JPH08176840A - Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production - Google Patents

Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production

Info

Publication number
JPH08176840A
JPH08176840A JP31655994A JP31655994A JPH08176840A JP H08176840 A JPH08176840 A JP H08176840A JP 31655994 A JP31655994 A JP 31655994A JP 31655994 A JP31655994 A JP 31655994A JP H08176840 A JPH08176840 A JP H08176840A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
iron loss
oriented silicon
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31655994A
Other languages
Japanese (ja)
Inventor
Hiroaki Toda
広朗 戸田
Keiji Sato
圭司 佐藤
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31655994A priority Critical patent/JPH08176840A/en
Publication of JPH08176840A publication Critical patent/JPH08176840A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To propose a means for using a magnetic domain segmenting technique by a groove forming treatment as a fundamental and enhancing the iron loss decreasing effect thereof to the effect equal to or higher than the effect obtainable when plasma or laser treatments are executed. CONSTITUTION: A steel sheet has many linear grooves extending in a direction intersecting with a rolling direction on its either one surface and has different thickness regions of forsterite films on the other surface. As a result, the steel sheet having the low iron loss is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電気
機器の鉄心材料として有利に適合する、特に歪取り焼鈍
によって鉄損が劣化しない低鉄損方向性けい素鋼板及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low iron loss grain-oriented silicon steel sheet which is suitable as an iron core material for transformers and other electric devices, and in particular, does not deteriorate in iron loss due to strain relief annealing, and a method for producing the same. Is.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器の
鉄心材料として用いられ、その磁気特性に優れることが
要求される。特に鉄心として使用した場合のエネルギー
損失、すなわち鉄損の低いことが重要である。この鉄損
を低減するには、結晶方位を(110)〔001〕方位
により高度に揃えること、Si含有量を上げて鋼板の電気
抵抗を増加させること、不純物を低減すること、そして
板厚を薄くすること、などが種々試みられてきた。その
結果、板厚が0.23mm以下の鋼板では、鉄損W17/50
(磁束密度1.7T, 50Hz) が0.9W/kg 以下のものが製造さ
れるようになった。しかし、先に述べたような冶金学的
方法では、これ以上の改善を望むのは極めて難しく、た
とえ多少の改善が認められても、その努力の割には鉄損
改善の実効は僅かである。
2. Description of the Related Art Grained silicon steel sheets are mainly used as iron core materials for transformers and are required to have excellent magnetic properties. Particularly, it is important that the energy loss when used as an iron core, that is, the iron loss is low. In order to reduce the iron loss, the crystal orientation is highly aligned with the (110) [001] orientation, the Si content is increased to increase the electric resistance of the steel sheet, the impurities are reduced, and the sheet thickness is reduced. Various attempts have been made to reduce the thickness. As a result, in the steel sheet having a thickness of 0.23 mm or less, iron loss W 17/50 value (magnetic flux density 1.7 T, 50 Hz) of 0.9 W / kg or less has been manufactured. However, with the metallurgical method as described above, it is extremely difficult to request further improvement, and even if some improvement is recognized, iron loss improvement is insignificant for the effort. .

【0003】そこで、近年では、鉄損の大幅な低減を達
成する手段として、人為的に磁区を細分化する方法が種
々試みられるようになった。その中で現在工業化されて
いる方法としては、特公昭57−2252号公報に提案され
た、仕上げ焼鈍済みの鋼板表面にレーザーを照射する方
法がある。この方法は、鋼板表面にレーザーによる微細
な熱歪を導入することによって磁区を細分化し、この磁
区細分化によって鉄損を低減しようとするものである。
Therefore, in recent years, various methods for artificially subdividing magnetic domains have been tried as means for achieving a significant reduction in iron loss. Among them, a method currently industrialized is a method proposed in Japanese Patent Publication No. 57-2252, in which a surface of a steel sheet subjected to finish annealing is irradiated with a laser. This method is intended to subdivide magnetic domains by introducing fine thermal strain due to a laser on the surface of a steel sheet, and to reduce iron loss by subdividing the magnetic domains.

【0004】しかしながら、この方法では、磁区細分化
後に歪取り焼鈍などの高温での熱処理を施すと、鉄損低
減効果が消失してしまうため、歪取り焼鈍を必須とする
巻鉄心用素材としては用いることができなかった。
However, in this method, when heat treatment at a high temperature such as strain relief annealing is performed after the magnetic domain is subdivided, the effect of reducing iron loss disappears. Therefore, as a material for a wound iron core which requires strain relief annealing. It could not be used.

【0005】一方、歪取り焼鈍が可能な技術として、特
公昭62−54873 号公報には、仕上げ焼鈍済みの鋼板にレ
ーザーや機械的手段によって局所的に絶縁被膜を除去し
たのち被膜除去部を酸洗するか、あるいはナイフなどに
より機械的に直接地鉄までけがくなどの手段により、線
状の溝を局所的に形成した後、溝を充填するようにりん
酸系の張力付与被膜を施す方法が、また特公昭62−5357
9 号公報には、仕上げ焼鈍済みの鋼板に90〜220kg/mm2
の荷重で地鉄部分に深さ5μm 超の溝を形成した後、75
0 ℃以上の温度で加熱処理する方法が、それぞれ提案さ
れている。更に、特公平3−69968 号公報には、最終冷
間圧延後鋼板の圧延方向のほぼ直角な方向に線状刻み目
を導入する方法が開示されている。
On the other hand, as a technique capable of stress relief annealing, Japanese Patent Publication No. 62-54873 discloses that a steel sheet which has been finish annealed is locally removed with an insulating film by a laser or mechanical means, and then the film-removed portion is acidified. A method of locally forming linear grooves by washing or mechanically scribing directly on the base metal with a knife or the like, and then applying a phosphoric acid-based tension-imparting film so as to fill the grooves. But, again
No. 9 discloses that 90 to 220 kg / mm 2
After forming a groove with a depth of more than 5 μm in the base steel part with the load of 75,
Each method of heat treatment at a temperature of 0 ° C. or higher has been proposed. Further, Japanese Patent Publication No. 3-69968 discloses a method of introducing linear notches in a direction substantially perpendicular to the rolling direction of a steel sheet after final cold rolling.

【0006】これらの方法により得られた鋼板は、線状
の溝を有する点において共通しており、溝周辺に生じる
磁極による磁区細分化効果が鉄損改善原理の一つとなっ
ている。現在、これらの方法を用いた鋼板が歪取り焼鈍
によって鉄損劣化しない鋼板として工業生産されてい
る。
The steel sheets obtained by these methods are common in that they have linear grooves, and the magnetic domain refinement effect by the magnetic poles around the grooves is one of the iron loss improving principles. At present, steel sheets using these methods are industrially produced as steel sheets that do not suffer core loss deterioration due to strain relief annealing.

【0007】[0007]

【発明が解決しようとする課題】上記の線状溝を有する
鋼板において、磁区の生成は鋼板表面に導入した溝の近
傍に限られており、従って溝形成による鉄損の改善はプ
ラズマやレーザーなどによる局所的熱歪みを利用した磁
区細分化方法に比べて、W17/50 値で約0.02〜0.03W/kg
は劣ってしまう。
In the steel sheet having the linear grooves described above, the magnetic domains are generated only near the grooves introduced into the surface of the steel sheet, and therefore the improvement of iron loss due to the groove formation is improved by plasma, laser, etc. Compared with the magnetic domain subdivision method using local thermal strain due to, W 17/50 value is about 0.02-0.03W / kg
Is inferior.

【0008】なお、2次再結晶に影響を与えずに、鋼板
表面の被膜を含む地鉄表層部において局所的に異質な領
域を区画形成することにより、磁区幅の細分化を達成す
る技術も提案されている。すなわち、特開昭60−92479
号公報には、フォルステライト被膜の厚みを局所的に変
えた鋼板が、特開昭60−92481 号公報には、フォルステ
ライト被膜に局所的に欠損領域を設けた鋼板が、特開昭
60−103124号公報には、地鉄表面部に局所的に地鉄とは
組成の異なる異物を配置した鋼板が、そして特開昭60−
103183号公報には、フォルステライト被膜に局所的に異
組成のグラス被膜を設けた鋼板が、それぞれ開示されて
いる。
[0008] A technique for achieving subdivision of the magnetic domain width by partitioning and forming locally heterogeneous regions in the surface layer of the base metal containing the coating on the surface of the steel sheet without affecting secondary recrystallization is also known. Proposed. That is, JP-A-60-92479
Japanese Patent Laid-Open No. 60-92481 discloses a steel sheet in which the thickness of a forsterite coating is locally changed, and Japanese Patent Laid-Open No. 60-92481 discloses a steel sheet in which a forsterite coating is locally provided with a defect region.
Japanese Patent Laid-Open No. 60-103124 discloses a steel sheet in which foreign matter having a composition different from that of the ground iron is locally arranged on the surface of the ground iron, and JP-A-60-
Japanese Patent No. 103183 discloses a steel sheet in which a forsterite coating is locally provided with a glass coating having a different composition.

【0009】しかしながら、これら鋼板での鉄損改善代
は、プラズマやレーザーによる処理を経た鋼板あるいは
表面に線状の溝を有する鋼板より少ないため、実際には
工業化されていない。
However, since the iron loss improving margin of these steel sheets is smaller than that of steel sheets treated with plasma or laser or steel sheets having linear grooves on the surface, they have not been industrialized in practice.

【0010】そこで、この発明は、溝形成処理による磁
区細分化技術を基本として、この鉄損低減効果をプラズ
マやレーザー処理を施した場合と同等以上まで引き上げ
る手段について提案することを目的とする。
Therefore, an object of the present invention is to propose a means for raising the iron loss reducing effect to a level equal to or higher than that in the case where plasma or laser treatment is performed, based on the magnetic domain refining technique by groove formation treatment.

【0011】[0011]

【課題を解決するための手段】発明者らは、先に述べた
課題に沿って鋭意研究を重ねた結果、鋼板の表面に線状
の溝を有する方向性けい素鋼板において、その裏面の溝
を導入していない面のフォルステライト被膜に異厚領域
を形成させる手法を適用することにより、各手段を個々
に実施した場合と比較にならない効果が得られ、ひいて
は鋼板の鉄損をプラズマやレーザー処理を施した鋼板の
鉄損と同等以上に向上し得ることを新たに知見して、こ
の発明を完成するに至った。併せて、異厚領域の形成に
は、例えばSnO2, SnSO4 等のSn化合物を鋼板表面に付着
させることが有効であることも見出した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in accordance with the above-mentioned problems, and as a result, in a grain-oriented silicon steel sheet having a linear groove on the surface of the steel sheet, a groove on the back surface thereof. By applying the method of forming a different thickness region on the forsterite coating on the surface where the above is not introduced, an effect that is not comparable to the case where each means is individually implemented is obtained, and eventually the iron loss of the steel plate is reduced by plasma or laser. The inventors have newly discovered that the iron loss of the treated steel sheet can be improved to the same level or more, and have completed the present invention. At the same time, it was also found that it is effective to adhere Sn compounds such as SnO 2 and SnSO 4 to the surface of the steel sheet for forming the different thickness regions.

【0012】すなわち、この発明は、鋼板表面のいずれ
か一方の面に、圧延方向と交差する向きに延びる多数の
線状溝を有し、他方の面に、フォルステライト被膜の異
厚領域を有することを特徴とする歪取り焼鈍によって特
性が劣化しない低鉄損の方向性けい素鋼板である。ここ
で、フォルステライト被膜の異厚領域は、連続または断
続した線状領域であることが好ましい。
That is, according to the present invention, a large number of linear grooves extending in a direction intersecting the rolling direction are provided on any one surface of the steel sheet surface, and a different thickness region of the forsterite coating film is provided on the other surface. This is a low iron loss grain-oriented silicon steel sheet whose characteristics are not deteriorated by strain relief annealing. Here, the different thickness region of the forsterite coating is preferably a continuous or discontinuous linear region.

【0013】また、上記の方向性けい素鋼板は、含けい
素鋼スラブを熱間圧延した後、1回または中間焼鈍を挟
む2回以上の冷間圧延を施して最終製品板厚とし、その
後脱炭・1次再結晶焼鈍を施し、ついで鋼板の表面にMg
O を主成分とする焼鈍分離剤を塗布してから2次再結晶
焼鈍及び純化焼鈍を施す一連の工程からなる方向性けい
素鋼板の製造方法において、最終冷間圧延を経た鋼板の
表面のいずれか一方の面に、圧延方向と交差する向きに
多数の線状溝を形成し、さらに焼鈍分離剤の塗布に先立
って、鋼板の表面の他方の面に、酸化物あるいは硫化物
特にSn02あるいはSnSO4 を局所的に付着し、純化焼鈍後
の鋼板表面の他方の面にフォルステライト被膜の異厚領
域を形成することを特徴とする方法によって、製造する
ことができる。
The grain-oriented silicon steel sheet is obtained by hot-rolling a silicon-containing steel slab and then cold rolling it once or two or more times with intermediate annealing to obtain a final product sheet thickness. Decarburization and primary recrystallization annealing are performed, and then Mg is applied to the surface of the steel sheet.
In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of applying an annealing separator containing O 2 as a main component, then performing secondary recrystallization annealing and purification annealing, whichever surface of the steel sheet has undergone final cold rolling. On one surface, forming a large number of linear grooves in a direction intersecting the rolling direction, prior to the application of the annealing separator, on the other surface of the steel sheet, oxide or sulfide, especially Sn0 2 or It can be manufactured by a method characterized in that SnSO 4 is locally adhered and a different thickness region of the forsterite coating is formed on the other surface of the steel sheet surface after the purification annealing.

【0014】[0014]

【作用】次に、この発明の基礎となった実験結果につい
て説明する。すなわち、表1に示す代表的な成分組成に
なる、0.22mm厚の最終冷延板の表面の一方の面に、グラ
ビアオフセット印刷によるレジストエッチング塗布、そ
して電解エッチングにより、幅150 μm 、深さ25μm 及
び圧延方向の間隔3mmで、圧延方向に対して10°の傾斜
角度で延びる線状溝を導入した。その後、鋼板を7分割
し、分割した6枚の鋼板表面の他方の面に、つまり線状
溝を導入しない面に、表2に示す薬剤をペースト中に混
合後、各鋼板に、図1に示すように、圧延方向と直交す
る向きに5mmピッチで0.020 mm幅の線状に塗布した(付
着量約1g/m2)。なお、残る1枚の鋼板には、薬剤の塗
布を行わなかった。
Next, the experimental results which are the basis of the present invention will be described. That is, one of the surfaces of the final cold-rolled sheet having a thickness of 0.22 mm, which has the typical composition shown in Table 1, is applied with resist etching by gravure offset printing, and electrolytic etching to obtain a width of 150 μm and a depth of 25 μm. In addition, linear grooves extending at an inclination angle of 10 ° with respect to the rolling direction were introduced with an interval of 3 mm in the rolling direction. After that, the steel plate was divided into 7 parts, and after the chemicals shown in Table 2 were mixed into the paste on the other surface of the surface of the 6 divided steel plates, that is, the surface on which no linear groove was introduced, each steel plate was prepared as shown in FIG. As shown, it was applied in a line of 0.020 mm width at a pitch of 5 mm in a direction orthogonal to the rolling direction (applied amount: about 1 g / m 2 ). The chemical was not applied to the remaining one steel plate.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】次いで、脱炭・1次再結晶焼鈍を施した
後、鋼板表面にMgO を主成分とする焼鈍分離剤を塗布し
てから、最終仕上げ焼鈍を施した。仕上げ焼鈍後の鋼板
表面を観察すると、薬剤塗布部での被膜は非塗布部での
被膜の色調と異なっており、被膜の厚みも異なってい
た。図2に、SnSO4 を線状に塗布した部分の仕上げ焼鈍
後の被膜断面図を例示するように、薬剤塗布部での被膜
は非塗布部での被膜より厚くなって、地鉄側に深く入り
込んでいることがわかる。
Then, after decarburizing and primary recrystallization annealing, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, followed by final finishing annealing. When the surface of the steel sheet after finish annealing was observed, the coating film in the drug-applied portion was different from the color tone of the coating film in the non-applied portion, and the coating thickness was also different. As shown in Fig. 2 as an example of the coating cross-section after finish annealing of the linearly coated SnSO 4 layer, the coating on the chemical coating part is thicker than the coating on the non-coating part and deeper on the base metal side. You can see that it is invading.

【0018】ここで、表3に仕上げ焼鈍後の各鋼板の磁
気特性について調査した結果を示す。同表から、いずれ
の薬剤を塗布した場合も、すなわち被膜に異厚領域を設
けた場合はいずれも、鉄損が低減していることがわか
る。特に、SnSO4, SnO2 を塗布した場合の鉄損W17/50
値の向上代は約0.05W/kgと大きい。
Table 3 shows the results of an examination of the magnetic properties of each steel sheet after finish annealing. From the table, it is understood that the iron loss is reduced when any of the chemicals is applied, that is, when the coating has a different thickness region. Especially iron loss W 17/50 when SnSO 4 and SnO 2 are applied
The improvement margin of the value is as large as about 0.05 W / kg.

【0019】[0019]

【表3】 [Table 3]

【0020】さらに、表4に、張力コーティングを行っ
た試料の磁気特性を示す。なお、比較として、上記と同
様の工程にて線状溝を形成しないで得られた、最終仕上
げ焼鈍板の表面に、張力コーティングを施した後、圧延
方向と直角の方向に7mm間隔でプラズマを照射し、熱的
歪みを与えて磁区細分化を行った鋼板の鉄損も示した。
同表から、特にSnSO4, SnO2 を塗布した鋼板の鉄損は、
プラズマ処理を施した鋼板の鉄損より低減していること
がわかる。
Further, Table 4 shows the magnetic characteristics of the samples coated with tension. In addition, as a comparison, after applying tension coating to the surface of the final annealed sheet obtained without forming linear grooves in the same process as above, plasma was applied at 7 mm intervals in the direction perpendicular to the rolling direction. The iron loss of the steel sheet which was irradiated and subjected to thermal strain to subdivide the magnetic domains is also shown.
From the table, the iron loss of the steel sheet coated with SnSO 4 and SnO 2 is
It can be seen that the iron loss is lower than the iron loss of the plasma-treated steel sheet.

【0021】[0021]

【表4】 [Table 4]

【0022】ここで、フォルステライト被膜に形成する
異厚領域は、幅:0.01〜10mmで、間隔:1〜50mmにて、
連続または断続して設けることが好ましい。なお、圧延
方向に対する角度は任意である。すなわち、異厚領域
は、それが線状溝を有する面の反対面にあれば、圧延方
向でも、圧延方向に直角でもかまわない。
Here, the different thickness regions formed in the forsterite coating have a width of 0.01 to 10 mm and an interval of 1 to 50 mm,
It is preferably provided continuously or intermittently. The angle with respect to the rolling direction is arbitrary. That is, the different-thickness region may be in the rolling direction or at a right angle to the rolling direction as long as it is on the surface opposite to the surface having the linear groove.

【0023】なお、線状溝は、幅:0.003 〜0.03mm、深
さ:0.001 〜0.070 mm及び圧延方向との交差角度:60〜
90°で、圧延方向での間隔1〜30mmにて形成することが
好ましい。すなわち、溝幅が0.003 mmに満たない場合及
び溝の深さが0.001 mmに満たない場合には、磁極の発生
量が少ないために十分な磁区細分化効果が得られず、一
方溝幅が0.030 mmを超えた場合及び溝深さが0.070 mmを
超えた場合には磁束密度の著しい低下を招く。また、溝
間隔が1mmに満たないと磁束密度の低下が著しく、一方
30mmを超えると磁区細分化効果が低下し、鉄損低減が十
分でなくなる。さらに、線状溝の方向が圧延方向に対し
60〜90゜の範囲を逸脱すると、磁区細分化効果が急激に
小さくなり、鉄損低減効果が著しく劣化する。
The linear groove has a width of 0.003 to 0.03 mm, a depth of 0.001 to 0.070 mm, and an intersecting angle with the rolling direction: 60 to
It is preferably formed at 90 ° with an interval of 1 to 30 mm in the rolling direction. That is, when the groove width is less than 0.003 mm and the groove depth is less than 0.001 mm, a sufficient magnetic domain subdivision effect cannot be obtained because the amount of magnetic poles is small, while the groove width is 0.030 mm. If it exceeds 0.1 mm or if the groove depth exceeds 0.070 mm, the magnetic flux density is significantly reduced. Also, if the groove spacing is less than 1 mm, the magnetic flux density is significantly reduced.
If it exceeds 30 mm, the effect of subdividing the magnetic domains is reduced and the iron loss cannot be sufficiently reduced. Furthermore, the direction of the linear groove is
If it deviates from the range of 60 to 90 °, the effect of subdividing the magnetic domains will be sharply reduced, and the effect of reducing iron loss will be significantly deteriorated.

【0024】また、異厚領域を形成するために用いる薬
剤としては、ZrO2,Cu2O,SnO2,SnSO4,MgSO4,SrSO4, Bi2O
3,CdO,CuO,Co3O4,ZnO,NiO,Sb2O3,Sb2O5,SnO などがあ
り、とりわけSnO2及びSnSO4 等のSn化合物が有利に適合
する。そして、これらの薬剤を、最終冷間圧延後に焼鈍
分離剤の塗布に先立って、上記の好適形態に従って、好
ましくは付着量:0.05〜3.0g/m2 で塗布し、その後に、
MgO を主成分とする焼鈍分離剤を塗布してから2次再結
晶焼鈍及び純化焼鈍を施すことによって、異厚領域のあ
るフォルステライト被膜が形成される。
As agents used for forming different thickness regions, ZrO 2 , Cu 2 O, SnO 2 , SnSO 4 , MgSO 4 , SrSO 4, Bi 2 O are used.
3, CdO, CuO, Co 3 O 4, ZnO, NiO, Sb 2 O 3, Sb 2 O 5, SnO include, inter alia Sn compounds such as SnO 2 and SnSO 4 is advantageously suited. Then, these chemicals are applied after the final cold rolling, prior to the application of the annealing separator, according to the above-mentioned preferred embodiment, preferably in an adhesion amount of 0.05 to 3.0 g / m 2 , and thereafter,
A forsterite film having a different thickness region is formed by applying an annealing separator having MgO as a main component and then performing secondary recrystallization annealing and purification annealing.

【0025】また、線状溝の形成時期については、最終
冷間圧延後であれば、最終仕上焼鈍の前後のいずれの段
階でも構わない。溝を形成する方法については局所的に
エッチング処理する方法、刃物等でけがく方法、突起付
きロールで圧延する方法等が挙げられるが、最も望まし
い方法は、最終冷間圧延直後に、レジスト−電解エッチ
ング法等の電気化学的方法またはエッチング等の化学的
方法によって、鋼板に溝を形成する方法である。
The linear grooves may be formed at any stage before and after the final finish annealing as long as they are after the final cold rolling. Examples of the method of forming the groove include a method of locally performing an etching treatment, a method of scribing with a cutting tool, a method of rolling with a protruding roll, and the like, but the most preferable method is immediately after final cold rolling, resist-electrolysis. It is a method of forming grooves in a steel sheet by an electrochemical method such as etching or a chemical method such as etching.

【0026】[0026]

【実施例】表5に示す成分組成になる、0.22mm厚の最終
冷延板の表面の一方の面に、グラビアオフセット印刷で
のレジストエッチング塗布及び電解エッチングにより、
幅:0.0015mm、深さ0.0025mmm 、圧延方向の間隔3mm、
圧延方向から10°傾いた角度に線状溝を導入した。その
後、上記鋼板を3分割し、脱炭・1次再結晶を施したの
ち、各鋼板の両表面の他方に、SnO2またはSnSO4 をペー
スト中に混合後、圧延方向と直角方向に5mmピッチで0.
020 mm幅の線状に塗布した(付着量約0.3g/m 2)。つい
で、鋼板表面にMgO を主成分とする焼鈍分離剤を塗布し
てから最終仕上げ焼鈍を施した。仕上げ焼鈍後の被膜を
観察すると、薬剤塗布部では被膜に異厚領域が形成され
ていた。
[Example] The final composition of 0.22 mm thickness with the composition shown in Table 5
Gravure offset printing on one surface of the cold-rolled sheet
By resist etching coating and electrolytic etching of
Width: 0.0015mm, depth 0.0025mmm, rolling direction spacing 3mm,
The linear groove was introduced at an angle of 10 ° from the rolling direction. That
After that, the above steel sheet was divided into three, and decarburized and primary recrystallization was performed.
Then, on the other side of both surfaces of each steel plate, SnO2Or SnSOFourThe page
After mixing in a strike, it is 0 at a pitch of 5 mm in the direction perpendicular to the rolling direction.
020 mm width linear coating (applied amount about 0.3 g / m 2). Just
Then, apply an annealing separator containing MgO as the main component to the steel plate surface.
After that, final finishing annealing was performed. The film after finish annealing
Observation revealed that a region of different thickness was formed in the coating in the drug application area.
I was

【0027】[0027]

【表5】 [Table 5]

【0028】また、比較として、上記と同様に線状溝を
導入して反対の面には異厚領域を形成しない鋼板、逆に
線状溝を導入しないで異厚領域を形成した鋼板、さらに
張力コーティングを施した後、圧延方向と直角な方向に
7mm間隔でプラズマを照射し、熱的歪みを与え磁区細分
化を行った鋼板、もそれぞれ用意した。
As a comparison, a steel sheet having linear grooves introduced therein and having no different thickness region formed on the opposite surface thereof as described above, a steel sheet having no different thickness regions formed on the opposite surface, and After the tension coating, a steel sheet was prepared by irradiating plasma in a direction perpendicular to the rolling direction at intervals of 7 mm to give thermal strain to subdivide magnetic domains.

【0029】かくして得られた仕上げ焼鈍後の各鋼板の
磁気特性を、表6に示す。同表から、線状溝を形成した
面の反対面に異厚領域を設けた鋼板の鉄損は、線状溝及
び異厚領域の導入をそれぞれ個別に行った鋼板の鉄損に
対しては勿論、プラズマ処理を施した鋼板の鉄損に対し
ても、低減していることがわかる。
Table 6 shows the magnetic properties of the steel sheets thus obtained after finish annealing. From the same table, the iron loss of the steel sheet provided with the different thickness region on the surface opposite to the surface on which the linear groove is formed is Of course, it can be seen that the iron loss of the steel sheet subjected to the plasma treatment is also reduced.

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【発明の効果】この発明によれば、溝形成処理を施した
鋼板の鉄損をプラズマやレーザーによる処理を施した鋼
板の鉄損よりも低減でき、より低鉄損の鋼板の提供が可
能となる。
According to the present invention, it is possible to reduce the iron loss of a steel sheet that has been subjected to a groove forming treatment to a value lower than that of a steel sheet that has been treated with plasma or laser, and it is possible to provide a steel sheet with a lower iron loss. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】最終冷延板表面に薬剤を線状に塗布した鋼板の
表面を示す図である。
FIG. 1 is a diagram showing a surface of a steel sheet obtained by linearly applying a chemical to the surface of a final cold-rolled sheet.

【図2】SnSO4 を冷延板表面に線状塗布した箇所の仕上
げ焼鈍後の被膜断面を示す図である。
FIG. 2 is a view showing a cross section of a film after finish annealing of a portion where SnSO 4 is linearly applied on the surface of a cold rolled plate.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月21日[Submission date] February 21, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表面のいずれか一方の面に、圧延方
向と交差する向きに延びる多数の線状溝を有し、他方の
面に、フォルステライト被膜の異厚領域を有することを
特徴とする歪取り焼鈍によって特性が劣化しない低鉄損
方向性けい素鋼板。
1. A large number of linear grooves extending in a direction intersecting a rolling direction is provided on one surface of a steel sheet surface, and a different thickness region of a forsterite coating film is provided on the other surface. Low iron loss grain-oriented silicon steel sheet whose characteristics do not deteriorate due to strain relief annealing.
【請求項2】 フォルステライト被膜の異厚領域は、連
続または断続した線状領域である請求項1に記載の方向
性けい素鋼板。
2. The grain-oriented silicon steel sheet according to claim 1, wherein the different thickness region of the forsterite coating is a continuous or intermittent linear region.
【請求項3】 含けい素鋼スラブを熱間圧延した後、1
回または中間焼鈍を挟む2回以上の冷間圧延を施して最
終製品板厚とし、その後脱炭・1次再結晶焼鈍を施し、
ついで鋼板の表面にMgO を主成分とする焼鈍分離剤を塗
布してから2次再結晶焼鈍及び純化焼鈍を施す一連の工
程からなる方向性けい素鋼板の製造方法において、 最終冷間圧延を経た鋼板の表面のいずれか一方の面に、
圧延方向と交差する向きに多数の線状溝を形成し、さら
に焼鈍分離剤の塗布に先立って、鋼板の表面の他方の面
に、酸化物あるいは硫化物を局所的に付着し、純化焼鈍
後の鋼板表面の他方の面にフォルステライト被膜の異厚
領域を形成することを特徴とする、歪取り焼鈍によって
特性が劣化しない低鉄損方向性けい素鋼板の製造方法。
3. After hot rolling of a silicon-containing steel slab, 1
Cold rolling twice or more with intermediate or intermediate annealing to obtain the final product sheet thickness, then decarburization / primary recrystallization annealing,
Then, in the method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of applying an annealing separator containing MgO as a main component on the surface of the steel sheet, and then performing secondary recrystallization annealing and purification annealing, a final cold rolling was performed. On either surface of the steel plate,
A large number of linear grooves are formed in the direction intersecting with the rolling direction, and before applying the annealing separator, oxides or sulfides are locally attached to the other surface of the steel sheet, and after purification annealing Forming a different thickness region of a forsterite coating on the other surface of the steel sheet, the method for producing a low iron loss grain-oriented silicon steel sheet, the characteristics of which are not deteriorated by strain relief annealing.
JP31655994A 1994-12-20 1994-12-20 Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production Pending JPH08176840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31655994A JPH08176840A (en) 1994-12-20 1994-12-20 Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31655994A JPH08176840A (en) 1994-12-20 1994-12-20 Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production

Publications (1)

Publication Number Publication Date
JPH08176840A true JPH08176840A (en) 1996-07-09

Family

ID=18078453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31655994A Pending JPH08176840A (en) 1994-12-20 1994-12-20 Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production

Country Status (1)

Country Link
JP (1) JPH08176840A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309380A (en) * 2001-04-12 2002-10-23 Nippon Steel Corp Method of forming insulating coating film on electromagnetic steel sheet
WO2012068868A1 (en) * 2010-11-26 2012-05-31 武汉钢铁(集团)公司 Method for improving magnetic property of oriented silicon steel by laser scribing
EP2602343A4 (en) * 2010-08-06 2017-05-31 JFE Steel Corporation Directional magnetic steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309380A (en) * 2001-04-12 2002-10-23 Nippon Steel Corp Method of forming insulating coating film on electromagnetic steel sheet
EP2602343A4 (en) * 2010-08-06 2017-05-31 JFE Steel Corporation Directional magnetic steel plate
WO2012068868A1 (en) * 2010-11-26 2012-05-31 武汉钢铁(集团)公司 Method for improving magnetic property of oriented silicon steel by laser scribing

Similar Documents

Publication Publication Date Title
KR101421391B1 (en) Grain oriented electrical steel sheet
JP6168173B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP0033878B1 (en) Method for treating an electromagnetic steel sheet by laser-beam irradiation
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2013099272A1 (en) Oriented electromagnetic steel plate and manufacturing method therefor
RU2578296C2 (en) Textured electrical steel sheet and a method of reducing the iron loss
JP6084351B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR100336661B1 (en) Very low iron loss grain oriented electrical steel sheet and method of producing the same
EP3751013B1 (en) Grain oriented electrical steel sheet and production method therefor
EP3591080B1 (en) Grain-oriented electrical steel sheet and production method therefor
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
WO2012017669A1 (en) Grain-oriented electrical steel sheet, and method for producing same
MX2012015155A (en) Process for producing grain-oriented magnetic steel sheet.
JP2014091839A (en) Oriented electromagnetic steel sheet and its manufacturing method
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH08176840A (en) Low iron loss grain oriented silicon steel sheet not deteriorated in characteristic by stress relief annealing and its production
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH11124629A (en) Grain oriented silicon steel sheet reduced in iron loss and noise
JP2011111645A (en) Method for producing grain-oriented magnetic steel sheet
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
EP4223891A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
KR102149826B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2021085421A1 (en) Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing