法。How to tension coat ■■.

■銅板表面上の7オルステライト被膜上に異種の張力コ
ーテングする法 などによることもできる。これらの方法はいずれも従来
の微少塑性歪やレーザー照射痕の高転位密度領域を存在
させる方法と異なり、地鉄表層部に塑性歪みが存在しな
い方向性けい素鋼板で、而も鋼板表面で区画さnた異張
力弾性歪を有する一方向性けい禦輯板をつくり出すのに
利用できる。
(2) It is also possible to apply a different type of tension coating to the 7-orsterite film on the surface of the copper plate. Both of these methods differ from the conventional method of creating microplastic strain or high dislocation density regions due to laser irradiation marks, by using grain-oriented silicon steel sheets with no plastic strain in the surface layer of the steel, and in addition, they are divided into sections on the surface of the steel sheet. It can be used to create unidirectional flexural plates with different tensile elastic strains.

(発明の効果) かくしてこの発明は通常の歪取り焼鈍において特性が劣
化しない著効をそなえる低鉄損一方向性けい素鋼板であ
る。
(Effects of the Invention) Thus, the present invention provides a low iron loss unidirectional silicon steel sheet which has a remarkable effect that properties do not deteriorate during normal strain relief annealing.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例】 900℃で8分間の均−化焼鈍後950℃の中間焼鈍を
はさんで2回の冷間圧延を施して0.3闘厚の最終冷延
板とした。その後820℃の湿水素中で脱炭・1次再結
晶焼鈍を施した後、850℃で50時間の2次再結晶焼
鈍および1180℃で5時間の鈍化焼鈍を施した。
EXAMPLE After equalization annealing at 900°C for 8 minutes, cold rolling was performed twice with intermediate annealing at 950°C to obtain a final cold-rolled plate with a thickness of 0.3. Thereafter, decarburization and primary recrystallization annealing were performed in wet hydrogen at 820°C, followed by secondary recrystallization annealing at 850°C for 50 hours and blunting annealing at 1180°C for 5 hours.

その後鋼板表面を圧延方向にほぼ直角に10 mm間隔
で5 mm巾で深さ地鉄内約5μm深さにて除去後つい
でコロイド状シリカ80%水分散液100CC,リン酸
マグネシウム40%液80ccおよび無水りpム酸89
と重クロム111.59から成る処理液で処理し、これ
を大気中で800℃1分間焼付けて絶縁被膜を形成させ
た。
Thereafter, the surface of the steel plate was removed approximately perpendicularly to the rolling direction at 10 mm intervals in a width of 5 mm at a depth of approximately 5 μm within the steel base, and then 100 cc of an 80% aqueous dispersion of colloidal silica, 80 cc of a 40% magnesium phosphate solution, and PM acid anhydride 89
and dichromium 111.59, and baked this in the atmosphere at 800° C. for 1 minute to form an insulating film.

そのときの製品の磁気特性は次のようであった。The magnetic properties of the product at that time were as follows.

Bl(1= 1−91 T * W1?150 = 0
.9 a vJAcg、実施例2 00.048%、S13.26%!酸可溶A)0.02
5%I S O,018%+ N O,0062%を含
有した熱延板(2,9+m厚)を1050℃で均−化焼
鈍後急冷処理し、1回の冷間圧延を施して0.8情厚の
最終冷延板とした。なお冷間圧延途中は850℃の温間
圧延を施した。その後800℃で湿水素中で脱炭・1次
再結晶焼鈍を施した後、850℃から5°c/hrで昇
温して2次再結晶させたあと1200℃で5時間水素中
で純化焼鈍を施した。その後鋼板表面を圧延方向にほぼ
直角に8闘間隔で4酩巾で地鉄内約4μm深さにて除去
後、ついでコロイド状シリカ20%水分散液100CC
,リン酸アルミニウム50%水溶液a occ % m
水りロム酸6り、ホウ酸2りの組成のコーテング処理液
で処理し、これを大気中で800℃で2分間焼付けて絶
縁被膜を形成させた。
Bl(1=1-91 T*W1?150=0
.. 9 a vJAcg, Example 2 00.048%, S13.26%! Acid soluble A) 0.02
A hot-rolled sheet (2.9+m thick) containing 5% I SO, 018% + N O, 0,062% was uniformly annealed at 1050°C, then rapidly cooled, and cold-rolled once. The final cold-rolled sheet with 8-thickness was made. Note that during the cold rolling, warm rolling was performed at 850°C. After that, decarburization and primary recrystallization annealing were performed in wet hydrogen at 800°C, followed by secondary recrystallization by raising the temperature from 850°C at 5°c/hr, followed by purification in hydrogen at 1200°C for 5 hours. Annealed. Thereafter, the surface of the steel plate was removed approximately perpendicularly to the rolling direction at a depth of approximately 4 μm within the steel base with 4 widths at intervals of 8 strokes, and then 100 cc of a 20% aqueous dispersion of colloidal silica was removed.
, aluminum phosphate 50% aqueous solution a occ % m
It was treated with a coating solution having a composition of 6 parts of water, 6 parts of romic acid and 2 parts of boric acid, and this was baked in the air at 800° C. for 2 minutes to form an insulating film.

そのときの製品の磁気特性は次のようであった。The magnetic properties of the product at that time were as follows.

B、o= 1.98 T I W、/、o= 0.97
 WAC9
B, o = 1.98 T I W, /, o = 0.97
WAC9

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は仕上焼鈍後の鋼板の部分表面を示す平面図、 第2図(a)〜(d)は、種々な化学研磨を施した鋼板
断面の模式図であり、 第8図は第2図の(a)〜(d)の各試料の平均引張り
応力に依存した磁気特性の変化を示す図表である。 特ff出願人 川崎製鉄株式会社 同 弁理士 杉 村 興 作 S゛゛″゛)會1、 ご 第1図 第2図 (a) 引張応力(Kμmす 手続補正書(方式) %式% 1、事件の表示 昭和58年 特許 願第196191 号2、発明の名
称 低鉄損一方向性けい素鋼板 3、補正をする者 事件との関係特許出願人 (125)川崎製鉄株式会社 (5925)弁理士杉村暁秀 外1名 5、補正命令の日付 昭和59年1月31日 6・補正ノ対象明細楊の「図面の簡単な説明」の欄、「
図面jノ、−一− ■、明細書第18頁第4行ないし第5行を次のとおりに
訂正する。 「 第2図(a)〜(C)は、種々な化学研磨を施した
鋼板断面、また同図(d)はさらに化学研磨による凹凸
各領域にレーザー照射を加えた鋼板断面の模式図であり
、」 2、図面中、第2図(a’l 、 (b) 、 (Cり
 、 ((1)を別紙のとおりに訂正する。 “1”11 2 村 1 ♂ゎ ゛、・=、/
Fig. 1 is a plan view showing a partial surface of a steel plate after finish annealing, Fig. 2 (a) to (d) are schematic views of cross sections of steel plates subjected to various chemical polishing, and Fig. It is a chart showing the change in magnetic properties depending on the average tensile stress of each sample of (a) to (d) in the figure. Patent ff Applicant Kawasaki Steel Co., Ltd. Patent Attorney Ko Sugimura S゛゛''゛) 1, Figure 1, Figure 2 (a) Tensile Stress (Kμm Procedural Amendment (Method) % Formula % 1, Case Indication of 1981 Patent Application No. 196191 2, Title of invention: Low core loss unidirectional silicon steel sheet 3, Person making amendments Relationship to the case Patent applicant (125) Kawasaki Steel Corporation (5925) Patent attorney Sugimura Xiao Xiu Gai 1 person 5, Date of amendment order January 31, 1980 6. Details subject to amendment Yang, ``Brief explanation of drawings'' column, ``
Drawing j-1-1, lines 4 and 5 on page 18 of the specification are corrected as follows. "Figures 2 (a) to (C) are schematic diagrams of cross sections of steel plates that have been subjected to various types of chemical polishing, and Figure 2 (d) is a schematic diagram of a cross section of steel plates that have been further irradiated with laser on the uneven areas caused by chemical polishing. ,'' 2. In the drawings, Figure 2 (a'l, (b), (Cri, (1) is corrected as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 1 鋼板表面に区画形成された、異張力の働く領域を有
することを特徴とするへ低鉄損一方向性けい素鋼板。 鼠 鋼板がその地鉄表層に、塑性歪域をもたぬ、1記載
の一方向性けい素鋼板。
[Scope of Claims] 1. A unidirectional silicon steel sheet with low iron loss, characterized by having regions on the surface of the steel sheet where different tensions act. 1. The unidirectional silicon steel plate according to 1, wherein the steel plate does not have a plastic strain region in its base metal surface layer.
JP19619183A 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss Granted JPS6089545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19619183A JPS6089545A (en) 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19619183A JPS6089545A (en) 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss

Publications (2)

Publication Number Publication Date
JPS6089545A true JPS6089545A (en) 1985-05-20
JPH0332889B2 JPH0332889B2 (en) 1991-05-15

Family

ID=16353702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19619183A Granted JPS6089545A (en) 1983-10-21 1983-10-21 Grain-oriented silicon steel sheet causing small iron loss

Country Status (1)

Country Link
JP (1) JPS6089545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
JP2012012639A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Oriented electromagnetic steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056525A (en) * 1973-09-21 1975-05-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056525A (en) * 1973-09-21 1975-05-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
JP2012012639A (en) * 2010-06-29 2012-01-19 Jfe Steel Corp Oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JPH0332889B2 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JPS6332849B2 (en)
JPS6089545A (en) Grain-oriented silicon steel sheet causing small iron loss
JPS63130747A (en) Grain oriented silicon steel sheet having excellent magnetic characteristic and its production
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JPS61246376A (en) Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH02433B2 (en)
JPS61139624A (en) Production of unidirectional silicon steel sheet having very high magnetic flux density and small iron loss
JPH0218391B2 (en)
JPS6354767B2 (en)
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPS6139395B2 (en)
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPH0327629B2 (en)
JPH04131326A (en) Production of low-iron loss grain-oriented silicon steel plate
KR960003900B1 (en) Process for the production of oriented electrical steel sheet having excellent magnetic properties
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPS62133021A (en) Grain oriented electrical steel sheet having good adhesiveness of glass film and low iron loss and production thereof
JPS61236105A (en) Manufacture of directional silicon steel plate or low iron loss having no characteristic deterioration caused by strain-removing annealing
JPH0387316A (en) Production of grain-oriented silicon steel sheet having stable magnetic property
JPH0327630B2 (en)
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet