JPH07188753A - Production of grain-oriented silicon steel sheet extremely reduced in iron loss - Google Patents

Production of grain-oriented silicon steel sheet extremely reduced in iron loss

Info

Publication number
JPH07188753A
JPH07188753A JP5330894A JP33089493A JPH07188753A JP H07188753 A JPH07188753 A JP H07188753A JP 5330894 A JP5330894 A JP 5330894A JP 33089493 A JP33089493 A JP 33089493A JP H07188753 A JPH07188753 A JP H07188753A
Authority
JP
Japan
Prior art keywords
steel sheet
groove
annealing
grooves
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5330894A
Other languages
Japanese (ja)
Inventor
Michiro Komatsubara
道郎 小松原
Kazuhiro Suzuki
一弘 鈴木
Keiji Sato
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5330894A priority Critical patent/JPH07188753A/en
Publication of JPH07188753A publication Critical patent/JPH07188753A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a grain-oriented silicon steel sheet extremely reduced in iron loss by filling grooves with oxides so that the grooves filled with oxides project from the surface of the steel sheet after final finish annealing, performing annealing, and then flattening the projecting part by means of reduction by roll. CONSTITUTION:As the linear grooves to be formed in the surface of a cold rolled silicon steel sheet, any of grooves in the form of straight line, wavy line, dashed line, and dotted line will do. Although a method for forming the grooves is not particularly specified, a method where etching resist is printed and electrolytic etching is done is excellent. It is desirable that the direction of the linear grooves has an angle of 0-30 deg. with respect to the direction perpendicular to rolling direction, and also it is preferable to regulate the width of spacing between grooves, the width of a groove, and the depth of a groove to 2-30mm, 30-100mum, and 5-50mum, respectively. As the oxides to be filled into the grooves, pulverized oxides causing solid phase reaction with MgO suffice, and filling is done, e.g. by application so that the amount of projection after final finish annealing is regulated to 4-40mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄損の低い方向性けい
素鋼板の製造方法に係わり、特に鋼板表面に溝を設け
て、磁区を細分化し鉄損を低減する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet having a low iron loss, and more particularly to a method for forming a groove on the surface of the steel sheet to subdivide magnetic domains to reduce the iron loss.

【0002】[0002]

【従来の技術】方向性けい素鋼板は主として変圧器その
他の電気機器の鉄心として利用され、その磁化特性が優
れていること、特に鉄損( 1.7Tの最大磁束密度で50Hz
の周波数で交番磁化した時の鉄損であるW17/50 や 1.5
Tの最大磁束密度で60Hzの周波数で交番磁化した時の鉄
損であるW15/60 で代表される)が低いことが要求され
ている。
2. Description of the Related Art Grained silicon steel sheet is mainly used as an iron core of transformers and other electric equipments, and it has excellent magnetizing characteristics, especially iron loss (50Hz at a maximum magnetic flux density of 1.7T).
W 17/50 or 1.5 which is the iron loss when alternating magnetization is carried out at the frequency of
It is required that the maximum magnetic flux density of T, represented by W 15/60 , which is the iron loss when alternating magnetization is performed at a frequency of 60 Hz) is low.

【0003】このためには、第一に鋼板中の2次再結晶
粒を(110)[001]方位(通常ゴス方位と呼称される)に高
度に揃えることが必要であり、第二には最終製品の鋼中
に存在する不純物や析出物をできるだけ減少させる必要
がある。かかる配慮の下に製造される方向性けい素鋼板
は、今日まで多くの改善努力によってその鉄損値も年を
追って改善され、最近では板厚0.23mmの製品でW17/50
の値が0.83W/kg、W15/60 の値が0.35W/lbの低鉄損
のものが得られている。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet must be highly aligned in the (110) [001] orientation (usually called the Goss orientation), and secondly. It is necessary to reduce impurities and precipitates existing in the final product steel as much as possible. The iron loss value of grain-oriented silicon steel sheet manufactured under such consideration has been improved year by year through many improvement efforts to date, and recently, a product with a sheet thickness of 0.23 mm has a thickness of W 17/50.
A value of 0.83 W / kg and a value of W 15/60 of 0.35 W / lb with low iron loss are obtained.

【0004】ところで、近年、鋼板表面に物理的な手段
で不均一性を導入し、磁区の幅を細分化し、さらに鉄損
を低減する技術が開発された。例えば、特公昭57−2252
号公報には最終製品板表面に、圧延方向にほぼ直角にレ
ーザービームを数mm間隔に照射し、鋼板表層に高転位密
度領域を導入することにより、磁区の幅を微細化し、鉄
損を低減する技術が提案されている。さらに特開昭62−
96617 号公報にはプラズマジェットを局部的に鋼板表層
に導入し、磁区幅を微細化し鉄損を低減する技術が提案
されている。
By the way, in recent years, a technique has been developed in which nonuniformity is introduced into the surface of a steel sheet by physical means to subdivide the width of magnetic domains and further reduce iron loss. For example, Japanese Patent Publication No.
In the gazette, the surface of the final product plate is irradiated with a laser beam at intervals of several mm almost at right angles to the rolling direction, and a high dislocation density region is introduced into the surface layer of the steel plate to reduce the width of magnetic domains and reduce iron loss. The technology to do is proposed. Further, JP-A-62-1
Japanese Patent No. 96617 proposes a technique in which a plasma jet is locally introduced into the surface layer of a steel sheet to reduce the magnetic domain width and reduce iron loss.

