JPH07138648A - Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet - Google Patents

Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet

Info

Publication number
JPH07138648A
JPH07138648A JP5246864A JP24686493A JPH07138648A JP H07138648 A JPH07138648 A JP H07138648A JP 5246864 A JP5246864 A JP 5246864A JP 24686493 A JP24686493 A JP 24686493A JP H07138648 A JPH07138648 A JP H07138648A
Authority
JP
Japan
Prior art keywords
groove
steel sheet
iron loss
annealing
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5246864A
Other languages
Japanese (ja)
Inventor
Michiro Komatsubara
道郎 小松原
Yasuyuki Hayakawa
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5246864A priority Critical patent/JPH07138648A/en
Publication of JPH07138648A publication Critical patent/JPH07138648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To subdivide a magnetic domain and to reduce iron loss by providing certain-shaped grooves on the surface of a steel sheet. CONSTITUTION:Plural grooves which are extended in a direction crossing the rolling direction of a steel sheet are formed at constant intervals on the surface of a grain oriented silicon steel sheet. The shape of the groove is made so that the groove depth ratio d/d0 of parts (d) where the angle theta of inclination of side walls constituting the groove to the surface of the steel sheet becomes >=5 deg. to the whole side walls d0 is >=60%. The inside of the formed groove is filled up with Al or Al compound, after that, decarburization/primary recrystallization annealing is executed and the Al or Al compound is made into an Al2O3 base sintered compact. Successively, annealing separating agent is applied on the surface of the steel sheet and the final finish annealing is executed. It is preferable that the grooves which are formed on the surface of the steel sheet have an inclination angle of 0-30 deg. to the orthogonal axis to the rolling direction, intervals of 2-30mm, groove width of 30-1000mum and depth of 5-50mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄損の低い方向性け
い素鋼板の製造方法に関し、特に鋼板表面に溝を設け
て、磁区を細分化し鉄損を低減する技術についての開発
研究の成果を以下に述べる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet having a low iron loss, and in particular, the results of research and development on a technique for providing a groove on the surface of the steel sheet to subdivide magnetic domains to reduce iron loss. Will be described below.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器、
その他の電気機器の鉄心として利用され、その磁化特性
が優れていること、特に鉄損( 1.7Tの最大磁束密度で
50Hzの周波数で交番磁化したときの鉄損であるW17/50
や、1.5 Tの最大磁束密度で60Hzの周波数で交番磁化し
たときの鉄損であるW15/60 で代表される)の低いこと
が要求されている。このためには、第一に鋼板中の2次
再結晶粒を (110)[001] 方位、いわゆるゴス方位に高度
に揃えることが必要であり、第二には最終製品の鋼中に
存在する不純物や析出物をできるだけ減少させる必要が
ある。かかる配慮の下に製造される方向性けい素鋼板
は、今日まで多くの改善努力によって、その鉄損値も年
を追って改善され、最近では板厚 0.23mm の製品でW
17/50 の値が 0.83 W/Kg ,W15 /60 の値が 0.35 W/
1bの低鉄損のものが得られている。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used for transformers,
It is used as an iron core for other electrical equipment and has excellent magnetization characteristics, especially iron loss (at the maximum magnetic flux density of 1.7T).
Iron loss when alternating magnetized at a frequency of 50 Hz W 17/50
In addition, it is required to have a low iron loss ( typically W 15/60 ) when alternating magnetization is performed at a frequency of 60 Hz with a maximum magnetic flux density of 1.5 T). For this purpose, firstly, the secondary recrystallized grains in the steel sheet must be highly aligned with the (110) [001] orientation, the so-called Goss orientation, and secondly, it exists in the final product steel. It is necessary to reduce impurities and precipitates as much as possible. The grain-oriented silicon steel sheet manufactured under such consideration has improved its iron loss value year by year through a lot of improvement efforts to date.
The value of 17/50 is 0.83 W / Kg, the value of W 15/60 is 0.35 W /
A low iron loss of 1b is obtained.

【0003】鉄損低減の手法として、鋼板表面に物理的
な手段で不均一性を導入し、磁区の幅を細分化する技術
が開発された。例えば、特公昭57−2252号公報に
は、最終製品板表面に、圧延方向にほぼ直角にレーザ−
ビームを数mm間隔に照射し、鋼板表層に高転位密度領域
を導入することにより、磁区の幅を微細化し、鉄損を低
減する技術が提案されている。同様にプラズマジェット
を局部的に鋼板表層に導入し、磁区幅を微細化し、鉄損
を低減する技術も提案されている。しかしながら、これ
らの技術は鋼板の打抜き加工、せん断加工、巻き加工な
どの後に施される歪取焼鈍やコーティングの焼付け処理
などの熱処理によって導入された歪が解放されるため、
鉄損低減効果が減殺される欠点を有する。
As a technique for reducing iron loss, a technique has been developed in which nonuniformity is introduced into the surface of a steel sheet by physical means to subdivide the width of magnetic domains. For example, in Japanese Examined Patent Publication (Kokoku) No. 57-2252, a laser beam is formed on the surface of the final product plate at a right angle to the rolling direction.
A technique has been proposed in which a beam is irradiated at intervals of several mm and a high dislocation density region is introduced into the surface layer of a steel sheet to reduce the width of magnetic domains and reduce iron loss. Similarly, a technique has been proposed in which a plasma jet is locally introduced into the surface layer of a steel sheet to make the magnetic domain width finer and reduce iron loss. However, these techniques release the strain introduced by heat treatment such as punching of steel sheet, shearing, winding, etc. after stress relief annealing or coating bake treatment.
It has a drawback that the iron loss reducing effect is diminished.

【0004】これに対して、特開平1−211903
号、同2−294427号および同3−138318号
各公報には、最終仕上焼鈍後の鋼板表面に突起付きロー
ルを押しあてへこみを設けたり、へこみ加工による歪エ
ネルギーを利用してへこみの直下に微細結晶粒を形成さ
せ、へこみおよび微細粒の作用により、歪取焼鈍によっ
ても効果が減殺されない耐熱型磁区細分化の技術が提案
されている。しかし、これらの技術はロール表面の突起
の摩耗や破損が甚だしく、安定して効果を持続させるこ
とが困難であり、さらに突起の押しあて量の制御が難し
く、へこみ量や、付加される歪量の制御が難しいため、
すなわち、微細結晶粒の発現が安定しないところに問題
点があった。
On the other hand, JP-A 1-211903
No. 2,294,427 and No. 3-138318, press rolls with protrusions are provided on the surface of the steel sheet after the final finish annealing to form dents, or strain energy due to denting is used to directly under the dents. A heat-resistant magnetic domain subdivision technique has been proposed in which fine crystal grains are formed, and the effects of dents and fine grains do not diminish the effect even by strain relief annealing. However, in these technologies, the protrusions on the roll surface are extremely worn and damaged, and it is difficult to maintain a stable and stable effect.It is also difficult to control the pressing amount of the protrusions, the amount of dents and the amount of added strain. Is difficult to control,
That is, there is a problem in that the expression of fine crystal grains is not stable.

【0005】また、特開平1−252728号公報に
は、最終仕上焼鈍後の鋼板の表面被膜を、超音波振動で
線状に除去し、その後、電解エッチングを施して、溝を
形成し、磁区細分化を行う低鉄損方向性けい素鋼板の製
造技術が開示されている。この技術は鉄損低減効果も大
きくかつ安定しているが、表面被膜がセラミックからな
るため、被膜の除去が難しく、超音波加工技術を用いて
も能率が悪く、また最終的に、余分なコーティング塗布
工程も必要とするところから、工業的に実施されるまで
に至っていない。
Further, in Japanese Patent Laid-Open No. 1-252728, the surface coating of the steel sheet after the final finish annealing is linearly removed by ultrasonic vibration, and then electrolytic etching is performed to form a groove to form a magnetic domain. A manufacturing technique of a low iron loss grain-oriented silicon steel sheet for subdividing is disclosed. This technology has a large effect of reducing iron loss and is stable, but since the surface coating is made of ceramic, it is difficult to remove the coating, and even if ultrasonic processing technology is used, it is inefficient. Since it requires a coating step, it has not been industrially implemented.

【0006】一方、特開平3−69968号公報には、
脱炭・1次再結晶焼鈍の前に、線状刻み目(溝)を鋼板
表面に導入し、脱炭・1次再結晶焼鈍および最終仕上焼
鈍を行って純化を促進する技術が、また特開平4−88
121号公報には最終冷延後、印刷によってエッチング
レジストを線状に塗布した後エッチングで線状の溝を形
成し、しかる後、該レジストを除去し、脱炭・1次再結
晶焼鈍および最終仕上焼鈍を行なう磁区細分化技術が、
それぞれ提案されている。
On the other hand, Japanese Patent Laid-Open No. 3-69968 discloses that
Prior to the decarburization / primary recrystallization annealing, a linear notch (groove) is introduced on the surface of the steel sheet, and decarburization / primary recrystallization annealing and final finishing annealing are performed to promote purification. 4-88
No. 121 discloses that after the final cold rolling, an etching resist is linearly applied by printing and then a linear groove is formed by etching, and then the resist is removed, followed by decarburization, primary recrystallization annealing and final Magnetic domain subdivision technology that performs finish annealing
Each has been proposed.

【0007】これらの技術は、最終仕上焼鈍前に溝を形
成させるため、歪取焼鈍などの熱処理に対する磁気特性
の安定化の面では優れているものの、鉄損低減効果の面
で不安定で、特にW15/60 といった中磁束密度の領域で
の鉄損低減効果において所期の目標効果が得られないこ
とがあった。
Since these techniques form grooves before final finishing annealing, they are excellent in terms of stabilizing magnetic properties against heat treatment such as strain relief annealing, but unstable in terms of iron loss reducing effect. In particular, in the iron loss reduction effect in the region of medium magnetic flux density such as W 15/60 , the desired target effect may not be obtained in some cases.

【0008】[0008]

【発明が解決しようとする課題】この発明は、最終冷延
後に溝を形成して脱炭・1次再結晶焼鈍および最終仕上
焼鈍を行なう磁区細分化技術において、しばしば鉄損の
低減効果が十分に得られない問題を解消し、安定してか
つ優れた鉄損低減効果を得る低鉄損方向性けい素鋼板の
製造方法について提案するものである。
DISCLOSURE OF THE INVENTION The present invention is often sufficient in reducing iron loss in a magnetic domain refining technique in which a groove is formed after final cold rolling to carry out decarburization / primary recrystallization annealing and final finishing annealing. The present invention proposes a method of manufacturing a low iron loss grain-oriented silicon steel sheet that solves the problems that cannot be obtained in particular, and obtains a stable and excellent iron loss reduction effect.

【0009】[0009]

【課題を解決するための手段】発明者らは上記目的を達
成するため、以下の実験を行った。すなわちけい素鋼の
冷延板に、幅 200μm 、深さ20μm で圧延方向と直角に
延びる溝を圧延方向に間隔4mmで繰返して形成し、脱炭
・1次再結晶焼鈍後、焼鈍分離剤を塗布し、積層して最
終仕上焼鈍を施した鋼板、および同一の冷間圧延板を
用い、溝の形成に先立ち、脱炭・1次再結晶焼鈍を行な
い、その後、焼鈍分離剤を塗布し、積層して最終仕上焼
鈍を施したのち、超音波振動および電解エッチングで幅
200μm、深さ20μm で圧延方向と直角に延びる溝を圧
延方向に間隔4mmで繰返して形成した鋼板の磁気特性
を測定した結果について表1に示す。同表に示すよう
に、脱炭および1次再結晶焼鈍前に溝を形成させた鋼板
では、特に中磁束密度での鉄損W15/60 における低下
が顕著であった。
[Means for Solving the Problems] In order to achieve the above object, the inventors conducted the following experiments. That is, on a cold-rolled sheet of silicon steel, grooves having a width of 200 μm and a depth of 20 μm and extending at right angles to the rolling direction were repeatedly formed at intervals of 4 mm in the rolling direction, and after decarburization / primary recrystallization annealing, an annealing separator was used. Using a steel sheet that has been applied, laminated and subjected to final finish annealing, and the same cold-rolled sheet, decarburization and primary recrystallization annealing are performed prior to formation of grooves, and then an annealing separator is applied, After lamination and final finishing annealing, the width is increased by ultrasonic vibration and electrolytic etching.
Table 1 shows the results of measuring the magnetic properties of a steel sheet formed by repeatedly forming grooves having a depth of 200 μm and a depth of 20 μm and extending at right angles to the rolling direction at intervals of 4 mm in the rolling direction. As shown in the table, in the steel sheet in which the grooves were formed before the decarburization and the primary recrystallization annealing, the iron loss W 15/60 was remarkably reduced at the medium magnetic flux density.

【0010】[0010]

【表1】 [Table 1]

【0011】この原因を探究するべく鋭意研究を重ねた
結果、鉄損の低減、特に中磁束密度の鉄損領域において
は、溝の断面形状が重要であり、上記の鋼板では冷間
圧延板に設けた初期の溝の形状が最終的には保存されて
いないためであることを新規に見出した。
As a result of repeated studies to investigate the cause of this, the cross-sectional shape of the groove is important in the reduction of iron loss, especially in the iron loss region of medium magnetic flux density. It was newly found that the shape of the initial groove provided was not preserved finally.

【0012】ここで、前述の実験で得た最終仕上焼鈍後
の鋼板について、その溝断面形状を図1(a)〜(c)
に示す。同図(a)は最終仕上焼鈍後に幅200 μm 、深
さ20μm の溝を形成した鋼板の溝断面形状であり、同
図(b)は脱炭・1次再結晶焼鈍前の冷間圧延板に、幅
200μm 、深さ20μm の溝を形成した最終仕上焼鈍後の
鋼板の溝断面形状である。また、同図(c)は、前述
の実験において、冷間圧延板に幅 200μm 、深さ20μm
の溝を形成させた直後の鋼板の溝断面形状を示したもの
である。同図(b)の鋼板は、同図(a)の例に比較し
て、溝の側壁の傾斜が鋼板表面に対して緩い傾斜をなす
ことが判る。さらに、この側壁の傾斜の緩慢化は、最終
仕上焼鈍途中において発生したことが同図(c)と比較
することにより突き止められた。これは、高温焼鈍時に
おけるフォルステライト被膜形成および鋼の軟化によっ
て、鋼板表面が粘性流動を起こし、表面エネルギーを低
減すべく、溝の平滑化現象が発生するからである。
Here, the groove cross-sectional shape of the steel sheet after the final finish annealing obtained in the above-mentioned experiment is shown in FIGS. 1 (a) to 1 (c).
Shown in. The figure (a) shows the groove cross-sectional shape of a steel sheet having a groove with a width of 200 μm and a depth of 20 μm after the final finishing annealing, and the figure (b) shows the cold-rolled sheet before decarburization and primary recrystallization annealing. To the width
It is a groove cross-sectional shape of the steel sheet after final finishing annealing in which a groove having a depth of 200 μm and a depth of 20 μm is formed. In addition, FIG. 7C shows a cold-rolled sheet having a width of 200 μm and a depth of 20 μm in the above-mentioned experiment.
3 shows the groove cross-sectional shape of the steel sheet immediately after forming the groove. It can be seen that in the steel plate of FIG. 6B, the inclination of the side wall of the groove is gentler than that of the example of FIG. Further, it was found that the slower slope of the side wall occurred during the final finish annealing by comparing with FIG. This is because the forsterite film formation during high temperature annealing and the softening of the steel cause viscous flow on the surface of the steel sheet, and a groove smoothing phenomenon occurs in order to reduce the surface energy.

【0013】そして、溝の側壁の傾斜が緩慢になること
で鉄損低減効果が失効する理由は次のように考えられ
る。すなわち、溝を形成することにより鉄損が低減する
のは図2(a) に示すように、溝の側壁に磁束(図中の矢
印)の不連続に起因する自由磁極(図中の+および−
印)が生成するため、静磁エネルギーが増加して、この
エネルギーを低減しようとして磁区が細分化されるため
である。
The reason why the iron loss reducing effect is lost due to the gradual inclination of the side wall of the groove is considered as follows. That is, the iron loss is reduced by forming the groove as shown in FIG. 2 (a), because the free magnetic pole (+ and + in the figure) caused by the discontinuity of the magnetic flux (arrow in the figure) on the side wall of the groove. −
This is because magnetostatic energy increases and the magnetic domains are subdivided in an attempt to reduce this energy.

【0014】ところが、溝の側壁の傾斜が緩慢な場合、
壁に生成する自由磁極の密度が低くμ* 効果(磁気を担
うスピンの向きが壁面に平行となり、静磁エネルギーを
低下させる効果)とも相俟って、静磁エネルギーの増加
量が減少する。したがって、磁区の細分化が効果的に実
現されなくなり、鉄損低減効果があまり期待できなくな
る。
However, when the side wall of the groove is slanted slowly,
The density of the free magnetic poles generated on the wall is low and the μ * effect (the effect of reducing the magnetostatic energy by making the direction of spins responsible for magnetism parallel to the wall surface) reduces the increase in magnetostatic energy. Therefore, the subdivision of the magnetic domain is not effectively realized, and the effect of reducing the iron loss cannot be expected so much.

【0015】発明者らは、鉄損低減効果が得られる溝の
側壁の適正な傾斜について検討した結果、溝の側壁の傾
斜としては鋼板表面に対して垂直であることが好ましい
が、図3(a)に示す側壁の鋼板表面に対する角度(以
下、側壁傾斜角と示す)θとして5°以上であれば、鉄
損低減の効果が十分得られることがわかった。但し、図
3(a)においては、溝の全体を図示するため、深さ方
向と水平方向の倍率比を10対1で示してある。
The inventors of the present invention have studied the proper inclination of the side wall of the groove to obtain the effect of reducing the iron loss. As a result, the inclination of the side wall of the groove is preferably perpendicular to the surface of the steel sheet. It was found that if the angle θ of the side wall with respect to the steel plate surface shown in a) (hereinafter, referred to as side wall inclination angle) θ is 5 ° or more, the effect of reducing iron loss can be sufficiently obtained. However, in FIG. 3A, in order to show the entire groove, the magnification ratio in the depth direction and the horizontal direction is shown as 10: 1.

【0016】しかしながら、実際の溝形状は実に多様で
あり、すべての側壁傾斜角θを5°以上に制御すること
は難しい。そこで、側壁傾斜角が5°以上の部分の側壁
全体での占有率と鉄損低減効果との関係について検討し
た。すなわち、図3(b)に示すように、側壁傾斜角θ
が25°の領域とθ<5°の領域に区別し、溝の深さ方向
で投影したθ≧5°の領域の長さdの側壁全体の投影長
o に対する比率(d/do )×100 %;以下、深さ比
率と示す)基いて調査した。この際、側壁傾斜角θ≧5
°の領域の深さ比率としては両側壁の深さ比率の平均値
を採った。この結果、θ≧5°の側壁部分の深さ比率が
60%以上あれば、鉄損低減効果として十分な値が得られ
るとの知見が得られた。
However, the actual groove shapes are very diverse, and it is difficult to control all sidewall inclination angles θ to 5 ° or more. Therefore, the relationship between the occupancy rate of the entire sidewall and the iron loss reduction effect in the portion where the sidewall inclination angle is 5 ° or more was examined. That is, as shown in FIG. 3B, the sidewall inclination angle θ
Is divided into a region of 25 ° and a region of θ <5 °, and the ratio of the length d of the region of θ ≧ 5 ° projected in the groove depth direction to the projected length d o of the entire sidewall (d / d o ) X 100%; hereinafter referred to as depth ratio). At this time, the side wall inclination angle θ ≧ 5
As the depth ratio of the ° region, the average value of the depth ratios of both side walls was taken. As a result, the depth ratio of the side wall where θ ≧ 5 ° is
It was found that if the content is 60% or more, a sufficient value can be obtained as the iron loss reduction effect.

【0017】次に、上記の適正な溝形状を最終仕上焼鈍
後も、維持する手法について鋭意研究を行った。すなわ
ち、溝を酸化物の焼結体で充填することを着想し、種々
の酸化物の充填を試みたが、いずれも、良好な結果が得
られなかった。これは、多くの酸化物が最終仕上焼鈍に
おいて、鋼中のSiによって還元される結果、初期の溝の
形状を保持できないからであった。また、鋼中Siによっ
て還元されない、後述の酸化物を除く特定の酸化物につ
いては、溝への充填後の焼結が困難であり、結局は最終
仕上焼鈍後の鋼板表面地鉄の形状を保持できず、また、
焼結を促進しようとして高温熱処理を施した場合は、最
終仕上焼鈍における2次再結晶が不良となる結果に終わ
った。
Next, an intensive study was conducted on a method of maintaining the above-mentioned proper groove shape even after final finishing annealing. That is, the idea of filling the groove with a sintered body of oxide was attempted, and various oxides were tried to be filled, but no good result was obtained. This is because many oxides are reduced by Si in the steel during final finish annealing, and as a result, the initial groove shape cannot be retained. In addition, for the specific oxides that are not reduced by Si in the steel, except for the oxides described below, it is difficult to sinter after filling the groove, and after all, the shape of the steel plate surface base metal after the final finish annealing is retained. I can't do it again
When high-temperature heat treatment was performed in order to accelerate the sintering, the result was that the secondary recrystallization in the final finish annealing became defective.

【0018】そこで、発明者らは、酸化物の溝への充填
を断念し、金属または化合物を溝へ充填し、脱炭・1次
再結晶焼鈍時に酸化物焼結体となる手法を着想した。種
々の実験の結果、この手法に対しては、AlもしくはAl化
合物の溝への充填が極めて有効であることを見出し、こ
の発明を完成させた。
Therefore, the present inventors have conceived a method of giving up the filling of the oxide with the groove, filling the groove with a metal or a compound, and forming an oxide sintered body during decarburization / primary recrystallization annealing. . As a result of various experiments, it was found that filling the groove with Al or an Al compound was extremely effective for this method, and completed the present invention.

【0019】すなわち、この発明は、方向性けい素鋼冷
延板の表面に、溝を構成する側壁の鋼板表面に対する傾
斜角が5°以上となる部分の側壁全体に占める溝深さ方
向での比が60%以上となる形状で鋼板の圧延方向を横切
る向きに延びる溝を、圧延方向に間隔を置いて複数形成
し、該溝内にAlもしくはAl化合物を付着した後、脱炭・
1次再結晶焼鈍を施して、AlもしくはAl化合物をAl2O3
系焼結体となし、その後、鋼板表面に焼鈍分離剤を塗布
し最終仕上焼鈍を行うことを特徴とする方向性けい素鋼
板の鉄損低減方法である。
That is, according to the present invention, the surface of the grain-oriented silicon steel cold-rolled sheet has a groove depth direction which occupies the entire side wall of the portion where the inclination angle of the side wall forming the groove is 5 ° or more with respect to the steel plate surface. A plurality of grooves having a ratio of 60% or more and extending in a direction crossing the rolling direction of the steel sheet are formed at intervals in the rolling direction, and Al or an Al compound is attached to the grooves, followed by decarburization /
Performed primary recrystallization annealing to remove Al or Al compound from Al 2 O 3
It is a method for reducing iron loss of grain-oriented silicon steel sheets, which is characterized by forming a system sintered body, and then applying an annealing separator to the surface of the steel sheet and performing final finish annealing.

【0020】また、この発明は、鋼板表面における金属
相と酸化物相との界面に、圧延方向と直交する向きに対
して0〜30°の傾きで延びる線状の溝を圧延方向に2〜
30mmの間隔で複数設け、各溝は、幅:30〜1000μm およ
び深さ:5〜50μm であり、さらに溝の側壁の鋼板表面
に対する傾斜角が5°以上となる部分の側壁全体に占め
る溝深さ方向での比が60%以上である形状に成ることを
特徴とする低鉄損方向性けい素鋼板である。
Further, according to the present invention, a linear groove extending at an inclination of 0 to 30 ° with respect to a direction orthogonal to the rolling direction is formed at the interface between the metal phase and the oxide phase on the surface of the steel sheet in the rolling direction.
A plurality of grooves are provided at intervals of 30 mm, each groove has a width of 30 to 1000 μm and a depth of 5 to 50 μm, and further, the groove depth occupying the entire side wall of the part where the inclination angle of the side wall of the groove is 5 ° or more. A low iron loss grain-oriented silicon steel sheet having a shape having a ratio in the depth direction of 60% or more.

【0021】次に、この発明に係る方向性けい素鋼板の
製造方法について詳細に説明する。この発明の素材は、
公知の製鋼方法、例えば転炉、電気炉などによって製鋼
し、さらに造塊−分塊法または連続鋳造法などによって
スラブ(鋼片)としたのち、熱間圧延によって得られる
熱延コイルを用いる。得られた熱延板は、Siを2.0〜4.5
wt%程度含有する組成であることが必要である。すな
わち、Siが2.0 wt%未満では鉄損の劣化が大きく、また
4.5 wt%を超えると、冷間加工性が劣化するからであ
る。その他の成分については、方向性けい素鋼板の素材
成分であれば、いずれも適用可能である。
Next, the method for manufacturing the grain-oriented silicon steel sheet according to the present invention will be described in detail. The material of this invention is
A hot rolled coil obtained by hot rolling is used after making a slab (steel piece) by a known steel making method, for example, a converter, an electric furnace, etc., and further by an ingot-agglomeration method or a continuous casting method. The obtained hot-rolled sheet has a Si content of 2.0 to 4.5.
It is necessary that the composition contains about wt%. That is, if the Si content is less than 2.0 wt%, the iron loss is significantly deteriorated.
This is because if it exceeds 4.5 wt%, the cold workability deteriorates. As for the other components, any component can be applied as long as it is a material component of the grain-oriented silicon steel sheet.

【0022】次に冷間圧延により、最終目標板厚とする
が、冷間圧延は、1回もしくは中間焼鈍を挟む2回の冷
間圧延により行なわれる。このとき、必要に応じて熱延
板焼鈍や、冷間圧延に替わる温間圧延や、圧延パス間で
の時効処理を施すこともできる。
Next, the final target thickness is obtained by cold rolling, but the cold rolling is performed once or twice by sandwiching the intermediate annealing. At this time, if necessary, hot-rolled sheet annealing, warm rolling instead of cold rolling, or aging treatment between rolling passes can be performed.

【0023】次いで、最終板厚とされた冷間圧延板に対
して、その表面に溝を形成する。溝を形成する手法とし
ては、特開平2−294427号公報に開示される、線
状の突起歯をプレスする方法や特公平3−69968号
公報に開示されている、レーザービーム、放電加工、機
械的なケガキ等、いずれでも可能であるが、溝形状をこ
の発明のように正しく制御するためには、例えば特開平
4−88121号公報に開示される、エッチングレジス
トを印刷し、電解エッチングで溝を形成する技術が最適
である。
Next, a groove is formed on the surface of the cold rolled plate having the final plate thickness. As a method of forming a groove, a method of pressing a linear protruding tooth disclosed in Japanese Patent Laid-Open No. 2-294427 and a laser beam, an electric discharge machining, a machine disclosed in Japanese Patent Publication No. 3-69968. However, in order to properly control the groove shape as in the present invention, for example, an etching resist is printed and a groove is formed by electrolytic etching as disclosed in JP-A-4-88121. The technique of forming is optimal.

【0024】ここで、冷間圧延板の表面に溝を設ける領
域は、線状とすることが必要で、線状の形は、直線、波
線、破線および点線のいずれであってもかまわない。さ
らに、線状溝の方向としては圧延方向と直交する向きに
対して0〜30°の傾き、すなわち圧延方向と直交する向
きかこの向きからのずれが±30゜以内の角度とすること
が必要で、ずれが30゜を超えると磁区細分化効果が得ら
れない。また、溝は圧延方向に繰返し設けることが必要
で、その間隔の適正値は2〜30mmである。間隔が2mm未
満の場合はヒステリシス損の増加を招いて、鉄損が逆に
劣化し、一方30mmを超える場合は十分な鉄損低減効果が
得られない。
Here, the region where the groove is provided on the surface of the cold rolled plate needs to be linear, and the linear shape may be any of a straight line, a wavy line, a broken line and a dotted line. Furthermore, it is necessary that the direction of the linear groove be 0 to 30 ° with respect to the direction orthogonal to the rolling direction, that is, the direction orthogonal to the rolling direction or an angle within ± 30 ° of deviation from this direction. However, if the deviation exceeds 30 °, the magnetic domain refining effect cannot be obtained. Further, it is necessary to repeatedly provide the grooves in the rolling direction, and the appropriate value of the interval is 2 to 30 mm. When the distance is less than 2 mm, the hysteresis loss is increased, and the iron loss is deteriorated. On the other hand, when the distance exceeds 30 mm, the sufficient iron loss reducing effect cannot be obtained.

【0025】溝の断面形状はこの発明の要件のひとつで
あり、溝の幅として30〜1000μm 、溝の深さとして5〜
50μm とすることが必要である。溝の幅が30μm 未満の
場合は鉄損低減効果が乏しく、逆に1000μm を超える場
合は、ヒステリシス損が増加し、鉄損の劣化を招く。さ
らに、溝の深さが5μm 未満の場合は、鉄損低減効果に
乏しく、一方50μm を超える場合にはヒステリシス損の
増加を招き、鉄損が劣化する。
The cross-sectional shape of the groove is one of the requirements of the present invention. The groove width is 30 to 1000 μm and the groove depth is 5 to 5.
It is necessary to set it to 50 μm. If the width of the groove is less than 30 μm, the effect of reducing iron loss is poor, and if it exceeds 1000 μm, the hysteresis loss increases and the iron loss deteriorates. Further, when the depth of the groove is less than 5 μm, the effect of reducing iron loss is poor, while when it exceeds 50 μm, hysteresis loss is increased and iron loss deteriorates.

【0026】さらに、溝の側壁傾斜角を厳密に制御する
ことが、特に必要とされる。すなわち、側壁傾斜角とし
て5゜以上となる部分の割合が側壁全体に対する深さ比
率として60%以上である溝を形成する。傾斜角が5゜未
満であると、磁区細分化効果がほとんど発現せず、また
5゜以上となる側壁部分の深さ比率が60%未満である
と、磁区細分化が有効になされず、所定の鉄損低減効果
が得られない。
Further, it is particularly necessary to strictly control the sidewall inclination angle of the groove. That is, a groove is formed in which the ratio of the portion having a sidewall inclination angle of 5 ° or more is 60% or more as the depth ratio with respect to the entire sidewall. If the inclination angle is less than 5 °, the effect of subdividing the magnetic domain hardly appears, and if the depth ratio of the side wall portion that is 5 ° or more is less than 60%, the subdivision of the magnetic domain is not effective, and the predetermined value is not obtained. Cannot obtain the effect of reducing iron loss.

【0027】そして、上記のように制御された溝を鋼板
表面に有する冷間圧延板の溝部にAlもしくはAl化合物を
付着させ、該AlもしくはAl化合物を次工程の脱炭・1次
再結晶焼鈍においてAl2O3 系の焼結体となす点が、この
発明の最も特徴とするところである。
Then, Al or Al compound is adhered to the groove portion of the cold rolled plate having the groove controlled on the steel plate surface as described above, and the Al or Al compound is decarburized / primary recrystallization annealing in the next step. The point of forming an Al 2 O 3 based sintered body is the most characteristic of the present invention.

【0028】AlもしくはAl化合物としては、次工程の酸
化性雰囲気中で酸化物となって酸化物の焼結が進行する
ような物質ならば何れでも良く、例えばAlめっき、Alペ
ースト、活性Al2O3, AlCl3, Al(OH)3, Al(NO3)3, 9H2O,
AlN, AlPO4, K2Al2(SO4)4,Al(OH)2CC17H35COO), Al2(S
O4)3nH2O 等のAlもしくはAl化合物などが有利に適合す
る。
The Al or Al compound may be any substance as long as it becomes an oxide in the oxidizing atmosphere in the next step and the sintering of the oxide proceeds, for example, Al plating, Al paste, active Al 2 O 3, AlCl 3, Al ( OH) 3, Al (NO 3) 3, 9H 2 O,
AlN, AlPO 4 ,, K 2 Al 2 (SO 4 ) 4 ,, Al (OH) 2 CC 17 H 35 COO), Al 2 (S
Al or Al compounds such as O 4 ) 3 nH 2 O are advantageously suitable.

【0029】かかる物質の溝への付着は溝の形成直後で
も、また別工程において行っても良く、溝への付着方法
における手段も問わない。また、溝への付着量も、溝を
充填する程度が好ましくかつ簡便でもあるが、必ずし
も、溝内を充填させる必要もない。すなわち、最終仕上
焼鈍において、溝形状を保持できるに足りる量が、溝中
に付着していれば十分である。
The adhesion of the substance to the groove may be carried out immediately after the formation of the groove or in a separate step, and the method of adhering to the groove is not limited. Further, the amount of adhesion to the groove is preferably such that the groove is filled and is simple, but it is not always necessary to fill the inside of the groove. That is, in the final finish annealing, it is sufficient that the groove shape is retained in an amount sufficient to maintain the groove shape.

【0030】かかる物質を溝中に付着させた鋼板は、酸
化性雰囲気で脱炭および1次再結晶焼鈍に供されるが、
これも、通常の脱炭および1次再結晶焼鈍の条件で十分
である。鋼板表面にサブスケールが形成され、このサブ
スケールと鋼板表面に塗布された焼鈍分離剤が最終仕上
焼鈍中に固相反応し、フォルステライト被膜を形成す
る。
The steel sheet having such a substance deposited in the groove is subjected to decarburization and primary recrystallization annealing in an oxidizing atmosphere.
Again, the usual decarburization and primary recrystallization annealing conditions are sufficient. A subscale is formed on the surface of the steel sheet, and the subscale and the annealing separator applied to the surface of the steel sheet undergo a solid phase reaction during final finishing annealing to form a forsterite coating.

【0031】しかしながら、溝中に付着したAlもしくは
Al化合物は、活性Al2O3 を除いて酸化が進行し、Al2O3
系の焼結体となる。また活性Al2O3 においては、結晶化
ならびに焼結が進行する。
However, Al deposited in the groove or
Al compounds, except for active Al 2 O 3 , undergo oxidation to form Al 2 O 3
It becomes a sintered body of the system. Further, in active Al 2 O 3 , crystallization and sintering proceed.

【0032】これらの溝中に存在するAl2O3 系焼結体
は、次工程の最終仕上焼鈍において、焼鈍分離剤と反応
し、MgO, Al2O3系の酸化物焼結体を溝中に生成するが、
脱炭および1次再結晶焼鈍時に形成されるサブスケール
と異なり、脱炭および1次再結晶焼鈍後にも所定の溝形
状を保持することが可能である。かかる作用によって、
磁区細分化効果を十分に発揮できるわけである。
The Al 2 O 3 system sintered body existing in these grooves reacts with the annealing separator in the final finishing annealing in the next step, and the MgO, Al 2 O 3 system oxide sintered body is processed into the groove. Generated in,
Unlike the subscale formed during decarburization and primary recrystallization annealing, it is possible to maintain a predetermined groove shape even after decarburization and primary recrystallization annealing. By this action,
The magnetic domain subdivision effect can be fully exhibited.

【0033】最終仕上焼鈍後の鋼板は、通常の場合と同
様、そのまま製品として使用される場合、またさらに上
塗コーティングを施して製品として使用され、良好な磁
気特性を安定して示す。
The steel sheet after the final finish annealing is used as a product as it is, as in the usual case, or is further used as a product after being coated with a top coat, and stably exhibits good magnetic properties.

【0034】さらに、この発明の方向性けい素鋼板にお
いては、溝部においてMgO, Al2O3系の酸化物が存在し、
鋼板の地鉄相と表面酸化物相との界面が、下記の特徴的
な形状をなすものである。
Further, in the grain-oriented silicon steel sheet of the present invention, MgO, Al 2 O 3 -based oxide is present in the groove portion,
The interface between the base iron phase and the surface oxide phase of the steel sheet has the following characteristic shape.

【0035】すなわち、地鉄相と表面酸化物相との界面
が線状の溝形状をなし、この溝の幅として30〜1000μm
、深さとして5〜50μm であり、溝の側壁傾斜角が5
゜以上である部分の深さ比率として60%以上であるこ
と、かつ、かかる線状の溝の方向が圧延方向と直交する
向きに対して0〜30゜の向きをなし、溝の間隔が圧延方
向に2〜30mmであることを必要とする。
That is, the interface between the base metal phase and the surface oxide phase has a linear groove shape, and the width of this groove is 30 to 1000 μm.
, The depth is 5 to 50 μm, and the side wall inclination angle of the groove is 5
Depth ratio of the part that is more than 60 ° is 60% or more, and the direction of the linear groove is 0 to 30 ° with respect to the direction orthogonal to the rolling direction, and the groove interval is rolled. It needs to be 2 to 30 mm in the direction.

【0036】ここに、地鉄と酸化物界面における溝は、
幅が30μm 未満または深さが5μm未満の場合は鉄損低
減作用に乏しく、逆に幅が1000μm または深さが50μm
を超える場合はヒステリシス損が増加し、鉄損の劣化を
招く。また、溝断面の壁の傾斜角が5゜以上となる深さ
比率が60%未満である場合は、壁面に自由磁極が十分に
形成されず、所定の鉄損低減効果が得られない。
Here, the groove at the interface between the base iron and the oxide is
If the width is less than 30 μm or the depth is less than 5 μm, the iron loss reducing effect is poor, and conversely, the width is 1000 μm or the depth is 50 μm.
If it exceeds, the hysteresis loss increases and the iron loss deteriorates. Further, when the depth ratio at which the inclination angle of the wall of the groove cross section is 5 ° or more is less than 60%, the free magnetic pole is not sufficiently formed on the wall surface, and the predetermined iron loss reducing effect cannot be obtained.

【0037】[0037]

【実施例】【Example】

実施例1 Si : 3.2wt%を含有する方向性けい素鋼素材を、常法に
従って厚み0.23mmの冷間圧延板とし、次いで鋼板表面に
幅:200 μm のスリットを圧延方向と直交する向きに設
けかつ圧延方向でのスリット部間隔が4mmピッチとなる
ようにエッチングレジストを印刷し、かつ電流密度と電
解液流速を調整して20μm の深さの溝をエッチングし
た。このとき、エッチング溝の側壁傾斜角が5゜以上の
部分の深さ比率は82%であった。このコイルを2分割
し、一方はAlペーストを溝に充填し(発明例)、他方は
そのままで(比較例)、エッチングレジストを除去し、
湿水素雰囲気中で840 ℃で2分間の脱炭・1次再結晶焼
鈍を施した。さらに両者はMgOを主成分とする焼鈍分離
剤を塗布した後、コイル状に巻取り、2次再結晶と1200
℃および5時間の純化焼鈍とからなる最終仕上焼鈍を施
した。その後、未反応の焼鈍分離剤を除去し、800 ℃で
2分間の平坦化焼鈍を兼ねて張力コーティングを焼付け
た。両者の磁気特性を表2に示す。
Example 1 A grain-oriented silicon steel material containing Si: 3.2 wt% was formed into a cold-rolled plate having a thickness of 0.23 mm according to a conventional method, and then a slit having a width of 200 μm was formed on the surface of the steel plate in a direction orthogonal to the rolling direction. An etching resist was printed so that the slit interval in the rolling direction was 4 mm pitch in the rolling direction, and the groove having a depth of 20 μm was etched by adjusting the current density and the electrolytic solution flow rate. At this time, the depth ratio of the portion where the sidewall inclination angle of the etching groove was 5 ° or more was 82%. This coil is divided into two, one is filled with Al paste in the groove (invention example), the other is left as it is (comparative example), the etching resist is removed,
Decarburization and primary recrystallization annealing were performed at 840 ° C for 2 minutes in a wet hydrogen atmosphere. Furthermore, both were coated with an annealing separator containing MgO as the main component, and then wound into a coil and subjected to secondary recrystallization and 1200
A final finishing anneal consisting of a refining anneal at 5 ° C. and 5 hours was performed. After that, the unreacted annealing separator was removed, and the tension coating was baked at 800 ° C. for 2 minutes also as the flattening annealing. Table 2 shows the magnetic properties of both.

【0038】[0038]

【表2】 [Table 2]

【0039】また、両者の製品板について溶融苛性ソー
ダにて表面のコーティングおよび酸化物を除去し地鉄面
を裸出し、溝断面形状を測定したところ、図4(a) に実
施例および同図(b) に比較例を示すように、両者におい
て顕著な差異が生じ、実施例の場合は側壁傾斜角が5゜
以上の深さ比率が79%であったのに対し、比較例の場合
は52%に低下していた。
Further, the surface coating and oxides of both product plates were removed with molten caustic soda, the base metal surface was exposed, and the groove cross-sectional shape was measured. The results are shown in FIG. As shown in the comparative example in b), a remarkable difference occurs between the two, and in the case of the embodiment, the depth ratio of the sidewall inclination angle of 5 ° or more is 79%, whereas in the case of the comparative example, the depth ratio is 52%. It had fallen to%.

【0040】実施例2 Si : 3.3wt%を含有する方向性けい素鋼素材を、常法に
従って厚み0.23mmの冷間圧延板とした後、実施例1と同
様にして溝を形成するに当たり、電解エッチングの電流
密度と電解液流速を変化させて、コイルの長手方向の各
位置において種々の形状の溝を形成した。すなわち、各
溝の側壁傾斜角が5゜以上の部分の深さ比率はそれぞ
れ、18%、26%、43%、64%、78%、94%であった。か
かるコイルの溝部に活性アルミナの微粒子を充填した
後、MgO を主成分とする焼鈍分離剤を塗布して、コイル
状に巻取り、最終仕上焼鈍を施した。最終仕上焼鈍後は
未反応分離剤を除去して、平坦化焼鈍を兼ねて800 ℃、
1分間で張力コーティングを焼付けた。コイルの各部の
磁気特性と、コーティングおよび酸化物を除去した状態
の側壁傾斜角が5゜以上の部分の深さ比率とを表3およ
び図5にそれぞれ示す。
Example 2 A grain-formed silicon steel material containing Si: 3.3 wt% was formed into a cold-rolled plate having a thickness of 0.23 mm by a conventional method, and then grooves were formed in the same manner as in Example 1. Grooves of various shapes were formed at each position in the longitudinal direction of the coil by changing the current density of electrolytic etching and the flow rate of the electrolytic solution. That is, the depth ratios of the portions where the side wall inclination angle of each groove was 5 ° or more were 18%, 26%, 43%, 64%, 78% and 94%, respectively. After filling the grooves of the coil with fine particles of activated alumina, an annealing separation agent containing MgO as a main component was applied, and the coil was wound into a coil and subjected to final finish annealing. After the final finish annealing, remove the unreacted separating agent, and also perform the flattening annealing at 800 ℃,
The tension coating was baked for 1 minute. Table 3 and FIG. 5 show the magnetic characteristics of each part of the coil and the depth ratio of the part where the sidewall inclination angle is 5 ° or more with the coating and oxides removed.

【0041】[0041]

【表3】 [Table 3]

【0042】実施例3 Si : 3.2wt%を含有する方向性けい素鋼素材を、常法に
従って厚み0.20mmの厚みの冷間圧延板とし、次いでエッ
チングレジストを印刷するに際し、鋼板の一部はスリッ
ト部の幅を10, 20, 30, 50, 100, 500, 1000, 1500, 20
00μm と変更し、電解エッチングの深さは各々14〜18μ
m とした。また、残る鋼板はスリット部の幅を200 μm
とし、電解エッチングの電気量を変更し、エッチング深
さを2,3,5,15, 20, 50, 60, 100 μm と変更し
た。これらの溝はいずれも、圧延方向と直交する向きか
ら10゜傾いた方向に延びる線状とし、圧延方向での間隔
は4mmとした。また、電解エッチングの電流密度および
電解液流速を制御して、溝の側壁傾斜角が5゜以上の深
さ比率をいずれも80%前後とした。
Example 3 A grain-oriented silicon steel material containing Si: 3.2 wt% was formed into a cold-rolled plate having a thickness of 0.20 mm according to a conventional method, and when an etching resist was printed, a part of the steel plate was Set the slit width to 10, 20, 30, 50, 100, 500, 1000, 1500, 20
Changed to 00 μm and the depth of electrolytic etching is 14 to 18 μm
m. The remaining steel plate has a slit width of 200 μm.
Then, the electric quantity of the electrolytic etching was changed and the etching depth was changed to 2, 3, 5, 15, 20, 50, 60, 100 μm. Each of these grooves had a linear shape extending in a direction inclined by 10 ° from the direction orthogonal to the rolling direction, and the interval in the rolling direction was 4 mm. Further, the current density of electrolytic etching and the flow rate of the electrolytic solution were controlled so that the depth ratio of the sidewall inclination angle of the groove was 5 ° or more was about 80% in all cases.

【0043】これらの鋼板はレジストを除去した後、溝
部にAlN を充填し、湿水素雰囲気中で脱炭・1次再結晶
焼鈍を施した。その後、MgO を主成分とする焼鈍分離剤
を塗布しコイル状に巻取った後、最終仕上焼鈍に供し
た。最終仕上焼鈍後は、未反応分離剤を除去した後、平
坦化焼鈍を兼ねて840 ℃、1分間で張力コーティングを
焼付けた。これらの製品の溝形状と鉄損との関係を、図
6および図7に示す。
After removing the resist from these steel sheets, the groove was filled with AlN and subjected to decarburization and primary recrystallization annealing in a wet hydrogen atmosphere. After that, an annealing separating agent containing MgO as a main component was applied and wound into a coil, and then subjected to final finishing annealing. After the final finish annealing, the unreacted separating agent was removed, and then the tension coating was baked at 840 ° C. for 1 minute also for flattening annealing. The relationship between the groove shape and iron loss of these products is shown in FIGS. 6 and 7.

【0044】[0044]

【発明の効果】この発明においては、鋼板地鉄と表面酸
化物との界面に溝を有する低鉄損の方向性けい素鋼板に
おいて、溝の断面形状を規制し、しかも最終仕上焼鈍後
も、かかる溝形状が維持できるように、脱炭・1次再結
晶焼鈍前に特定の物質を溝内に付着することによって、
極めて良好な鉄損特性を安定して得ることができ、工業
的に有益である。
According to the present invention, in a low iron loss grain-oriented silicon steel sheet having a groove at the interface between the steel base metal and the surface oxide, the sectional shape of the groove is regulated, and even after the final finish annealing, In order to maintain such a groove shape, by depositing a specific substance in the groove before decarburization and primary recrystallization annealing,
An extremely good iron loss characteristic can be stably obtained, which is industrially useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】最終仕上焼鈍による溝断面形状の変化を示す図
である。
FIG. 1 is a diagram showing a change in groove cross-sectional shape due to final finish annealing.

【図2】溝断面の壁の傾斜が壁に生成する自由磁極密度
に影響を及ぼすことを説明するための図である。
FIG. 2 is a diagram for explaining that the inclination of the wall of the groove cross section affects the density of free magnetic poles generated on the wall.

【図3】壁の傾斜角および傾斜角5゜以上の部分の深さ
比率を定義する図である。
FIG. 3 is a diagram defining a wall inclination angle and a depth ratio of a portion having an inclination angle of 5 ° or more.

【図4】製品板の地鉄と表面酸化物との界面における溝
断面形状について測定した結果を示す図である。
FIG. 4 is a view showing a result of measuring a groove cross-sectional shape at an interface between a base iron and a surface oxide of a product plate.

【図5】溝の壁の傾斜角5゜以上の部分の割合と磁気特
性との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a ratio of a portion of a groove wall having an inclination angle of 5 ° or more and magnetic characteristics.

【図6】溝の深さと製品の鉄損との関係を示す図であ
る。
FIG. 6 is a diagram showing a relationship between groove depth and iron loss of a product.

【図7】溝の幅と製品の鉄損との関係を示す図である。FIG. 7 is a diagram showing a relationship between groove width and iron loss of a product.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 方向性けい素鋼冷延板の表面に、溝を構
成する側壁の鋼板表面に対する傾斜角が5°以上となる
部分の側壁全体に占める溝深さ方向での比が60%以上と
なる形状で鋼板の圧延方向を横切る向きに延びる溝を、
圧延方向に間隔を置いて複数形成し、該溝内にAlもしく
はAl化合物を付着した後、脱炭・1次再結晶焼鈍を施し
て、AlもしくはAl化合物をAl2O3 系焼結体となし、その
後、鋼板表面に焼鈍分離剤を塗布し最終仕上焼鈍を行う
ことを特徴とする方向性けい素鋼板の鉄損低減方法。
1. A ratio in the groove depth direction of the portion of the side wall forming the groove where the inclination angle of the side wall forming the groove is 5 ° or more with respect to the surface of the steel plate in the groove depth direction is 60%. Grooves extending in a direction crossing the rolling direction of the steel plate in the above shape,
A plurality of Al or Al compounds are formed at intervals in the rolling direction, Al or Al compound is deposited in the grooves, and then decarburization / primary recrystallization annealing is performed to convert Al or Al compound into an Al 2 O 3 system sintered body. None, and then a method for reducing iron loss of grain-oriented silicon steel sheets, characterized by applying an annealing separator to the surface of the steel sheet and performing final finishing annealing.
【請求項2】 鋼板表面における金属相と酸化物相との
界面に、圧延方向と直交する向きに対して0〜30°の傾
きで延びる線状の溝を圧延方向に2〜30mmの間隔で複数
設け、各溝は、幅:30〜1000μm および深さ:5〜50μ
m であり、さらに溝の側壁の鋼板表面に対する傾斜角が
5°以上となる部分の側壁全体に占める溝深さ方向での
比が60%以上である形状に成ることを特徴とする低鉄損
方向性けい素鋼板。
2. A linear groove extending at an inclination of 0 to 30 ° with respect to a direction orthogonal to the rolling direction at the interface between the metal phase and the oxide phase on the surface of the steel sheet at intervals of 2 to 30 mm in the rolling direction. Multiple grooves are provided, each groove having a width of 30 to 1000 μm and a depth of 5 to 50 μm
Low iron loss, characterized in that the ratio of m is 60% or more in the groove depth direction occupying the entire side wall of the portion where the inclination angle of the side wall of the groove with respect to the steel plate surface is 5 ° or more. Grain-oriented silicon steel sheet.
JP5246864A 1993-10-01 1993-10-01 Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet Pending JPH07138648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5246864A JPH07138648A (en) 1993-10-01 1993-10-01 Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5246864A JPH07138648A (en) 1993-10-01 1993-10-01 Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH07138648A true JPH07138648A (en) 1995-05-30

Family

ID=17154867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5246864A Pending JPH07138648A (en) 1993-10-01 1993-10-01 Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH07138648A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102395A (en) * 2010-10-14 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for producing the same
JP2013510239A (en) * 2009-12-04 2013-03-21 ポスコ Oriented electrical steel sheet with low iron loss and high magnetic flux density
WO2016171117A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet
JP2018509522A (en) * 2014-12-24 2018-04-05 ポスコPosco Oriented electrical steel sheet with excellent magnetic properties and method for producing the same
KR20200103096A (en) * 2018-02-09 2020-09-01 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
WO2023248922A1 (en) * 2022-06-21 2023-12-28 株式会社アイシン Steel material processing method and electromagnetic steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510239A (en) * 2009-12-04 2013-03-21 ポスコ Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP2012102395A (en) * 2010-10-14 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet, and method for producing the same
JP2018509522A (en) * 2014-12-24 2018-04-05 ポスコPosco Oriented electrical steel sheet with excellent magnetic properties and method for producing the same
US11060158B2 (en) 2014-12-24 2021-07-13 Posco Directional electric steel plate having excellent magnetic properties and manufacturing method thereof
WO2016171117A1 (en) * 2015-04-20 2016-10-27 新日鐵住金株式会社 Oriented electromagnetic steel sheet
JPWO2016171117A1 (en) * 2015-04-20 2017-11-30 新日鐵住金株式会社 Oriented electrical steel sheet
US10434606B2 (en) 2015-04-20 2019-10-08 Nippon Steel Corporation Grain-oriented electrical steel sheet
KR20200103096A (en) * 2018-02-09 2020-09-01 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method
US11697856B2 (en) 2018-02-09 2023-07-11 Nippon Steel Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
WO2023248922A1 (en) * 2022-06-21 2023-12-28 株式会社アイシン Steel material processing method and electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
WO1986002950A1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
JP7151773B2 (en) Method for manufacturing grain-oriented electrical steel sheet and equipment for applying annealing separator
KR102579758B1 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
KR102578813B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07138648A (en) Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet
KR102583079B1 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102583464B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP2671088B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties and remarkably excellent iron core workability, and manufacturing method thereof
KR102582914B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH02107722A (en) Production of grain-oriented electrical steel easy to punch and having metallic luster
KR102574232B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH07188755A (en) Method for reducing iron loss in grain-oriented silicon steel sheet
JPH09194948A (en) Production of grain-oriented silicon steel sheet good in insulated coating adhesion
JPH07188753A (en) Production of grain-oriented silicon steel sheet extremely reduced in iron loss
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPH0665753A (en) High-magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristic and its production
KR20240098506A (en) Silicon diffusing composition, non-oriented electrical steel sheet and method for manufacturing the same
JPS60103184A (en) Manufacture of grain-oriented silicon steel sheet with high magnetic flux density and small iron loss
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH11131252A (en) Ultralow core loss grain-oriented silicon steel sheet
JPS6324019A (en) Production of grain-oriented silicon steel sheet having small iron loss