JP6200908B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP6200908B2
JP6200908B2 JP2015006758A JP2015006758A JP6200908B2 JP 6200908 B2 JP6200908 B2 JP 6200908B2 JP 2015006758 A JP2015006758 A JP 2015006758A JP 2015006758 A JP2015006758 A JP 2015006758A JP 6200908 B2 JP6200908 B2 JP 6200908B2
Authority
JP
Japan
Prior art keywords
groove
steel sheet
depth
magnetic domain
domain refinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015006758A
Other languages
Japanese (ja)
Other versions
JP2015117435A (en
Inventor
オー−ヨル クオン、
オー−ヨル クオン、
サン−ユン チャ、
サン−ユン チャ、
チャン−ヒー ハン、
チャン−ヒー ハン、
ジェ−クワン キム、
ジェ−クワン キム、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2015117435A publication Critical patent/JP2015117435A/en
Application granted granted Critical
Publication of JP6200908B2 publication Critical patent/JP6200908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、変圧器等において巻線に印加された電圧によって磁場の移動経路として用いられる鉄心等として使用される方向性電磁鋼板に係り、より詳しくは、適正の溝形状因子を有する磁区微細化溝が表面に形成されて応力除去焼鈍後の鉄損・磁束密度ともに優れた方向性電磁鋼板に関する。   The present invention relates to a grain-oriented electrical steel sheet used as an iron core or the like used as a magnetic field movement path by a voltage applied to a winding in a transformer or the like, and more specifically, domain refinement having an appropriate groove shape factor. The present invention relates to a grain-oriented electrical steel sheet in which grooves are formed on the surface and both iron loss and magnetic flux density after stress relief annealing are excellent.

方向性電磁鋼板は、圧延方向に平行な{110}〈001〉方位の2次再結晶集合組織を示すシリコン鋼(Si−鋼)であって、その製造法は、特許文献1にN.P.Gossによって最初提示されて以来、鉄損特性の向上のために多くの研究者によって新しい製造方法が発明されて紹介されている。   The grain-oriented electrical steel sheet is silicon steel (Si-steel) exhibiting a secondary recrystallized texture in the {110} <001> orientation parallel to the rolling direction. P. Since it was first presented by Goss, a number of researchers have invented and introduced new manufacturing methods to improve iron loss characteristics.

方向性電磁鋼板の鉄損低減方案は、{110}〈001〉方位の集合組織の配向性を増大させる方法、鋼板の厚さを減少させる方法、コーティングなどによって張力を印加する方法、及びレーザーや歯車ロールなどによって磁区を微細化する方法に大別される。   A method for reducing the iron loss of grain oriented electrical steel sheets includes a method of increasing the orientation of the texture of {110} <001> orientation, a method of reducing the thickness of the steel sheet, a method of applying tension by coating, etc. The method is roughly classified into a method of refining the magnetic domain by a gear roll or the like.

集合組織の配向性を増大させる方法は、1次結晶粒の結晶粒成長抑制力を強化させて(110)[001]Goss方位からの偏差が少ない2次再結晶粒を成長させる方法であって、特許文献2に開示されている。   The method of increasing the orientation of the texture is a method of growing secondary recrystallized grains with little deviation from the (110) [001] Goss orientation by strengthening the crystal grain growth inhibiting power of the primary crystal grains. Patent Document 2 discloses this.

鋼板の厚さを減少させる方法は、渦電流による損失を減少して鉄損を改善する方法であって、特許文献3に開示されている。   The method of reducing the thickness of the steel sheet is a method of improving iron loss by reducing loss due to eddy current, and is disclosed in Patent Document 3.

磁区を微細化する方法は、特許文献4及び特許文献5に紹介されており、鋼板の表面にレーザー又は機械的方法を用いて圧延方向に対して垂直な方向に磁区を微細化して鉄損を減少させるようにする方法である。   The method of refining the magnetic domain is introduced in Patent Document 4 and Patent Document 5, and the surface of the steel plate is made of a laser or a mechanical method to refine the magnetic domain in the direction perpendicular to the rolling direction to reduce the iron loss. It is a method to decrease.

磁区微細化方法は、応力除去焼鈍後の磁区微細化による磁気特性改善効果が維持されるか否かによって、一時磁区微細化と永久磁区微細化に大別される。   The magnetic domain refinement method is roughly classified into temporary magnetic domain refinement and permanent magnetic domain refinement depending on whether or not the magnetic property improvement effect by the magnetic domain refinement after the stress relief annealing is maintained.

一時磁区微細化方法は、熱エネルギー又は機械的エネルギーで表面に局部的な圧縮応力を印加することにより発生した磁気弾性エネルギーを最小化させるために90°ドメイン(domain)を形成することにより、磁区を微細化させる技術である。   The temporary magnetic domain refinement method forms a 90 ° domain in order to minimize the magnetoelastic energy generated by applying a local compressive stress to the surface with thermal energy or mechanical energy. This is a technology to make the image finer.

一時磁区微細化技術は、ドメインを微細化させるエネルギー源によって、特許文献6、特許文献7および特許文献8に開示されているように1)レーザー磁区微細化、2)ボールスクラッチ法、3)プラズマによる磁区微細化法、及び4)超音波による磁区微細化法に大別され、レーザーやボール、プラズマ、超音波などによって電磁鋼板の表面に局部的な圧縮応力部を形成させることにより磁区を微細化させるようにしている。   The temporary magnetic domain refinement technology uses 1) laser magnetic domain refinement, 2) ball scratch method, and 3) plasma as disclosed in Patent Document 6, Patent Document 7 and Patent Document 8, depending on the energy source that refines the domain. 4) Magnetic domain refinement method by ultrasonic and 4) Magnetic domain refinement method by ultrasonic, and the magnetic domain is refined by forming a local compressive stress part on the surface of magnetic steel sheet by laser, ball, plasma, ultrasonic, etc. I try to make it.

ところが、このような一時磁区微細化方法は、鋼板表面の絶縁コーティング層の損傷を起こすため再びコーティングを施す、最終製品ではなく中間工程で磁区微細化処理を施すため製造コストが高い、応力除去焼鈍の後に磁区微細化効果を失うなどの欠点を持っている。また、エネルギー源としてレーザー、ボール圧入、プラズマ又は超音波を用いるから、鋼板の圧縮変形層領域を調節するためには入力されるエネルギー値を増加させなければならないが、これは磁区微細化処理の際に表面損傷を起こすという問題を生じさせる。   However, such a temporary magnetic domain refinement method is re-coated to cause damage to the insulating coating layer on the surface of the steel sheet, and the magnetic domain refinement process is performed in an intermediate process rather than the final product. Has the disadvantage of losing the magnetic domain refinement effect. Also, since laser, ball press-fitting, plasma or ultrasonic waves are used as the energy source, the input energy value must be increased in order to adjust the compression deformation layer region of the steel sheet. Cause surface damage.

熱処理の後にも鉄損改善効果を維持することが可能な永久磁区微細化方法は、エッチング法とロール法に大別される。   Permanent domain refinement methods that can maintain the effect of improving iron loss after heat treatment are broadly divided into etching methods and roll methods.

エッチング法は、電磁鋼板の表面に感光性樹脂でマスキングし、フォトエッチング、レーザー又はプラズマを用いて表面樹脂を脱着した後、溶液内で電気化学的方法によって鋼板の表面に幅5〜300μm及び深さ100μmの溝を形成させる方法が特許文献9に開示されている。このようなエッチング法は、酸溶液内で電気化学的な腐食反応によって鋼板の表面に溝を形成させるため溝の形状(溝幅、溝深さ)制御が難しい、鋼板を生産する中間工程(脱炭焼鈍、高温焼鈍前)で溝を形成させるため最終製品の鉄損特性の保証が難しい、酸溶液を使用するため環境にやさしくないなどの欠点を持っている。   In the etching method, the surface of the magnetic steel sheet is masked with a photosensitive resin, the surface resin is desorbed using photoetching, laser, or plasma, and then the surface of the steel sheet is 5-300 μm wide and deep in the solution by an electrochemical method. Patent Document 9 discloses a method for forming a 100 μm thick groove. Such an etching method is difficult to control the shape of the groove (groove width and groove depth) because the groove is formed on the surface of the steel sheet by an electrochemical corrosion reaction in an acid solution. It is difficult to guarantee the iron loss characteristics of the final product because the grooves are formed by carbon annealing and high temperature annealing), and it has the disadvantages that it is not environmentally friendly because it uses an acid solution.

ロールによる永久磁区微細化方法は、ロールに突起形状を加工して加圧法によって鋼板の表面に溝を形成する方法である。鋼板の表面に幅300μm以下及び深さ5μmの溝を形成させる方法が特許文献10に紹介されている。このようなロールによる永久磁区微細化方法は、永久磁区微細化処理の後に鋼板を焼鈍して溝の下部の再結晶を発生させることにより磁区を微細化させる技術に該当するが、機械加工に対する安定性及び信頼性が低く、プロセスが複雑である。   The permanent magnetic domain refinement method using a roll is a method of forming a groove on the surface of a steel sheet by processing a protrusion shape on the roll and applying a pressure method. Patent Document 10 introduces a method of forming a groove having a width of 300 μm or less and a depth of 5 μm on the surface of a steel plate. The permanent domain refinement method using such a roll corresponds to a technique for refining the magnetic domain by annealing the steel sheet after the permanent domain refinement process and generating recrystallization in the lower part of the groove. And the process is complicated.

それだけでなく、エッチング法とロール法などの永久磁区微細化技術は、磁区微細化によって鉄損を低減する効果が達成されるが、応力除去焼鈍の後に磁束密度が低くなる問題を発生する。   In addition, permanent domain refinement techniques such as the etching method and the roll method achieve the effect of reducing iron loss by domain refinement, but generate a problem that the magnetic flux density is lowered after stress-relief annealing.

米国特許第1965559号明細書U.S. Pat. No. 1,965,559 米国特許第3159511号明細書US Pat. No. 3,159,511 米国特許第3287183号明細書US Pat. No. 3,287,183 特公昭58−26405号公報Japanese Patent Publication No.58-26405 米国特許第4203784号明細書U.S. Pat. No. 4,203,784 特公昭57−2252号公報Japanese Patent Publication No.57-2252 特公昭58−5968号公報Japanese Patent Publication No.58-5968 特公平7−072300号公報Japanese Patent Publication No.7-072300 特公平6−57857号公報Japanese Patent Publication No. 6-57857 特開平5−202450号公報JP-A-5-202450

本発明は、上述したような従来の技術の諸般問題点を解消するために案出されたもので、その目的は、適正な溝形状因子を有する磁区微細化溝が表面に形成されて鉄損が低く、応力除去焼鈍の後に磁束密度が劣化しないため磁気的特性に優れた、低鉄損高磁束密度方向性電磁鋼板を提供することにある。   The present invention has been devised in order to solve the above-described problems of the prior art. The purpose of the present invention is to form a magnetic domain refinement groove having an appropriate groove shape factor on the surface, thereby reducing iron loss. It is an object of the present invention to provide a low iron loss high magnetic flux density grain-oriented electrical steel sheet that is excellent in magnetic properties because the magnetic flux density does not deteriorate after stress relief annealing.

前記課題を解決するための本発明の低鉄損高磁束密度の方向性電磁鋼板は、表面に線状溝が多数形成されて磁区微細化処理された方向性電磁鋼板において、鋼板の表面から底部に至る溝深さをHとし、鋼板の表面からの深さが溝深さの4/5以上である底面の水平長さをWとするとき、前記溝深さと前記底面の水平長さは前記式1の関係を満足することを特徴とする。   The directional electrical steel sheet having a low iron loss and high magnetic flux density according to the present invention for solving the above problems is a directional electrical steel sheet having a number of linear grooves formed on the surface and subjected to magnetic domain refinement processing. And the horizontal length of the bottom surface where the depth from the surface of the steel sheet is 4/5 or more of the groove depth is W, the groove depth and the horizontal length of the bottom surface are The relationship of Formula 1 is satisfied.

[式1]0.1≦2H/W≦2
前記溝は幅4〜300μm、深さ3〜30μmを有し、圧延方向に2〜15mmの間隔で配列されたことを特徴とする。
[Formula 1] 0.1 ≦ 2H / W ≦ 2
The grooves have a width of 4 to 300 μm and a depth of 3 to 30 μm, and are arranged at intervals of 2 to 15 mm in the rolling direction.

前記底面の水平長さと溝の幅は下記式2の関係を満足することを特徴とする。   The horizontal length of the bottom surface and the width of the groove satisfy the relationship of the following formula 2.

[式2]W≧0.4L(Lは溝の幅)
前記電磁鋼板の表面に形成された多数の線状溝は、U字状、W字状、梯形、長方形及び半円形のいずれか一つの断面形状を有する溝を少なくとも1つ含むことを特徴とする。
[Formula 2] W ≧ 0.4L (L is the width of the groove)
The plurality of linear grooves formed on the surface of the electrical steel sheet includes at least one groove having any one of a cross-sectional shape of a U shape, a W shape, a trapezoidal shape, a rectangular shape, and a semicircular shape. .

前記溝は高出力レーザーから出射されたレーザービームが鋼板の表面に照射されて形成されたことを特徴とする。   The groove is formed by irradiating the surface of a steel plate with a laser beam emitted from a high-power laser.

前記鋼板は0.30mm未満の薄物厚さ又は0.30mm以上の厚物厚さを有することを特徴とする。   The steel sheet has a thin thickness of less than 0.30 mm or a thickness of 0.30 mm or more.

前記鋼板は磁区微細化前と比較して、応力除去焼鈍後の鉄損低減率が10%以上、磁束密度減少率が1%未満であることを特徴とする。   The steel sheet is characterized in that the iron loss reduction rate after stress-relieving annealing is 10% or more and the magnetic flux density reduction rate is less than 1% compared to before the magnetic domain refinement.

本発明によれば、磁区微細化処理による鉄損改善効果を約10〜20%に極大化すると共に、応力除去焼鈍後の磁束密度の劣化を防止することにより、極めて磁気的特性に優れた方向性電磁鋼板を製造することができる。   According to the present invention, the iron loss improvement effect by the magnetic domain refining treatment is maximized to about 10 to 20%, and the deterioration of the magnetic flux density after the stress relief annealing is prevented, so that the magnetic characteristics are extremely excellent. Steel sheet can be manufactured.

レーザーによる表面の溝形状の3次元図である。It is a three-dimensional view of the groove shape of the surface by a laser. 本発明に係る鋼板表面の溝形状の模式図である。It is a schematic diagram of the groove shape of the steel plate surface concerning this invention. 本発明に係る磁区微細化溝の断面を示す図である。It is a figure which shows the cross section of the magnetic domain refinement | miniaturization groove | channel which concerns on this invention.

本発明者は、従来の技術で認識できなかった磁区微細化溝の熱影響部による磁束密度の劣化問題を解消するために多くの研究と実験を重ねた結果、従来提示されていない磁区微細化処理された鋼板表面の溝形状因子を制御することにより、応力除去焼鈍後の鉄損低減効果を極大化しながらも熱影響部による磁束密度の劣化を抑制することができることを最初に発見した。   The present inventor has conducted many studies and experiments in order to solve the problem of deterioration of magnetic flux density due to the heat-affected zone of the magnetic domain refinement groove, which could not be recognized by the conventional technology. It was first discovered that by controlling the groove shape factor on the treated steel sheet surface, the magnetic flux density degradation due to the heat affected zone can be suppressed while maximizing the iron loss reduction effect after stress relief annealing.

本発明者は、まず、従来の方法でレーザーの出力と照射速度を制御して2次再結晶後の鋼板の表面に様々な幅と深さの磁区微細化溝を形成した。このように形成された磁区微細化溝の断面を観察した結果、いずれも楔形(V字状)をしており、いずれの幅と深さで溝を形成しても応力除去焼鈍後の鉄損及び磁束密度は従来の水準以上には改善されていない。これは磁区微細化溝を形成する過程で生成された熱影響部が応力除去焼鈍の後に磁性を劣化させる要因として大きく作用するためであると考えられた。単に磁区微細化溝の幅及び深さ、またはこれらの関係を制御するだけでは応力除去焼鈍後の磁性劣化問題を解消することができないと結論付けることができた。   The present inventor first formed laser domain refinement grooves of various widths and depths on the surface of the steel sheet after the secondary recrystallization by controlling the laser output and irradiation speed by a conventional method. As a result of observing the cross section of the magnetic domain refinement grooves formed in this way, all of them were wedge-shaped (V-shaped), and the iron loss after stress-relief annealing even if the grooves were formed at any width and depth. And the magnetic flux density is not improved over the conventional level. This is thought to be because the heat-affected zone generated in the process of forming the magnetic domain refinement grooves acts greatly as a factor that degrades the magnetism after stress relief annealing. It can be concluded that simply controlling the width and depth of the magnetic domain refinement grooves or their relationship cannot solve the problem of magnetic degradation after stress relief annealing.

これに加えて、本発明者は、磁区微細化溝の下部の底面が熱影響部による磁性劣化を防止するのに何らの影響を及ぼすのではないか否かを確認するために様々な実験を行った。その結果、未だ知られていない新しい溝形状因子を導入することにより、応力除去焼鈍の後、従来では達成され難い高い水準の磁束密度を有する方向性電磁鋼板を製造することができることを発見した。   In addition to this, the present inventor conducted various experiments in order to confirm whether the bottom surface of the lower part of the magnetic domain refinement groove has any effect on preventing the magnetic deterioration due to the heat affected zone. went. As a result, it was discovered that by introducing a new groove shape factor that is not yet known, a grain-oriented electrical steel sheet having a high level of magnetic flux density that is difficult to achieve in the past can be manufactured after stress relief annealing.

本発明の要旨は、次のとおりである。   The gist of the present invention is as follows.

本発明は、2次再結晶後の鋼板の表面に線状溝が多数形成されて磁区微細化処理された方向性電磁鋼板において、鋼板の表面から底部に至る溝深さ(H)と、底面の水平長さ(W)から定義される溝形状因子(2H/W)が下記式1の関係を満足することを特徴とする。   The present invention relates to a grain-oriented electrical steel sheet in which a number of linear grooves are formed on the surface of a steel sheet after secondary recrystallization and subjected to a magnetic domain refinement process, the groove depth (H) from the steel sheet surface to the bottom, The groove shape factor (2H / W) defined from the horizontal length (W) of the above satisfies the relationship of the following formula 1.

[式1]0.1≦2H/W≦2
ここで、底面は、鋼板の表面からの深さが溝深さの4/5以上である部分を意味する。
[Formula 1] 0.1 ≦ 2H / W ≦ 2
Here, the bottom surface means a portion where the depth from the surface of the steel plate is 4/5 or more of the groove depth.

以下、本発明者によって行われた具体的な実験の内容に基づいて本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail based on the contents of specific experiments conducted by the present inventors.

本発明者は、2次再結晶後の鋼板上にレーザービームを照射して磁区微細化溝を鋼板の表面に形成した。レーザーによる溝形成は、Femto−Secondレーザー及びNd−YAGレーザーを用いて、10KHz〜200MHzの振動数と6〜100Wattsの強さの範囲で出力を調節しながらレーザービームを出射して行った。これにより、鋼板の表面に多様な幅と深さの溝を形成させることができた。この際、レーザーから出射されたビームはビーム形成ミラーと焦点ミラー(focal mirror)を介して鋼板の表面に照射されるようにした。多様な形状と焦点距離を有するビーム形成ミラーと焦点ミラーを使用し、その配置位置、距離調節及び角度を制御することにより、溝の形状を楔形(V字形)だけでなく、U字状、W字状、半円形、長方形、梯形などの様々な形状に変化させることができた。その結果、鋼板の表面に深さ6〜15μm、幅6〜50μmの鋭利な溝を鋼板の進行方向に対して垂直方向に形成させることができた。   The inventor formed a magnetic domain refinement groove on the surface of the steel sheet by irradiating a laser beam on the steel sheet after the secondary recrystallization. Groove formation by a laser was performed by emitting a laser beam using a Femto-Second laser and an Nd-YAG laser while adjusting the output in a frequency range of 10 KHz to 200 MHz and an intensity of 6 to 100 Watts. Thereby, the groove | channel of various width and depth was able to be formed in the surface of a steel plate. At this time, the beam emitted from the laser was irradiated onto the surface of the steel plate through a beam forming mirror and a focal mirror. By using beam forming mirrors and focal mirrors having various shapes and focal lengths, and controlling their arrangement position, distance adjustment and angle, the groove shape is not only wedge-shaped (V-shaped) but also U-shaped, W It could be changed to various shapes such as a letter, semi-circle, rectangle, and trapezoid. As a result, sharp grooves having a depth of 6 to 15 μm and a width of 6 to 50 μm could be formed on the surface of the steel plate in a direction perpendicular to the traveling direction of the steel plate.

図1はこのように形成された溝の3次元溝形成図、図2は本発明に係る鋼板表面の溝形状の模式図、図3は本発明に係る磁区微細化溝の断面を示す図である。   FIG. 1 is a three-dimensional groove formation diagram of the grooves formed as described above, FIG. 2 is a schematic diagram of the groove shape on the surface of the steel plate according to the present invention, and FIG. 3 is a diagram showing a cross section of the magnetic domain refinement groove according to the present invention. is there.

図3を参照すると、底部Bは磁区微細化溝の底点に該当し、溝深さHは鋼板の表面から底部に至る距離である。鋼板の表面からの深さが溝深さの4/5以上である領域を溝の下部の底面とした。この際、底面の水平長さWは前記底面の圧延方向への長さ(A−A’間の距離)を測定した値とした。   Referring to FIG. 3, the bottom B corresponds to the bottom of the magnetic domain refinement groove, and the groove depth H is a distance from the surface of the steel plate to the bottom. A region where the depth from the surface of the steel plate was 4/5 or more of the groove depth was defined as the bottom surface of the lower part of the groove. At this time, the horizontal length W of the bottom surface was a value obtained by measuring the length of the bottom surface in the rolling direction (distance between A and A ′).

レーザー照射前の鋼板の鉄損及び磁束密度と、レーザー照射による磁区微細化溝を鋼板の表面に形成し、応力除去焼鈍を行った後の鋼板の鉄損及び磁束密度をそれぞれ測定した。   The iron loss and magnetic flux density of the steel plate before laser irradiation and the magnetic domain refinement groove by laser irradiation were formed on the surface of the steel plate, and the iron loss and magnetic flux density of the steel plate after stress relief annealing were measured.

下記表1は、鋼板の溝形状因子と、レーザー照射前と比較した応力除去焼鈍後の鉄損改善率及び磁束密度変化率を示す。
Table 1 below shows the groove shape factor of the steel sheet and the iron loss improvement rate and magnetic flux density change rate after stress removal annealing compared to before laser irradiation.

表1より確認されるように、溝深さ(H)と底面の水平長さ(W)によって定義される溝形状因子が0.1≦2H/W≦2の関係を満足するときに応力除去焼鈍後の鉄損・磁束密度ともに優れる。   As can be seen from Table 1, when the groove shape factor defined by the groove depth (H) and the horizontal length (W) of the bottom surface satisfies the relationship of 0.1 ≦ 2H / W ≦ 2, the stress is removed. Excellent iron loss and magnetic flux density after annealing.

すなわち、本発明の溝形状因子の範囲に属する発明例C〜Hは、鉄損改善率が高いのはもとより、応力除去焼鈍の後にも磁束密度が劣化しなかった。これに反し、比較例IとJは、溝の断面形状が楔形であり、溝の底部の水平長さが短くて応力除去焼鈍後の磁束密度が低かった。比較例AとBは溝の深さが浅くて磁区微細化による鉄損低減効果が微々たるものであり、応力除去焼鈍の後に磁束密度が劣化した。   That is, Invention Examples C to H belonging to the range of the groove shape factor of the present invention have a high iron loss improvement rate, and the magnetic flux density did not deteriorate even after stress relief annealing. On the other hand, Comparative Examples I and J had a wedge-shaped cross section of the groove, the horizontal length of the bottom of the groove was short, and the magnetic flux density after stress relief annealing was low. In Comparative Examples A and B, the depth of the groove was shallow and the effect of reducing the iron loss by refining the magnetic domain was insignificant, and the magnetic flux density deteriorated after the stress removal annealing.

このように底面の水平長さ(W)と溝深さ(H)が本発明の溝形状因子の範囲に属する場合、応力除去焼鈍の後に熱影響部による磁束密度の劣化が発生しないが、本発明の溝形状因子の範囲から外れる場合、応力除去焼鈍の後に熱影響部の影響で磁束密度が劣化する。   As described above, when the horizontal length (W) and the groove depth (H) of the bottom face belong to the range of the groove shape factor of the present invention, the magnetic flux density is not deteriorated by the heat affected zone after the stress relief annealing. When deviating from the range of the groove shape factor of the invention, the magnetic flux density deteriorates due to the influence of the heat affected zone after the stress relief annealing.

これは、磁区微細化溝の下部の底面の水平長さと溝深さを本発明の溝形状因子の範囲を満足するように制御する場合、磁区微細化溝の形成による熱影響部の生成を減らすことができるうえ、応力除去焼鈍の際に作用する熱影響部の影響を最小化して磁性の劣化を防止することができるためと考えられる。   This reduces the generation of the heat affected zone due to the formation of magnetic domain refinement grooves when the horizontal length and depth of the bottom surface of the magnetic domain refinement grooves are controlled so as to satisfy the range of the groove shape factor of the present invention. In addition, it is considered that it is possible to minimize the influence of the heat-affected zone acting during the stress relief annealing and prevent the magnetic deterioration.

前記溝は、幅4〜300μm、深さ3〜30μmを有し、圧延方向に2〜15mmの間隔で配列されることが好ましい。溝幅が4μm未満の場合、或いは溝深さが3μm未満の場合、或いは溝間の間隔が15mm超過の場合は、磁区微細化による鉄損低減効果を充分に得ることができない。また、溝幅が300μm超過の場合、或いは溝深さが30μm超過の場合、或いは溝間の間隔が2mm未満の場合は、却って鉄損の劣化をもたらす。より好ましくは、溝幅が6〜50μmであり、溝深さが6〜15μmである。   The grooves preferably have a width of 4 to 300 μm and a depth of 3 to 30 μm, and are arranged at intervals of 2 to 15 mm in the rolling direction. When the groove width is less than 4 μm, the groove depth is less than 3 μm, or the interval between the grooves is more than 15 mm, the effect of reducing the iron loss due to magnetic domain refinement cannot be sufficiently obtained. If the groove width exceeds 300 μm, the groove depth exceeds 30 μm, or the interval between the grooves is less than 2 mm, the iron loss is deteriorated. More preferably, the groove width is 6 to 50 μm and the groove depth is 6 to 15 μm.

また、前記線状溝は、鋼板の進行方向と45〜90°の角度を成すように形成されることが好ましい。これはこのような範囲で磁区微細化溝による磁性向上効果を極大化することができるためである。より好ましい線状溝と鋼板進行方向とが成す角度は85〜90°である。   The linear groove is preferably formed so as to form an angle of 45 to 90 ° with the traveling direction of the steel plate. This is because the magnetic improvement effect by the magnetic domain refinement groove can be maximized within such a range. A more preferable angle formed between the linear groove and the traveling direction of the steel sheet is 85 to 90 °.

また、本発明者は、底面の水平長さと溝深さとの関係だけでなく、底面の水平長さと溝幅との関係を制御することにより、応力除去焼鈍後の鉄損をより低減することができることが分かった。   Further, the present inventor can further reduce the iron loss after stress relief annealing by controlling not only the relationship between the horizontal length of the bottom surface and the groove depth but also the relationship between the horizontal length of the bottom surface and the groove width. I understood that I could do it.

本発明者は、2次再結晶後の鋼板にレーザービームを照射してU字形の断面形状を有する磁区微細化溝を鋼板の表面に多様な深さと幅で形成し、レーザー照射前の鋼板の鉄損及び磁束密度と、レーザー照射による磁区微細化溝を鋼板の表面に形成し、応力除去焼鈍を行った後の鋼板の鉄損及び磁束密度をそれぞれ測定した。   The inventor irradiates a steel plate after secondary recrystallization with a laser beam to form magnetic domain refinement grooves having a U-shaped cross-sectional shape on the surface of the steel plate with various depths and widths. The iron loss and magnetic flux density, and magnetic domain refinement grooves formed by laser irradiation were formed on the surface of the steel sheet, and the iron loss and magnetic flux density of the steel sheet after stress relief annealing were measured.

下記表2は、鋼板の溝の幅(L)に対する底部の水平長さ(W)の比と、レーザー照射前と比較した応力除去焼鈍後の鉄損改善率及び磁束密度変化率を示す。
Table 2 below shows the ratio of the bottom horizontal length (W) to the groove width (L) of the steel sheet and the iron loss improvement rate and magnetic flux density change rate after stress removal annealing compared to before laser irradiation.

表2から分かるように、W/Lが0.4以上の発明例(K、L、O)の場合、鉄損改善率が13%を超過し、W/Lが0.4未満の試験例(M、N)に比べてより優れた鉄損改善効果を示すことが分かる。   As can be seen from Table 2, in the case of the invention example (K, L, O) having W / L of 0.4 or more, the iron loss improvement rate exceeds 13% and the test example in which W / L is less than 0.4 It can be seen that the iron loss improving effect is superior to (M, N).

したがって、溝の底面の水平長さ(W)と溝深さ(H)が本発明の溝形状因子の範囲に属する場合においても、特に溝幅(L)と底面の水平長さ(W)がW≧0.4Lの条件を満足するときに応力除去焼鈍後の鉄損低減率が13%以上と非常に優れるし、応力除去焼鈍後に磁束密度が劣化しないことを確認することができる。   Therefore, even when the horizontal length (W) and the groove depth (H) of the bottom surface of the groove belong to the range of the groove shape factor of the present invention, the groove width (L) and the horizontal length (W) of the bottom surface are particularly large. It can be confirmed that when the condition of W ≧ 0.4L is satisfied, the iron loss reduction rate after the stress removal annealing is as excellent as 13% or more, and the magnetic flux density does not deteriorate after the stress removal annealing.

本発明の方向性電磁鋼板の表面に形成された溝の断面形状は、U字状、W字状、梯形、長方形又は半円形の形状であることが応力除去焼鈍後の鉄損及び磁束密度の向上に好ましい。これは本発明の溝形状因子(2H/W)の条件に符合するU字状、W字状、梯形、長方形、或いは半円形の断面を有する溝を形成させることにより、溝の底面の比率が増加し、底面の水平長さ(W)と溝幅(L)がW≧0.4Lの条件に符合して熱影響部による悪影響が最小化できるためである。   The cross-sectional shape of the groove formed on the surface of the grain-oriented electrical steel sheet of the present invention is U-shaped, W-shaped, trapezoidal, rectangular or semi-circular, and the iron loss and magnetic flux density after stress relief annealing are It is preferable for improvement. This is because a groove having a U-shaped, W-shaped, trapezoidal, rectangular, or semicircular cross section that meets the conditions of the groove shape factor (2H / W) of the present invention is formed, so that the ratio of the bottom surface of the groove is increased. This is because the horizontal length (W) of the bottom surface and the groove width (L) meet the condition of W ≧ 0.4L, and adverse effects due to the heat affected zone can be minimized.

ところが、本発明において溝の形状が例示されたような形状に限定されるのではなく、本発明の範囲に属する溝形状因子を有する磁区微細化溝が形成された方向性電磁鋼板であれば本発明の保護範囲に属するのは自明である。   However, the shape of the groove is not limited to the shape exemplified in the present invention, but the grain-oriented electrical steel sheet in which the magnetic domain refinement grooves having the groove shape factor belonging to the scope of the present invention are formed. It is obvious that it belongs to the protection scope of the invention.

前記溝は、高出力レーザーから出射された非接触式レーザービームが鋼板の表面に照射されて形成されたことが好ましい。特に、Femto−Secondレーザーから出射されたビームを鋼板の表面に照射することにより、COレーザービームの照射で発生しうる熱影響部の影響を減らすことができる。この際、ビーム形成ミラーと焦点ミラーとの焦点距離、配置距離、位置、或いは角度を制御してレーザービームの形態を調節し、レーザービーム照射速度と出力を調節することにより、溝の幅を4μmまで小さくすることができ、溝の断面形状を変化させて溝形状因子を制御することができる。このような方法を用いて磁区微細化処理を施すことにより、ロール圧入又はプレス法を用いた磁区微細化において発生しうる溝の下部の欠陥発生を抑制するのはもとより、制御性及び信頼性の面で安定的な利点を得ることができる。 The groove is preferably formed by irradiating the surface of the steel sheet with a non-contact laser beam emitted from a high-power laser. In particular, by irradiating the surface of the steel sheet with the beam emitted from the Femto-Second laser, the influence of the heat affected zone that can be generated by the irradiation of the CO 2 laser beam can be reduced. At this time, by controlling the focal length, arrangement distance, position, or angle between the beam forming mirror and the focusing mirror, the shape of the laser beam is adjusted, and by adjusting the laser beam irradiation speed and output, the width of the groove is set to 4 μm. The groove shape factor can be controlled by changing the cross-sectional shape of the groove. By applying the magnetic domain refinement process using such a method, not only the occurrence of defects in the lower part of the groove that may occur in the magnetic domain refinement using the roll press-fitting or press method is suppressed, but also controllability and reliability are improved. A stable advantage can be obtained.

絶縁被膜の再コーティングを防止するためには、絶縁被膜コーティング直前又は脱炭板に対して磁区微細化を行うことが好ましいが、特にこれに限定されるものではなく、絶縁被膜コーティングの後に磁区微細化を行うことも可能である。   In order to prevent re-coating of the insulating coating, it is preferable to carry out magnetic domain refinement immediately before the insulating coating or on the decarburized plate. It is also possible to carry out.

本発明の線状溝は、鋼板の幅方向に連続的パターンで形成されてもよく、多数の溝が鋼板の幅方向に形成された断続的パターンで形成されてもよい。   The linear groove of the present invention may be formed in a continuous pattern in the width direction of the steel plate, or may be formed in an intermittent pattern in which a number of grooves are formed in the width direction of the steel plate.

前記鋼板は、0.30mm未満の薄物厚さ又は0.30mm以上の厚物厚さを有してもよい。よって、本発明は、0.30mm未満の薄物製品だけでなく、0.30mm以上の厚物製品に対しても応力除去焼鈍後の磁区微細効果を維持することができる。   The steel sheet may have a thin thickness of less than 0.30 mm or a thick thickness of 0.30 mm or more. Therefore, the present invention can maintain the magnetic domain fine effect after stress relief annealing not only for thin products of less than 0.30 mm but also for thick products of 0.30 mm or more.

このように本発明の範囲に属する溝形状因子を有する磁区微細化溝が形成された方向性電磁鋼板は、応力除去焼鈍の後に磁束密度が劣化しないながら高い鉄損改善効果を得ることができ、レーザー照射前と比較して応力除去焼鈍後の鉄損低減率が10〜20%と高く、磁束密度減少率が1%未満に該当する極めて優れた磁気的特性を有する方向性電磁鋼板を製造することができる。   In this way, the grain-oriented electrical steel sheet in which the magnetic domain refinement grooves having the groove shape factor belonging to the scope of the present invention are formed can obtain a high iron loss improvement effect while the magnetic flux density does not deteriorate after the stress relief annealing, A grain-oriented electrical steel sheet having a very excellent magnetic property in which the iron loss reduction rate after stress relief annealing is as high as 10 to 20% and the magnetic flux density reduction rate is less than 1% as compared with before laser irradiation is manufactured. be able to.

Claims (3)

表面に複数の線状溝が形成されて磁区微細化処理された方向性電磁鋼板の製造方法であって、
Femto−Secondレーザーから出射されたレーザービームを鋼板の表面に照射して前記溝を形成する工程を含み、
前記溝の鋼板の表面から底部に至る溝深さをHとし、鋼板の表面からの深さが溝深さHの4/5以上の部分である底面の水平長さをWとするとき、前記溝深さHと前記底面の水平長さWは下記式1の関係を満足し、
前記溝は、幅4〜300μmで圧延方向に2〜15mmの間隔で配列されており、
前記溝は鋼板の圧延方向と45〜90°の角度で形成され、
前記溝はU字状、W字状、及び半円形のいずれか一つの断面形状を有する溝を少なくとも1つ含み、
磁区微細化処理前と比較して、応力除去焼鈍後の鉄損低減率が10%以上であり、応力除去焼鈍後の磁束密度減少率が1%未満であることを特徴とする、方向性電磁鋼板の製造方法。
[式1]0.1≦2H/W≦2
A method for producing a grain-oriented electrical steel sheet having a plurality of linear grooves formed on the surface and subjected to magnetic domain refinement treatment,
Irradiating the surface of the steel plate with a laser beam emitted from a Femto-Second laser to form the groove,
When the groove depth from the surface of the steel sheet to the bottom of the groove is H, and the horizontal length of the bottom surface where the depth from the surface of the steel sheet is 4/5 or more of the groove depth H is W, The groove depth H and the horizontal length W of the bottom surface satisfy the relationship of the following formula 1,
The grooves have a width of 4 to 300 μm and are arranged at intervals of 2 to 15 mm in the rolling direction.
The groove is formed at an angle of 45 to 90 ° with the rolling direction of the steel plate,
The groove includes at least one groove having a cross-sectional shape of any one of a U shape, a W shape, and a semicircle,
Compared to before magnetic domain refinement treatment, the iron loss reduction rate after stress removal annealing is 10% or more, and the magnetic flux density reduction rate after stress removal annealing is less than 1%. Manufacturing method of steel sheet.
[Formula 1] 0.1 ≦ 2H / W ≦ 2
前記溝は、深さ3〜30μmを有することを特徴とする、請求項に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 1 , wherein the groove has a depth of 3 to 30 μm. 前記鋼板は0.30mm未満の薄物厚さ又は0.30mm以上の厚物厚さを有することを特徴とする、請求項1または2に記載の方向性電磁鋼板の製造方法。  3. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the steel sheet has a thin thickness of less than 0.30 mm or a thickness of 0.30 mm or more.
JP2015006758A 2009-12-04 2015-01-16 Method for producing grain-oriented electrical steel sheet Active JP6200908B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0120142 2009-12-04
KR1020090120142A KR101141283B1 (en) 2009-12-04 2009-12-04 Grain-oriented electrical steel sheet having low core loss and high magnetic flux density

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012537818A Division JP5771620B2 (en) 2009-12-04 2010-11-05 Oriented electrical steel sheet with low iron loss and high magnetic flux density

Publications (2)

Publication Number Publication Date
JP2015117435A JP2015117435A (en) 2015-06-25
JP6200908B2 true JP6200908B2 (en) 2017-09-20

Family

ID=44115385

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012537818A Active JP5771620B2 (en) 2009-12-04 2010-11-05 Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP2015006759A Active JP6293067B2 (en) 2009-12-04 2015-01-16 Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP2015006758A Active JP6200908B2 (en) 2009-12-04 2015-01-16 Method for producing grain-oriented electrical steel sheet

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012537818A Active JP5771620B2 (en) 2009-12-04 2010-11-05 Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP2015006759A Active JP6293067B2 (en) 2009-12-04 2015-01-16 Oriented electrical steel sheet with low iron loss and high magnetic flux density

Country Status (4)

Country Link
JP (3) JP5771620B2 (en)
KR (1) KR101141283B1 (en)
CN (1) CN102639726B (en)
WO (1) WO2011068311A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4223891A4 (en) * 2020-11-27 2023-11-01 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941413B (en) * 2012-11-23 2015-07-01 武汉钢铁(集团)公司 Method for reducing iron loss of oriented silicon steel through multiple times of laser grooving
KR101538778B1 (en) * 2013-12-24 2015-07-22 주식회사 포스코 Grain-oriented electrical steel sheet and method for manufacturing the same
KR101562962B1 (en) * 2014-08-28 2015-10-23 주식회사 포스코 Method and appratus for refining magnetic domains in grain-oriented electrical steel sheet and grain-oriented electrical steel manufactured using the same
KR101719231B1 (en) 2014-12-24 2017-04-04 주식회사 포스코 Grain oriented electical steel sheet and method for manufacturing the same
RU2682364C1 (en) 2015-04-20 2019-03-19 Ниппон Стил Энд Сумитомо Метал Корпорейшн Electrotechnical steel sheet with oriented grain structure
PL3287532T3 (en) * 2015-04-20 2023-05-22 Nippon Steel Corporation Grain-oriented electrical steel sheet
WO2016171117A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet
CN106282512B (en) * 2015-05-11 2018-03-30 宝山钢铁股份有限公司 Low noise level transformer orientation silicon steel piece making method
KR101908042B1 (en) * 2016-06-23 2018-10-15 주식회사 포스코 Wound core and method for manufacturing wound core
JP6372581B1 (en) 2017-02-17 2018-08-15 Jfeスチール株式会社 Oriented electrical steel sheet
KR102407899B1 (en) 2017-09-28 2022-06-10 제이에프이 스틸 가부시키가이샤 grain-oriented electrical steel sheet
KR102044320B1 (en) 2017-12-26 2019-11-13 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
RU2748775C1 (en) * 2018-01-31 2021-05-31 Ниппон Стил Корпорейшн Electrical steel sheet with oriented grain structure
CN111684086B (en) * 2018-02-09 2022-09-23 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
WO2021054409A1 (en) 2019-09-18 2021-03-25 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
CN115335546B (en) 2020-05-19 2023-09-29 杰富意钢铁株式会社 Grain-oriented electrical steel sheet and method for producing same
KR20240040492A (en) 2022-09-21 2024-03-28 현대제철 주식회사 Non-oriented elecrical steel sheet and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117218A (en) * 1984-11-10 1986-06-04 Nippon Steel Corp Manufacture of grain oriented magnetic steel sheet of low iron loss
JPS6267114A (en) * 1985-09-20 1987-03-26 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet
JPS63166932A (en) * 1986-12-27 1988-07-11 Nippon Steel Corp Manufacture of grain-oriented electrical steel sheet having very small iron loss and high magnetic flux density
JP2895670B2 (en) * 1991-10-24 1999-05-24 川崎製鉄株式会社 Grain-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JPH07138648A (en) * 1993-10-01 1995-05-30 Kawasaki Steel Corp Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet
JP3152554B2 (en) * 1994-02-04 2001-04-03 新日本製鐵株式会社 Electrical steel sheet with excellent magnetic properties
JP3726289B2 (en) * 1994-03-31 2005-12-14 Jfeスチール株式会社 Oriented electrical steel sheet with low iron loss
WO1997024466A1 (en) * 1995-12-27 1997-07-10 Nippon Steel Corporation Magnetic steel sheet having excellent magnetic properties and method for manufacturing the same
JP4398666B2 (en) * 2002-05-31 2010-01-13 新日本製鐵株式会社 Unidirectional electrical steel sheet with excellent magnetic properties and method for producing the same
WO2004083465A1 (en) * 2003-03-19 2004-09-30 Nippon Steel Corporation Grain-oriented magnetic steel sheet excellent in magnetic characteristic and its manufacturing method
TWI305548B (en) * 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
KR100779580B1 (en) 2006-12-26 2007-11-28 주식회사 포스코 Manufacturing method of grain-oriented electrical steel sheet having low core loss and high magnetic flux density

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4223891A4 (en) * 2020-11-27 2023-11-01 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
CN102639726A (en) 2012-08-15
JP2013510239A (en) 2013-03-21
WO2011068311A2 (en) 2011-06-09
CN102639726B (en) 2014-03-26
JP5771620B2 (en) 2015-09-02
JP6293067B2 (en) 2018-03-14
KR101141283B1 (en) 2012-05-04
WO2011068311A3 (en) 2011-08-18
JP2015117435A (en) 2015-06-25
KR20110063187A (en) 2011-06-10
JP2015092028A (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP6200908B2 (en) Method for producing grain-oriented electrical steel sheet
JP5234222B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR102288802B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
US11318562B2 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
CA2939336C (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for manufacturing said sheet
JPWO2013094218A1 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH11279645A (en) Grain oriented silicon steel sheet having low iron loss and low magnetic strain and production thereof
JP2004056090A (en) Grain oriented magnetic steel sheet excellent in magnetic property and its production
WO2023195466A1 (en) Grain-oriented electromagnetic steel sheet and production method for same
US20230060105A1 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method thereof
KR102276850B1 (en) Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP2015161017A (en) Grain-oriented electrical steel sheet for low-noise transformer, and method for production thereof
US20240024985A1 (en) Grain-oriented electrical steel sheet, and magnetic domain refining method therefor
JP7365416B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
CN113196423B (en) Oriented electrical steel sheet and method for manufacturing same
US20220119901A1 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method thereof
KR101676628B1 (en) Grain-orientied electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6200908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250