【0005】しかしながら、これらの技術は鋼板の打抜
き加工、せん断加工、巻き加工などの後の歪取焼鈍やコ
ーティングの焼付け処理の如き熱処理によって導入され
た歪が解放されるため、鉄損低減効果が減殺される欠点
を伴う。これに対して、特開平1−211903号公報、特開
平2−294427号公報および特開平3−138318号公報には
最終仕上焼鈍後の鋼板表面に突起つきロールを押しあて
へこみを設けたり、へこみ加工による歪エネルギーを利
用してへこみの直下に微細結晶粒を形成させ、へこみと
微細粒との作用により、歪取焼鈍によっても効果が減殺
されない耐熱型磁区細分化の技術が提案されている。
However, these techniques release the strain introduced by the heat treatment such as the stress relief annealing after the punching, shearing and winding of the steel sheet and the baking treatment of the coating, so that the iron loss reducing effect is obtained. With the drawback of being diminished. On the other hand, in JP-A 1-211903, JP-A 2-294427 and JP-A 3-138318, a roll with protrusions is pressed against the surface of the steel sheet after the final finish annealing to form a dent or a dent. There has been proposed a heat-resistant magnetic domain subdivision technique in which fine crystal grains are formed immediately below a dent by utilizing strain energy due to processing, and the effect of the dent and the fine grain does not diminish the effect even by strain relief annealing.

【0006】しかし、これらの技術はロール表面の突起
の摩耗や破損が甚だしく、安定して効果を持続させるこ
とが困難でありかつ、突起の押しあて量の制御が難しい
ため、へこみ量の制御や付加される歪量の制御が難しい
ため、すなわち、微細結晶粒の発現が安定しないといっ
た問題点があった。また、特開平1−252728号公報には
最終仕上焼鈍後の鋼板の表面被膜を、超音波振動で線状
に除去し、その後、電解エッチングを施し、溝を形成さ
せ磁区細分化を行う低鉄損方向性けい素鋼板製造の技術
が開示されている。
However, in these techniques, the protrusions on the roll surface are greatly worn or damaged, and it is difficult to stably maintain the effect, and it is difficult to control the pressing amount of the protrusions. It is difficult to control the amount of added strain, that is, the expression of fine crystal grains is not stable. Further, Japanese Patent Laid-Open No. 1-252728 discloses a low iron material in which a surface coating of a steel sheet after final finish annealing is linearly removed by ultrasonic vibration and then electrolytically etched to form grooves to subdivide magnetic domains. A technique for manufacturing a loss-oriented silicon steel sheet is disclosed.

【0007】この技術は鉄損低減効果も大きく安定して
いるが、表面被膜がセラミックからなるので、被膜の除
去が難しく超音波加工技術を用いても能率が悪く、また
最終的に、余分なコーティング塗布工程も必要とすると
ころから工業的には実用化されるまでに至っていない。
一方、特公平3−69968 号公報には、脱炭・1次再結晶
焼鈍の前に線状刻み目(溝)を鋼板表面に導入し、脱炭
・1次再結晶焼鈍および最終仕上焼鈍を行い純化を促進
する技術が、特開平4−88121 号公報には最終冷延後、
印刷によってエッチングレジストを線状に塗布した後エ
ッチングで線状の溝を形成し、しかる後該レジストを除
去し、脱炭焼鈍および最終仕上焼鈍を行う磁区細分化技
術が提案されている。
This technique has a large effect of reducing iron loss and is stable, but since the surface coating is made of ceramic, it is difficult to remove the coating and the efficiency is low even if the ultrasonic processing technique is used. Since it requires a coating application step, it has not been industrially put to practical use.
On the other hand, in Japanese Examined Patent Publication No. 3-99968, a linear notch (groove) is introduced on the surface of the steel sheet before decarburization / primary recrystallization annealing to perform decarburization / primary recrystallization annealing and final finishing annealing. A technique for promoting purification is disclosed in Japanese Patent Laid-Open No. 4-88121 after final cold rolling.
A magnetic domain refining technique has been proposed in which an etching resist is linearly applied by printing, a linear groove is formed by etching, the resist is then removed, and decarburization annealing and final finishing annealing are performed.

【0008】これらの技術は最終仕上焼鈍前に溝を形成
させるので歪取焼鈍などの熱処理に対する安定性の面で
は優れているものの、鉄損低減効果の面で不安定で、特
に、プラズマジェットやレーザー照射など、微小歪を導
入する手法に比較して、高磁場での鉄損低減効果に劣る
という問題点があった。
These techniques are excellent in stability against heat treatment such as strain relief annealing because they form grooves before final finishing annealing, but they are unstable in terms of iron loss reduction effect, and particularly, plasma jet and There is a problem that the iron loss reduction effect in a high magnetic field is inferior to the method of introducing a minute strain such as laser irradiation.

【0009】[0009]

【発明が解決しようとする課題】本発明は上に述べたよ
うな、最終冷延後に、溝を形成して脱炭焼鈍し、焼鈍分
離剤塗布および最終仕上焼鈍を行う磁区細分化技術にお
いて、 1.7Tといった高磁束密度領域での鉄損の低減効
果が微小歪付加方式の磁区細分化技術に対して劣るとい
った問題に対し、これを解決し、極めて低い鉄損を有す
る方向性けい素鋼板の製造方法を提供することを目的と
するものである。
DISCLOSURE OF THE INVENTION The present invention provides a magnetic domain refinement technique as described above, in which after final cold rolling, grooves are formed and decarburization annealing is performed, an annealing separator is applied, and final finishing annealing is performed. To solve the problem that the iron loss reduction effect in the high magnetic flux density region such as 1.7T is inferior to that of the magnetic domain subdivision technology of the micro strain addition method, this problem is solved, and a grain-oriented silicon steel sheet having an extremely low iron loss is solved. It is intended to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明は、最終冷間圧延
後の鋼板表面に溝を形成し、脱炭焼鈍、焼鈍分離剤塗布
および最終仕上焼鈍を施す磁区細分化処理方向性けい素
鋼板の製造方法において、最終仕上焼鈍後に溝充填部が
鋼板表面より突出するように、溝形成後、焼鈍分離剤塗
布までの間に溝部に酸化物を充填し、最終仕上焼鈍後に
ロール圧下で突出部を平滑化することを特徴とする鉄損
の極めて低い方向性けい素鋼板の製造方法であり、最終
焼鈍後の突出部の望ましい突出量は4〜40μmである。
DISCLOSURE OF THE INVENTION The present invention is directed to a magnetic domain refining grain oriented silicon steel sheet in which a groove is formed on the surface of the steel sheet after final cold rolling, and decarburization annealing, annealing separation agent coating and final finishing annealing are performed. In the manufacturing method of, so that the groove filling portion protrudes from the surface of the steel sheet after the final finishing annealing, after forming the groove, the groove portion is filled with an oxide before the application of the annealing separator, and the protruding portion under the roll pressure after the final finishing annealing. Is a method for producing a grain-oriented silicon steel sheet having an extremely low iron loss, and the desirable amount of protrusion of the protrusion after final annealing is 4 to 40 μm.

【0011】[0011]

【作用】本発明者らは上記目的を達成するために、特開
平4−88121 号公報に開示された手法を用い幅65μm、
深さ15μmで圧延直角方向への溝でかつ、圧延方向への
繰返し間隔4mmの溝を形成し、脱炭焼鈍後、焼鈍分離剤
を塗布し、積層して最終仕上焼鈍を施し、磁気特性を測
定した(磁気特性a)。
In order to achieve the above object, the present inventors have used the method disclosed in Japanese Unexamined Patent Publication No. 4-88121 and have a width of 65 μm.
Form a groove with a depth of 15 μm in the direction perpendicular to the rolling direction and with a repeat interval of 4 mm in the rolling direction. After decarburization annealing, apply an annealing separator, stack and perform final finishing annealing to improve the magnetic properties. It was measured (magnetic property a).

【0012】一方、同一の溝を形成させた冷間圧延板を
用い、溝中にAl2O3 粉末を充填し、脱炭焼鈍後、焼鈍分
離剤を塗布し、積層して最終仕上焼鈍を施し、磁気特性
を測定した(磁気特性b)。この時のAl2O3 粉末を充填
した溝部相当の最終仕上焼鈍後の断面模式図を図1
(a)に示す。図1(a)に示されるようにAl2O3 を充
填した溝において、最終仕上焼鈍後は鋼板表面より約5
μm突出していた。
On the other hand, using a cold-rolled plate having the same grooves formed therein, Al 2 O 3 powder was filled in the grooves, decarburized and annealed, and then an annealing separator was applied and laminated for final finishing annealing. Then, the magnetic property was measured (magnetic property b). FIG. 1 is a schematic cross-sectional view after final finishing annealing corresponding to the groove portion filled with Al 2 O 3 powder at this time.
It shows in (a). In the groove filled with Al 2 O 3 as shown in FIG. 1 (a), after the final finish annealing, about 5 from the surface of the steel sheet
It was protruding by μm.

【0013】この後ピンチロールを用いて軽圧下を加え
つつ、突出部の平滑化処理を行った。この時の磁気特性
を再び測定した(磁気特性c)。この後、Al2O3 を充填
した溝における断面模式図を図1(b)に示し、これら
a、b、cの磁気特性を表1に示す。次に比較例として
溝を形成させない同一の冷間圧延板を用い、脱炭焼鈍
後、焼鈍分離剤を塗布し、積層して最終仕上焼鈍を施し
磁気特性を測定した(磁気特性d)。さらにこの試料に
圧延方向の繰返し間隔として4mmピッチで圧延直角方向
へプラズマジェットを照射し、磁気特性を測定した(磁
気特性e)。
After that, the projections were smoothed while lightly reducing the pressure using pinch rolls. The magnetic characteristic at this time was measured again (magnetic characteristic c). After that, a schematic sectional view of the groove filled with Al 2 O 3 is shown in FIG. 1 (b), and the magnetic characteristics of a, b, and c are shown in Table 1. Next, as a comparative example, using the same cold-rolled plate in which no groove was formed, decarburization annealing was performed, an annealing separating agent was applied, and the layers were laminated and subjected to final finish annealing to measure magnetic characteristics (magnetic characteristic d). Further, this sample was irradiated with a plasma jet in a direction perpendicular to rolling at a pitch of 4 mm as a repeating interval in the rolling direction, and the magnetic characteristics were measured (magnetic characteristic e).

【0014】これらの磁気特性も併せて表1に示す。Table 1 also shows these magnetic properties.

【0015】[0015]

【表1】 [Table 1]

【0016】表1に示されるように、実験材で平滑化処
理を施した試料(c)の鉄損値は極めて低く、特にW
17/50 においても 0.755W/kgと比較材(e)のプラズ
マジェット照射処理と同等の鉄損を示し、かつW15/60
においても優れている。これに対し、平滑化処理を行わ
ない試料(b)の鉄損値はW17/50 、W15/60ともに、
溝のみの磁区細分化効果を有する試料(a)の鉄損値と
差異がない。
As shown in Table 1, the iron loss value of the sample (c) subjected to the smoothing treatment in the experimental material is extremely low, and particularly W
Even at 17/50 , the iron loss was 0.755 W / kg, which is equivalent to the plasma jet irradiation treatment of the comparative material (e), and W 15/60
Is also excellent in. On the other hand, the iron loss value of the sample (b) not subjected to the smoothing treatment is W 17/50 and W 15/60 ,
There is no difference from the core loss value of the sample (a) having the effect of subdividing the magnetic domains only in the groove.

【0017】平滑化処理を施した場合に鉄損が向上する
理由は図1(a)の断面模式図に示される溝の充填部に
形成された酸化物の突出部が、平滑化処理によって鋼中
に圧入される結果、微小歪が溝部直下に形成され、これ
が新たな磁区細分化効果をもたらしたものと考えられ
る。ちなみに、平滑化処理後の断面模式図である図1
(b)の溝の下部には多数の転位群の存在が認められ
た。
The reason why the iron loss is improved when the smoothing treatment is performed is that the oxide protrusions formed in the groove filling portion shown in the schematic cross-sectional view of FIG. It is considered that as a result of being press-fitted in the inside, a minute strain was formed just below the groove portion, which brought about a new magnetic domain refining effect. By the way, FIG. 1 is a schematic cross-sectional view after the smoothing process.
The presence of a large number of dislocation groups was recognized in the lower part of the groove of (b).

【0018】このように溝部に突出物を形成した後平滑
化処理を施す手法によって溝直下に歪を集中させること
が可能となり、鋼板表面の地鉄に溝を有するための磁区
細分化効果と溝部の下に微小歪を集中させることによる
磁区細分化効果が加算的に作用し、極めて優れた磁区細
分化効果を得たものと思われる。これに対し、単に溝部
を充填し、かつ突出部を有する試料においては、地鉄部
の溝形状に差異はないので、磁気特性においても差異が
現れなかったものである。
As described above, it is possible to concentrate the strain just below the groove by the method of forming the protrusions in the groove and then performing the smoothing treatment, and the magnetic domain subdivision effect for forming the groove in the base metal on the surface of the steel sheet and the groove portion. It is considered that the magnetic domain refining effect by concentrating the minute strains underneath acts additively, and an extremely excellent magnetic domain refining effect is obtained. On the other hand, in the sample which is simply filled with the groove portion and has the protruding portion, there is no difference in the groove shape of the base metal portion, so that the magnetic characteristic does not differ.

【0019】平滑化処理によって地鉄溝の下部に微小歪
の集中をもたらせるためには、溝部表面に十分な量の突
出物が形成される必要がある。この突出物が形成される
機構を調べた結果を次に述べる。すなわち、溝に充填さ
れたAl2O3 が、鋼板表面に塗布された焼鈍分離剤の主成
分である MgOと下式のように反応してスピネル Al2O3 + 2MgO → Mg2Al2O5 を形成する結果、焼結反応の進行にも拘らず、体積が膨
張して突出部を形成したものである。したがって、 MgO
と固相反応する酸化物であるならば、如何なる酸化物を
充填しても良く、また反応活性を高めるためにはできる
だけ微細な粉末であることが望ましい。
In order to bring about the concentration of micro strains in the lower part of the base metal groove by the smoothing treatment, it is necessary to form a sufficient amount of protrusions on the groove surface. The results of investigating the mechanism by which these protrusions are formed will be described below. That is, the Al 2 O 3 filled in the groove reacts with MgO, which is the main component of the annealing separator applied to the surface of the steel sheet, as shown in the following formula, and spinel Al 2 O 3 + 2MgO → Mg 2 Al 2 O As a result of forming 5 , the volume expands to form a protrusion despite the progress of the sintering reaction. Therefore, MgO
As long as it is an oxide that undergoes solid-phase reaction with, any oxide may be filled, and it is desirable that the powder be as fine as possible in order to enhance the reaction activity.

【0020】また、かかる酸化物を充填する時期として
は溝部形成後、焼鈍分離剤塗布までの間のいかなる時期
でも良いことがわかる。次にかかる微小歪の効果を与え
るための最適な突出量について、前述のような実験を繰
返して行った結果、突出量としては4μm以上が望まし
いとの知見を得た。しかしながら、40μmを超えた場
合、平滑化後に導入される歪の量が過大でヒステリシス
損の増大を招き、逆に鉄損の劣化をもたらす。
Further, it is understood that the oxide may be filled at any time between the groove formation and the application of the annealing separator. Next, as a result of repeating the above-described experiment for the optimum amount of protrusion for giving the effect of such a minute strain, it was found that the amount of protrusion is preferably 4 μm or more. However, when the thickness exceeds 40 μm, the amount of strain introduced after smoothing is too large, resulting in an increase in hysteresis loss, and conversely, a deterioration in iron loss.

【0021】本発明はかかる実験による新規な知見に基
づき、鋭意研究の末完成されたものである。次に本発明
に係る方向性けい素鋼板の製造方法について詳細に説明
する。この発明の素材は、公知の製鋼方法例えば転炉、
電気炉などによって製鋼し、さらに造塊−分塊法または
連続鋳造法などによってスラブ(鋼片)としたのち熱間
圧延によって得られる熱延コイルを用いる。
The present invention has been completed through earnest research based on the novel findings obtained from such experiments. Next, a method for manufacturing the grain-oriented silicon steel sheet according to the present invention will be described in detail. The material of the present invention is a known steelmaking method such as a converter,
A hot-rolled coil obtained by hot-rolling after making steel by an electric furnace or the like and further forming a slab (steel piece) by an ingot-segmentation method or a continuous casting method is used.

【0022】この熱延板はSiを 2.0〜4.5 %程度含有す
る組成であることが必要である。すなわち、Siが 2.0%
未満では鉄損の劣化が大きく、また 4.5%を超えると、
冷間加工性が劣化するからである。その他の成分につい
ては、方向性けい素鋼板の素材成分であれば、いずれも
適用可能である。次に冷間圧延により、最終目標板厚と
されるが、冷間圧延は1回もしくは中間焼鈍を挟む2回
の冷間圧延により行われる。この時必要に応じて熱延板
焼鈍や、冷間圧延に替わる温間圧延や、圧延パス間での
時効処理を施すこともできる。
It is necessary that this hot rolled sheet has a composition containing 2.0 to 4.5% of Si. That is, Si is 2.0%
If it is less than 4.5%, the deterioration of iron loss is large, and if it exceeds 4.5%,
This is because the cold workability deteriorates. As for the other components, any component can be applied as long as it is a material component of the grain-oriented silicon steel sheet. Next, the final target thickness is obtained by cold rolling, but the cold rolling is performed once or twice by sandwiching the intermediate annealing. At this time, if necessary, hot rolled sheet annealing, warm rolling instead of cold rolling, or aging treatment between rolling passes can be performed.

【0023】最終板厚とされた冷間圧延板に対して鋼板
表面に溝を形成する。溝を形成する手法としては特開平
2−294427号公報に開示される線状の突起歯をプレスす
る方法や特公平3−69968 号公報に開示されているレー
ザービーム、放電加工、機械的なケガキ等、いずれでも
可能であるが、溝形状を正しく制御するためには特開平
4−88121 号公報に開示されるエッチングレジストを印
刷し、電解エッチングで溝を形成する技術が最も優れて
いる。
Grooves are formed on the surface of the steel sheet for the cold-rolled sheet having the final sheet thickness. As a method of forming a groove, a method of pressing a linear protruding tooth disclosed in JP-A-2-294427 and a laser beam disclosed in JP-B-3-69968, electric discharge machining, and mechanical marking However, in order to control the groove shape correctly, the technique of printing the etching resist disclosed in Japanese Patent Laid-Open No. 4-88121 and forming the groove by electrolytic etching is the most excellent.

【0024】この時、冷間圧延板表面に溝を設ける領域
は線状とすることが必要で、線状の形は直線、波線、破
線、点線のいずれであってもかまわない。さらに、線状
溝の方向としては、圧延直角方向から0〜30°の角度と
することが望ましく、30°を超えると磁区細分化効果が
殆ど得られない。ここで特に、溝の方向を圧延直角方向
から多少傾けることは、最終仕上焼鈍後の突出部の平滑
化処理の際、図2に示されるように、圧下ロールの負荷
を軽減しかつ鋼板の蛇行を抑制する上で有効である。
At this time, the region where the groove is provided on the surface of the cold rolled plate needs to be linear, and the linear shape may be a straight line, a wavy line, a broken line, or a dotted line. Further, it is desirable that the direction of the linear groove be an angle of 0 to 30 ° with respect to the direction perpendicular to the rolling, and if it exceeds 30 °, the magnetic domain refining effect is hardly obtained. Here, in particular, by slightly inclining the direction of the groove from the direction perpendicular to the rolling direction, as shown in FIG. 2, during the smoothing process of the protruding portion after the final finish annealing, the load of the reduction roll is reduced and the meandering of the steel plate is performed. Is effective in suppressing

【0025】また、溝は圧延方向に繰返し設けることが
必要で、その間隔の適正値は2〜30mmである。間隔が2
mm未満の場合はヒステリシス損の増加を招き、鉄損が逆
に劣化し、また30mmを超える場合は十分な鉄損低減効果
が得られない。溝の断面形状は本発明の主要な技術のひ
とつであり、溝の幅として30〜1000μm、溝の深さとし
て5〜50μmとすることが望ましい。溝の幅が30μm未
満の場合は鉄損低減作用が乏しく、逆に1000μmを超え
る場合は、ヒステリシス損が増加し、鉄損の劣化を招
く。さらに、溝の深さが5μm未満の場合は、鉄損低減
作用に乏しく50μmを超える場合にはヒステリシス損の
増加を招き鉄損が劣化する。
Further, it is necessary to repeatedly provide the grooves in the rolling direction, and the proper value of the interval is 2 to 30 mm. The interval is 2
When it is less than 30 mm, hysteresis loss is increased, and iron loss is deteriorated. On the other hand, when it exceeds 30 mm, a sufficient iron loss reducing effect cannot be obtained. The cross-sectional shape of the groove is one of the main techniques of the present invention, and it is desirable that the width of the groove is 30 to 1000 μm and the depth of the groove is 5 to 50 μm. When the width of the groove is less than 30 μm, the effect of reducing iron loss is poor, and when it exceeds 1000 μm, the hysteresis loss increases and the iron loss deteriorates. Further, when the depth of the groove is less than 5 μm, the iron loss reducing action is poor, and when it exceeds 50 μm, the hysteresis loss is increased and the iron loss is deteriorated.

【0026】かかるように制御された溝を鋼板表面に有
する冷間圧延板の溝部に、酸化物粉末を充填する。酸化
物としては微細粉末として MgOと固相反応するものであ
るならばいずれのものでも良く例えば、Al2O3 、 CaO、
SiO2、CoO 、CuO 、TiO2、NiO 、MnO 、SrO 、BaO 等が
適する。かかる酸化物の溝への充填は単に塗布や付着で
もよく、またバインダーやめっき等によって溝へ充填し
ても良い。さらに、溝への充填の時期は溝形成直後か
ら、焼鈍分離剤の塗布直前のいずれの時期でも適する。
Oxide powder is filled in the groove portion of the cold-rolled plate having the groove thus controlled on the surface of the steel plate. Any oxide may be used as long as it is a fine powder that solid-phase reacts with MgO, for example, Al 2 O 3 , CaO,
SiO 2 , CoO 2 , CuO 2 , TiO 2 , NiO 2 , MnO 2 , SrO 2, BaO 3 and the like are suitable. The filling of the oxide with the groove may be simply applied or attached, or may be filled with a binder or plating. Further, the time for filling the groove is suitable from immediately after the groove is formed to immediately before the application of the annealing separator.

【0027】かかる物質を溝中に付着させた鋼板は酸化
性雰囲気で脱炭焼鈍に供されるが、これも、通常の脱炭
焼鈍の条件で十分である。この際、鋼板表面はサブスケ
ールが形成され、このサブスケールと鋼板表面に塗布さ
れた焼鈍分離剤が最終仕上焼鈍中に固相反応し、フォル
ステライト被膜を形成する。この際、溝部に充填した酸
化物と焼鈍分離剤中の MgOとが固相反応し、 MgO系複合
酸化物が形成し、鋼板表面からの突出部が形成される。
この時、突出部の突出量が4〜40μmとなるように溝部
に充填する酸化物の量を制御することが好ましい。
The steel sheet having such a substance deposited in the groove is subjected to decarburization annealing in an oxidizing atmosphere, and this is also sufficient under ordinary decarburization annealing conditions. At this time, a subscale is formed on the surface of the steel sheet, and the subscale and the annealing separator applied to the surface of the steel sheet undergo a solid phase reaction during final finishing annealing to form a forsterite coating. At this time, the oxide filled in the groove and the MgO in the annealing separator undergo a solid-phase reaction to form a MgO-based composite oxide, forming a protrusion from the surface of the steel sheet.
At this time, it is preferable to control the amount of oxide filling the groove so that the amount of protrusion of the protrusion is 4 to 40 μm.

【0028】すなわち、突出量として4μmに満たない
場合は、次工程の平滑化処理によって導入される溝部の
直下の微小歪の量が不足し、良好な鉄損が得られず、逆
に40μmを超えた場合、平滑化によって導入される歪の
量が過大でヒステリシス損の増大を招き、逆に鉄損の劣
化をもたらす。最終仕上焼鈍後の鋼板は未反応分離剤を
除去した後に平滑化処理を施される。平滑化処理は、鋼
板表面から突出した部位を鋼板内に圧入する処理である
が、1対の対応するロール間を通板する方法や、鋼板の
平面側を平板上に支持したり、大形ドラムに巻きつけ、
突出側の面にロール圧下を加え突出部を圧入することで
達成される。この際、多少の歪が鋼板溝部の下部以外に
加わり、磁気特性が低下しても、そのような軽度で疎ら
な歪みは次工程での絶縁コーティング焼付時に除去さ
れ、磁気特性の回復が図られるので問題ない。
That is, when the protrusion amount is less than 4 μm, the amount of minute strain just below the groove portion introduced by the smoothing process in the next step is insufficient, and good iron loss cannot be obtained. If it exceeds, the amount of strain introduced by the smoothing becomes excessive, which causes an increase in hysteresis loss, and conversely causes deterioration of iron loss. The steel sheet after the final finish annealing is smoothed after removing the unreacted separating agent. The smoothing process is a process of press-fitting a portion protruding from the steel plate surface into the steel plate, but a method of passing between a pair of corresponding rolls, supporting the flat side of the steel plate on a flat plate, or Wrap it around a drum,
This is achieved by applying roll reduction to the surface on the protruding side and press-fitting the protruding portion. At this time, even if some distortion is applied to areas other than the lower part of the steel sheet groove, and the magnetic characteristics deteriorate, such mild and sparse distortion is removed during the baking of the insulating coating in the next step, and the magnetic characteristics are restored. So no problem.

【0029】平滑化処理は、未反応分離剤除去と絶縁コ
ーティング塗布工程の間に行われるが、これらは連続的
に行うことも、もちろん可能である。平滑化処理後はさ
らに絶縁コーティングを塗布して製品とされるが、この
時、一般には張力コーティングが使用される。コーティ
ングを塗布することは、平滑化処理における圧入によっ
て破壊された溝部酸化物焼結体の修復にも有効である。
The smoothing treatment is carried out between the step of removing the unreacted separating agent and the step of applying the insulating coating, but it is of course possible to carry out these continuously. After the smoothing treatment, an insulating coating is further applied to obtain a product. At this time, a tension coating is generally used. Applying the coating is also effective for repairing the oxide sintered body in the groove portion which has been destroyed by press fitting in the smoothing process.

【0030】[0030]

【実施例】【Example】

実施例1 C: 0.075%、Si:3.25%、Mn: 0.072%、P:0.01
%、S: 0.003%、Se:0.019 %、Sb:0.028 %、N:
0.0074%含有する鋼スラブを1420℃で10分均熱加熱後、
熱間圧延により1.8mm の熱延コイルとした。
Example 1 C: 0.075%, Si: 3.25%, Mn: 0.072%, P: 0.01
%, S: 0.003%, Se: 0.019%, Sb: 0.028%, N:
After soaking the steel slab containing 0.0074% at 1420 ℃ for 10 minutes,
A hot rolled coil of 1.8 mm was obtained by hot rolling.

【0031】熱延コイルは1150℃で30秒間の焼鈍の後、
ミストを用いて急冷し酸洗後 0.9mmの厚みまで冷間圧延
し、 300℃で2分間の熱処理を加えた後、再び 150℃の
温度で0.22mmの板厚に圧延した。冷間圧延後はレジスト
インキ塗布と電解エッチング処理による手法で圧延直角
方向から角度10°の向きで、幅 150μm深さ15μmの溝
を圧延直角方向への繰返し間隔4mmで形成し、コイルを
10分割した。
The hot rolled coil was annealed at 1150 ° C. for 30 seconds,
It was rapidly cooled using a mist, pickled, cold-rolled to a thickness of 0.9 mm, heat-treated at 300 ° C for 2 minutes, and then rolled again at a temperature of 150 ° C to a thickness of 0.22 mm. After cold rolling, a groove with a width of 150 μm and a depth of 15 μm was formed at an angle of 10 ° from the direction perpendicular to the rolling by a method of applying resist ink and electrolytic etching at a repeating interval of 4 mm in the direction perpendicular to the rolling, and the coil was formed.
It was divided into 10.

【0032】次に分割各コイルにSiO2の微粉末を充填量
を変化させて埋込んだ後、H2 20%、露点 25 ℃、N2
バランスの雰囲気下で 850℃で2分間の脱炭焼鈍を施し
た。その後、各コイルはTiO2を5%含有する MgO主体の
焼鈍分離剤を塗布し、コイル状に巻き取った後、最終仕
上焼鈍に供した。最終仕上焼鈍の条件はN2 中で 840℃
で20時間保持した後、25%N2 と75%H 2 の雰囲気で
6.5℃/hrの昇温速度で1200℃まで昇温し、H2 中で120
0℃で10時間保持した後、降温した。
Next, SiO is applied to each divided coil.2Filling amount of fine powder
After changing and embedding, H220%, dew point 25 ℃, N2 
Decarburized and annealed at 850 ° C for 2 minutes in a balanced atmosphere
It was Then each coil is TiO2Of MgO containing 5% of
After applying the annealing separator and winding it into a coil,
It was subjected to upper annealing. The condition of final finish annealing is N2 In 840 ℃
After holding for 20 hours at 25% N2 And 75% H 2 In the atmosphere
The temperature is raised to 1200 ° C at a heating rate of 6.5 ° C / hr, and H2 In 120
After holding at 0 ° C for 10 hours, the temperature was lowered.

【0033】最終仕上焼鈍後の鋼板は未反応分離剤を除
去した後、溝へのSiO2充填部における各コイルの突出量
を測定した後、2対のロールで圧下を加えて平滑化処理
を行った。この後、コロイダルシリカとリン酸マグネシ
ウムを主剤とする張力コーティングを塗布し、 800℃で
焼付けて製品とした。各製品の磁気特性と最終仕上焼鈍
後の突出量との関係を図3に示す。
After removing the unreacted separating agent, the steel sheet after the final finish annealing was subjected to a smoothing treatment by measuring the amount of protrusion of each coil in the SiO 2 filling portion into the groove and applying a reduction with two pairs of rolls. went. After that, a tension coating mainly composed of colloidal silica and magnesium phosphate was applied and baked at 800 ° C to obtain a product. The relationship between the magnetic properties of each product and the amount of protrusion after final finish annealing is shown in FIG.

【0034】実施例2 C: 0.045%、Si:3.35%、Mn: 0.065%、P:0.005
%、S: 0.004%、Se:0.019 %、Sb:0.030 %からな
る鋼スラブ3本を1400℃で30分間加熱し、熱間圧延によ
り、2.0mm の熱延コイルとした。各熱延コイルは1000℃
で30秒間の熱延板焼鈍を施した後、酸洗し、冷間圧延に
より0.53mmの中間厚とした。その後 950℃で1分間の中
間焼鈍を施した後、第2回目の冷間圧延により 0.19mm
の最終板厚とした。
Example 2 C: 0.045%, Si: 3.35%, Mn: 0.065%, P: 0.005
%, S: 0.004%, Se: 0.019%, Sb: 0.030%, three steel slabs were heated at 1400 ° C for 30 minutes and hot-rolled to form a 2.0 mm hot rolled coil. 1000 ℃ for each hot rolled coil
After hot-rolled sheet annealing for 30 seconds, it was pickled and cold-rolled to an intermediate thickness of 0.53 mm. Then, after an intermediate annealing for 1 minute at 950 ℃, 0.19mm by the second cold rolling.
And the final plate thickness.

【0035】冷間圧延のコイルのうちひとつは、突起ロ
ールにより、圧延直角方向から角度5°の向きで、幅 2
00μm、深さ10μmの溝を圧延直角方向への繰返し間隔
4mmで形成し、溝の中をAl2O3 粉末で充填した後、50%
2 、露点55℃、N2 バランスからなる雰囲気で 830
℃、2分間の脱炭焼鈍を施し実施例とした。他のひとつ
は上記の実施例と同一の溝を形成させた後、そのまま実
施例と同一の脱炭焼鈍を施し従来例1とした。
One of the cold-rolled coils was formed by a projecting roll with a width of 2 ° in the direction of an angle of 5 ° from the direction perpendicular to the rolling.
Grooves with a depth of 00 μm and a depth of 10 μm were formed at a repeating interval of 4 mm in the direction perpendicular to the rolling direction, and after filling the grooves with Al 2 O 3 powder, 50%
830 in an atmosphere consisting of H 2 , dew point 55 ° C, and N 2 balance
Decarburization annealing was performed at 2 ° C. for 2 minutes to obtain an example. In the other one, after forming the same groove as that of the above-mentioned embodiment, the same decarburization annealing as that of the embodiment is performed as it is, and the conventional example 1 is obtained.

【0036】残るひとつは最終冷間圧延後、上記実施例
と同一の脱炭焼鈍を施し従来例2とした。これら3コイ
ルはTiO2を2%、SrSO4 を2%含有する MgOを焼鈍分離
剤として塗布しコイル状に巻き取り最終仕上焼鈍を施し
た。最終仕上焼鈍の条件はN2 中で 850℃、50時間保持
した後、25%N2 と75%H2 中で20℃/hrの昇温速度で
1200℃まで昇温した後、H2 中で1200℃で10時間保持し
た後降温した。
After the final cold rolling, the other one was subjected to the same decarburization annealing as in the above-mentioned embodiment to obtain Conventional Example 2. For these three coils, MgO containing 2% of TiO 2 and 2% of SrSO 4 was applied as an annealing separator, wound into a coil and subjected to final finishing annealing. The conditions for the final finish annealing are as follows: N 2 at 850 ° C. and hold for 50 hours, then 25 ° N 2 and 75% H 2 at a temperature rising rate of 20 ° C./hr.
After the temperature was raised to 1200 ° C., the temperature was kept at 1200 ° C. for 10 hours in H 2 and then lowered.

【0037】最終仕上焼鈍後、未反応分離剤を除去し
た。実施例の鋼板は溝へのAl2O3 充填部での突出量を測
ったところ15μmであったが、突出部と反対の面をドラ
ムに巻きつけ、突出部をロール圧下することにより平滑
化処理した。この後、3種類のコイルはコロイダルシリ
カとリン酸アルミニウムを主剤とする張力コーティング
を塗布し、 800℃で焼付けて製品とした。但し、従来例
2は張力コーティングを焼付けた後、プラズマジエット
を圧延直角方向にかつ、圧延方向の繰返し間隔5mmピッ
チで照射した。
After the final finish annealing, the unreacted separating agent was removed. In the steel sheets of the examples, the amount of protrusion at the Al 2 O 3 filled portion into the groove was measured and was 15 μm, but the surface opposite to the protruding portion was wound around a drum and the protruding portion was smoothed by rolling down the roll. Processed. After that, three types of coils were coated with a tension coating mainly composed of colloidal silica and aluminum phosphate, and baked at 800 ° C to obtain products. However, in Conventional Example 2, after the tension coating was baked, the plasma jet was irradiated in the direction perpendicular to the rolling and at a repeating interval of 5 mm in the rolling direction.

【0038】この3種類の製品コイルの磁気特性を表2
に示す。
Table 2 shows the magnetic characteristics of these three types of product coils.
Shown in.

【0039】[0039]

【表2】 [Table 2]

【0040】表2に示されるように、本発明の実施例に
おいては、従来法に比較して、 1.5Tでの鉄損値W
15/60 においても、 1.7Tでの鉄損値W17/50 において
も優っている。
As shown in Table 2, in the examples of the present invention, the iron loss value W at 1.5 T was higher than that in the conventional method.
It also excels at the iron loss value W 17/50 at 1.7T at 15/60 .

【0041】[0041]

【発明の効果】以上詳述したように、本発明のように溝
部に酸化物を充填し、最終仕上焼鈍後の突出部をロール
で圧入、平滑化したので、 1.5Tでの鉄損ならびに 1.7
Tでの鉄損と広い磁束密度の範囲で効果的に鉄損低減効
果を達成でき極めて低鉄損の方向性けい素鋼板を製造す
ることが可能となる。
As described in detail above, since the grooves were filled with oxide as in the present invention and the protrusions after the final finish annealing were press-fitted and smoothed, iron loss at 1.5 T and 1.7
It is possible to effectively achieve the iron loss reducing effect in the range of the iron loss at T and a wide magnetic flux density, and it is possible to manufacture the grain-oriented silicon steel sheet having an extremely low iron loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明における平滑化前の突出部の断
面模式図、(b)は平滑化処理後の同じ位置における断
面模式図。
FIG. 1A is a schematic sectional view of a protrusion before smoothing in the present invention, and FIG. 1B is a schematic sectional view at the same position after smoothing treatment.

【図2】最も好適な平滑化処理のひとつの例を示す説明
図。
FIG. 2 is an explanatory diagram showing an example of the most preferable smoothing process.

【図3】最終仕上焼鈍後の鋼板表面の突出部の突出量と
磁気特性との関係を示す図。
FIG. 3 is a diagram showing the relationship between the amount of protrusion of the protrusions on the surface of the steel sheet after the final finish annealing and the magnetic characteristics.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 最終冷間圧延後の鋼板表面に溝を形成
し、脱炭焼鈍、焼鈍分離剤塗布および最終仕上焼鈍を施
す磁区細分化処理方向性けい素鋼板の製造方法におい
て、最終仕上焼鈍後に溝充填部が鋼板表面より突出する
ように、溝形成後、焼鈍分離剤塗布までの間に溝部に酸
化物を充填し、最終仕上焼鈍後にロール圧下で突出部を
平滑化することを特徴とする鉄損の極めて低い方向性け
い素鋼板の製造方法。
1. A method for producing a grain-division-oriented grain-oriented silicon steel sheet in which a groove is formed on the surface of a steel sheet after final cold rolling, decarburization annealing, application of an annealing separating agent and final finishing annealing are carried out. After the groove is formed, the groove is filled with an oxide before the application of the annealing separator so that the groove-filled portion protrudes from the surface of the steel sheet, and the protrusion is smoothed under roll pressure after the final finish annealing. Method for producing grain-oriented silicon steel sheet with extremely low iron loss.
【請求項2】 最終仕上焼鈍後の突出部の突出量が4〜
40μmであることを特徴とする請求項1記載の鉄損の極
めて低い方向性けい素鋼板の製造方法。
2. The amount of protrusion of the protrusion after the final finish annealing is 4 to
The method for producing a grain-oriented silicon steel sheet having an extremely low iron loss according to claim 1, wherein the grain size is 40 μm.
JP5330894A 1993-12-27 1993-12-27 Production of grain-oriented silicon steel sheet extremely reduced in iron loss Withdrawn JPH07188753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330894A JPH07188753A (en) 1993-12-27 1993-12-27 Production of grain-oriented silicon steel sheet extremely reduced in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330894A JPH07188753A (en) 1993-12-27 1993-12-27 Production of grain-oriented silicon steel sheet extremely reduced in iron loss

Publications (1)

Publication Number Publication Date
JPH07188753A true JPH07188753A (en) 1995-07-25

Family

ID=18237696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330894A Withdrawn JPH07188753A (en) 1993-12-27 1993-12-27 Production of grain-oriented silicon steel sheet extremely reduced in iron loss

Country Status (1)

Country Link
JP (1) JPH07188753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521767A (en) * 2018-04-13 2021-08-26 アイピージー フォトニクス コーポレーション Laser-assisted machining of electric motor cores

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521767A (en) * 2018-04-13 2021-08-26 アイピージー フォトニクス コーポレーション Laser-assisted machining of electric motor cores

Similar Documents

Publication Publication Date Title
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPS59197520A (en) Manufacture of single-oriented electromagnetic steel sheet having low iron loss
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
WO2020149337A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPH03260020A (en) Method for radiating eb
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JPH07188753A (en) Production of grain-oriented silicon steel sheet extremely reduced in iron loss
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH07138648A (en) Method for reducing iron loss of grain oriented silicon steel sheet and low iron loss grain oriented silicon steel sheet
JP2003301272A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
KR102583079B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JP3885239B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308