JP4384451B2 - Oriented electrical steel sheet with excellent magnetic properties and method for producing the same - Google Patents

Oriented electrical steel sheet with excellent magnetic properties and method for producing the same Download PDF

Info

Publication number
JP4384451B2
JP4384451B2 JP2003207579A JP2003207579A JP4384451B2 JP 4384451 B2 JP4384451 B2 JP 4384451B2 JP 2003207579 A JP2003207579 A JP 2003207579A JP 2003207579 A JP2003207579 A JP 2003207579A JP 4384451 B2 JP4384451 B2 JP 4384451B2
Authority
JP
Japan
Prior art keywords
groove
steel sheet
oriented electrical
electrical steel
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207579A
Other languages
Japanese (ja)
Other versions
JP2005059014A (en
Inventor
秀行 濱村
辰彦 坂井
直也 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003207579A priority Critical patent/JP4384451B2/en
Publication of JP2005059014A publication Critical patent/JP2005059014A/en
Application granted granted Critical
Publication of JP4384451B2 publication Critical patent/JP4384451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、方向性電磁鋼板表面にレーザ加工により溝と溶融再凝固層を形成することで、歪み取り焼鈍後にも優れた磁気特性を維持し、巻鉄芯に使用可能な方向性電磁鋼板およびその製造方法に関する。
【0002】
【従来の技術】
方向性電磁鋼板は、鉄損を低減することがエネルギー節約の観点から要望されている。その方法として、レーザ照射により磁区を細分化する方法が既に特公昭58−26405号公報に開示されている。この方法では、レーザビームを照射することによって生じる熱衝撃波の反力によって方向性電磁鋼板に応力歪みを導入し、磁区を細分化することにより鉄損の低下を図るものである。しかし、この方法では、レーザ照射により導入した歪みが焼鈍時に消失し、磁区細分化効果が失われるという問題がある。したがって、この方法によって製造された方向性電磁鋼板は、歪取り焼鈍を必要としない積鉄芯トランス用としては使用できるが、歪取り焼鈍処理を必要とする巻鉄芯トランス用としては使用できない。
【0003】
そこで、鉄損値低減効果が歪取り焼鈍後も残るようにした方向性電磁鋼板の鉄損改善方法として、鋼板表面に溝を形成し、空隙での透磁率変化を利用して磁区を細分化する方法がさまざまに提案されている。例えば、特許文献1には歯形ロールで鋼板を押圧して溝を鋼板表面に形成する方法が、また、特許文献2には化学的エッチングにより溝を形成する方法かつ、さらに、特許文献3にはQスイッチCO2レーザで鋼板表面に点列溝を形成する方法などが開示されている。また、特許文献4、特許文献5には鋼板表面に溝ではなく、溶融再凝固層をレーザによって形成する方法が、特許文献4には溝と溝下層部に薄い溶融再凝固層をレーザにより形成する方法などが開示されている。
【0004】
【特許文献1】
特公昭63−44804号公報
【特許文献2】
米国特許第4750949号公報
【特許文献3】
特開平7−220913号公報
【特許文献4】
特願平10−284034号明細書
【特許文献5】
特開平6−212275号公報
【0005】
【発明が解決しようとする課題】
上記従来技術のうち、歯形ロールを用いる機械的方法は、電磁鋼板の硬度が高いため歯形が短期間で摩耗し、その結果、メンテナンス頻度が高いという問題がある。化学的エッチングによる方法は、歯形が磨耗するという問題はないが、マスキング、エッチング処理、マスク除去の工程が必要であり、機械的方法に比べて工程が複雑になる問題がある。QスイッチCO2レーザで鋼板に点列溝を形成する方法は、非接触で凹みを形成するため、歯形が磨耗する、工程が複雑になるという問題がないが、市販のレーザ発振装置に特殊なQスイッチ装置を別途追加する必要があるという問題がある。また、単純な溝形成による方法では、空隙部での透磁率減少のため磁束密度の劣化と占積率(積層した鉄芯の中で鋼板が占める割合)の低下を招き、変圧器の性能を低下させる問題がある。溶融再凝固層を形成する方法は、溝による体積減少がないため占積率低下は解消されるが、鉄損改善効果が溝形成法に比べ劣位傾向にある。また、溝と溝下層部に薄い溶融再凝固層をレーザにより形成する方法は、溝と溶融再凝固層の相乗効果が期待できるものの、溶融再凝固層の占める割合が小さいため、溝形成の場合と同様に磁束密度劣化と占積率の低下が生じてしまう問題があった。
【0006】
そこで、本発明が解決しようとする課題は、溝形成と同等以上の鉄損改善を有すとともに磁束密度の劣化、占積率の低下を最小限に抑えた方向性電磁鋼板および製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、鋼板の表面に、圧延方向にほぼ垂直で、且つ一定周期で線状の溝と溝内部中央部に凸の溶融再凝固層を形成して鉄損特性を改善した方向性電磁鋼板において、溝の深さをd、溝内部中央部の溶融再凝固層断面の高さをdとして、以下の条件を全て満たすことを特徴とする方向性電磁鋼板である。
10≦d ≦ 40μm
0.5≦d /d ≦1.0
また本発明は、方向性電磁鋼板の製造方法において、レーザビームを走査照射して前記の溝と溶融再凝固層を形成すること、その照射条件として、連続波レーザビームの照射パワーをP(W)、集光ビームのビーム走査方向径をdc(mm)、集光ビーム面積をS(mm) 、ビーム走査線速度をVc(mm/sec)とした時、ビーム通過時間Tc(sec)をTc=dc/Vc、照射エネルギー密度Up(mJ/mm)をUp=(P/S)×Tcとで定義し、TcとUpがそれぞれ以下の範囲である(ただし、レーザビームを照射する加工点にアシストガスを供給する場合を除く)ことを特徴とする方向性電磁鋼板の製造方法である。
0.2≦Up≦10J/mm
1≦Tc≦400μsec
【0008】
【発明の実施の形態】
本発明者らは、レーザビームのスキャン照射加工により溝と溶融層を形成して鉄損を改善する技術において、レーザ照射条件、溝と溶融再凝固層の断面形状、および磁気特性について詳細に研究を行った。その結果、ある特定の断面形状において、鉄損改善率を最大化し、且つ磁束密度劣化と占積率劣化を最小限に抑制することを見出した。更にそれを実現するために、レーザ加工による溶融、再凝固現象を利用した新たな加工方法を考案した。以下に実施例を用いて本発明を説明する。
【0009】
まず本発明の溝および溶融再凝固層の形状とその効果について説明する。図1は本発明の溝および溶融再凝固層の断面模式図である。また図2、3、4は従来の技術における溝、または溶融再凝固層の断面模式図である。図2の溝のみの形状はエッチング、あるいは歯形ロールにより形成されるものであり、図3、4の溝とその下層に溶融層が存在する形状、また溝を伴わない溶融層は、例えばレーザビームの走査照射により形成される。本発明における断面形状の特徴は溝のほぼ中心に溶融再凝固層の凸部が存在することであり、その形状は溝の深さd1、凸部の高さd2、溝の全幅Hで特徴づけられる。一方、従来の技術である図2〜4の形状もd1、H、あるいは溶融層の厚みd3で特徴づけられる。
【0010】
本発明者らは上記パラメータと鉄損改善率η、磁束密度劣化量△B8、占積率γの関係を詳細に調べた。ここでηは鉄損W17/50(W/kg)の改善率であり、次式で定義される。
【0011】
η(%)=(溝、溶融層形成前の鉄損−溝、溶融層形成後の鉄損)/溝、溶融層形成前の鉄損
溝、溶融層形成後の鉄損は800℃で4時間の歪み取り焼鈍を行った後の測定値である。なお、W17/50は、周波数50Hz、最大磁束密度1.7Tのときの鉄損である。
【0012】
△B8は溝、溶融層形成前後の磁束密度の減少量であり次式で定義される。
【0013】
△B8(ガウス)=溝、溶融層形成前のB8−溝、溶融層形成後のB8
ここでB8は磁界800A/mにおいて発生しえる磁束密度と定義され、この値が高いほど方向性電磁鋼板の結晶方位性が高く、容易に高い磁束が得られるため優れた鉄芯材料と見なされる。
【0014】
占積率γは積層した鉄芯の中で鋼板が占める割合であり、鋼板を積層した後に圧力を加えて鉄芯を形成した際の、鉄芯の質量m(g)、鋼板の密度D(g/cm3)、長さL(cm)、幅b(cm)、鉄芯の厚みh(cm)とすると以下で定義される。
【0015】
γ(%)=m/(b×L×h×D)
図5は溝、溶融層の深さd1、d3、あるいはその合計値であるdと鉄損改善率ηの関係について従来技術と本発明で調べた実験結果である。ここで本発明の製品(図1)と従来製品でエッチングなどにより溝のみを形成した場合(図2)のdとは溝深さd1に相当する。従来製品で溝と溶融層を形成した場合(図3)におけるdとはd1とd3の和である。また溶融層のみを形成した場合(図4)のdとはd3に相当する。溝または溶融層は鋼板の両面に圧延方向にほぼ垂直な方向に平行して形成され、その間隔は3mmである。尚、深さdは片面当たりの深さである。また本発明の製品の特徴である溝中央の凸部の高さd2は後述するレーザ照射条件の制御によりd2/d1=0.5に固定した。溝深さd1は2箇所存在するが、深い方をd1と定義する。
【0016】
図5の結果より、いずれの場合もηのdに対する依存性はほぼ一致しており、手法によらず、10≦d≦40μmにおいて高い改善率が得られる。空隙による鉄損改善のメカニズムは、空気と鋼板の透磁率の差により溝壁面に磁極が発生し、磁区が細分化することにあると考えられる。従って、圧延方向に垂直な成分である深さdは磁極発生量に影響が大きいことが推測され、図5の結果はそれを裏付けるものである。
【0017】
ここでdが小さい場合は上記の考察から十分な鉄損改善効果が得られないと考えられる。一方、dが大きくなりすぎると磁束が通過する鋼板断面積が減少する。その結果、溝部での単位面積当たりの実効磁束密度は増加してしまう。W17/50は発生する最大磁束を鋼板の平均断面積で割った値、すなわち磁束密度が1.7Tになる場合の鉄損に相当するが、溝がある部分は断面積が小さくなるため、磁束密度は1.7Tより高くなっていることが推測される。一般に発生した磁束密度が高いほど鉄損は増加するため、溝部近傍の鉄損は相対的に増加する。その結果、溝が深くなりすぎると磁区細分化による鉄損改善効果よりも鋼板断面積の過大な減少に起因する局部的な鉄損増加の影響が大きくなり、図5のdが大きい領域で見られる様な鉄損改善率の低下につながったものと考えられる。以上説明したように、dに関しては最適範囲が存在し、その範囲は10≦d≦40μmであるという基礎的知見を得た。
【0018】
改善率の絶対値に注目すると、本発明の断面形状の場合、エッチング等で形成された溝の場合に比べ、同じ深さdにおいて多少高い鉄損改善率が見られた。これは溝中心部の溶融部が再凝固する際に残留応力を発生するため、これが何らかの磁区制御効果を発生させていると推測される。また溶融層のみの場合に比べてより高い鉄損改善率が得られた。溶融層による鉄損改善効果は残留応力と溶融部の透磁率の変化が磁区細分化の根元と考えられるが、本発明では更に溝の効果が付与されるため同等以上の改善効果が得られていると考えられる。
【0019】
次に磁束密度劣化量△B8について検討した。B8は800A/mの磁界でどれだけ磁束を発生し得るかという指標である。ここで鋼板断面積が減少すると、そこを貫く磁束発生抵抗は大きくなると考えられる。すなわち溝深さdが増加するとB8は減少する。更に磁束の発生方向は圧延方向に一致するため、溝の幅Hが増加して断面積の小さい部分が圧延方向に長くなると更に磁束の発生抵抗は増加するものと推測される。そこで△B8について各種法における、△B8のd依存性を調べた。また本発明の製品の特徴である溝中央の凸部の高さd2は後述するレーザ照射条件の制御によりd2/d1=0.5に固定した。
【0020】
図6は幅Hを0.2mmに固定して、深さdと△B8の関係を調べた結果である。これより従来の溝加工製品ではdの増加とともに△B8が大きく増加することがわかる。溶融層による方法では基本的に溝が形成されないため△B8はほとんど見られない。一方、本発明の製品では溝深さは従来製品と同様に△B8は増加する傾向が見られるが、溝中心部に溶融層の凸部が存在するため、実効的な幅Hは狭いと考えられ、△B8は従来の溝製品に比べ小さい。
【0021】
次に占積率γについて本発明と従来製品を比較した。ここではすべての製品においてH=200μm、d=20μmに固定して、占積率を調べた。本発明の溝中央の凸部高さd2はd2/d1=0.5に固定した。図7に占積率の比較結果を示す。溶融層のみの場合は鋼板の体積減少がないため最も高い占積率が得られる。従来の溝製品は体積除去の影響により占積率は低下する。本発明の方法では、凸部の効果により実効除去体積は小さく、その結果、相対的に占積率低下は従来溝製品に比べ小さいことが判明した。
【0022】
次に本発明の溝形状における中央の溶融再凝固層高さd2の最適範囲について占積率γを用いて説明する。本発明の製品では溝中央の凸部が溝深さの中で占める割合が大きな意味を持つ。そこでd2とd1の比率d2/d1と占積率γの関係について評価を行った。図8に示すように、d2/d1が0.5を超える範囲ではγは比較的高い値を示すが、1.0を超えるとγは大きく低下する。これは溶融の凝縮度が激しく、溝深さを超えて表面に凸が発生した場合である。この場合、積層した鋼板の間に空隙が発生するため、占積率が大きく低下したものである。以上の結果より、d2/d1の最適な範囲は0.5<d2/d1<1.0である。
【0023】
次に本発明の製品を製造する方法について説明する。本発明の製品の特徴は溝中央部に凸部を持つことである。この凸部の形成方法について本発明者らは連続波レーザ光の高速ビーム走査加工法において溶融部の再凝固過程で発生する凸部形成に着目し、レーザ照射条件を最適制御することで所望の溝深さ、および凸部高さが得られることを見出した。以下に図9、および式(1)〜(3)を用いて本発明に最適なレーザ条件について説明する。図9はレーザビームの照射模式図である。
【0024】
Ip=P/S=P/(π/4×dl×dc)・・・式(1)
Tc=dc/Vc・・・・・・・・・・・・・・式(2)
Up=Ip×Tc・・・・・・・・・・・・・・式(3)
溝形成メカニズムは、鋼板温度が融点を超え、更に沸点を超えて蒸発飛散することにあると考えられる。従って局所的に非常に高いパワー密度が要求される加工現象である。よって溝形成はレーザパワーを照射ビーム面積で除した空間的パワー密度Ip(W/mm2)に依存すると考えられる。しかしビームが高速で移動する際には移動による加工時間、すなわちビーム通過時間の影響も加味する必要がある。よってレーザパラメータとして局所エネルギー密度Up(mJ/mm2)を定義し、溝深さに影響するパラメータとした。Upはパワー密度Ipのビームが、走査方向ビーム径dc(mm)と走査速度Vc(mm/s)できまる通過時間Tc(s)の間に照射された総エネルギー密度と定義される。ここでdlはビーム走査方向と直交する方向の集光ビーム径である。
【0025】
次に溝中央部の凸部は、レーザ照射により溶融した金属がビームの通過後に冷却される際の凝縮過程で発生するものである。従って溶融・凝縮の緩急により凸部の形状が決定されると考えられる。すなわちTcが凸部への影響が最も大きい。傾向として急速加熱・急冷却では溝もできないか、あるいは周辺部への熱緩和速度より速く溝内部で凝固が起こるため、凸部の凹凸が激しく、部分的に高い凸部が発生する。加熱・冷却速度が遅い場合は、周辺部への熱緩和により比較的ゆっくりした凝固がおこり、その結果、比較的平坦な溶融部ができる傾向がある。
【0026】
次に実験から得られたUp、Tcの具体的な最適範囲を示す。まずUpが0.2J/mm2以下の場合、すなわちIp、およびまたはTcが非常に小さい場合は、溝が全く形成されないため鉄損改善率が優れない。一方、Upが10J/mm2を超える場合、すなわちIpおよびまたはTcが非常に大きな場合は、溝が深くなり、特に△B8や占積率の低下が大きい。従って、Upの範囲は0.2〜10J/mm2が最適である。
【0027】
上記のUpの最適範囲は主に溝深さの観点で決定されるものであるが、更に凸部高さを最適化するため、Tcの範囲が決定される。図10(a)、(b)、(c)にTcに依存した断面形状の模式図を示す。Tcが1μs以下の領域では凝固速度も非常に速いため周辺部への熱緩和がなく、溝内部で凸部の急速凝固が発生し、凸部は溝深さd1を超え鋼板表面以上まで形成される。その結果、d2/d1>1となり、占積率が大幅に低下する。一方、Tc>400μsの範囲では凝固過程は非常に緩やかであり、周辺部との熱緩和も発生するため、例えば、図4に示されるような平坦な溶融部となり溝も埋まってしまう。
【0028】
以上の実施例より、本発明の溝・溶融層を形成するのに最適な方法は連続波レーザ光を円形、または楕円状に集光し、図9、式(1)〜(3)で示される照射パラメータUpとTcが以下の範囲である。
0.2≦Up≦10J/mm2
1≦Tc≦400μs
【0029】
【発明の効果】
以上説明したように、本発明における溝と溝中央部に溶融再凝固金属の凸部をもつ断面形状によって、高い鉄損改善率が得られ、更に磁束密度と占積率の劣化を最小限に抑えられるという利点がある。なお、本発明における溝と溝中央部に溶融再凝固層鋼板の凸部の形成は鋼板表面の片面あるいは両面どちらでも効果が認められた。また、本発明の製品の製造方法において、本発明の条件範囲にてレーザビームの高速走査加工を行うことで、優れた方向性電磁鋼板を製造することが可能である。
【図面の簡単な説明】
【図1】本発明の方向性電磁鋼板の溝および溶融再凝固層の断面模式図である。
【図2】従来技術である溝のみの断面模式図である。
【図3】従来技術である溝と溶融再凝固層の断面模式図である。
【図4】従来技術である溶融再凝固層のみの断面模式図である。
【図5】溝あるいは溶融層深さdと鉄損改善率ηの関係図である。
【図6】幅Hを固定した場合の溝あるいは溶融層深さdと磁束密度劣化量△B8の関係図である。
【図7】本発明と従来例の占積率の比較図である。
【図8】本発明におけるd2/d1と占積率の関係図である。
【図9】本発明のレーザビーム照射パラメータの説明図である。
【図10】(a)、(b)、(c)はいずれも本発明におけるレーザビーム通過時間Tcと形成される溝・溶融層断面の相関模式図である。
【符号の説明】
1…溝深さ
2…凸部高さ
3…溶融部深さ
d…溝深さ、およびまたは溶融部深さの合計
H…溝または溶融部の圧延方向の幅
dl…照射ビームの圧延方向の径
dc…照射ビームの板幅(ビーム走査方向)の径
P…レーザパワー
S…照射ビーム面積
Ip…照射パワー密度
Up…照射エネルギー密度
Tc…ビーム通過時間
η…鉄損改善率
△B8…磁束密度減少量
γ…占積率
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a grain-oriented electrical steel sheet that can be used for a wound iron core while maintaining excellent magnetic properties even after strain relief annealing by forming grooves and a melt-resolidified layer by laser processing on the surface of the grain-oriented electrical steel sheet. It relates to the manufacturing method.
[0002]
[Prior art]
The grain oriented electrical steel sheet is required to reduce iron loss from the viewpoint of energy saving. As a method for this, a method of subdividing magnetic domains by laser irradiation has already been disclosed in Japanese Patent Publication No. 58-26405. In this method, the stress loss is introduced into the grain-oriented electrical steel sheet by the reaction force of the thermal shock wave generated by irradiating the laser beam, and the iron loss is reduced by subdividing the magnetic domain. However, this method has a problem that the strain introduced by laser irradiation disappears during annealing, and the magnetic domain refinement effect is lost. Therefore, the grain-oriented electrical steel sheet manufactured by this method can be used for a laminated iron core transformer that does not require strain relief annealing, but cannot be used for a wound iron core transformer that requires strain relief annealing.
[0003]
Therefore, as a method for improving the iron loss of grain-oriented electrical steel sheets that has the effect of reducing the iron loss value even after strain relief annealing, grooves are formed on the steel sheet surface, and magnetic domains are subdivided using the permeability change in the air gaps. Various methods have been proposed. For example, Patent Document 1 discloses a method of pressing a steel sheet with a tooth profile roll to form grooves on the surface of the steel sheet, Patent Document 2 discloses a method of forming grooves by chemical etching, and Patent Document 3 discloses A method of forming a point-row groove on a steel sheet surface with a Q-switched CO 2 laser is disclosed. Patent Documents 4 and 5 describe a method in which a melt resolidified layer is formed on the surface of a steel sheet by a laser instead of a groove. Patent Document 4 forms a thin melt resolidified layer in a groove and a groove lower layer by a laser. And the like.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 63-44804 [Patent Document 2]
US Pat. No. 4,750,949 [Patent Document 3]
JP-A-7-220913 [Patent Document 4]
Japanese Patent Application No. 10-284034 [Patent Document 5]
Japanese Patent Application Laid-Open No. 6-212275
[Problems to be solved by the invention]
Among the prior arts described above, the mechanical method using a tooth profile roll has a problem that the tooth profile is worn in a short period of time due to the high hardness of the magnetic steel sheet, and as a result, the maintenance frequency is high. The method by chemical etching does not have a problem that the tooth profile is worn, but requires a masking, etching process, and mask removing process, and there is a problem that the process becomes complicated as compared with the mechanical method. The method of forming a point-sequence groove in a steel plate with a Q-switched CO 2 laser does not have a problem that the tooth profile is worn out and the process becomes complicated because a recess is formed in a non-contact manner. There is a problem that a Q switch device needs to be added separately. In addition, the simple groove formation method reduces the magnetic permeability in the gap and causes a decrease in magnetic flux density and a decrease in the space factor (the ratio of steel sheets in the laminated iron cores), thereby improving the transformer performance. There is a problem to lower. The method for forming the melt-resolidified layer eliminates the decrease in the space factor because there is no volume reduction due to the grooves, but the iron loss improvement effect tends to be inferior to the groove forming method. In addition, the method of forming a thin melt-resolidified layer in the groove and the lower layer of the groove with a laser can be expected to have a synergistic effect between the groove and the melt-resolidified layer. In the same manner, there is a problem that the magnetic flux density is deteriorated and the space factor is lowered.
[0006]
Therefore, the problem to be solved by the present invention is to provide a grain-oriented electrical steel sheet and a manufacturing method that have iron loss improvement equal to or greater than that of groove formation and minimize deterioration of magnetic flux density and space factor. There is to do.
[0007]
[Means for Solving the Problems]
The present invention provides a grain-oriented electrical steel sheet having improved iron loss characteristics by forming a linear groove and a convex melt-resolidified layer at the center of the groove at a constant period on the surface of the steel sheet. In the grain-oriented electrical steel sheet, the groove depth is d 1 and the height of the cross section of the melt-resolidified layer at the center of the groove is d 2 .
10 ≦ d 1 ≦ 40 μm
0.5 ≦ d 2 / d 1 ≦ 1.0
The present invention provides a method of manufacturing a grain-oriented electrical steel sheet, forming grooves with molten resolidified layers of the laser beam by scanning irradiation, and its irradiation conditions, the irradiation power of the continuous wave laser beam P (W), when the diameter of the focused beam in the beam scanning direction is dc (mm), the focused beam area is S (mm 2 ), and the beam scanning linear velocity is Vc (mm / sec), the beam passage time Tc (sec) ) Is defined as Tc = dc / Vc, and the irradiation energy density Up (mJ / mm 2 ) is defined as Up = (P / S) × Tc, where Tc and Up are within the following ranges (however, the laser beam is irradiated) A method of manufacturing a grain-oriented electrical steel sheet, except that an assist gas is supplied to a machining point to be processed) .
0.2 ≦ Up ≦ 10 J / mm 2
1 ≦ Tc ≦ 400μsec
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have studied in detail the laser irradiation conditions, the cross-sectional shape of the groove and the melt-resolidified layer, and the magnetic characteristics in the technology for improving the iron loss by forming the groove and the molten layer by laser beam scanning irradiation processing. Went. As a result, it has been found that, in a specific cross-sectional shape, the iron loss improvement rate is maximized, and the magnetic flux density deterioration and the space factor deterioration are minimized. In order to realize this, a new processing method using the melting and re-solidification phenomenon by laser processing was devised. The present invention will be described below with reference to examples.
[0009]
First, the shapes and effects of the groove and the melt-resolidified layer of the present invention will be described. FIG. 1 is a schematic cross-sectional view of a groove and a melt-resolidified layer according to the present invention. 2, 3 and 4 are cross-sectional schematic views of grooves or melt-resolidified layers in the prior art. The shape of only the groove in FIG. 2 is formed by etching or a tooth profile roll. The shape of FIG. 3 and FIG. 4 in which the molten layer is present in the lower layer and the molten layer without the groove are, for example, a laser beam. Formed by scanning irradiation. The feature of the cross-sectional shape in the present invention is that the convex portion of the melted and resolidified layer is present at substantially the center of the groove. The shape is the depth d 1 of the groove, the height d 2 of the convex portion, and the total width H of the groove. Characterized. On the other hand, the shapes of FIGS. 2 to 4 which are conventional techniques are also characterized by d 1 , H, or the thickness d 3 of the molten layer.
[0010]
The present inventors examined in detail the relationship between the above parameters, the iron loss improvement rate η, the magnetic flux density deterioration amount ΔB8, and the space factor γ. Here, η is an improvement rate of iron loss W 17/50 (W / kg), and is defined by the following equation.
[0011]
η (%) = (groove, iron loss before forming molten layer−groove, iron loss after forming molten layer) / groove, iron loss groove before forming molten layer, iron loss after forming molten layer is 4 at 800 ° C. It is a measured value after performing time-relief annealing. W 17/50 is the iron loss when the frequency is 50 Hz and the maximum magnetic flux density is 1.7 T.
[0012]
ΔB8 is the amount of decrease in the magnetic flux density before and after the formation of the groove and molten layer, and is defined by the following equation.
[0013]
ΔB8 (Gauss) = groove, B8 before formation of molten layer-groove, B8 after formation of molten layer
Here, B8 is defined as the magnetic flux density that can be generated at a magnetic field of 800 A / m. The higher this value, the higher the crystal orientation of the grain-oriented electrical steel sheet, and the higher magnetic flux can be easily obtained. .
[0014]
The space factor γ is the ratio of the steel sheet in the laminated iron cores. The mass m (g) of the iron core and the density D ( g / cm 3 ), length L (cm), width b (cm), and iron core thickness h (cm).
[0015]
γ (%) = m / (b × L × h × D)
FIG. 5 shows the experimental results obtained by investigating the relationship between the depth d 1 and d 3 of the groove and the molten layer, or d, which is the total value thereof, and the iron loss improvement rate η in the prior art and the present invention. Here, d in the case where only the groove is formed by etching or the like in the product of the present invention (FIG. 1) and the conventional product (FIG. 2) corresponds to the groove depth d 1 . In the case where a groove and a molten layer are formed with a conventional product (FIG. 3), d is the sum of d 1 and d 3 . Further, when only the molten layer is formed (FIG. 4), d corresponds to d 3 . The groove or the molten layer is formed on both surfaces of the steel plate in parallel to the direction substantially perpendicular to the rolling direction, and the interval is 3 mm. The depth d is the depth per side. The height d 2 of the convex portion at the center of the groove, which is a feature of the product of the present invention, was fixed at d 2 / d 1 = 0.5 by controlling the laser irradiation conditions described later. Groove depth d 1 is present in two places, but the deeper is defined as d 1.
[0016]
From the results of FIG. 5, the dependence of η on d is almost the same in any case, and a high improvement rate is obtained at 10 ≦ d ≦ 40 μm regardless of the method. It is considered that the mechanism of iron loss improvement by the air gap is that magnetic poles are generated on the groove wall surface due to the difference in permeability between air and the steel sheet, and the magnetic domains are subdivided. Therefore, it is presumed that the depth d, which is a component perpendicular to the rolling direction, has a great influence on the magnetic pole generation amount, and the results shown in FIG. 5 support this.
[0017]
Here, when d is small, it is considered that sufficient iron loss improvement effect cannot be obtained from the above consideration. On the other hand, if d becomes too large, the cross-sectional area of the steel plate through which the magnetic flux passes decreases. As a result, the effective magnetic flux density per unit area in the groove increases. W17 / 50 is the value obtained by dividing the maximum magnetic flux generated by the average cross-sectional area of the steel plate, that is, the iron loss when the magnetic flux density is 1.7T, but the magnetic flux density is small because the cross-sectional area is small in the part with the groove. Is estimated to be higher than 1.7T. Generally, the higher the generated magnetic flux density, the higher the iron loss. Therefore, the iron loss near the groove portion increases relatively. As a result, if the groove becomes too deep, the effect of the local iron loss increase due to the excessive decrease in the cross-sectional area of the steel sheet becomes larger than the effect of iron loss improvement by magnetic domain refinement, and the region where d in FIG. It is thought that this led to a decrease in the iron loss improvement rate. As described above, the basic knowledge has been obtained that there is an optimum range for d and the range is 10 ≦ d ≦ 40 μm.
[0018]
When paying attention to the absolute value of the improvement rate, in the case of the cross-sectional shape of the present invention, a slightly higher iron loss improvement rate was seen at the same depth d than in the case of the groove formed by etching or the like. This is presumed to cause some magnetic domain control effect because residual stress is generated when the melted portion at the center of the groove resolidifies. Moreover, a higher iron loss improvement rate was obtained compared to the case of only the molten layer. The iron loss improvement effect by the molten layer is considered to be the root of the magnetic domain subdivision due to the residual stress and the change in magnetic permeability of the melted part. It is thought that there is.
[0019]
Next, the magnetic flux density deterioration amount ΔB8 was examined. B8 is an index of how much magnetic flux can be generated with a magnetic field of 800 A / m. Here, when the cross-sectional area of the steel sheet decreases, it is considered that the magnetic flux generation resistance penetrating therethrough increases. That is, as the groove depth d increases, B8 decreases. Furthermore, since the magnetic flux generation direction coincides with the rolling direction, it is presumed that the magnetic flux generation resistance further increases when the groove width H increases and the portion with a small cross-sectional area becomes longer in the rolling direction. Therefore, the dependence of ΔB8 on d in various methods was examined for ΔB8. The height d 2 of the convex portion at the center of the groove, which is a feature of the product of the present invention, was fixed at d 2 / d 1 = 0.5 by controlling the laser irradiation conditions described later.
[0020]
FIG. 6 shows the result of examining the relationship between the depth d and ΔB8 with the width H fixed at 0.2 mm. From this, it can be seen that in the conventional grooved product, ΔB8 greatly increases as d increases. In the method using a molten layer, ΔB8 is hardly seen because basically no groove is formed. On the other hand, in the product of the present invention, ΔB8 tends to increase in the groove depth as in the conventional product, but the effective width H is considered to be narrow because the convex portion of the molten layer exists in the center of the groove. ΔB8 is smaller than the conventional groove product.
[0021]
Next, the present invention and the conventional product were compared with respect to the space factor γ. Here, the space factor was examined with all products fixed at H = 200 μm and d = 20 μm. The height d 2 at the center of the groove of the present invention was fixed at d 2 / d 1 = 0.5. FIG. 7 shows the comparison results of the space factor. In the case of only the molten layer, the highest space factor can be obtained because there is no volume reduction of the steel sheet. The conventional groove product has a reduced space factor due to the effect of volume removal. In the method of the present invention, the effective removal volume is small due to the effect of the convex portion, and as a result, it has been found that the space factor decrease is relatively smaller than that of the conventional groove product.
[0022]
Next, the optimum range of the center melt resolidified layer height d 2 in the groove shape of the present invention will be described using the space factor γ. In the product of the present invention, the proportion of the convex portion at the center of the groove in the groove depth is significant. So we evaluated the relationship between d 2 and d 1 ratio d 2 / d 1 and the space factor gamma. As shown in FIG. 8, in the range where d 2 / d 1 exceeds 0.5, γ shows a relatively high value, but when it exceeds 1.0, γ greatly decreases. This is a case where the melting degree of condensation is intense and the surface is convex beyond the groove depth. In this case, since space is generated between the laminated steel plates, the space factor is greatly reduced. From these results, the optimum range of d 2 / d 1 is 0.5 <d 2 / d 1 < 1.0.
[0023]
Next, a method for producing the product of the present invention will be described. A feature of the product of the present invention is that it has a convex portion at the center of the groove. With regard to the method for forming this convex portion, the present inventors pay attention to the convex portion formation that occurs during the re-solidification process of the melted portion in the high-speed beam scanning processing method of continuous wave laser light, and the desired method by optimizing the laser irradiation conditions. It has been found that the groove depth and the convex portion height can be obtained. The optimum laser conditions for the present invention will be described below with reference to FIG. 9 and formulas (1) to (3). FIG. 9 is a schematic view of laser beam irradiation.
[0024]
Ip = P / S = P / (π / 4 × dl × dc) Formula (1)
Tc = dc / Vc (2)
Up = Ip × Tc (3)
It is considered that the groove formation mechanism is that the steel sheet temperature exceeds the melting point and further exceeds the boiling point and evaporates and scatters. Therefore, this is a processing phenomenon that requires a very high power density locally. Therefore, it is considered that the groove formation depends on the spatial power density Ip (W / mm 2 ) obtained by dividing the laser power by the irradiation beam area. However, when the beam moves at a high speed, it is necessary to consider the influence of the processing time due to the movement, that is, the beam passage time. Therefore, the local energy density Up (mJ / mm 2 ) is defined as a laser parameter, which is a parameter that affects the groove depth. Up is defined as the total energy density irradiated by the beam having the power density Ip during the transit time Tc (s) determined by the scanning direction beam diameter dc (mm) and the scanning speed Vc (mm / s). Here, dl is a focused beam diameter in a direction orthogonal to the beam scanning direction.
[0025]
Next, the convex portion at the center of the groove is generated in the condensation process when the metal melted by the laser irradiation is cooled after passing through the beam. Therefore, it is considered that the shape of the convex portion is determined by the melting and condensation. That is, Tc has the greatest influence on the convex portion. As a tendency, a groove cannot be formed by rapid heating / cooling, or solidification occurs in the groove faster than the thermal relaxation rate to the peripheral portion, so that the unevenness of the protrusion is intense and a partially high protrusion is generated. When the heating / cooling rate is low, relatively slow solidification occurs due to thermal relaxation to the peripheral portion, and as a result, there is a tendency that a relatively flat molten portion is formed.
[0026]
Next, specific optimum ranges of Up and Tc obtained from the experiment are shown. First, when Up is 0.2 J / mm 2 or less, that is, when Ip and / or Tc are very small, the groove loss is not formed at all, and the iron loss improvement rate is not excellent. On the other hand, when Up exceeds 10 J / mm 2 , that is, when Ip and / or Tc are very large, the groove becomes deep, and in particular, ΔB8 and the decrease in the space factor are large. Therefore, the range of Up is optimally 0.2 to 10 J / mm 2 .
[0027]
The optimal range of Up is determined mainly from the viewpoint of the groove depth, but the range of Tc is determined in order to further optimize the height of the convex portion. 10A, 10B, and 10C are schematic views of cross-sectional shapes depending on Tc. In the region where Tc is 1 μs or less, the solidification rate is very fast, so there is no thermal relaxation to the peripheral part, and the rapid solidification of the convex part occurs inside the groove, and the convex part is formed beyond the groove depth d 1 and beyond the steel plate surface. Is done. As a result, d 2 / d 1 > 1 and the space factor is greatly reduced. On the other hand, in the range of Tc> 400 μs, the solidification process is very gradual, and thermal relaxation with the peripheral part occurs, so that, for example, a flat melted part as shown in FIG.
[0028]
From the above embodiments, the optimum method for forming the groove / molten layer of the present invention is to collect the continuous wave laser beam in a circle or ellipse, as shown in FIG. 9, equations (1) to (3). Irradiation parameters Up and Tc are in the following ranges.
0.2 ≦ Up ≦ 10J / mm 2
1 ≦ Tc ≦ 400μs
[0029]
【The invention's effect】
As explained above, a high iron loss improvement rate is obtained by the cross-sectional shape of the groove and the convex portion of the molten re-solidified metal at the center of the groove in the present invention, and the deterioration of the magnetic flux density and the space factor is minimized. There is an advantage that it can be suppressed. In the present invention, the formation of the groove and the convex portion of the melt-resolidified steel sheet in the center of the groove was effective on one or both surfaces of the steel sheet surface. In the product manufacturing method of the present invention, an excellent grain-oriented electrical steel sheet can be manufactured by performing high-speed scanning processing of a laser beam in the condition range of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a groove and a melt-resolidified layer of a grain-oriented electrical steel sheet according to the present invention.
FIG. 2 is a schematic cross-sectional view of only a groove according to the prior art.
FIG. 3 is a schematic cross-sectional view of a groove and a melt-resolidified layer according to the prior art.
FIG. 4 is a schematic cross-sectional view of only a melt-resolidified layer, which is a conventional technique.
FIG. 5 is a relationship diagram of a groove or melt layer depth d and an iron loss improvement rate η.
FIG. 6 is a relationship diagram between a groove or melt layer depth d and a magnetic flux density deterioration amount ΔB8 when the width H is fixed.
FIG. 7 is a comparison diagram of the space factor between the present invention and a conventional example.
FIG. 8 is a relationship diagram between d 2 / d 1 and the space factor in the present invention.
FIG. 9 is an explanatory diagram of laser beam irradiation parameters of the present invention.
FIGS. 10A, 10B, and 10C are correlation schematic views of a laser beam passage time Tc and a groove / molten layer cross section formed in the present invention.
[Explanation of symbols]
d 1 ... groove depth d 2 ... convex height d 3 ... melted portion depth d ... total groove depth and / or melted portion depth H ... width in the rolling direction of the groove or melted portion dl ... irradiation beam Diameter dc in rolling direction ... Diameter P in irradiation plate width (beam scanning direction) P ... Laser power S ... Irradiation beam area Ip ... Irradiation power density Up ... Irradiation energy density Tc ... Beam passage time η ... Iron loss improvement rate ΔB8 ... Magnetic flux density decrease γ ... Space factor

Claims (2)

鋼板の表面に、圧延方向にほぼ垂直で、且つ一定周期で線状の溝と溝内部中央部に凸の溶融再凝固層を形成して鉄損特性を改善した方向性電磁鋼板において、溝の深さをd、溝内部中央部の溶融再凝固層断面の高さをdとして、以下の条件を全て満たすことを特徴とする方向性電磁鋼板。
10≦d1 ≦ 40μm
0.5≦d2 /d1 ≦1.0
In a grain-oriented electrical steel sheet having improved iron loss characteristics by forming a linear groove and a convex melt-resolidified layer at the center inside the groove at a constant period on the surface of the steel sheet, A grain-oriented electrical steel sheet characterized by satisfying all of the following conditions, where the depth is d 1 and the height of the cross-section of the melt-resolidified layer at the center of the groove is d 2 .
10 ≦ d1 ≦ 40 μm
0.5 ≦ d2 / d1 ≦ 1.0
請求項1記載の方向性電磁鋼板の製造方法において、レーザビームを走査照射して溝と溶融再凝固層を形成する条件として、連続波レーザビームの照射パワーをP(W)、集光ビームのビーム走査方向径をdc(mm)、集光ビーム面積をS(mm) 、ビーム走査線速度をVc(mm/sec)とした時、ビーム通過時間Tc(sec)をTc=dc/Vc、照射エネルギー密度Up(mJ/mm)をUp=(P/S)×Tcとで定義し、TcとUpがそれぞれ以下の範囲である(ただし、レーザビームを照射する加工点にアシストガスを供給する場合を除く)ことを特徴とする方向性電磁鋼板の製造方法。
0.2≦Up≦10J/mm
1≦Tc≦400μsec
The method of manufacturing a grain-oriented electrical steel sheet according to claim 1, in a condition that the laser beam is scanned with a groove and the molten resolidified layer, the irradiation power of the continuous wave laser beam P (W), the condenser When the beam scanning direction diameter of the beam is dc (mm), the focused beam area is S (mm 2 ), and the beam scanning linear velocity is Vc (mm / sec), the beam passing time Tc (sec) is Tc = dc / Vc, irradiation energy density Up (mJ / mm 2 ) is defined as Up = (P / S) × Tc, and Tc and Up are in the following ranges, respectively (however, assist gas is applied to the processing point where the laser beam is irradiated) In a grain-oriented electrical steel sheet.
0.2 ≦ Up ≦ 10 J / mm 2
1 ≦ Tc ≦ 400μsec
JP2003207579A 2003-08-14 2003-08-14 Oriented electrical steel sheet with excellent magnetic properties and method for producing the same Expired - Fee Related JP4384451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207579A JP4384451B2 (en) 2003-08-14 2003-08-14 Oriented electrical steel sheet with excellent magnetic properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207579A JP4384451B2 (en) 2003-08-14 2003-08-14 Oriented electrical steel sheet with excellent magnetic properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005059014A JP2005059014A (en) 2005-03-10
JP4384451B2 true JP4384451B2 (en) 2009-12-16

Family

ID=34363997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207579A Expired - Fee Related JP4384451B2 (en) 2003-08-14 2003-08-14 Oriented electrical steel sheet with excellent magnetic properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP4384451B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI305548B (en) 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP5000182B2 (en) * 2006-04-07 2012-08-15 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP5748038B2 (en) * 2010-03-30 2015-07-15 澁谷工業株式会社 Bump forming method and apparatus therefor
CN101979676B (en) * 2010-11-26 2012-02-08 武汉钢铁(集团)公司 Method for improving magnetic property of oriented silicon steel through laser scribing
JP5742294B2 (en) * 2011-02-25 2015-07-01 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR20160034260A (en) * 2013-07-18 2016-03-29 다이셀폴리머 주식회사 Composite moulded body
EP3025797B1 (en) * 2013-07-24 2018-03-14 Posco Grain-oriented electrical steel sheet and method for manufacturing same
CN106944743B (en) * 2015-10-08 2020-01-03 诺威科技集团有限公司 Method and apparatus for forming fine permanent magnetic regions of electric steel sheet by laser beam
KR101884429B1 (en) * 2016-12-22 2018-08-01 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP6372581B1 (en) * 2017-02-17 2018-08-15 Jfeスチール株式会社 Oriented electrical steel sheet
JP7052391B2 (en) * 2018-02-08 2022-04-12 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2005059014A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4189143B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
KR101389647B1 (en) Directional electromagnetic steel plate and method for manufacturing same
KR100676936B1 (en) Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
JP6405378B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP2615184B1 (en) Oriented electromagnetic steel sheet and process for production thereof
JP4319715B2 (en) Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof
US11638971B2 (en) Grain-oriented silicon steel with low core loss and manufacturing method therefore
JP5771620B2 (en) Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP4398666B2 (en) Unidirectional electrical steel sheet with excellent magnetic properties and method for producing the same
JP4384451B2 (en) Oriented electrical steel sheet with excellent magnetic properties and method for producing the same
KR102507090B1 (en) Method for producing stress-relaxed-annealing-resistant low iron loss-grain-oriented silicon steel
JP2007277644A (en) Manufacturing method of grain oriented electric steel plate having excellent magnetic characteristic
KR20190137097A (en) Laser-etched grain-oriented silicon steel resistant to stress relaxation annealing and method of manufacturing the same
US4685980A (en) Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
WO2017111555A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
CN111542622B (en) Oriented electrical steel sheet and method for refining magnetic domain thereof
JP4598321B2 (en) Oriented electrical steel sheet with excellent magnetic properties
Raybould et al. Reducing the magnetic losses of amorphous ribbon
JP7445650B2 (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
CN116710578A (en) Oriented electrical steel sheet and method for refining magnetic domains thereof
JPS61248507A (en) Method for improvement in magnetic properties of amorphous alloy stacked core
CN112640016A (en) Oriented electrical steel sheet and method for refining magnetic domain thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4384451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees