JP4626155B2 - Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same - Google Patents

Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same Download PDF

Info

Publication number
JP4626155B2
JP4626155B2 JP2004049053A JP2004049053A JP4626155B2 JP 4626155 B2 JP4626155 B2 JP 4626155B2 JP 2004049053 A JP2004049053 A JP 2004049053A JP 2004049053 A JP2004049053 A JP 2004049053A JP 4626155 B2 JP4626155 B2 JP 4626155B2
Authority
JP
Japan
Prior art keywords
grain
steel sheet
oriented electrical
electrical steel
field magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004049053A
Other languages
Japanese (ja)
Other versions
JP2005240078A (en
Inventor
峰男 村木
渡辺  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004049053A priority Critical patent/JP4626155B2/en
Publication of JP2005240078A publication Critical patent/JP2005240078A/en
Application granted granted Critical
Publication of JP4626155B2 publication Critical patent/JP4626155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、絶縁被膜付き方向性電磁鋼板および被膜の被成方法に係り、特にクロムを含まず低磁場磁気特性の経時安定性に優れた方向性電磁鋼板及びその製造方法に関する。     The present invention relates to a grain-oriented electrical steel sheet with an insulating coating and a method for forming the coating, and more particularly to a grain-oriented electrical steel sheet that does not contain chromium and has excellent temporal stability of low magnetic field magnetic characteristics and a method for producing the same.

方向性電磁鋼板の表面には、絶縁性、加工性、防錆性等を付与するために被膜が施されている。一般にこの表面被膜は、仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜とその上に形成されるリン酸塩系の上塗り被膜からなり、特許文献1、特許文献2等に開示されているように、これによって鋼板に比べて低い熱膨張率を持たせて鋼板との間の熱膨張率の差により鋼板に張力を生ぜしめ、鉄損低減効果が発揮されるようになっている。   A film is applied to the surface of the grain-oriented electrical steel sheet in order to provide insulation, workability, rust prevention, and the like. In general, this surface film is composed of a base film mainly composed of forsterite formed during finish annealing and a phosphate-based overcoat film formed thereon, and is disclosed in Patent Document 1, Patent Document 2, and the like. In this way, the steel sheet is given a lower thermal expansion coefficient than that of the steel sheet, and the steel sheet is tensioned by the difference in thermal expansion coefficient between the steel sheet and the iron loss reduction effect is exhibited.

これらの被膜は、リン酸アルミニウム又はリン酸マグネシウム、コロイド状シリカおよび無水クロム酸を主体とするコーティング処理液を、フォルステライト質被膜を下地被膜として有する鋼板上に塗布・乾燥焼付けすることによって鋼板上に被成される。これら処理液はクロムを必須成分として含有する。そのため近年の環境保全への関心の高まりに伴い、クロムを含有しない被膜への転換が指向されるようになっており、たとえば特許文献3〜6にみられるような提案が行なわれている。   These coatings are formed on a steel plate by applying a coating treatment liquid mainly composed of aluminum phosphate or magnesium phosphate, colloidal silica and chromic anhydride onto a steel plate having a forsterite coating as a base coating, followed by drying and baking. To be deposited. These treatment liquids contain chromium as an essential component. Therefore, with the recent increase in interest in environmental conservation, conversion to a film containing no chromium has been directed, and for example, proposals as shown in Patent Documents 3 to 6 have been made.

また、仕上焼鈍時にフォルステライトを主体とする下地被膜の生成を抑制し、あるいは生成した下地被膜を除去した上で地鉄の露出した鋼板表面に張力付与被膜を形成することが鉄損値の低減に有利であることが知られている。このようなフォルステライト質下地被膜を持たない電磁鋼板に被成する絶縁被膜にも上記の要請がある。   In addition, it is possible to reduce the iron loss value by suppressing the formation of a base film mainly composed of forsterite during finish annealing, or forming a tension-imparting film on the surface of the exposed steel sheet after removing the generated base film. It is known to be advantageous. There is also the above-mentioned demand for an insulating coating formed on an electromagnetic steel sheet having no such forsterite base coating.

特公昭53-28375号公報Japanese Patent Publication No.53-28375 特公昭56-52117号公報Japanese Patent Publication No.56-52117 特公昭57-9631号公報Japanese Patent Publication No.57-9631 特開平2000-169972号公報Japanese Unexamined Patent Publication No. 2000-169972 特開平2000-169973号公報JP 2000-169973 A 特開平2000-178760号公報Japanese Unexamined Patent Publication No. 2000-178760

しかしながら、特許文献1に記載の手段は、特許文献1,2等に開示のクロム含有絶縁被膜にほぼ相当する張力付与効果、それによる鉄損改善を与え、また耐吸湿性を与えるものであるが、本発明者らの検討によると、上記改善効果が経時的に劣化するという問題がある。電磁鋼板はその使用時に繰り返しの磁化に伴い発熱し、最大100℃程度までの高温に曝されることがあり、これによる経時的な磁性劣化は初期検査で見逃されるため重大な問題になる。   However, the means described in Patent Document 1 provides a tension imparting effect substantially equivalent to the chromium-containing insulating film disclosed in Patent Documents 1 and 2 and the like, thereby improving iron loss and providing moisture absorption resistance. According to the study by the present inventors, there is a problem that the improvement effect deteriorates with time. Magnetic steel sheets generate heat with repeated magnetization during their use, and may be exposed to high temperatures up to about 100 ° C., and this deterioration over time is a serious problem because it is overlooked in the initial inspection.

また、特許文献3〜6に記載の各手段も、耐吸湿性および鉄損改善について一定の効果を与えるものであるが、高温の大気雰囲気中に保持した場合に粒界酸化に起因すると推定される鉄損の経時的劣化が生じるという問題がある。特に近年における変圧器使用時の低騒音要求の増大に伴い、変圧器を低磁場設計するケースが増えてきており、通常の評価指標であるW17/50よりも低磁場の鉄損特性であるW15/50が重要になってきている。 In addition, each means described in Patent Documents 3 to 6 also gives a certain effect on moisture absorption resistance and iron loss improvement, but is estimated to be caused by grain boundary oxidation when kept in a high-temperature air atmosphere. There is a problem that deterioration of iron loss over time occurs. In particular, along with the recent increase in low-noise requirements when using a transformer, the number of cases in which a transformer is designed to have a low magnetic field is increasing, and the iron loss characteristic has a lower magnetic field than W 17/50 , which is a normal evaluation index. W 15/50 is becoming important.

本発明は、上記従来のクロムを含有しないリン酸塩系絶縁被膜の有する鉄損改善効果の経時的劣化に対する解決手段を提案することを目的とし、それにより従来のクロム含有絶縁被膜と同等の低磁場での磁気特性の経時的安定性を図る手段を提供するものである。   The object of the present invention is to propose a solution to the deterioration over time of the iron loss improving effect of the above-mentioned conventional chromium-containing phosphate insulating coating, thereby reducing the same as the conventional chromium-containing insulating coating. The present invention provides means for improving the temporal stability of magnetic characteristics in a magnetic field.

本発明者は、クロムを含まない絶縁被膜を有する磁気特性の経時的安定性を低下させる要因が粒界の脆性破壊傾向の増加にあることを発見し、かかる粒界の脆性破壊傾向の増加、ひいては磁気特性の経時的劣化を、仕上げ焼鈍を経て得られた方向性電磁鋼板原板中の偏析元素、析出物形成元素を高度に管理することにより防止できることを知見して本発明を完成した。   The present inventor has discovered that a factor that decreases the temporal stability of magnetic properties having an insulating coating containing no chromium is an increase in the brittle fracture tendency of the grain boundary, and an increase in the brittle fracture tendency of the grain boundary, As a result, the present invention was completed based on the knowledge that the deterioration of magnetic properties over time can be prevented by highly managing segregation elements and precipitate forming elements in the grain-oriented electrical steel sheet obtained through finish annealing.

本発明の低磁場磁気特性の経時安定性に優れた方向性電磁鋼板は、仕上焼鈍を経て得られた方向性電磁鋼板原板の表面にクロムを含まない絶縁コーティングを有する方向性電磁鋼板であって、該方向性電磁鋼板原板は地鉄中にB及びCaのいずれか一方又は双方を質量比で合計量0.0005%以上含有しかつ、Se量が0.0005%以下、Sb量が0.0005%以下に制限されているものである。上記方向性電磁鋼板原板はさらに地鉄中にMoを0.002%以上含有するものであることが望ましい。   The grain-oriented electrical steel sheet excellent in temporal stability of the low magnetic field magnetic characteristics of the present invention is a grain-oriented electrical steel sheet having an insulating coating containing no chromium on the surface of the grain-oriented electrical steel sheet obtained by finish annealing. The grain oriented electrical steel sheet contains either or both of B and Ca in the ground iron in a mass ratio of 0.0005% or more in total, and the Se content is 0.0005% or less and the Sb content is limited to 0.0005% or less. It is what. It is preferable that the grain-oriented electrical steel sheet further contains 0.002% or more of Mo in the ground iron.

上記発明において、方向性電磁鋼板原板は地鉄上にフォルステライトを主成分とするセラミックス被膜を有するもの又は地鉄の露出したものとすることができる。   In the above-mentioned invention, the grain-oriented electrical steel sheet original plate may have a ceramic film mainly composed of forsterite on the ground iron or be exposed from the ground iron.

上記各発明に係る方向性電磁鋼板は、少なくとも方向性電磁鋼板素材に対し熱間圧延、冷間圧延、脱炭焼鈍及び焼鈍分離剤を塗布して行なう仕上焼鈍を経て地鉄中のB及びCaの一方又は双方を合計量が質量比で合計量0.0005%以上含有しかつ、Se量が0.0005%以下、Sb量が0.0005%以下に制限されている方向性電磁鋼板原板を製造する段階と、得られた方向性電磁鋼板原板にクロムを含まない絶縁コーティングを施す段階とを行なうことによって製造することができる。上記製造方法において方向性電磁鋼板原板はさらにMoを0.002%以上含有するものとすることが好適である。   The grain-oriented electrical steel sheets according to each of the inventions described above are B and Ca in the base iron through finish annealing performed by applying hot rolling, cold rolling, decarburization annealing, and annealing separator to at least the grain-oriented electrical steel sheet material. Producing a grain-oriented electrical steel sheet having a total amount of one or both of 0.0005% or more in terms of mass ratio, Se amount is 0.0005% or less, and Sb amount is 0.0005% or less, and And applying a dielectric coating that does not contain chromium to the obtained grain-oriented electrical steel sheet. In the above production method, it is preferable that the grain-oriented electrical steel sheet further contains 0.002% or more of Mo.

上記各発明において、方向性電磁鋼板原板は、フォルステライトを主成分とするセラミックス被膜を有するもののほか、かかるセラミック被膜を有するものから化学的或いは機械的手段によってセラミックス被膜を除去したもの、さらには仕上焼鈍終了段階でフォルステライトを主成分とするセラミックス被膜を実質的に生成させなかったもののいずれをも選択することができる。   In each of the above inventions, the grain-oriented electrical steel sheet has a ceramic film mainly composed of forsterite, a ceramic film removed from such a ceramic film by chemical or mechanical means, and a finish. Any one that has not substantially produced a ceramic film mainly composed of forsterite at the end of annealing can be selected.

上記各発明において、方向性電磁鋼板原板を製造する段階と、得られた方向性電磁鋼板原板にクロムを含まない絶縁コーティングを施す段階との間において質量比で濃度0.5〜5%のリン酸を含む水溶液により1〜10秒酸洗し、しかる後、100℃以上300℃以下の温度で1秒以上15秒以下の時間保持する熱処理を行なうこととするのが好適である。   In each of the above inventions, a phosphoric acid having a concentration of 0.5 to 5% by mass ratio between the step of producing the grain-oriented electrical steel sheet and the step of applying an insulating coating containing no chromium to the obtained grain-oriented electrical steel sheet It is preferable to perform pickling with an aqueous solution containing 1 to 10 seconds, and then heat treatment is performed at a temperature of 100 ° C. to 300 ° C. for 1 second to 15 seconds.

本発明に係る絶縁被膜は、クロムを含まない絶縁被膜でありながら低磁場磁気特性の経時的劣化が生じるおそれのないものでありかつ、クロムを含む絶縁被膜と同等あるいはそれ以上の鉄損改善効果を電磁鋼板に与えることができるものである。したがって、本発明により、クロム酸を使用することによって惹起される環境上の諸問題を解決することができる等、工業上資するところ大である。   The insulating coating according to the present invention is an insulating coating that does not contain chromium, but does not cause deterioration over time of low magnetic field magnetic properties, and has an iron loss improvement effect equivalent to or higher than that of an insulating coating containing chromium. Can be provided to the electromagnetic steel sheet. Therefore, according to the present invention, various industrial problems caused by using chromic acid can be solved.

本発明に係る方向性電磁鋼板は、その成分組成が地鉄中にB及びCaのいずれか一方又は双方を質量比で合計量0.0005%以上含有しかつ、Se量が0.0005%以下、Sb量が0.0005%以下に制限されている。後に実施例に基づいて明らかにするように、地鉄中のSe含有量が0.0005%以下、Sb量が0.0005%以下でありかつ、B含有量とCa含有量との和(B+Ca)量が0.0005%以上である場合は低磁場磁性劣化量ΔW15/50が0.002W/kg以下となり、実用上支障がないレベルに達する。これに対し、上記条件の何れかが満足されない場合には低磁場磁性劣化量ΔW15/50が0.05W/kgを超え、実用上支障をきたすものとなる。なお、上記条件を満たし、さらにMoを0.002%以上含有する鋼では低磁場磁性劣化量ΔW15/50がほぼ0となり、磁気特性の経時的劣化が実質的に生じないものとなる。 The grain-oriented electrical steel sheet according to the present invention has a component composition containing either one or both of B and Ca in the ground iron in a total amount of 0.0005% or more, and the Se amount is 0.0005% or less, and the Sb amount is It is limited to 0.0005% or less. As will be clarified later based on the examples, the Se content in the ground iron is 0.0005% or less, the Sb content is 0.0005% or less, and the sum of B content and Ca content (B + Ca) content Is 0.0005% or more, the low magnetic field magnetic deterioration amount ΔW 15/50 is 0.002 W / kg or less, and reaches a level where there is no practical problem. On the other hand, when any of the above conditions is not satisfied, the low magnetic field magnetic deterioration amount ΔW 15/50 exceeds 0.05 W / kg, which impedes practical use. Note that a steel satisfying the above conditions and further containing 0.002% or more of Mo has a low magnetic field magnetic deterioration amount ΔW 15/50 of almost 0, so that the magnetic characteristics are not substantially deteriorated with time.

ここに低磁場磁性劣化量ΔW15/50とは、絶縁コーティングを施した状態の幅100mm×長さ280mmサイズの方向性電磁鋼板のSST(単板磁気試験機、Single Sheet Tester)による低磁場鉄損値(W15/50)と該方向性電磁鋼板を80℃の大気雰囲気で96hr保持を行い、徐冷した状態の低磁場鉄損値(W15/50)との差(増分が劣化量)として定義され、低磁場鉄損値の経時的安定性の指標となるものである。また、地鉄中B等の微量元素の含有量は、方向性電磁鋼板原板がフォルステライト質被膜を有しているときは、これを塩酸+弗酸の混酸で被膜を除去したのちに硝酸で金属光沢が現れるまで酸洗し、さらに水洗乾燥して得た地鉄についての分析結果であり、一方、方向性電磁鋼板原板がフォルステライト質被膜を有していないときは、その上に被成されている絶縁被膜を硫酸+弗酸の混酸で除去したのちに硝酸で金属光沢が現れるまでが現れるまで酸洗し、さらに水洗乾燥して得た地鉄についての分析結果である。 Here, the low magnetic field magnetic degradation amount ΔW 15/50 means low magnetic field iron by SST (Single Sheet Tester) of a directional electrical steel sheet with a width of 100 mm and a length of 280 mm with an insulating coating. loss value (W 15/50) and the grain-oriented electrical steel sheet subjected to 96hr held in an air atmosphere of 80 ° C., the difference (increment deterioration of the low-field iron loss value (W 15/50) in the state of gradual cooling ) And is an index of the temporal stability of the low magnetic field iron loss value. In addition, the content of trace elements such as B in the ground iron can be adjusted with nitric acid after removing the film with a mixed acid of hydrochloric acid + hydrofluoric acid when the grain oriented electrical steel sheet has a forsterite film. It is an analysis result of the iron obtained by pickling until metallic luster appears, and further washing with water and drying. On the other hand, if the grain-oriented electrical steel sheet does not have a forsterite coating, it is coated on it. It is the analysis result about the iron obtained by pickling until the metallic luster appears with nitric acid after removing the insulating coating that has been removed with a mixed acid of sulfuric acid + hydrofluoric acid, and further washing with water and drying.

本発明に係る低磁場磁気特性の経時安定性に優れた方向性電磁鋼板は、上記の地鉄組成を有する方向性電磁鋼板原板を製造し、その上にクロムを含まない絶縁被膜を被成することにより製造することができる。このうち、上記の地鉄組成を有する方向性電磁鋼板原板のSe、Sb、B、CaさらにはMoの残留含有量は、方向性電磁鋼板の製造過程における経験的に求められるこれら成分元素の歩留まりや外部からの混入量に基づいて定めることができる。   A grain-oriented electrical steel sheet excellent in temporal stability of low magnetic field magnetic properties according to the present invention is produced by manufacturing a grain-oriented electrical steel sheet having the above-mentioned ground iron composition, and forming an insulating coating containing no chromium thereon. Can be manufactured. Among these, the residual contents of Se, Sb, B, Ca, and Mo in the grain-oriented electrical steel sheet having the above-mentioned base iron composition are the yields of these component elements that are empirically determined in the production process of grain-oriented electrical steel sheets. And can be determined based on the amount of contamination from the outside.

たとえば、Caは積極的に鋼板に加えられる成分元素ではないが、フェロシリコン等の合金剤中の不純物および焼鈍分離剤中の不純物として地鉄中に混入する成分元素である。その合金剤の不純物から地鉄中に持ち込まれるCaの歩留まりは約80%であり、一方、焼鈍分離剤中の不純物から地鉄中に持ち込まれるCaの歩留まりは約30%であるので、地鉄中のCa量は、適当な純度を持つ合金剤および焼鈍分離剤を選択することによって制御することができる。Bは鋼素材に添加したものが残留するものと焼鈍分離剤から持ち込まれるものの和であり、鋼素材に添加したものの約80%が残留し、焼鈍分離剤中に不純物として含まれるBの約30%が地鉄中に移行するので、その含有量は、鋼素材への適量の添加や適当なB含有量を持つ焼鈍分離剤を選択することによって制御することができる。   For example, Ca is not a component element that is positively added to the steel sheet, but is a component element that is mixed in the iron and steel as impurities in the alloying agent such as ferrosilicon and impurities in the annealing separator. The yield of Ca brought into the iron from the impurities of the alloying agent is about 80%, while the yield of Ca brought into the iron from the impurities in the annealing separator is about 30%. The amount of Ca in the medium can be controlled by selecting an alloying agent and an annealing separator having an appropriate purity. B is the sum of what is added to the steel material and what is brought in from the annealing separator, and about 80% of what is added to the steel material remains, about 30% of B contained as an impurity in the annealing separator. % Can be controlled by adding an appropriate amount to the steel material or selecting an annealing separator having an appropriate B content.

一方、SeやSbは方向性電磁鋼板の製造にあたりインヒビター元素として出発素材中に含有させるものである。このうちSeの残留量は一連の方向性電磁鋼板製造工程中、特に仕上焼鈍における純化焼鈍に相当する時間によって定まるので、その最終含有量は出発素材中の不純物量と添加合金量及び純化焼鈍時間によって制御することができる。また、Sbは出発素材に含有されていたものがほぼ100%地鉄中に残存するので、その含有量は出発素材中の不純物とSb合金量によって制御できる。また、MoもまたSbと同様にほぼ100%の歩留まりを示すので、Sbと同様の手段で制御できる。   On the other hand, Se and Sb are contained in the starting material as inhibitor elements in the production of grain-oriented electrical steel sheets. Among these, the residual amount of Se is determined by the time corresponding to the purification annealing in the series of grain-oriented electrical steel sheet manufacturing processes, particularly the finish annealing, so the final content is the amount of impurities in the starting material, the amount of added alloy and the purification annealing time. Can be controlled by. Moreover, since Sb contained in the starting material remains almost 100% in the base iron, its content can be controlled by the impurities and the amount of Sb alloy in the starting material. Also, Mo also shows a yield of almost 100%, like Sb, and can be controlled by the same means as Sb.

なお、上記歩留まりに係る数値は操業条件によって変動するものであるから、これら元素の残留含有量を制御するに当たっては、操業条件ごとに歩留まり等の基礎数値を定める必要がある。本発明においては上記諸元素の残留含有量に留意するほかは特に制限するものはなく、通常の方向性電磁鋼板の製造工程によって処理すればよい。また、上記各元素は鉄源であるスクラップ、鉱石中に通常不純物として含まれるレベルにあるから、原料には特に留意し、これらの条件を満足するものを選定しなければならない。   In addition, since the numerical value concerning the said yield is fluctuate | varied with operation conditions, in controlling the residual content of these elements, it is necessary to define basic numerical values, such as a yield, for every operation condition. In the present invention, there is no particular limitation other than paying attention to the residual contents of the above various elements, and the treatment may be performed by a normal grain-oriented electrical steel sheet manufacturing process. Moreover, since each said element exists in the level normally contained as an impurity in the scrap and ore which are iron sources, pay special attention to a raw material and you must select what satisfies these conditions.

上記範囲にCa、B、必要ならさらにはMoを含有し、SeおよびSb含有量が制限された方向性電磁鋼板原板に対して、クロムを含まない絶縁被膜の被成が行なわれる。この絶縁被膜の被成はフォルステライト質被膜を有する方向性電磁鋼板を原板として行なうことができるほか、フォルステライト質被膜を除去して得た或いは焼鈍分離剤に多量の塩化物等のフォルステライト生成阻害成分を添加して得た地鉄の露出した方向性電磁鋼板を原板として行なうことができる。   An insulating coating that does not contain chromium is applied to a grain oriented electrical steel sheet that contains Ca, B, and, if necessary, Mo in the above range and has a limited Se and Sb content. This insulation coating can be performed using a grain-oriented electrical steel sheet having a forsterite coating as a base plate, or obtained by removing the forsterite coating or producing forsterite such as a large amount of chloride in the annealing separator. A grain-oriented electrical steel sheet exposed with a base iron obtained by adding an inhibitory component can be used as an original sheet.

クロムを含まない絶縁被膜の被成のための組成物としては、代表的には、特許文献3に記載の組成物を用いることができるほか、特許文献4〜6に記載の組成物を利用することができる。また、これら組成物にさらにシリカ、アルミナ等の無機鉱物粒子を添加して、耐ステイッキング性を改善することも可能である。なお、上記クロムを含有しないリン酸塩系の絶縁被膜の被成厚さは、被膜の目付け量により測定して両面で2〜20g/mとするのがよい。2g/mより少ないと電磁鋼板の層間抵抗が低下し、一方20g/mより多いと占積率が低下するからである。 As a composition for depositing an insulating film not containing chromium, typically, the composition described in Patent Document 3 can be used, and the compositions described in Patent Documents 4 to 6 are used. be able to. Further, it is possible to improve the anti-sticking property by adding inorganic mineral particles such as silica and alumina to these compositions. The deposition thickness of the phosphate-based insulating coating that does not contain chromium is preferably 2 to 20 g / m 2 on both sides as measured by the basis weight of the coating. This is because if the amount is less than 2 g / m 2, the interlayer resistance of the electrical steel sheet decreases, while if it exceeds 20 g / m 2 , the space factor decreases.

上記組成物は、適当な分散媒に分散させ、溶液又はスラリーの形で前記の組成を有する電磁鋼板原板に塗布、乾燥される。その条件も上記特許文献等に開示されている条件でよい。すなわち、被膜組成物を適当な濃度のコーティング処理液として準備し、これをロールコーター等の適当な塗布手段によって前記の電磁鋼板原板に塗布し、これを連続炉等の適当な炉によって100℃以上の温度で焼付け処理する。   The above composition is dispersed in a suitable dispersion medium, applied to a magnetic steel sheet original plate having the above composition in the form of a solution or slurry, and dried. The conditions may also be those disclosed in the above patent documents. That is, the coating composition is prepared as a coating treatment liquid having an appropriate concentration, and this is applied to the magnetic steel sheet original plate by an appropriate application means such as a roll coater, which is 100 ° C. or higher by an appropriate furnace such as a continuous furnace. Bake at a temperature of.

上記コーティング液の乾燥工程に続いて、焼付けを兼ねた平坦化焼鈍が行なわれる。この平坦化焼鈍の条件も特に限定されるものではない。しかし、200〜700℃の温度範囲に亘る昇温速度を10〜60℃/sとするのが望ましい。この温度範囲での昇温速度が10℃/s未満と小さすぎると水蒸気等のガスが発生した時にこれがフクレとして残りやすく一方、60℃/sを超えるとクラックが残りやすいからである。また、焼鈍温度は700℃〜950℃の温度範囲で2〜120秒程度の均熱時間とするのが望ましい。上記条件よりも温度が低すぎかつ、時間が短すぎる場合には平坦化が不十分で形状不良のために歩止が低下し一方、温度が高すぎて時間が長すぎる場合には平坦化焼鈍の効果が強すぎて鋼板がクリープ変形して磁気特性が劣化するためである。   Following the drying step of the coating liquid, planarization annealing that also serves as baking is performed. The conditions for the flattening annealing are not particularly limited. However, it is desirable that the temperature increase rate over the temperature range of 200 to 700 ° C. is 10 to 60 ° C./s. This is because if the temperature rising rate in this temperature range is too small as less than 10 ° C./s, gas such as water vapor tends to remain as blisters, while cracks tend to remain when it exceeds 60 ° C./s. The annealing temperature is desirably set to a soaking time of about 2 to 120 seconds in a temperature range of 700 ° C to 950 ° C. If the temperature is too lower than the above conditions and the time is too short, the flattening is insufficient and the yield is lowered due to the shape defect, while the flattening annealing is performed when the temperature is too high and the time is too long. This is because the effect is too strong, and the steel sheet creeps and the magnetic properties deteriorate.

上記の一連の工程により本発明の目的である低磁場磁気特性の経時安定性に優れた方向性電磁鋼板を製造することができるが、その効果を一層確実にして低磁場磁気特性の経時的劣化を確実に防止するためには、上記絶縁被膜の被成に先立って表面改質処理を行なうのがよい。この表面改質処理は、濃度0.5〜5%(質量比)のリン酸を含む水溶液により1〜10秒酸洗し、しかる後、100℃以上300℃以下の温度で1秒以上15秒以下の時間保持する熱処理を行なうものであり、この処理により、鋼板表面にアルミナやシリカ等の緻密な酸化物が生成され、これがその後の酸化に対するプロテクションフィルムとなり、粒界酸化の防止作用により長期に亘る低磁場磁気特性の安定維持が図れるようになるものと考えられる。いずれにしても、この処理により低磁場磁気特性の経時的劣化を実質的に0とすることができる。   The above-described series of steps can produce a grain-oriented electrical steel sheet having excellent low-field magnetic property stability over time, which is the object of the present invention. In order to surely prevent this, it is preferable to perform a surface modification treatment prior to the formation of the insulating coating. This surface modification treatment is pickled with an aqueous solution containing phosphoric acid having a concentration of 0.5 to 5% (mass ratio) for 1 to 10 seconds, and then at a temperature of 100 ° C. to 300 ° C. for 1 second to 15 seconds. This heat treatment is carried out for a long time, and this treatment produces a dense oxide such as alumina or silica on the surface of the steel sheet, which becomes a protection film against the subsequent oxidation, and has a long-lasting low resistance due to the effect of preventing grain boundary oxidation. It is considered that the magnetic field magnetic characteristics can be maintained stably. In any case, this process can substantially reduce the deterioration of the low magnetic field magnetic characteristics over time.

このように、保持温度を限定するのは、100℃未満では、緻密な酸化物の形成が不十分であり、300℃を超えると酸化物がポーラスな鉄を含む酸化物となってしまうためである。また、保持時間を限定するのは、1秒未満では十分な効果が現れず、一方、10秒を超えても効果が飽和して経済的不利となるためである。   Thus, the holding temperature is limited because the formation of a dense oxide is insufficient when the temperature is lower than 100 ° C., and the oxide becomes an oxide containing porous iron when the temperature exceeds 300 ° C. is there. Also, the holding time is limited because the sufficient effect does not appear if it is less than 1 second, while the effect is saturated and economical disadvantage is caused if it exceeds 10 seconds.

C:0.045%(質量比、以下同様)、Si:3.3%、Mn:0.07%、Al:0.3%、N:0.01%を含み、Se、SbおよびB含有量を変化させ、残部実質的にFeによりなるスラブを1380℃で30min加熱後、熱間圧延によって2.2mm厚の熱延板とし、これに950℃で1minの熱延板焼鈍を施した後、1000℃で1minの中間焼鈍を挟む冷間圧延を施して0.23mmの最終板厚の冷延板に仕上げた。これに850℃で2minの脱炭焼鈍を施した後、表面に酸化マグネシウム:100部(質量比、以下同様)、酸化チタン:2部、硫酸ストロンチウム:1部よりなる焼鈍分離剤を乾燥後の質量換算で12g/m(両面当たり)塗布し、乾燥後二次再結晶および純化焼鈍を含む仕上焼鈍を施した。この際、純化焼鈍は乾水素気流中1200℃で行い、その保持時間を変化させた。このようにして得られた方向性電磁鋼板原板は、表面に均一にフォルステライト質被膜を有していた。 C: 0.045% (mass ratio, the same shall apply hereinafter), Si: 3.3%, Mn: 0.07%, Al: 0.3%, N: 0.01%, the content of Se, Sb and B is changed, the balance is substantially Fe After heating the slab made of 1380 ° C. for 30 min to a hot-rolled sheet having a thickness of 2.2 mm by hot rolling, this is subjected to hot-rolled sheet annealing at 950 ° C. for 1 min, and then cold sandwiched at 1000 ° C. for 1 min. Cold rolling was performed by hot rolling to a final thickness of 0.23 mm. This was subjected to decarburization annealing at 850 ° C. for 2 min, and after drying an annealing separator comprising 100 parts of magnesium oxide (mass ratio, the same applies hereinafter), 2 parts of titanium oxide, and 1 part of strontium sulfate. 12 g / m 2 (per both sides) in terms of mass was applied, and after drying, finish annealing including secondary recrystallization and purification annealing was performed. At this time, the purification annealing was performed at 1200 ° C. in a dry hydrogen stream, and the holding time was changed. The grain-oriented electrical steel sheet obtained in this way had a forsterite film uniformly on the surface.

得られた方向性電磁鋼板原板から300mm×100mmのサイズの試験片を切り出し、これにリン酸アルミニウム:50部(質量比、以下同様)コロイド状シリカ:40部、ホウ酸:5部、硫酸マグネシウム:10部の配合割合になるコーティング剤を乾燥状態に換算して両面で10g/mとなるように塗布したのち、乾窒素雰囲気中で焼付けてクロムを含有しない絶縁被膜を被成して製品とした。 A test piece having a size of 300 mm × 100 mm was cut out from the obtained grain-oriented electrical steel sheet, and aluminum phosphate: 50 parts (mass ratio, the same applies hereinafter) colloidal silica: 40 parts, boric acid: 5 parts, magnesium sulfate : A coating agent with a blending ratio of 10 parts is converted to a dry state and applied to 10 g / m 2 on both sides, then baked in a dry nitrogen atmosphere to form an insulating coating that does not contain chromium. It was.

得られた製品の低磁場磁気特性(W15/50)および低磁場磁性劣化量ΔW15/50を測定した。結果は、純化焼鈍時間、地鉄中のSe等の含有量とともに表1に示す。表1から本発明にしたがいSeおよびSb含有量が低く、Ca+B含有量が十分である鋼1,2,7,8,9は低磁場磁性劣化量ΔW15/50が低く、特にMoを0.02%以上含有する鋼8および9では低磁場磁性劣化量ΔW15/50が0であることが分かる。 The obtained product was measured for low magnetic field magnetic properties (W 15/50 ) and low magnetic field magnetic degradation amount ΔW 15/50 . The results are shown in Table 1 along with the purification annealing time and the contents of Se and the like in the ground iron. From Table 1, steels 1, 2, 7, 8, and 9 having low Se and Sb contents and sufficient Ca + B contents according to the present invention have low low magnetic field magnetic degradation ΔW 15/50 , especially Mo is 0.02%. It can be seen that the steels 8 and 9 contained above have a low magnetic field magnetic deterioration amount ΔW 15/50 of zero.

このような結果の得られる理由は、必ずしも判然としないが、また本発明の解釈に影響を与えるものではないが、下記のように推察される。   The reason why such a result is obtained is not necessarily clear, but does not affect the interpretation of the present invention, but is presumed as follows.

まず、鋼板の磁気特性の経時劣化が鋼板の脆化傾向と一致すること、鋼板の脆化起点が結晶粒内ではなく粒界にあること、およびCrを含有する絶縁被膜を有する場合には劣化が見られないことに照らして、Cr化合物による酸化抑制の効果がない場合に鋼板の粒界酸化が生じ、これにより鋼板の脆化さらには鋼板の磁気特性の経時劣化が生ずるものと推察される。一方、地鉄中のSeは二次結晶粒の粒界においてMnSeなどの析出物として存在し、脆化を助長すると同時に酸化の起点となりまた、Sbは鋼板表面や二次結晶粒の粒界に偏析してSeと同様に粒界の脆化を助長するものと推測される。そのためこれら元素の含有量が高いときには、表面偏析により粒表面の酸化が抑制され、その反面、粒界の優先酸化が進行するものと考えられる。これに対して、Bは粒界に偏析するが、その性質が比較的酸素に近いために粒界酸化を抑制するものと推定され、Caも酸素をトラップとして粒界酸化を遅滞させる効果が生じているものと推定される。一方、Moは一様なプロテクションフィルムを生成するとともに粒界強化にも寄与して磁気特性の経時劣化を遅滞させるものと推定される。このようにしてSeおよびSb含有量が低く、Ca+B含有量が十分である鋼、さらにはMoを含有する鋼では低磁場磁気特性の経時劣化が遅滞して低磁場磁性劣化量ΔW15/50がきわめて小さくなるのであろう。 First, the deterioration over time of the magnetic properties of the steel sheet coincides with the embrittlement tendency of the steel sheet, that the embrittlement origin of the steel sheet is not in the crystal grains but at the grain boundaries, and when the insulating film containing Cr is present In light of the fact that no oxidization is observed, it is presumed that when there is no effect of suppressing oxidation by Cr compounds, grain boundary oxidation of the steel sheet occurs, which causes embrittlement of the steel sheet and deterioration of the magnetic properties of the steel sheet over time. . On the other hand, Se in the ground iron exists as precipitates such as MnSe at the grain boundaries of the secondary crystal grains, promotes embrittlement and at the same time becomes the starting point of oxidation, and Sb is on the steel plate surface and the grain boundaries of the secondary crystal grains. It is presumed that segregation promotes embrittlement of grain boundaries in the same manner as Se. For this reason, when the content of these elements is high, it is considered that the surface segregation suppresses the oxidation of the grain surface, while the grain boundary preferential oxidation proceeds. In contrast, B segregates at the grain boundaries, but it is presumed to suppress grain boundary oxidation because its properties are relatively close to oxygen, and Ca also has the effect of delaying grain boundary oxidation by trapping oxygen. It is estimated that On the other hand, it is presumed that Mo forms a uniform protection film and contributes to the strengthening of grain boundaries to delay the deterioration of magnetic properties with time. Thus, in steels with low Se and Sb contents and sufficient Ca + B contents, and steels containing Mo, the deterioration with time of low magnetic field properties is delayed, and the low magnetic field magnetic deterioration amount ΔW 15/50 is low. It will be very small.

Figure 0004626155
Figure 0004626155

実施例1で得られた方向性電磁鋼板原板に、2%(質量比)のリン酸水溶液で6秒間酸洗し120℃で3秒間の熱処理を行なった後実施例1と同様のクロムを含有しない絶縁被膜を被成して製品とした。得られた製品の特性は表2に示す。   The grain-oriented electrical steel sheet obtained in Example 1 is pickled with a 2% (mass ratio) phosphoric acid aqueous solution for 6 seconds, heat treated at 120 ° C. for 3 seconds, and then containing the same chromium as in Example 1. The product was coated with an insulating film that did not. The properties of the product obtained are shown in Table 2.

Figure 0004626155
Figure 0004626155

C:0.07%、Si:3.3%、Mn:0.07%、Se、SbおよびB含有量を変化させ、残部実質的にFeによりなるスラブを1150℃で30min加熱後熱間圧延によって2.2mm厚の熱延板とし、これに950℃で1min間の熱延板焼鈍を施した後、冷間圧延を施して0.30mmの最終板厚の冷延板仕上げた。これに850℃で2分の脱炭焼鈍を施した後、表面に酸化マグネシウム:100部(質量比、以下同じ)、塩化すず:2部、硫酸ストロンチウム:1部よりなる焼鈍分離剤を乾燥後の質量換算で9g/m(両面当たり)塗布し、乾燥後二次再結晶および純化焼鈍を含む仕上焼鈍を施した。この際、純化焼鈍は乾水素気流中1200℃で行い、その保持時間を変化させた。このようにして得られた方向性電磁鋼板原板は、表面にフォルステライト質被膜が存在せず金属光沢を有していた。 C: 0.07%, Si: 3.3%, Mn: 0.07%, Se, Sb, and B contents were changed, and the remaining slab consisting essentially of Fe was heated at 1150 ° C for 30 min and then hot rolled to a thickness of 2.2 mm The sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 1 min, and then cold-rolled to finish a cold-rolled sheet having a final sheet thickness of 0.30 mm. After decarburization annealing at 850 ° C. for 2 minutes, the surface was dried with an annealing separator consisting of 100 parts of magnesium oxide (mass ratio, the same shall apply hereinafter), 2 parts of tin chloride, and 1 part of strontium sulfate. 9 g / m 2 (per both sides) in terms of mass, and after drying, finish annealing including secondary recrystallization and purification annealing was performed. At this time, the purification annealing was performed at 1200 ° C. in a dry hydrogen stream, and the holding time was changed. The grain-oriented electrical steel sheet obtained in this way had a metallic luster with no forsterite coating on the surface.

得られた方向性電磁鋼板原板から300mm×100mmのサイズの試験片を切り出し、これにコロイド状シリカを固形分:20部、リン酸マグネシウム:10〜120部(Mg(H2PO4)3換算)、硫酸マンガン:4〜40部との配合割合になるコーティング剤を乾燥状態に換算して両面で10g/mとなるように塗布したのち、乾窒素雰囲気中で焼付けてクロムを含有しない
得られた製品の低磁場磁気特性(W15/50値)および低磁場磁性劣化量ΔW15/50を測定した。結果は、純化焼鈍時間、地鉄中のSe等の含有量とともに表3に示す。
A test piece having a size of 300 mm × 100 mm was cut out from the obtained grain-oriented electrical steel sheet, and colloidal silica was solid content: 20 parts, magnesium phosphate: 10-120 parts (Mg (H 2 PO 4 ) 3 conversion) ) Manganese sulfate: After coating the coating agent to a blend ratio of 4 to 40 parts in a dry state to 10 g / m 2 on both sides, it is baked in a dry nitrogen atmosphere and does not contain chromium. The low magnetic field magnetic properties (W 15/50 value) and low magnetic field magnetic degradation amount ΔW 15/50 of the obtained products were measured. The results are shown in Table 3 together with the purification annealing time and the contents of Se and the like in the ground iron.

Figure 0004626155
Figure 0004626155

実施例1で得られた方向性電磁鋼板原板に、4%(質量比)のリン酸水溶液で8秒間酸洗し220℃で2秒間の熱処理を行なった後実施例2と同様のクロムを含有しない絶縁被膜を被成して製品とした。得られた製品の特性は表4に示す。   The grain-oriented electrical steel sheet obtained in Example 1 was pickled with a 4% (mass ratio) phosphoric acid aqueous solution for 8 seconds, heat treated at 220 ° C. for 2 seconds, and then containing the same chromium as in Example 2. The product was coated with an insulating film that did not. The properties of the obtained product are shown in Table 4.

Figure 0004626155
Figure 0004626155

C:0.05%、Si:3.0%、Mn:0.05%、Sn:0.12%、Ni:0.11%、B:0.0012%、Cr:0.08%、Bi:0.003%、Cu:0.02%、Ca:0.0009%、S:0.04%、Se:0.0006%、Al:0.0036%、N:0.0022%、Sb:0.0003%を含有し残部実質的にFeよりなる電磁鋼板用スラブを、1180℃で30min間加熱後熱間圧延して2.2mm厚の熱延板とし、これに950℃で1minの熱延板焼鈍を施した後、冷間圧延により0.30mmの最終板厚の冷延板に仕上げた。これに850℃で2minの脱炭焼鈍を施した後、酸化マグネシウム:100部(質量比、以下同じ)、酸化チタン:3部、硫酸ストロンチウム:1部、水酸化ナトリウム:1部よりなる焼鈍分離剤を両面で8g/m(乾燥後質量換算)乾燥後、二次再結晶焼鈍および純化焼鈍を含む仕上焼鈍に付した。純化焼鈍の条件は乾水素気流中で1200℃、8h間保持するものである。このようにして得られた電磁鋼板原板は表面に均一にフォルステライト質被膜を有していた。 C: 0.05%, Si: 3.0%, Mn: 0.05%, Sn: 0.12%, Ni: 0.11%, B: 0.0012%, Cr: 0.08%, Bi: 0.003%, Cu: 0.02%, Ca: 0.0009%, S: 0.04%, Se: 0.0006%, Al: 0.0036%, N: 0.0022%, Sb: 0.0003%, the remainder consisting essentially of Fe, heated at 1180 ° C for 30 min, then hot rolled Then, a hot-rolled sheet having a thickness of 2.2 mm was subjected to hot-rolled sheet annealing at 950 ° C. for 1 min, and then finished to a cold-rolled sheet having a final thickness of 0.30 mm by cold rolling. This was subjected to decarburization annealing at 850 ° C. for 2 minutes, and then annealed separation consisting of 100 parts of magnesium oxide (mass ratio, the same applies hereinafter), 3 parts of titanium oxide, 1 part of strontium sulfate, and 1 part of sodium hydroxide. The agent was subjected to finish annealing including secondary recrystallization annealing and purification annealing after drying on both sides at 8 g / m 2 (calculated after drying). The conditions for the purification annealing are those held at 1200 ° C. for 8 hours in a dry hydrogen stream. The magnetic steel sheet obtained in this way had a forsterite film uniformly on the surface.

得られた電磁鋼板原板から300mm×100mmのサイズの試験片を切り出し、これにリン酸マグネシウム:60部(Mg(H2PO4)3換算)、コロイド状シリカ:20部(固形分換算)、硫酸マンガン:10部の配合割合になるコーティング剤を乾燥状態に換算して両面で10g/mとなるように塗布したのち、乾窒素雰囲気中で焼付けてクロムを含有しない絶縁被膜を被成して製品とした。 A test piece having a size of 300 mm × 100 mm was cut out from the obtained magnetic steel sheet original plate, and magnesium phosphate: 60 parts (in terms of Mg (H 2 PO 4 ) 3 ), colloidal silica: 20 parts (in terms of solid content), Manganese sulfate: After coating the coating agent with a blending ratio of 10 parts in a dry state to 10 g / m 2 on both sides, it is baked in a dry nitrogen atmosphere to form an insulating film containing no chromium. Product.

得られた製品の地鉄はSe:0.0003%、Sb:0.0001%、B:0.0007%、Ca:0.0005%、Mo:0.0001%未満有しており、磁気測定の結果、低磁場磁性劣化量ΔW15/50は0.002W/kgであった。 The obtained steel has Se: 0.0003%, Sb: 0.0001%, B: 0.0007%, Ca: 0.0005%, Mo: less than 0.0001%. As a result of magnetic measurement, low magnetic field magnetic degradation amount ΔW 15 / 50 was 0.002 W / kg.

実施例5で得られた方向性電磁鋼板原板に、5%(質量比)のリン酸水溶液で10秒間酸洗し290℃で12秒間の熱処理を行なった後、濃度0.5%のリン酸水溶液で2秒の酸洗後150℃で20秒乾燥する表面改質処理を行った。その結果、低磁場磁性劣化量ΔW15/50が実質的に0となった。 The grain-oriented electrical steel sheet obtained in Example 5 was pickled with a 5% (mass ratio) phosphoric acid aqueous solution for 10 seconds, heat treated at 290 ° C. for 12 seconds, and then with a phosphoric acid aqueous solution having a concentration of 0.5%. A surface modification treatment was performed by pickling for 2 seconds and drying at 150 ° C. for 20 seconds. As a result, the low magnetic field magnetic deterioration amount ΔW 15/50 was substantially zero.

C:0.03%、Si:2.9%、Mn:0.04%、Sn:0.01%、Ni:0.01%、B:0.007%、Cr:0.02%、Bi:0.003%、Mo:0.026%、Ca:0.0007%、S:0.018%、Se:0.0003%、Al:0.0192%、N:0.0077%、Sb:0.0002%を含有し残部実質的にFeよりなる電磁鋼板用スラブを、1480℃で10min間加熱後熱間圧延して1.6mm厚の熱延板とし、これに950℃で1minの熱延板焼鈍を施した後、0.60mmへの一次冷延後1120℃で30sの中間焼鈍を施し0.18mmの最終板厚の冷延板に仕上げた。これに850℃で2minの脱炭焼鈍を施した後、酸化マグネシウム:100部(質量比、以下同じ)、塩化ビスマス:1部、硫酸ストロンチウム:1部よりなる焼鈍分離剤を両面で9g/m(乾燥後質量換算)乾燥後、二次再結晶焼鈍および純化焼鈍を含む仕上焼鈍に付した。純化焼鈍の条件は乾水素気流中で1200℃、2h保持するものとした。このようにして得られた電磁鋼板原板は表面にフォルステライト質被膜が残存せず金属光沢を有していた。 C: 0.03%, Si: 2.9%, Mn: 0.04%, Sn: 0.01%, Ni: 0.01%, B: 0.007%, Cr: 0.02%, Bi: 0.003%, Mo: 0.026%, Ca: 0.0007%, S: 0.018%, Se: 0.0003%, Al: 0.0192%, N: 0.0077%, Sb: 0.0002%, and the remainder consisting essentially of Fe, heated at 1480 ° C for 10 min, hot rolled after heating To a hot rolled sheet with a thickness of 1.6 mm, subjected to a hot rolled sheet annealing at 950 ° C. for 1 min, followed by a primary cold rolling to 0.60 mm, followed by an intermediate annealing at 1120 ° C. for 30 s and a final sheet thickness of 0.18 mm Finished in cold rolled sheet. This was decarburized and annealed at 850 ° C. for 2 min, and then an annealing separator comprising magnesium oxide: 100 parts (mass ratio, the same applies hereinafter), bismuth chloride: 1 part, strontium sulfate: 1 part on both sides was 9 g / m. 2 (Mass conversion after drying) After drying, it was subjected to finish annealing including secondary recrystallization annealing and purification annealing. The conditions for the purification annealing were maintained at 1200 ° C. for 2 hours in a dry hydrogen stream. The magnetic steel sheet obtained in this way had a metallic luster with no forsterite film remaining on the surface.

得られた電磁鋼板原板に機械的に線状溝を形成する磁区細分化処理を施したのち、300mm×100mmのサイズの試験片を切り出し、これにCVD処理(温度:1000℃、雰囲気(体積比でN2:50%、H2:48%、TiCl2:2%)、処理時間:30秒)して片面あたり0.3μm厚さのTiN被膜を被覆し、さらにホウ酸35%、アルミナ65%(乾燥状態、質量比)を混合した微粒子分散液を塗布し、これをH2を体積比で3%含むN2雰囲気中で850℃で1分間焼き付けて片面あたり3g/mとなるホウ酸アルミナ系絶縁コーティングを被成して製品とした。 After subjecting the obtained magnetic steel sheet to a magnetic domain fragmentation process to mechanically form linear grooves, a 300 mm × 100 mm size test piece was cut out and subjected to CVD treatment (temperature: 1000 ° C., atmosphere (volume ratio) N 2 : 50%, H 2 : 48%, TiCl 2 : 2%), treatment time: 30 seconds) and coated with a 0.3μm thick TiN film per side, 35% boric acid, 65% alumina A fine particle dispersion mixed with (dry state, mass ratio) is applied, and this is baked at 850 ° C. for 1 minute in an N 2 atmosphere containing 3% by volume of H 2 , so that boric acid becomes 3 g / m 2 per side. An alumina-based insulating coating was applied to obtain a product.

得られた製品の地鉄はSe:0.0002%、Sb:0.0001%、B:0.0015%、Ca:0.0007%、Mo:0.0018%含有しており、磁気測定の結果、磁性劣化量ΔW15/50は0.001W/kgであった。
The obtained product contains Se: 0.0002%, Sb: 0.0001%, B: 0.0015%, Ca: 0.0007%, Mo: 0.0018%. As a result of magnetic measurement, the amount of magnetic deterioration ΔW 15/50 is 0.001 W / kg.

Claims (10)

仕上げ焼鈍を経て得られた方向性電磁鋼板原板の表面にクロムを含まない絶縁コーティングを有する方向性電磁鋼板であって、該方向性電磁鋼板原板は地鉄中にB及びCaのいずれか一方又は双方を質量比で合計量0.0005%以上含有しかつ、Se量が0.0005%以下、Sb量が0.0005%以下に制限されているものであることを特徴とする耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板。 A grain-oriented electrical steel sheet having an insulating coating not containing chromium on the surface of a grain-oriented electrical steel sheet obtained through finish annealing, wherein the grain-oriented electrical steel sheet has either one of B and Ca in the ground iron or Grain boundary oxidation resistance and low magnetic field magnetic properties characterized in that both are contained in a mass ratio of 0.0005% or more, Se content is limited to 0.0005% or less, and Sb content is limited to 0.0005% or less. Oriented electrical steel sheet with excellent aging stability. 方向性電磁鋼板原板はさらに地鉄中にMo含有量を0.002%以上含有するものであることを特徴とする請求項1記載の耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板。 2. The grain-oriented electrical steel sheet has a Mo content of 0.002% or more in the base iron, and has excellent grain boundary oxidation resistance and low-field magnetic properties over time. Oriented electrical steel sheet. 方向性電磁鋼板原板は地鉄上にフォルステライトを主成分とするセラミックス被膜を有するものであることを特徴とする請求項1又は2のいずれかに記載の耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板。 3. The grain boundary oxidation resistance and low magnetic field magnetic properties according to claim 1, wherein the grain-oriented electrical steel sheet has a ceramic film mainly composed of forsterite on the ground iron. Oriented electrical steel sheet with excellent aging stability. 方向性電磁鋼板原板は地鉄の露出したものであることを特徴とする請求項1又は2のいずれかに記載の耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板。 3. A grain oriented electromagnetic steel sheet having excellent grain-time oxidation resistance and low magnetic field magnetic property over time, according to claim 1, wherein the grain oriented electromagnetic steel sheet is exposed from a base metal. steel sheet. 方向性電磁鋼板素材に対し、熱間圧延、冷間圧延、脱炭焼鈍及び焼鈍分離剤を塗布して行う仕上焼鈍を経て地鉄中のB及びCa一方又は双方を合計量が質量比で合計量0.0005%以上含有しかつ、Se量が0.0005%以下、Sb量が0.0005%以下に制限されている方向性電磁鋼板原板を製造する段階と、得られた方向性電磁鋼板原板にクロムを含まない絶縁コーティングを施す段階とを含むことを特徴とする耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板の製造方法。 For the grain-oriented electrical steel sheet material, hot rolling, cold rolling, decarburization annealing, and finish annealing performed by applying an annealing separator, the total amount of B and Ca in the ground iron is totaled by mass ratio A stage of producing a grain-oriented electrical steel sheet having a content of 0.0005% or more, a Se content of 0.0005% or less, and an Sb content of 0.0005% or less, and the obtained grain-oriented electrical steel sheet does not contain chromium. A method for producing a grain-oriented electrical steel sheet having excellent intergranular oxidation resistance and low-field magnetic property temporal stability, characterized by comprising an insulating coating step. 方向性電磁鋼板原板はさらにMoを0.002%以上含有するものであることを特徴とする請求項5記載の耐粒酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板の製造方法。 6. A method for producing a grain-oriented electrical steel sheet excellent in grain oxidation resistance and low-field magnetic property over time, characterized in that the grain-oriented electrical steel sheet further contains 0.002% or more of Mo. . 方向性電磁鋼板原板を、フォルステライトを主成分とするセラミックス被膜を有するものとして製造するものであることを特徴とする請求項5又は6記載の耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板の製造方法。 7. Grain boundary oxidation resistance and low-field magnetic property over time stability according to claim 5 or 6, wherein the grain-oriented electrical steel sheet is produced as having a ceramic film mainly composed of forsterite. For producing a grain-oriented electrical steel sheet having excellent properties. 方向性電磁鋼板原板を、フォルステライトを主成分とするセラミックス被膜を有するものとして製造した後、該セラミックス被膜を除去する工程をはさむことを特徴とする請求項5又は6記載の耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板の製造方法。 7. The grain boundary oxidation resistance according to claim 5 or 6, wherein the grain-oriented electrical steel sheet original plate is manufactured as having a ceramic coating mainly composed of forsterite, and then the step of removing the ceramic coating is sandwiched. And the manufacturing method of the grain-oriented electrical steel sheet excellent in the temporal stability of a low magnetic field magnetic characteristic. 方向性電磁鋼板原板を、最終焼鈍終了段階でフォルステライトを主成分とするセラミックス被膜を実質的に有さないものとして製造するものであることを特徴とする請求項5又は6記載の耐粒界酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板の製造方法。 The grain-resistant boundary according to claim 5 or 6, wherein the grain-oriented electrical steel sheet is produced as a material substantially free of a ceramic film mainly composed of forsterite at the final annealing end stage. A method for producing a grain-oriented electrical steel sheet having excellent aging stability and low magnetic field magnetic properties over time. 方向性電磁鋼板原板を製造する段階と、得られた方向性電磁鋼板原板にクロムを含まない絶縁コーティングを施す段階との間において質量比で濃度0.5〜5%の燐酸を含む水溶液により1〜10秒酸洗し、しかる後、100℃以上300℃以下の温度で1秒以上15秒以下の時間保持する熱処理を行うことを特徴とする請求項5〜9の何れかに記載の耐粒酸化性及び低磁場磁気特性の経時安定性に優れた方向性電磁鋼板の製造方法。
1-10 by an aqueous solution containing phosphoric acid having a concentration of 0.5-5% by mass between the stage of producing the grain-oriented electrical steel sheet and the stage of applying the insulating coating containing no chromium to the obtained grain-oriented electrical steel sheet. 10. The grain oxidation resistance according to any one of claims 5 to 9, characterized by performing a second pickling, and then performing a heat treatment at a temperature of 100 ° C to 300 ° C for 1 second to 15 seconds. And the manufacturing method of the grain-oriented electrical steel sheet excellent in the temporal stability of a low magnetic field magnetic characteristic.
JP2004049053A 2004-02-25 2004-02-25 Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same Expired - Fee Related JP4626155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049053A JP4626155B2 (en) 2004-02-25 2004-02-25 Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049053A JP4626155B2 (en) 2004-02-25 2004-02-25 Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005240078A JP2005240078A (en) 2005-09-08
JP4626155B2 true JP4626155B2 (en) 2011-02-02

Family

ID=35022117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049053A Expired - Fee Related JP4626155B2 (en) 2004-02-25 2004-02-25 Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same

Country Status (1)

Country Link
JP (1) JP4626155B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068055A (en) * 2007-09-12 2009-04-02 Jfe Steel Kk Non-oriented electrical steel sheet
JP5982883B2 (en) * 2011-04-11 2016-08-31 Jfeスチール株式会社 Evaluation method of grain-oriented electrical steel sheet
JP6031951B2 (en) * 2012-11-09 2016-11-24 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347975A (en) * 1989-07-13 1991-02-28 Kawasaki Steel Corp Low-iron loss grain-oriented silicon steel sheet
JPH10324959A (en) * 1997-03-26 1998-12-08 Kawasaki Steel Corp Grain oriented silicon steel sheet with extremely low iron loss, and its manufacture
JPH11229098A (en) * 1998-02-13 1999-08-24 Nkk Corp Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11293426A (en) * 1998-02-13 1999-10-26 Nkk Corp Non-oriented silicon steel sheet excellent in fatigue property
JP2000104143A (en) * 1998-09-29 2000-04-11 Kawasaki Steel Corp Low iron loss grain oriented silicon steel sheet low in coercive force and its production
JP2000169972A (en) * 1998-12-04 2000-06-20 Nippon Steel Corp Chromium-free surface treating agent for grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet using same
JP2000309859A (en) * 1999-04-23 2000-11-07 Kawasaki Steel Corp Silicon steel sheet excellent in mean magnetic property in rolling plane, and its manufacture
JP2001032054A (en) * 1999-07-22 2001-02-06 Kawasaki Steel Corp Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
JP2001164344A (en) * 1999-12-06 2001-06-19 Kawasaki Steel Corp Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JP2001279400A (en) * 2000-03-30 2001-10-10 Kawasaki Steel Corp Nonriented silicon steel sheet excellent in film adhesiveness, and its production method
JP2003193251A (en) * 2001-12-21 2003-07-09 Jfe Steel Kk Method of producing silicon steel sheet with insulating film having excellent appearance and adhesion
JP2003201518A (en) * 2002-01-11 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347975A (en) * 1989-07-13 1991-02-28 Kawasaki Steel Corp Low-iron loss grain-oriented silicon steel sheet
JPH10324959A (en) * 1997-03-26 1998-12-08 Kawasaki Steel Corp Grain oriented silicon steel sheet with extremely low iron loss, and its manufacture
JPH11229098A (en) * 1998-02-13 1999-08-24 Nkk Corp Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11293426A (en) * 1998-02-13 1999-10-26 Nkk Corp Non-oriented silicon steel sheet excellent in fatigue property
JP2000104143A (en) * 1998-09-29 2000-04-11 Kawasaki Steel Corp Low iron loss grain oriented silicon steel sheet low in coercive force and its production
JP2000169972A (en) * 1998-12-04 2000-06-20 Nippon Steel Corp Chromium-free surface treating agent for grain oriented silicon steel sheet, and manufacture of grain oriented silicon steel sheet using same
JP2000309859A (en) * 1999-04-23 2000-11-07 Kawasaki Steel Corp Silicon steel sheet excellent in mean magnetic property in rolling plane, and its manufacture
JP2001032054A (en) * 1999-07-22 2001-02-06 Kawasaki Steel Corp Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
JP2001164344A (en) * 1999-12-06 2001-06-19 Kawasaki Steel Corp Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JP2001279400A (en) * 2000-03-30 2001-10-10 Kawasaki Steel Corp Nonriented silicon steel sheet excellent in film adhesiveness, and its production method
JP2003193251A (en) * 2001-12-21 2003-07-09 Jfe Steel Kk Method of producing silicon steel sheet with insulating film having excellent appearance and adhesion
JP2003201518A (en) * 2002-01-11 2003-07-18 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property

Also Published As

Publication number Publication date
JP2005240078A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
KR101963990B1 (en) Grain-oriented electrical steel sheet and method of manufacturing same
RU2497956C1 (en) Method for making plate from electrical steel with oriented grain structure
JP7299511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN113396242A (en) Grain-oriented electromagnetic steel sheet, method for forming insulating coating on grain-oriented electromagnetic steel sheet, and method for producing grain-oriented electromagnetic steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP6624028B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6962471B2 (en) Original plate for grain-oriented electrical steel sheet, method for manufacturing grain-oriented silicon steel sheet used as material for grain-oriented electrical steel sheet, method for manufacturing grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP4608562B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
JP4626155B2 (en) Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same
KR102580249B1 (en) Grain-oriented electrical steel sheet without forsterite film and with excellent insulation film adhesion
JP7299512B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN113302317B (en) Method for producing grain-oriented electrical steel sheet
EP4174194A1 (en) Production method for grain-oriented electrical steel sheet
JP3707085B2 (en) Method for producing grain-oriented silicon steel sheet
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
WO2022215709A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
WO2022215710A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
JP7131693B2 (en) Grain-oriented electrical steel sheet with insulation coating and its manufacturing method
RU2805838C1 (en) Method for producing anisotropic electrical steel sheet
WO2022215714A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
WO2023195518A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
EP3913084B1 (en) Method for producing grain oriented electrical steel sheet
WO2023195517A1 (en) Grain-oriented electrical steel sheet and formation method for insulating coating film
EP4335935A1 (en) Method for producing grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4626155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees