JP2001164344A - Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor - Google Patents

Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor

Info

Publication number
JP2001164344A
JP2001164344A JP34599599A JP34599599A JP2001164344A JP 2001164344 A JP2001164344 A JP 2001164344A JP 34599599 A JP34599599 A JP 34599599A JP 34599599 A JP34599599 A JP 34599599A JP 2001164344 A JP2001164344 A JP 2001164344A
Authority
JP
Japan
Prior art keywords
steel sheet
coating
less
annealing
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34599599A
Other languages
Japanese (ja)
Other versions
JP4075258B2 (en
Inventor
Seiji Okabe
誠司 岡部
Yasuyuki Hayakawa
康之 早川
Takeshi Imamura
今村  猛
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34599599A priority Critical patent/JP4075258B2/en
Priority to US09/722,017 priority patent/US6562473B1/en
Priority to EP00126202A priority patent/EP1108794B1/en
Priority to TW089125509A priority patent/TW486522B/en
Priority to DE60016149T priority patent/DE60016149T2/en
Priority to KR1020000072525A priority patent/KR100727333B1/en
Priority to CN00137241A priority patent/CN1124357C/en
Publication of JP2001164344A publication Critical patent/JP2001164344A/en
Application granted granted Critical
Publication of JP4075258B2 publication Critical patent/JP4075258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a double oriented silicon steel sheet excellent in magnetic properties, in which deterioration in magnetic properties due to working strain is inhibited. SOLUTION: The structure of ferrite of the silicon steel sheet is composed of secondary recrystallized grains integrated at Miller indices 100} <100>. Further, the amount of oxides at the ferrite surface excluding a coating is controlled to <=1.0 g/m2 per side expressed in terms of the amount of oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として変圧器、
モーター、発電機等の鉄心材料に用いて好適な磁気特性
の優れた二方向性電磁鋼板およびその製造方法に関する
ものである。
TECHNICAL FIELD The present invention mainly relates to a transformer,
The present invention relates to a bi-directional electrical steel sheet having excellent magnetic properties suitable for use in iron core materials such as motors and generators, and a method for producing the same.

【0002】[0002]

【従来の技術】電磁鋼板の鉄損、透磁率等の磁気特性
は、結晶方位に依存している。すなわち、鉄の結晶粒は
ミラー指数<100>軸の方向に磁化され易く、この方
向では極めて良好な磁気特性を示す。従来、広く用いら
れている一方向性電磁鋼板は、ミラー指数{110}<
001>で表されるゴス方位を二次再結晶させたもの
で、圧延方向(以下、L方向という)で良好な磁気特性
を示す。
2. Description of the Related Art Magnetic properties such as iron loss and magnetic permeability of an electromagnetic steel sheet depend on the crystal orientation. That is, the crystal grains of iron are easily magnetized in the direction of the Miller index <100> axis, and exhibit extremely good magnetic properties in this direction. Conventionally, widely used grain-oriented electrical steel sheets have a Miller index {110} <
001>, and exhibit good magnetic properties in the rolling direction (hereinafter, referred to as L direction).

【0003】これに対してミラー指数{100}<00
1>で表される正キューブ方位を二次再結晶させた二方
向性電磁鋼板は、圧延方向と圧延方向に直交する方向
(以下、C方向という)の2方向に良好な磁気特性を持
つ優れた特性を有する電磁鋼板である。二方向性電磁鋼
板を製造する方法としては、AlNをインヒビター成分と
して含む鋼をクロス冷延する方法や表面エネルギーを利
用した二次再結晶による方法等が提案されている。しか
しながら、これらの製造方法では、広幅で均質の鋼帯を
安価に製造することができないため、大量生産されるま
でには至っていない。従って、かかる電磁鋼板が実際に
変圧器や発電機等の鉄心材料に加工されたときの特性に
ついては、未だ十分に研究されているとは言い難い。
On the other hand, Miller index {100} <00
The bidirectional electrical steel sheet obtained by secondary recrystallization of the normal cube orientation represented by 1> has excellent magnetic properties in two directions, a rolling direction and a direction perpendicular to the rolling direction (hereinafter, referred to as C direction). This is a magnetic steel sheet having the following characteristics. As a method of manufacturing a bidirectional magnetic steel sheet, a method of cross-rolling steel containing AlN as an inhibitor component, a method of secondary recrystallization using surface energy, and the like have been proposed. However, in these production methods, a wide and homogeneous steel strip cannot be produced at a low cost, so that mass production has not been achieved. Therefore, it cannot be said that the characteristics when such an electromagnetic steel sheet is actually processed into a core material such as a transformer or a generator have been sufficiently studied.

【0004】[0004]

【発明が解決しようとする課題】二方向性電磁鋼板を、
変圧器、モーター、発電機などに使用されている従来の
一方向性電磁鋼板や無方向性電磁鋼板と比較すると、加
工による特性劣化が大きいという問題がある。この理由
は、従来から知られている二次再結晶によって作られる
二方向性電磁鋼板は、無方向性電磁鋼板よりも結晶粒径
がはるかに大きいため、切断や打ち抜き加工の際に端部
の変形が生じ易く、大きい歪みが入り易いためである。
SUMMARY OF THE INVENTION A bidirectional electrical steel sheet is
Compared with conventional one-way electrical steel sheets and non-oriented electrical steel sheets used in transformers, motors, generators, and the like, there is a problem that the characteristic deterioration due to processing is large. The reason for this is that bi-directional electrical steel sheets made by the conventionally known secondary recrystallization have a much larger crystal grain size than non-oriented electrical steel sheets. This is because deformation tends to occur and large distortion easily occurs.

【0005】また、高温の仕上げ焼鈍によって形成され
るフォルステライトを主とする硬質の酸化被膜も端部の
歪みを大きくする。この対策として、特開平5−275222
号公報では、表面の非磁性の酸化物を酸洗、研磨等で減
少させることを提案している。しかしながら、このよう
に表面の非金属物質を減少させるのみでは鋼板同士の絶
縁性が低下し、たとえ磁束密度は高くなっても鉄損が増
大するため鉄心素材としては好ましくない。また、酸洗
や研磨などでは、酸化物が不均一に取り除かれたり、歪
みが導入される等して、鉄損に悪影響を及ぼす。
[0005] A hard oxide film mainly composed of forsterite formed by high-temperature finish annealing also increases the end distortion. As a countermeasure against this, Japanese Patent Application Laid-Open No. 5-275222
Japanese Patent Application Laid-Open Publication No. H11-163873 proposes reducing the non-magnetic oxide on the surface by pickling, polishing, or the like. However, simply reducing the nonmetallic material on the surface in this way reduces the insulating properties between the steel plates, and increases the iron loss even if the magnetic flux density increases, which is not preferable as an iron core material. In addition, pickling, polishing, and the like have an adverse effect on iron loss, such as uneven removal of oxides and introduction of distortion.

【0006】一方、同じように二次再結晶で作られる一
方向性電磁鋼板では、表面に形成したフォルステライト
被膜とシリカ−リン酸塩系コーティングによって鋼板に
張力を付加することにより、歪みの影響を緩和する技術
が利用されている。しかしながら、かような張力コーテ
ィングを二方向性電磁鋼板に適用すると、L方向、C方
向のいずれか一方の磁気特性は向上するものの、他方の
磁気特性は劣化するという問題がある。この理由は、工
業的に製造された多結晶の二方向性電磁鋼板は結晶粒方
位にばらつきがあるため、L方向、C方向のどちらかよ
り<001>軸の集積が大きい方の特性のみが張力によ
って優先的に改善され、他方の特性はむしろ劣化するた
めである。この知見は、従来の一方向性電磁鋼板や結晶
粒方位のばらつきの小さい正キューブ方位の単結晶や小
さいサイズの切り出し試料を用いた実験結果からは予想
できない。
On the other hand, in the case of a grain-oriented electrical steel sheet similarly made by secondary recrystallization, the influence of strain is exerted by applying tension to the steel sheet by a forsterite film formed on the surface and a silica-phosphate coating. Technology to mitigate this is used. However, when such a tension coating is applied to a bidirectional magnetic steel sheet, there is a problem that the magnetic properties in either the L direction or the C direction are improved, but the other magnetic properties are deteriorated. The reason for this is that the industrially produced polycrystalline bidirectional electrical steel sheet has a variation in crystal grain orientation, so that only the characteristic of the one with the larger <001> axis accumulation in either the L direction or the C direction. This is because the tension is preferentially improved and the other property is rather deteriorated. This finding cannot be predicted from the results of experiments using a conventional unidirectional magnetic steel sheet, a single crystal having a normal cube orientation with small variation in crystal grain orientation, or a cut sample having a small size.

【0007】本発明の目的は、このような加工歪みによ
る磁気特性の劣化を抑制した磁気特性の優れた二方向性
電磁鋼板を提案するところにある。
An object of the present invention is to propose a bi-directional electrical steel sheet having excellent magnetic properties, in which the deterioration of magnetic properties due to such processing strain is suppressed.

【0008】[0008]

【課題を解決するための手段】さて、発明者らは、種々
の二方向性電磁鋼板について、加工歪みの影響を含めた
磁気特性を総合的に検討した結果、良好な磁気特性が得
られる二方向性電磁鋼板の製品形態を見出した。
Means for Solving the Problems The inventors of the present invention have comprehensively studied the magnetic properties of various bidirectional electrical steel sheets, including the effects of work strain, and as a result, have obtained good magnetic properties. A product form of grain-oriented electrical steel sheet was found.

【0009】すなわち、加工歪みを増大させる鋼板表面
の酸化物は、主に仕上げ焼鈍によって形成される。この
仕上げ焼鈍は、二次再結晶とインヒビターとして含有さ
せたAlN等の純化を目的としており、通常1200℃もの高
温で行われるため、地鉄の成分の酸化を避けることがで
きない。また、高温になるほど、鋼板の変形も大きくな
り、鋼板同士の密着も生じ易くなるため、多量の焼純分
離剤が必要となる。しかしながら、焼鈍温度が高いほど
鋼板表面に形成される酸化物が増加し、また焼鈍分離剤
が多くなるほど焼鈍分離剤に含まれる水分や酸素によっ
てやはり鋼板表面に形成される酸化物が増加する。
[0009] That is, the oxide on the steel sheet surface that increases the processing strain is mainly formed by finish annealing. This finish annealing is intended for secondary recrystallization and purification of AlN and the like contained as an inhibitor, and is usually performed at a high temperature of 1200 ° C., so that oxidation of the base iron component cannot be avoided. In addition, the higher the temperature, the greater the deformation of the steel sheet, and the more likely it is for the steel sheets to adhere to each other. However, the oxide formed on the steel sheet surface increases as the annealing temperature increases, and the oxide formed on the steel sheet surface also increases due to the moisture and oxygen contained in the annealing separating agent as the annealing separating agent increases.

【0010】この点、予め鋼中成分から、純化を必要と
するようなインヒビター成分を除いておけば、仕上げ焼
鈍時の純化は不必要となり、焼鈍温度を低下させて酸化
物の発生を抑制することが可能となる。そこで、発明者
らは、インヒビター成分を含まないSi含有鋼から正キュ
ーブ方位の二次再結晶組織を得る方法を探索するため、
Al,O,N,S,Se等のインヒビターを低減した成分の
鋼スラブを素材として、熱間圧延、熱延板焼鈍、冷間圧
延、再結晶焼鈍、仕上げ焼鈍を行う実験を繰り返した。
その結果、正キューブ方位に集積した二次再結晶組織か
らなる二方向性電磁鋼板の製造方法を開発し、特願平11
−289523号明細書において提案した。
[0010] In this respect, if an inhibitor component that requires purification is previously removed from components in steel, purification during finish annealing becomes unnecessary, and the generation of oxides is suppressed by lowering the annealing temperature. It becomes possible. Therefore, the present inventors have searched for a method of obtaining a secondary recrystallized structure in a normal cube orientation from a Si-containing steel containing no inhibitor component,
Experiments on hot rolling, hot-rolled sheet annealing, cold rolling, recrystallization annealing, and finish annealing using a steel slab having a reduced inhibitor content of inhibitors such as Al, O, N, S, and Se were repeated.
As a result, a method for manufacturing a bidirectional electrical steel sheet consisting of a secondary recrystallized structure integrated in the normal cube orientation was developed.
-289523.

【0011】次に、発明者らは、上記の技術を改良し
て、表面酸化物の量を一層低減すると共に、かかる酸化
物および表面に被成されるコーティングからの付与張力
による悪影響を排除して、磁気特性の一層の向上を図る
べく、仕上げ焼鈍雰囲気を種々に変化させ、また被成す
るコーティングの種類および厚さを変えて、打ち抜きに
より小型のEIコアを作製し、その磁気特性を評価しつ
つ、良好なコア特性が得られる条件を探索した。その結
果、試行錯誤の末に、以下に述べるような、良好な鉄心
特性が得られる二方向性電磁鋼板を開発するに至ったの
である。
[0011] Next, the inventors have improved the above technique to further reduce the amount of surface oxides and eliminate the adverse effects of such oxides and the applied tension from the coating applied to the surface. In order to further improve the magnetic properties, the finish annealing atmosphere was changed in various ways, the type and thickness of the coating to be formed were changed, and a small EI core was manufactured by punching, and the magnetic properties were evaluated. While searching for conditions under which good core characteristics could be obtained. As a result, as a result of trial and error, they have come to develop a bidirectional electrical steel sheet that can obtain good iron core characteristics as described below.

【0012】すなわち、本発明の要旨構成は次のとおり
である。 1.表面にコーティングをそなえる電磁鋼板であって、
地鉄がミラー指数{100}<001>に集積した二次
再結晶粒からなり、かつコーティングを除いた地鉄表面
の酸化物の量を、酸素量換算で片面当たり1.0 g/m2以下
に抑制したことを特徴とする磁気特性の優れた二方向性
電磁鋼板。
That is, the gist configuration of the present invention is as follows. 1. An electromagnetic steel sheet with a coating on the surface,
The base iron consists of secondary recrystallized grains with a Miller index of {100} <001>, and the amount of oxides on the base iron surface excluding the coating is reduced to 1.0 g / m 2 or less per surface in terms of oxygen content. A bi-oriented electrical steel sheet with excellent magnetic properties, characterized by being suppressed.

【0013】2.上記1において、地鉄表面の酸化物と
コーティングとが鋼板に及ぼす張力が5MPa 以下である
ことを特徴とする二方向性電磁鋼板。
2. 2. The bidirectional electrical steel sheet according to 1 above, wherein a tension exerted on the steel sheet by the oxide and the coating on the surface of the ground iron is 5 MPa or less.

【0014】3.C:0.003 〜0.08wt%,Si:2.0 〜8.
0 wt%およびMn:0.005 〜3.0 wt%を含み、かつAlを0.
02wt%以下、S,Se,OおよびNをそれぞれ30ppm 以下
に低減した成分組成になる鋼スラブを、熱間圧延し、必
要に応じて熱延板焼鈍を施したのち、1回または中間焼
鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上
げ、ついで再結晶焼鈍後、必要に応じて焼鈍分離剤を塗
布してから、最終仕上げ焼鈍を施し、さらに必要に応じ
て平坦化焼鈍を施してから、コーティング被成処理を行
う一連の工程からなる二方向性電磁鋼板の製造方法にお
いて、(1) 最終冷延前の平均結晶粒径を 200μm 以上、
かつ最終冷延圧下率を60%以上、90%以下とする、(2)
最終仕上げ焼鈍を、露点≦10℃、O2≦0.1vol%の雰囲気
中にて、1100℃以下の温度で行う、ことを特徴とする磁
気特性の優れた二方向性電磁鋼板の製造方法。
3. C: 0.003 to 0.08 wt%, Si: 2.0 to 8.
0 wt% and Mn: 0.005 to 3.0 wt%,
A steel slab having a composition of 02 wt% or less and S, Se, O and N reduced to 30 ppm or less is hot-rolled and, if necessary, subjected to hot-rolled sheet annealing. Cold rolling is performed two or more times between the layers to finish to the final sheet thickness, then, after recrystallization annealing, an annealing separator is applied as necessary, and then final finish annealing is performed, and further, flattening annealing is performed as necessary. After the application, in a method for producing a bidirectional electrical steel sheet comprising a series of steps of performing a coating pretreatment, (1) the average crystal grain size before final cold rolling is 200μm or more,
And the final rolling reduction is 60% or more and 90% or less. (2)
A method for producing a bi-directional electrical steel sheet having excellent magnetic properties, wherein the final finish annealing is performed at a temperature of 1100 ° C or less in an atmosphere having a dew point of ≦ 10 ° C. and O 2 ≦ 0.1 vol%.

【0015】4.上記3において、コーティング被成処
理として、有機樹脂コーティングまたは有機樹脂と無機
成分からなる半有機コーティングを膜厚5μm 以下で被
成するか、あるいは無機ガラス質のコーティングを膜
厚:2μm 以下で被成することを特徴とする二方向性電
磁鋼板の製造方法。
4. In the above 3, in the coating forming treatment, an organic resin coating or a semi-organic coating comprising an organic resin and an inorganic component is formed with a thickness of 5 μm or less, or an inorganic glassy coating is formed with a film thickness of 2 μm or less. A method for producing a bi-directional electrical steel sheet.

【0016】5.上記3または4において、Al含有量が
0.01wt%未満の鋼スラブを用いることを特徴とする二方
向性電磁鋼板の製造方法。
5. In the above item 3 or 4, the Al content is
A method for producing a bidirectional electrical steel sheet, comprising using a steel slab of less than 0.01 wt%.

【0017】[0017]

【発明の実施の形態】以下、本発明を具体的に説明す
る。まず、本発明の二方向性電磁鋼板は、正キューブ方
位に集積した二次再結晶粒からなる。これはL、C両方
向の磁気特性を良好にするためである。成分としては、
Siを2〜8wt%含有させると交流励磁下での鉄損が効果
的に低減するが、含まない場合でも効果がある。板厚と
しては、0.6mm 以下が交流励磁下での鉄損低減に有利が
あるが、この板厚に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the bidirectional electrical steel sheet of the present invention is composed of secondary recrystallized grains accumulated in a positive cube orientation. This is to improve the magnetic properties in both the L and C directions. As the components,
When Si is contained in an amount of 2 to 8% by weight, iron loss under AC excitation is effectively reduced, but even when Si is not contained, there is an effect. A thickness of 0.6 mm or less is advantageous for reducing iron loss under AC excitation, but is not limited to this thickness.

【0018】次に、鋼板の表面に、主として仕上げ焼鈍
時に形成される酸化物は片面当たり酸素量換算で1.0 g/
m2以下に抑制することが重要である。というのは、これ
らの酸化物量が酸素量換算で1.0 g/m2を超えると切断あ
るいは打ち抜き加工時の切断面の変形が大きくなり、切
断部周辺に大きな歪みが導入され、鉄損の著しい劣化を
招くからである。
Next, the oxide formed mainly on the surface of the steel sheet at the time of finish annealing is 1.0 g / oxygen equivalent per one surface in terms of oxygen content.
it is important to suppress the m 2 or less. Since the deformation of the cut or cutting surface during punching and these oxide content exceeds 1.0 g / m 2 oxygen amount conversion is increased, a large strain is introduced into the peripheral cutting portion, significant degradation of the core loss This is because

【0019】この酸化物は、鋼中成分や焼鈍分離剤成分
の単独または複合酸化物で、フォルステライト、シリ
カ、アルミナ、マグネシアあるいはこれらのスピネル系
化合物が主である。なお、かかる酸化物は、仕上げ焼鈍
の他に、脱炭焼鈍や平坦化焼鈍等の熱処理でも形成され
ることがあるが、この場合も含めて、最終的に酸素量換
算で1.0 g/m2以下に抑制する必要がある。
This oxide is a single oxide or a composite oxide of a steel component and an annealing separator component, and is mainly forsterite, silica, alumina, magnesia or a spinel compound thereof. In addition, such an oxide may be formed by heat treatment such as decarburization annealing or flattening annealing in addition to the finish annealing. In this case as well, the final amount is 1.0 g / m 2 in terms of oxygen content. It is necessary to suppress the following.

【0020】また、地鉄表面には絶縁性を高めるためコ
ーティングを被成する必要がある。さらに、表面の酸化
物とこのコーティングが地鉄に及ぼす合計の張力につい
ては、5MPa 以下とすることが好ましい。というのは、
この張力が5MPa よりも大きいとL方向、C方向のうち
<100>軸の集積度の低い方の磁気特性が劣化するか
らである。この鋼板に及ぼす張力を小さくするために
は、酸化物およびコーティングの厚さを小さくするこ
と、コーティング材料として焼き付け温度の低いものを
適用すること、熱膨張係数が小さいかまたはヤング率が
小さいコーティングを適用することが有効である。
Further, it is necessary to apply a coating on the surface of the ground iron in order to enhance the insulating property. Further, the total tension exerted on the ground iron by the surface oxide and this coating is preferably 5 MPa or less. I mean,
If the tension is greater than 5 MPa, the magnetic characteristics of the <100> axis in the L direction and the C direction with the lower degree of integration are deteriorated. In order to reduce the tension exerted on this steel sheet, reduce the thickness of the oxide and coating, apply a material with a low baking temperature as a coating material, and use a coating with a small coefficient of thermal expansion or a small Young's modulus. It is effective to apply.

【0021】次に、本発明の製造方法について説明す
る。素材の成分組成は次のとおりである。 C:0.003 〜0.08wt% Cを 0.003〜0.08wt%の範囲で含有させることによっ
て、二次再結晶で正キューブ方位を好適に得ることがで
きる。この理由は、明確ではないが、固溶Cの影響で圧
延時に変形帯の形成が促進され、正キューブ方位の再結
晶核が増加することによるものと推測される。
Next, the manufacturing method of the present invention will be described. The component composition of the material is as follows. C: 0.003 to 0.08 wt% By containing C in the range of 0.003 to 0.08 wt%, the normal cube orientation can be suitably obtained by secondary recrystallization. Although the reason is not clear, it is presumed that the formation of a deformation zone during rolling is promoted by the effect of solid solution C, and the number of recrystallization nuclei in the normal cube orientation increases.

【0022】Si:2.0 〜8.0 wt% Siは、電気抵抗を高め、鉄損を改善する有用元素である
が、含有量が 2.0wt%に満たないとその効果に乏しく、
またγ変態を生じ、熱延組織が大きく変化する他、最終
仕上焼鈍において変態し、良好な磁気特性を得ることが
できない。一方、Si量が 8.0wt%を超えると、製品の二
次加工性が悪化し、さらに飽和磁束密度も低下するの
で、Si量は 2.0〜8.0 wt%の範囲に制限した。
Si: 2.0-8.0 wt% Si is a useful element for increasing electric resistance and improving iron loss, but its effect is poor if the content is less than 2.0 wt%.
In addition, γ transformation occurs and the hot-rolled structure changes significantly, and it transforms in the final finish annealing, so that good magnetic properties cannot be obtained. On the other hand, if the Si content exceeds 8.0 wt%, the secondary workability of the product deteriorates and the saturation magnetic flux density also decreases, so the Si content was limited to the range of 2.0 to 8.0 wt%.

【0023】Mn:0.005 〜3.0 wt% Mnは、熱間加工性を良好にするために必要な元素である
が、0.005 wt%未満ではその添加効果に乏しく、一方
3.0wt%を超えると二次再結晶が困難になるので、Mn量
は 0.005〜3.0 wt%の範囲に制限した。
Mn: 0.005 to 3.0 wt% Mn is an element necessary for improving hot workability, but if it is less than 0.005 wt%, the effect of its addition is poor.
If the content exceeds 3.0 wt%, secondary recrystallization becomes difficult, so the Mn content is limited to the range of 0.005 to 3.0 wt%.

【0024】Al:0.02wt%以下 Alを0.02wt%以下、好ましくは0.01wt%未満にすると、
二次再結晶がより低温で発現するので仕上げ焼鈍温度を
低下させることができ、コイルの密着防止だけでなく、
酸化物生成抑制効果を得ることができる。
Al: 0.02 wt% or less When Al is made 0.02 wt% or less, preferably less than 0.01 wt%,
Since secondary recrystallization occurs at a lower temperature, the finish annealing temperature can be lowered, not only to prevent coil adhesion,
An effect of suppressing oxide formation can be obtained.

【0025】S,Se,OおよびN:30 ppm以下 これらの元素はいずれも、二次再結晶の発現を阻害し、
しかも地鉄中に残存して鉄損を劣化させる有害元素であ
る。そこで、Se,S,OおびNはいずれも30ppm 以下
(望ましくは20ppm 以下)に低減するものとした。
S, Se, O and N: 30 ppm or less All of these elements inhibit the development of secondary recrystallization,
Moreover, it is a harmful element that remains in the base iron and deteriorates iron loss. Therefore, Se, S, O and N are all reduced to 30 ppm or less (preferably 20 ppm or less).

【0026】上記の好適成分組成に調整した溶鋼を、通
常、造塊法や連続鋳造法によりスラブとする。また、直
接鋳造法を用いて 100mm以下の厚さの薄鋳片を直接製造
してもよい。スラブは、通常の方法で加熱して熱間圧延
するが、鋳造後、加熱せずに直ちに熱延に供してもよ
い。また、薄鋳片の場合には、熱間圧延を行っても良い
し、熱間圧延を省略してそのまま以後の工程に進めても
よい。スラブ加熱温度は、素材成分にインヒビター成分
を含まないので、熱間圧延が可能な最低温度の1100℃程
度で十分である。
The molten steel adjusted to the above preferable composition is usually made into a slab by an ingot-making method or a continuous casting method. Further, a thin slab having a thickness of 100 mm or less may be directly manufactured using a direct casting method. The slab is heated by a usual method and hot rolled, but may be subjected to hot rolling immediately after casting without heating. In the case of thin cast slabs, hot rolling may be performed, or hot rolling may be omitted and the process may proceed to the subsequent steps. Since the slab heating temperature does not include the inhibitor component in the raw material component, a minimum temperature of about 1100 ° C. at which hot rolling is possible is sufficient.

【0027】ついで、必要に応じて熱延板焼鈍を施した
のち、1回または中間焼鈍を挟む2回以上の冷間圧延を
施す。熱延板焼鈍は、磁気特性の向上に有用である。同
様に、中間焼鈍を冷間圧延の間に挟むことは、磁気特性
の安定化に有用である。しかしながら、いずれも生産コ
ストを上昇させることになるので、経済的観点および最
終冷延前の粒径を適正範囲にする必要から、熱延板焼鈍
や中間焼鈍の取捨選択および焼鈍温度と時間が決定され
る。
Then, after hot-rolled sheet annealing is performed, if necessary, cold rolling is performed once or twice or more with intermediate annealing. Hot rolled sheet annealing is useful for improving magnetic properties. Similarly, sandwiching intermediate annealing between cold rollings is useful for stabilizing magnetic properties. However, since all of these will increase production costs, the selection of hot-rolled sheet annealing and intermediate annealing, and the annealing temperature and time are determined from the economic point of view and the need to keep the grain size before final cold rolling in an appropriate range. Is done.

【0028】本発明において、仕上げ焼鈍後に{10
0}<001>組織を成長させるためには、最終冷延前
の平均結晶粒径を 200μm 以上に大きくし、かつ圧下率
を60〜90%の範囲とすることが重要である。また、かか
る冷間圧延は 150℃以上の温度で行うことが、正キュー
ブ方位の二次再結晶を生じさせる上で有効である。さら
に、クロス圧延や低張力で鋼帯幅が拡大する圧延条件で
の冷延も適用することができる。
In the present invention, after finish annealing,
In order to grow the 0} <001> structure, it is important that the average crystal grain size before final cold rolling is increased to 200 µm or more and the rolling reduction is in the range of 60 to 90%. Further, it is effective to perform such cold rolling at a temperature of 150 ° C. or more in order to cause secondary recrystallization in the normal cube orientation. Furthermore, cross rolling or cold rolling under rolling conditions in which the width of a steel strip is increased by low tension can also be applied.

【0029】次に、再結晶焼鈍を行う。焼鈍条件は、湿
水素雰囲気中において 800〜950 ℃, 5〜200 秒間程度
が好ましく、この焼鈍によって鋼中のCを磁気時効の生
じない 0.003wt%以下まで低減することが好ましい。
Next, recrystallization annealing is performed. The annealing conditions are preferably 800 to 950 ° C. for 5 to 200 seconds in a wet hydrogen atmosphere, and it is preferable to reduce C in the steel to 0.003 wt% or less at which magnetic aging does not occur by this annealing.

【0030】その後、必要に応じて焼鈍分離剤を適用す
る。焼鈍分離剤としては、シリカ、アルミナ、マグネシ
ア等の耐火物粉末のスラリーあるいはコロイド溶液が好
適である。また、これらの耐火物粉末を静電塗布等のド
ライコーティングにより鋼板に付着させる方法は、仕上
げ焼鈍雰囲気に水分を含ませないためより好ましい。さ
らに、これらの耐火物を溶射等で表面にコーティングし
た鋼板を挟み込む方法も適用できる。
Thereafter, an annealing separator is applied as required. As the annealing separator, a slurry or a colloid solution of a refractory powder such as silica, alumina, and magnesia is preferable. A method of attaching these refractory powders to a steel sheet by dry coating such as electrostatic coating is more preferable because moisture is not contained in the finish annealing atmosphere. Furthermore, a method of sandwiching a steel sheet whose surface is coated with these refractories by thermal spraying or the like can also be applied.

【0031】次に、仕上げ焼鈍を行う。ここで、仕上げ
焼鈍は、正キューブ方位を二次再結晶させ、十分に成長
させるため、 800℃以上の温度域に10時間以上保持する
ことが望ましい。一方、地鉄表面に形成される酸化物を
酸素量換算で片面当たり1g/m2以下とする必要があるの
で、雰囲気中の水蒸気、酸素濃度はそれぞれ、露点≦10
℃、O2≦0.1vol%と十分に低減する必要がある。また、
酸化物の生成を抑制するためには、仕上げ焼鈍温度は11
00℃以下、より好ましくは 900℃以下にする必要があ
る。このように仕上げ焼鈍温度を 900℃以下に限定する
ためには、前述のように二次再結晶が発生する温度を下
げるため、Alを0.01wt%未満に限定するのが好ましい。
Next, finish annealing is performed. Here, in the finish annealing, in order to recrystallize the positive cube orientation again and grow sufficiently, it is desirable to maintain the temperature in a temperature range of 800 ° C. or more for 10 hours or more. On the other hand, the amount of oxides formed on the surface of the base iron must be 1 g / m 2 or less per one surface in terms of oxygen content.
° C, O 2 ≤ 0.1 vol%. Also,
To suppress oxide formation, the final annealing temperature should be 11
The temperature must be lower than 00 ° C, more preferably lower than 900 ° C. In order to limit the finish annealing temperature to 900 ° C. or lower as described above, it is preferable to limit Al to less than 0.01 wt% in order to lower the temperature at which secondary recrystallization occurs as described above.

【0032】次に、コーティング被成処理を施す。かか
るコーティング被成処理においては、鋼板に及ぼす張力
を小さくするために、酸化物およびコーティングの厚さ
を小さくすること、コーティング材料として焼き付け温
度の低いものを適用すること、熱膨張係数が小さいかま
たはヤング率が小さいコーティングを適用することが有
効である。
Next, a coating forming treatment is performed. In such a coating forming treatment, in order to reduce the tension applied to the steel sheet, the thickness of the oxide and the coating is reduced, a material having a low baking temperature is applied as a coating material, the coefficient of thermal expansion is small or It is effective to apply a coating having a small Young's modulus.

【0033】コーティングの種類については、付与張力
が5MPa 以下であれば特に限定されることはないが、例
えば有機樹脂コーティング、または有機樹脂と無機成分
からなる半有機コーティングが好適である。このうち、
無機成分としては、リン酸、リン酸塩、クロム酸、クロ
ム酸塩、重クロム酸塩、ホウ酸、ケイ酸塩、シリカおよ
びアルミナのうちから選んだ1種または2種以上が挙げ
られる。これらの有機樹脂を含むコーティングは、切
断、打ち抜き加工時の切断部の歪みを抑制し鉄損劣化を
防止する効果もあり、好適である。なお、かかる有機樹
脂コーティングや半有機コーティングの膜厚について
は、層間絶縁性確保の面から 0.5μm 以上に、また張力
低減および占積率低下防止の面から5μm 以下程度とす
ることが好ましい。
The type of coating is not particularly limited as long as the applied tension is 5 MPa or less. For example, an organic resin coating or a semi-organic coating comprising an organic resin and an inorganic component is preferable. this house,
Examples of the inorganic component include one or more selected from phosphoric acid, phosphate, chromate, chromate, dichromate, boric acid, silicate, silica, and alumina. Coatings containing these organic resins are suitable because they also have the effect of suppressing distortion of the cut portion during cutting and punching, and preventing iron loss deterioration. The thickness of the organic resin coating or semi-organic coating is preferably 0.5 μm or more from the viewpoint of ensuring interlayer insulation, and is preferably approximately 5 μm or less from the viewpoint of reducing the tension and preventing the space factor from lowering.

【0034】また、リン酸塩とクロム酸、クロム酸塩、
重クロム酸塩、ホウ酸から選ばれる1種または2種以上
の成分からなる無機ガラス質のコーティングも適用でき
る。この無機ガラス質コーティングの場合、張力を5MP
a 以下にするため、焼き付け温度は 400℃以下とし、コ
ーティングの厚さは片面当たり2μm 以下とすることが
好ましい。なお、耐熱性を向上させるためにシリカまた
はアルミナの微粉末あるいはコロイドを若干量含有させ
ても良い。
Also, phosphate and chromate, chromate,
An inorganic vitreous coating comprising one or more components selected from dichromate and boric acid can also be applied. In the case of this inorganic glassy coating, the tension is 5MP
In order to keep the temperature below a, the baking temperature is preferably 400 ° C. or less, and the thickness of the coating is preferably 2 μm or less per side. In order to improve heat resistance, a small amount of silica or alumina fine powder or colloid may be contained.

【0035】[0035]

【実施例】実施例1 Si:3.1 wt%, C:0.012 wt%, Mn:0.1 wt%, Al:0.
009 wt%, N:10ppm, O:13ppm , S:5ppm およびS
e:4ppm を含み、残部は実質的にFeの組成になる鋼ス
ラブを、連続鋳造にて製造した。ついで、熱間圧延によ
り厚さ:2.7 mmの熱延板としたのち、1140℃、均熱60秒
の熱延板焼鈍を行い、冷間圧延を 270℃で行って厚さ:
0.35mmの最終板厚に仕上げた。ここに、最終冷延前の平
均結晶粒径は 280μm であった。ついで、40%H2−60%
N2、露点:50℃の雰囲気中で 920℃、均熱30秒の再結晶
焼鈍を行い、鋼中Cを0.002 wt%まで低減した。つい
で、この鋼板の表面に、シリカ粉末とアルミナ粉末を
3:1の割合で混合した焼鈍分離剤を静電塗布し、コイ
ルに巻き取ったのち、仕上げ焼鈍を行った。仕上げ焼鈍
は、常温から 800℃まで5時間で、 800℃から 950℃ま
では25時間で昇温し、さらに 950℃に36時間保持してか
ら、炉冷することにより行った。ここで、炉内の雰囲気
中に導入した水蒸気量を種々に変化させて、鋼板表面に
形成される酸化物の量を制御した。
EXAMPLES Example 1 Si: 3.1 wt%, C: 0.012 wt%, Mn: 0.1 wt%, Al: 0.
009 wt%, N: 10 ppm, O: 13 ppm, S: 5 ppm and S
e: A steel slab containing 4 ppm and the balance being substantially Fe was produced by continuous casting. Then, a hot-rolled sheet having a thickness of 2.7 mm is formed by hot rolling, and then hot-rolled sheet annealing is performed at 1140 ° C and a soaking temperature of 60 seconds, and cold rolling is performed at 270 ° C.
Finished to a final thickness of 0.35mm. Here, the average crystal grain size before final cold rolling was 280 μm. Then 40% H 2 -60%
Recrystallization annealing was performed at 920 ° C. and 30% soaking in an atmosphere of N 2 and a dew point of 50 ° C. to reduce C in steel to 0.002 wt%. Then, an annealing separator in which silica powder and alumina powder were mixed at a ratio of 3: 1 was electrostatically applied to the surface of the steel sheet, wound around a coil, and then subjected to finish annealing. Finish annealing was performed by raising the temperature from room temperature to 800 ° C. in 5 hours, from 800 ° C. to 950 ° C. in 25 hours, maintaining the temperature at 950 ° C. for 36 hours, and then cooling the furnace. Here, the amount of oxide formed on the surface of the steel sheet was controlled by changing the amount of water vapor introduced into the furnace atmosphere.

【0036】その後、コイルの焼鈍分離剤を洗浄除去
後、鋼帯に張力をかけながら5%H2−95%N2雰囲気中に
て 840℃で60秒焼鈍して平坦化し、さらに有機樹脂を重
クロム酸マグネシウム、ホウ酸からなる無機成分中に分
散させた半有機コーティングを1.0 μm の厚さで形成し
た。上記の工程により、粒径:約20mmの正キューブ方位
に集積した二次再結晶粒からなる二方向性電磁鋼板が得
られた。次に、この鋼板からEI−48形のEIコア試料
を打ち抜き加工で製造し、1.5T、50Hzにおける鉄損特
性を測定した。得られた結果を鋼板表面の酸素目付量と
の関係で表1に示す。
Thereafter, after removing the annealing separator from the coil by washing, the steel strip is annealed at 840 ° C. for 60 seconds in a 5% H 2 -95% N 2 atmosphere while applying tension to flatten the organic strip. A 1.0 μm thick semi-organic coating dispersed in an inorganic component consisting of magnesium dichromate and boric acid was formed. Through the above steps, a bidirectional electrical steel sheet comprising secondary recrystallized grains accumulated in a positive cube orientation with a grain size of about 20 mm was obtained. Next, an EI-48 type EI core sample was manufactured from this steel plate by punching, and the iron loss characteristics at 1.5 T and 50 Hz were measured. Table 1 shows the obtained results in relation to the oxygen basis weight of the steel sheet surface.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に示したとおり、鋼板表面の酸化物量
が酸素量換算で1.0 g/m2以下に抑制した場合には、優れ
た鉄損特性を得ることができた。
As shown in Table 1, when the amount of oxide on the surface of the steel sheet was suppressed to 1.0 g / m 2 or less in terms of the amount of oxygen, excellent iron loss characteristics could be obtained.

【0039】実施例2 実施例1と同様にして製造した、表面の酸化物量が酸素
量換算で0.4 g/m2の正キューブ方位の二次再結晶粒から
なる鋼板に、厚さを変えて無機質のコーティングを被成
した。このコーティングは、リン酸アルミニウム、クロ
ム酸カリウム、ホウ酸からなる溶液にコロイダルシリカ
を混合したものを、800 ℃で焼き付けて厚さ1μm の被
膜にしたものである。ここで、コロイダルシリカの含有
量を増やすとコーティングの熱膨張係数が小さくなり、
鋼板に与える張力が増加する。この鋼板に、0〜6MPa
の圧縮応力をかけて磁歪を測定し、磁歪が急激に増加し
たときの圧縮応力を鋼板にかかっている張力とした。こ
の鋼板のL方向、C方向に 1.5T、50Hzで励磁したとき
の鉄損をエプスタイン試験で測定した結果を、表2に示
す。
Example 2 A steel plate produced in the same manner as in Example 1 and comprising secondary recrystallized grains in a positive cube orientation having a surface oxide amount of 0.4 g / m 2 in terms of oxygen amount, with a different thickness. An inorganic coating was applied. This coating is obtained by baking at 800 ° C. a solution obtained by mixing colloidal silica with a solution comprising aluminum phosphate, potassium chromate and boric acid to form a film having a thickness of 1 μm. Here, increasing the content of colloidal silica reduces the thermal expansion coefficient of the coating,
The tension applied to the steel sheet increases. 0-6MPa
And the magnetostriction was measured, and the compressive stress when the magnetostriction rapidly increased was defined as the tension applied to the steel sheet. Table 2 shows the results obtained by measuring the iron loss of this steel sheet when excited in the L and C directions at 1.5 T and 50 Hz by the Epstein test.

【0040】[0040]

【表2】 [Table 2]

【0041】表2から明らかなように、鋼板に対する付
与張力が5MPa を超えるとC方向の鉄損が大幅に劣化し
て、好ましくない。これに対し、付与張力の大きさが5
MPa 以下、特に3MPa 以下になると、C方向の鉄損劣化
が極めて小さくなり、好適な鉄損特性が得られている。
なお、コロイダルシリカを添加せず 350℃で焼き付けた
コーティングや実施例1で用いた半有機コーティング
は、鋼板にほとんど張力を与えず、従ってコーティング
被成後の鉄損もL方向平均:1.22W/kg、C方向平均:1.
45W/kgと良好な結果を得た。
As apparent from Table 2, when the applied tension to the steel sheet exceeds 5 MPa, the iron loss in the C direction is greatly deteriorated, which is not preferable. On the other hand, when the magnitude of the applied tension is 5
When the pressure is less than MPa, especially less than 3 MPa, deterioration of iron loss in the C direction becomes extremely small, and suitable iron loss characteristics are obtained.
The coating baked at 350 ° C. without adding colloidal silica and the semi-organic coating used in Example 1 hardly give tension to the steel sheet, and therefore, the iron loss after the coating was formed also averaged in the L direction: 1.22 W / kg, C direction average: 1.
A good result of 45 W / kg was obtained.

【0042】実施例3 表3に示す成分組成になる鋼スラブを、熱間圧延、熱延
板焼鈍、冷間圧延、再結晶焼鈍および仕上げ焼鈍の条件
を種々に変えて0.35mm厚の電磁鋼板とした後、平坦化焼
鈍およびコーティング被成処理を行った。これらの試料
について 1.5T、50Hzにおける鉄損をエプスタイン試験
で評価した。なお、エプスタイン試験試料はL方向とC
方向に切り出した試料を半量ずつ用いた。同一成分の鋼
から種々の製造条件で得られた試料のうち、最も鉄損の
低かったものの測定結果を、表3に示す。
Example 3 A steel slab having the composition shown in Table 3 was prepared by changing the conditions of hot rolling, hot-rolled sheet annealing, cold rolling, recrystallization annealing and finish annealing to various 0.35 mm-thick electromagnetic steel sheets. After that, flattening annealing and coating forming treatment were performed. These samples were evaluated for iron loss at 1.5 T and 50 Hz by an Epstein test. Note that the Epstein test sample is in the L direction and C direction.
Samples cut in the direction were used in half. Table 3 shows the measurement results of samples having the lowest iron loss among samples obtained from steel having the same composition under various manufacturing conditions.

【0043】[0043]

【表3】 [Table 3]

【0044】表3に示したとおり、本発明の成分組成範
囲を満足するものはいずれも、良好な鉄損が得られてい
るのに対して、C,Mn,Al,S,Se,O,Nのいずれか
が適正範囲を逸脱したものはいずれも鉄損が増大してお
り、鉄心材料としてふさわしくない。
As shown in Table 3, all of those satisfying the component composition range of the present invention had good iron loss, whereas C, Mn, Al, S, Se, O, Any one of N out of the proper range has increased iron loss, and is not suitable as a core material.

【0045】実施例4 表3の適合例10の成分を基本として、Al含有量のみを変
更した鋼の二次再結晶開始温度について調査した。再結
晶焼鈍まで行った鋼板から、長さ:400 mm、幅:50mmに
切り出した試料を、 800〜1200℃の温度差がある電気炉
に装入し、50時間保持したのち、マクロエッチングを行
って二次再結晶の有無と対応する温度とを比較すること
によって、二次再結晶開始温度を評価した。表4に、得
られた結果を示す。
Example 4 The secondary recrystallization onset temperature of a steel in which only the Al content was changed was investigated based on the components of conforming example 10 in Table 3. A sample cut to a length of 400 mm and a width of 50 mm from a steel plate that has been subjected to recrystallization annealing is placed in an electric furnace having a temperature difference of 800 to 1200 ° C., held for 50 hours, and then subjected to macro etching. The secondary recrystallization initiation temperature was evaluated by comparing the presence or absence of secondary recrystallization with the corresponding temperature. Table 4 shows the obtained results.

【0046】[0046]

【表4】 [Table 4]

【0047】表4に示したように、Alを0.02wt%以下と
することにより2次再結晶が起こっている。特に、Al含
有量が0.01wt%未満では、二次再結晶開始温度が低くな
り、より低温での仕上げ焼鈍が可能となるので、鋼板表
面に生成する酸化物量を低減する上で極めて有利であ
る。
As shown in Table 4, secondary recrystallization occurs when the content of Al is 0.02 wt% or less. In particular, when the Al content is less than 0.01 wt%, the secondary recrystallization onset temperature becomes lower, and the finish annealing at a lower temperature becomes possible, which is extremely advantageous in reducing the amount of oxides generated on the steel sheet surface. .

【0048】[0048]

【発明の効果】かくして、本発明に従い、地鉄表面の酸
化物量を酸素量換算で1.0 g/m2以下に抑制することによ
って、加工による特性劣化の小さい二方向性電磁鋼板を
効果的に得ることができる。また、酸化物とコーティン
グとが鋼板に及ぼす張力の合計を5MPa 以下とすること
により、L方向とC方向の両方の磁気特性が良好な二方
向性電磁鋼板を得ることができる。そして、上記した本
発明の良好な磁気特性を示す二方向性電磁鋼板によっ
て、変圧器、モーターおよび発電機等の鉄心の鉄損につ
いて、格段に低減することができる。
Thus, according to the present invention, by suppressing the amount of oxide on the surface of the base iron to 1.0 g / m 2 or less in terms of oxygen, a bidirectional electrical steel sheet with small characteristic deterioration due to working can be effectively obtained. be able to. Further, by setting the total tension exerted on the steel sheet by the oxide and the coating to 5 MPa or less, it is possible to obtain a bidirectional electromagnetic steel sheet having good magnetic properties in both the L direction and the C direction. And the iron loss of iron cores, such as a transformer, a motor, and a generator, can be reduced remarkably by the above-mentioned bidirectional electrical steel sheet showing good magnetic characteristics of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 22/28 C23C 22/28 H01F 1/16 H01F 1/16 A 1/18 1/18 (72)発明者 今村 猛 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K026 AA03 AA22 BA01 BA02 BA03 BA08 BB05 BB10 CA16 CA20 CA22 CA24 CA39 CA41 DA16 EA07 EB08 EB11 4K033 RA04 SA03 TA02 5E041 AA02 AA19 BC01 BC05 BC08 CA02 CA04 HB05 HB07 HB11 NN01 NN05 NN06 NN17 NN18──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 22/28 C23C 22/28 H01F 1/16 H01F 1/16 A 1/18 1/18 (72) Invention Person Takeshi Imamura 1-chome, Kawasaki-dori Mizushima, Kurashiki-shi, Okayama Pref. (72) Inside Mizushima Steel Works, Kawasaki Steel Corporation (72) Inventor Mitsumasa Kurosawa 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Mizushima, Kawasaki Steel F-term in the steelworks (reference) 4K026 AA03 AA22 BA01 BA02 BA03 BA08 BB05 BB10 CA16 CA20 CA22 CA24 CA39 CA41 DA16 EA07 EB08 EB11 4K033 RA04 SA03 TA02 5E041 AA02 AA19 BC01 BC05 BC08 CA02 CA04 HB05 NN07NN05N

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 表面にコーティングをそなえる電磁鋼板
であって、地鉄がミラー指数{100}<001>に集
積した二次再結晶粒からなり、かつコーティングを除い
た地鉄表面の酸化物の量を、酸素量換算で片面当たり1.
0 g/m2以下に抑制したことを特徴とする磁気特性の優れ
た二方向性電磁鋼板。
1. An electromagnetic steel sheet having a coating on its surface, wherein the ground iron is composed of secondary recrystallized grains accumulated at a Miller index of {100} <001>, and the oxide of the ground iron surface excluding the coating is removed. The amount is 1.
A bi-directional electrical steel sheet having excellent magnetic properties, characterized by being suppressed to 0 g / m 2 or less.
【請求項2】 請求項1において、地鉄表面の酸化物と
コーティングとが鋼板に及ぼす張力が5MPa 以下である
ことを特徴とする二方向性電磁鋼板。
2. The bidirectional electrical steel sheet according to claim 1, wherein the tension exerted on the steel sheet by the oxide and the coating on the surface of the ground iron is 5 MPa or less.
【請求項3】 C:0.003 〜0.08wt%,Si:2.0 〜8.0
wt%およびMn:0.005 〜3.0 wt%を含み、かつAlを0.02
wt%以下、S,Se,OおよびNをそれぞれ30ppm以下に
低減した成分組成になる鋼スラブを、熱間圧延し、必要
に応じて熱延板焼鈍を施したのち、1回または中間焼鈍
を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、
ついで再結晶焼鈍後、必要に応じて焼鈍分離剤を塗布し
てから、最終仕上げ焼鈍を施し、さらに必要に応じて平
坦化焼鈍を施してから、コーティング被成処理を行う一
連の工程からなる二方向性電磁鋼板の製造方法におい
て、(1) 最終冷延前の平均結晶粒径を 200μm 以上、か
つ最終冷延圧下率を60%以上、90%以下とする、(2) 最
終仕上げ焼鈍を、露点≦10℃、O2≦0.1vol%の雰囲気中
にて、1100℃以下の温度で行う、ことを特徴とする磁気
特性の優れた二方向性電磁鋼板の製造方法。
3. C: 0.003 to 0.08 wt%, Si: 2.0 to 8.0
wt% and Mn: 0.005 to 3.0 wt%, and Al
A steel slab having a component composition in which S, Se, O, and N are reduced to 30 ppm or less, respectively, is hot-rolled, and if necessary, subjected to hot-rolled sheet annealing, and then subjected to one or intermediate annealing. Finished to the final thickness by performing cold rolling two or more times between
Next, after recrystallization annealing, an annealing separating agent is applied as necessary, a final finish annealing is applied, and further, a flattening annealing is applied as necessary, followed by a series of steps for performing coating treatment. In the method for producing grain-oriented electrical steel sheets, (1) the average crystal grain size before final cold rolling is 200 μm or more, and the final cold rolling reduction is 60% or more and 90% or less; A method for producing a bidirectional electrical steel sheet having excellent magnetic properties, wherein the method is performed at a temperature of 1100 ° C. or less in an atmosphere with a dew point ≦ 10 ° C. and O 2 ≦ 0.1 vol%.
【請求項4】 請求項3において、コーティング被成処
理として、有機樹脂コーティングまたは有機樹脂と無機
成分からなる半有機コーティングを膜厚:5μm以下で
被成するか、あるいは無機ガラス質のコーティングを膜
厚:2μm 以下で被成することを特徴とする二方向性電
磁鋼板の製造方法。
4. The coating forming treatment according to claim 3, wherein an organic resin coating or a semi-organic coating comprising an organic resin and an inorganic component is formed with a thickness of 5 μm or less, or an inorganic vitreous coating is formed. Thickness: a method for producing a bidirectional electrical steel sheet, wherein the thickness is 2 μm or less.
【請求項5】 請求項3または4において、Al含有量が
0.01wt%未満の鋼スラブを用いることを特徴とする二方
向性電磁鋼板の製造方法。
5. The method according to claim 3, wherein the Al content is
A method for producing a bidirectional electrical steel sheet, comprising using a steel slab of less than 0.01 wt%.
JP34599599A 1999-12-03 1999-12-06 Manufacturing method of bi-directional electrical steel sheet Expired - Fee Related JP4075258B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP34599599A JP4075258B2 (en) 1999-12-06 1999-12-06 Manufacturing method of bi-directional electrical steel sheet
US09/722,017 US6562473B1 (en) 1999-12-03 2000-11-27 Electrical steel sheet suitable for compact iron core and manufacturing method therefor
TW089125509A TW486522B (en) 1999-12-03 2000-11-30 Electrical steel sheet suitable for compact iron core and manufacturing method therefor
DE60016149T DE60016149T2 (en) 1999-12-03 2000-11-30 Electrical steel sheet for compact iron cores and its manufacturing process
EP00126202A EP1108794B1 (en) 1999-12-03 2000-11-30 Electrical steel sheet suitable for compact iron core and manufacturing method therefor
KR1020000072525A KR100727333B1 (en) 1999-12-03 2000-12-01 electrical steel sheet suitable for compact iron core and manufacturing method therefor
CN00137241A CN1124357C (en) 1999-12-03 2000-12-01 Electric steel plate suitable for making small core and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34599599A JP4075258B2 (en) 1999-12-06 1999-12-06 Manufacturing method of bi-directional electrical steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007298926A Division JP4811390B2 (en) 2007-11-19 2007-11-19 Bi-directional electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2001164344A true JP2001164344A (en) 2001-06-19
JP4075258B2 JP4075258B2 (en) 2008-04-16

Family

ID=18380427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34599599A Expired - Fee Related JP4075258B2 (en) 1999-12-03 1999-12-06 Manufacturing method of bi-directional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4075258B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240078A (en) * 2004-02-25 2005-09-08 Jfe Steel Kk Grain oriented silicon steel sheet having excellent secular stability of low magnetic field magnetic characteristic, and method for manufacturing the same
JP2008050676A (en) * 2006-08-28 2008-03-06 Jfe Steel Kk Method for producing grain oriented electrical steel sheet
WO2017016604A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
EP3733900A4 (en) * 2017-12-26 2021-04-07 Posco Double oriented electrical steel sheet and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240078A (en) * 2004-02-25 2005-09-08 Jfe Steel Kk Grain oriented silicon steel sheet having excellent secular stability of low magnetic field magnetic characteristic, and method for manufacturing the same
JP4626155B2 (en) * 2004-02-25 2011-02-02 Jfeスチール株式会社 Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same
JP2008050676A (en) * 2006-08-28 2008-03-06 Jfe Steel Kk Method for producing grain oriented electrical steel sheet
WO2017016604A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
WO2017017256A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
US11767583B2 (en) 2015-07-29 2023-09-26 Aperam FeCo alloy, FeSi alloy or Fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
EP3733900A4 (en) * 2017-12-26 2021-04-07 Posco Double oriented electrical steel sheet and method for manufacturing same
US11802319B2 (en) 2017-12-26 2023-10-31 Posco Co., Ltd Double oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP4075258B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
KR100727333B1 (en) electrical steel sheet suitable for compact iron core and manufacturing method therefor
WO2012017689A1 (en) Grain-oriented magnetic steel sheet and process for producing same
JPWO2014013615A1 (en) Method for producing grain-oriented electrical steel sheet
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP7163976B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3392669B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR100779579B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic flux density
JP2001247944A (en) Low magnetostriction bidirectionary oriented silicon steel sheet and its manufacturing method
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP4811390B2 (en) Bi-directional electrical steel sheet
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JP2001158919A (en) Method for producing grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
JP4075258B2 (en) Manufacturing method of bi-directional electrical steel sheet
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US3932235A (en) Method of improving the core-loss characteristics of cube-on-edge oriented silicon-iron
JPH1161261A (en) Manufacture of grain-oriented electrical steel sheet excellent in magnetic characteristic
JP2003342642A (en) Process for manufacturing grain-oriented electrical steel sheet showing excellent magnetic properties and coating film properties
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JP7226677B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2671088B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties and remarkably excellent iron core workability, and manufacturing method thereof
EP4273280A1 (en) Method for producing a grain-oriented electrical steel strip and grain-oriented electrical steel strip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4075258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees