JPH11158590A - Silicon steel sheet excellent in magnetic property and its production - Google Patents

Silicon steel sheet excellent in magnetic property and its production

Info

Publication number
JPH11158590A
JPH11158590A JP9328047A JP32804797A JPH11158590A JP H11158590 A JPH11158590 A JP H11158590A JP 9328047 A JP9328047 A JP 9328047A JP 32804797 A JP32804797 A JP 32804797A JP H11158590 A JPH11158590 A JP H11158590A
Authority
JP
Japan
Prior art keywords
rolling
hot
steel sheet
texture
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9328047A
Other languages
Japanese (ja)
Inventor
Shigeaki Takagi
重彰 高城
Osamu Kondo
修 近藤
Akihiro Matsuzaki
明博 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9328047A priority Critical patent/JPH11158590A/en
Publication of JPH11158590A publication Critical patent/JPH11158590A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel sheet excellent in magnetic properties by allowing it to have a compsn. contg. a specified amt. of P, and the balance substantial Fe and a texture in which the integrated intensity in the 100}<001> orientation and the 100}<011> orientation are respectively regulated to specified times or above of that of the random structure. SOLUTION: The steel sheet is the one having a compsn. contg., by weight, 0.2 to 1.2% P, and the balance substantial Fe and having a texture in which the integrated intensity in the 100}<001> orientation and the 100}<011> orientation is regulated to three times or above of that of the random structure. It is also preferable that the compsn. is the one contg. 0.2 to 1.2% P, furthermore contg. one or >= two kinds selected from Si, Al and Mn by 0.1 to 5.0% in total, and the balance substantial Fe. The steel slab is subjected to hot rough rolling and is next subjected to hot finish rolling under the conditions of >=50% draft (one pass) and 750 to 1050 deg.C rolling finishing temp., and the obtd. hot rolled sheet is annealed in the temp. range of <=700 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や電動機
の鉄芯材料として有利に適合する電磁鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic steel sheet which is advantageously used as an iron core material of a transformer or an electric motor.

【0002】[0002]

【従来の技術】変圧器や電動機の鉄芯材料には、これら
機器の高効率化や小型化をはかるために、磁束密度が高
くかつ鉄損の低いことが要求される。この種の鉄芯材料
に供する電磁鋼板としては、上記の要求を満足する、優
れた特性を有するところから、Siを7wt%以下で含有す
るけい素鋼板が専ら用いられてきた。
2. Description of the Related Art Iron core materials for transformers and electric motors are required to have high magnetic flux density and low iron loss in order to increase the efficiency and miniaturization of these devices. As an electromagnetic steel sheet to be used for this type of iron core material, a silicon steel sheet containing 7 wt% or less of Si has been exclusively used because it has excellent characteristics that satisfy the above requirements.

【0003】ここで、Siを含有させると鉄損が低減され
る反面、磁束密度は低下する。そして、磁束密度が低い
と励磁電流が大きくなるため、鉄芯の巻線に起因した銅
損が増加することになる。そこで、この銅損の増加を回
避するために、透磁率を極力高くして一定磁界での磁束
密度を高める技術の開発が進められてきた。しかし、材
料固有の飽和磁束密度は上昇しないから、この種の改良
には限界がある。
Here, when Si is contained, iron loss is reduced, but magnetic flux density is lowered. When the magnetic flux density is low, the exciting current becomes large, so that the copper loss caused by the iron core winding increases. Therefore, in order to avoid this increase in copper loss, development of a technique for increasing the magnetic permeability as much as possible to increase the magnetic flux density in a constant magnetic field has been promoted. However, this type of improvement is limited since the material-specific saturation magnetic flux density does not increase.

【0004】一方、Si以外の合金元素については、磁気
特性、機械的特性とくに加工性および合金コストのいず
れかの特性においてSiよりも優れる元素もあるが、総合
的にはSiに勝るものはないというのが一般的見解であっ
た。しかしながら、発明者らがSi以外の合金元素につい
て電磁鋼板への適用を鋭意検討したところ、Fe−P系の
組成によって、電磁鋼板としてけい素鋼を凌駕する特性
が得られることを究明し、先に特開平9−41101 号公報
において提案した。ここに、高い飽和磁束密度を有し、
従来材と対比した場合に、鉄損および磁束密度のいずれ
か一方が同一水準にあるときに残る他方の特性を格段に
向上し得る、新たな電磁鋼組成が確立されたのである。
On the other hand, some alloying elements other than Si are superior to Si in magnetic properties, mechanical properties, and particularly any of the workability and alloy cost, but there is no overall advantage over Si. That was the general view. However, the present inventors have conducted intensive studies on the application of alloying elements other than Si to electrical steel sheets, and found that the Fe-P-based composition can provide properties superior to silicon steel as electrical steel sheets. A proposal was made in Japanese Patent Application Laid-Open No. 9-41101. Here, having a high saturation magnetic flux density,
A new electromagnetic steel composition has been established that can significantly improve the other properties remaining when one of iron loss and magnetic flux density is at the same level as compared with conventional materials.

【0005】さて、電磁鋼板は、使用時における磁化方
向の電磁特性が優れるような集合組織を持つことが望ま
しい。好適な集合組織は、使用形態によって異なるが、
回転機のように面内で等方的に磁化方向を有する場合に
は、圧延面の方位が{100}でかつ、磁化容易軸の方
位<001>が面内でランダムに分布しているような、
いわゆるランダム立方集合組織が最も望ましい。なお、
この集合組織は、圧延面の方位が{100}でかつ、圧
延方向(RD)の方位が<001>および<011>の
双方に集積したもの、と定義できる。かような集合組織
を得ることができれば、面内の全方位に対する平均の磁
束密度はさらに向上するため、上記Fe−P系の電磁鋼板
においてランダム立方集合組織を得ることは、極めて有
意義である。
[0005] It is desirable that the magnetic steel sheet has a texture such that the electromagnetic properties in the magnetization direction during use are excellent. The preferred texture depends on the form of use,
When the magnetization direction is isotropic in the plane as in a rotating machine, the direction of the rolling surface is {100}, and the direction <001> of the easy axis is randomly distributed in the plane. What
A so-called random cubic texture is most desirable. In addition,
This texture can be defined as one in which the orientation of the rolling surface is {100} and the orientation in the rolling direction (RD) is accumulated in both <001> and <011>. If such a texture can be obtained, the average magnetic flux density in all directions in the plane is further improved. Therefore, obtaining a random cubic texture in the Fe-P-based magnetic steel sheet is extremely significant.

【0006】このような集合組織を得るために、主にけ
い素鋼を対象として種々の方法が提案されている。例え
ば、特開平2−133523号公報に記載されている、溶湯超
急冷に冷間圧延および焼鈍を組み合わせた方法、特公昭
48−19767 号公報に記載される、強圧下冷間圧延と脱炭
焼鈍とを組み合わせた方法および、特開平7−278666号
公報に記載される、冷延板の焼鈍と、その後の急冷を利
用した方法等が、それである。
[0006] In order to obtain such a texture, various methods have been proposed mainly for silicon steel. For example, Japanese Unexamined Patent Publication (Kokai) No. 2-133523 discloses a method combining cold rolling and annealing with ultra-quenching of molten metal,
Utilization of a method combining cold rolling under high pressure and decarburizing annealing described in JP-A-48-19767 and annealing of a cold-rolled sheet described in JP-A-7-278666 and subsequent rapid cooling That is the method that was done.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
各方法のうち、超急冷法は特殊な冷却ロールを必要とす
るところから、製造コストが高くなる問題がある。ま
た、強圧下冷間圧延と脱炭焼鈍とを組み合わせた方法
は、複雑な工程を必要とするほか、主に0.30mm以下の特
殊な薄鋼板に限定される点で不利である。さらに、焼鈍
および急冷方法は、簡便に板面内の磁気特性を均一にす
ることができるが、とりわけ高い磁束密度を得るには至
らない。
However, among the above-mentioned methods, the super-quenching method has a problem that the production cost is high because a special cooling roll is required. In addition, the method combining cold rolling under high pressure and decarburization annealing is disadvantageous in that it requires complicated steps and is mainly limited to special thin steel sheets of 0.30 mm or less. Further, the annealing and quenching methods can easily make the magnetic properties in the plate surface uniform, but do not lead to obtaining a particularly high magnetic flux density.

【0008】そこで、この発明は、複雑な工程を必要と
することなしにかつ低コストにて、熱間圧延段階におい
て{100}<001>および{100}<011>方
位の集積度が高い集合組織を有する電磁鋼板を、その有
利な製造方法と共に提案することを目的とする。
Accordingly, the present invention provides an assembly having a high degree of integration of {100} <001> and {100} <011> orientations in a hot rolling step without requiring complicated processes and at low cost. An object of the present invention is to propose a magnetic steel sheet having a structure together with its advantageous manufacturing method.

【0009】[0009]

【課題を解決するための手段】発明者らは、熱間圧延に
よってランダム立方集合組織を形成し、2方向の磁気特
性とりわけ磁束密度を高めた電磁鋼板を得るために、鋭
意研究を重ねた結果、Pを主たる合金元素とし、さらに
熱間仕上げ圧延における圧延温度と圧下率を制御し、従
来通常の工程で採用されている条件よりも高温かつ強圧
下条件とすることが、所期した目的の達成に極めて有効
であるとの知見を得た。この発明は、上記の知見に立脚
するものである。
Means for Solving the Problems The inventors have conducted intensive studies in order to obtain a magnetic steel sheet having a random cubic texture formed by hot rolling and having enhanced magnetic properties in two directions, especially magnetic flux density. , P as the main alloying element, and further controlling the rolling temperature and the rolling reduction in the hot finish rolling to achieve a higher temperature and a higher rolling reduction condition than those conventionally used in the ordinary process. We have found that it is extremely effective in achieving this. The present invention is based on the above findings.

【0010】すなわち、この発明の要旨構成は次のとお
りである。 1.P:0.2 〜1.2 wt%を含有し、残部が実質的にFeの
組成になり、{100}<001>方位および{10
0}<011>方位の集積強度が、いずれもランダム組
織のそれの3倍以上である集合組織を有することを特徴
とする磁気特性に優れた電磁鋼板。
That is, the gist of the present invention is as follows. 1. P: 0.2 to 1.2 wt%, the balance being substantially Fe composition, {100} <001> orientation and {10
An electromagnetic steel sheet having excellent magnetic properties, characterized by having a texture whose integrated strength in the 0 ° <011> direction is at least three times that of a random structure.

【0011】2.P:0.2 〜1.2 wt%を含み、さらにS
i、AlおよびMnのうちから選んだ1種または2種以上を
合計で0.1 〜5.0 wt%含有し、残部が実質的にFeの組成
になり、{100}<001>方位および{100}<
011>方位の集積強度が、いずれもランダム組織のそ
れの3倍以上である集合組織を有することを特徴とする
磁気特性に優れた電磁鋼板。
2. P: 0.2 to 1.2 wt%
One, two or more selected from i, Al and Mn are contained in a total amount of 0.1 to 5.0 wt%, and the balance substantially becomes Fe, and the {100} <001> orientation and {100} <
011> An electrical steel sheet having excellent magnetic properties, characterized by having a texture in which the integrated strength in each direction is at least three times that of a random texture.

【0012】3.P:0.2 〜1.2 wt%を含有する組成に
なる鋼スラブに、熱間粗圧延を施し、次いで圧下率(1
パス):50%以上および圧延終了温度:750 〜1050℃の
条件下で熱間仕上げ圧延を施したのち、得られた熱延板
を700 ℃以下の温度域で焼鈍することを特徴とする磁気
特性に優れた電磁鋼板の製造方法。
3. P: Hot rough rolling is performed on a steel slab having a composition containing 0.2 to 1.2 wt%, and then a rolling reduction (1
Pass): 50% or more and rolling end temperature: after hot finish rolling under the condition of 750 to 1050 ° C, the obtained hot rolled sheet is annealed at a temperature range of 700 ° C or less. A method for manufacturing electrical steel sheets with excellent properties.

【0013】4.P:0.2 〜1.2 wt%を含み、さらにS
i、AlおよびMnのうちから選んだ1種または2種以上を
合計で0.1 〜5.0 wt%含有する組成になる鋼スラブに、
熱間粗圧延を施し、次いで圧下率(1パス):50%以上
および圧延終了温度:750 〜1050℃の条件下で熱間仕上
げ圧延を施したのち、得られた熱延板を700 ℃以下の温
度域で焼鈍することを特徴とする磁気特性に優れた電磁
鋼板の製造方法。
4. P: 0.2 to 1.2 wt%
A steel slab having a composition containing a total of 0.1 to 5.0 wt% of one or more selected from i, Al and Mn,
After performing hot rough rolling, and then performing hot finish rolling under the conditions of a rolling reduction (1 pass): 50% or more and a rolling end temperature: 750 to 1050 ° C, the obtained hot rolled sheet is 700 ° C or less. A method for producing an electrical steel sheet having excellent magnetic properties, characterized by annealing in a temperature range of 1.

【0014】5.上記3または4において、熱間仕上げ
圧延後に、圧下率40%未満の冷間圧延次いで焼鈍を行う
ことを特徴とする磁気特性に優れた電磁鋼板の製造方
法。
5. 3. The method for producing an electrical steel sheet having excellent magnetic properties according to the above item 3 or 4, wherein after the hot finish rolling, cold rolling with a rolling reduction of less than 40% and then annealing are performed.

【0015】この発明は、Pを含有した電磁鋼板におい
て、{100}<001>および{100}<001>
方位の集積強度がランダム組織のそれの3倍以上である
集合組織を有するため、電磁特性に優れた鋼板を熱間圧
延のみでまたは特殊な手法を用いることなしに、提供す
ることができ、大幅なコスト低減を可能とする。ここ
で、電磁鋼板は、鉄損が低い場合は磁束密度も低くな
り、とくに板面内の全方位に対する平均的特性に劣るの
が通例である。これに対して、この発明に従う電磁鋼板
は、後述する実験例に示すとおり、このような集積度を
付与することにより、通常の無方向性電磁鋼板と同程度
の工程によって、現在の無方向性けい素鋼板と同等また
は少ない鉄損で、かつ大幅に高い磁束密度、とくに板面
の全方位に対する平均にて、W15/50 が2〜3.5 W/kgの
ときにB50が1.70T以上、またW15/5 0 が3.5 〜6W/kg
のときにB50が1.76T以上を確保することができる。
According to the present invention, in a magnetic steel sheet containing P, {100} <001> and {100} <001>
Since it has a texture whose orientation integrated strength is more than three times that of the random structure, it is possible to provide a steel sheet with excellent electromagnetic properties only by hot rolling or without using a special method, Cost reduction. Here, when the iron loss is low, the magnetic steel sheet also has a low magnetic flux density, and generally has poor average characteristics in all directions in the sheet plane. On the other hand, the electrical steel sheet according to the present invention has the same non-oriented electrical steel sheet as the ordinary non-oriented electrical steel sheet by providing such a degree of integration as shown in an experimental example described later. in silicon steel sheets is equal to or less core loss, and significantly higher flux density, in particular at an average for all orientations of the plate surface, W 15/50 is B 50 or more 1.70T at 2 to 3.5 W / kg, the W 15/5 0 is 3.5 ~6W / kg
B 50 can be ensured more than 1.76T at.

【0016】[0016]

【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果について説明する。真空小型溶解炉にて、
P:0.56wt%、C:0.003 wt%、Si:0.01wt%、Mn:0.
03wt%およびAl:0.05wt%を含有する組成、すなわちP
を含有し残部はFeおよび不純物の組成になる50kg鋼塊を
溶解し、熱間粗圧延により板厚:5mmに圧延した。この
鋼板を、1100℃にて30分間加熱後、ロール径が 700mmφ
の圧延機にて、周速:800 m/min 、圧下率:80%、圧
延終了温度:950 ℃にて圧延し、板厚:0.7 mmの熱延板
とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results which led to the present invention will be described. In a small vacuum melting furnace,
P: 0.56 wt%, C: 0.003 wt%, Si: 0.01 wt%, Mn: 0.
Composition containing 03 wt% and Al: 0.05 wt%, that is, P
And the remainder was melted with a 50 kg ingot having a composition of Fe and impurities, and rolled to a plate thickness of 5 mm by hot rough rolling. After heating this steel sheet at 1100 ° C for 30 minutes, the roll diameter is 700mmφ
Was rolled at a peripheral speed of 800 m / min, a rolling reduction of 80%, and a rolling end temperature of 950 ° C. to obtain a hot-rolled sheet having a thickness of 0.7 mm.

【0017】この熱延板に600 ℃で2時間の焼鈍を施し
たのち、その集合組織を調査した結果、{100}<0
01>方位への集積度がランダム組織のそれの 5.2倍、
また{100}<011>方位への集積度がランダム組
織のそれの4.3 倍といずれも高くなった。さらに、板面
全方位の平均的な磁気特性を簡便に評価するために、外
径35mmおよび内径25mmのリング状試料を切り出して、そ
の磁気特性を測定したところ、鉄損はW15/50 で6.6 W/
kgおよび磁束密度はB50で 1.79 Tと、今までにない優
れた特性の熱延鋼板が得られた。
After subjecting the hot-rolled sheet to annealing at 600 ° C. for 2 hours, the texture was examined. As a result, {100} <0
01> The degree of accumulation in the direction is 5.2 times that of the random organization,
In addition, the degree of accumulation in the {100} <011> direction was 4.3 times higher than that of the random structure, and both were higher. Furthermore, in order to easily evaluate the average magnetic properties in all directions of the plate surface, a ring-shaped sample having an outer diameter of 35 mm and an inner diameter of 25 mm was cut out, and the magnetic properties were measured.The iron loss was W15 / 50 . 6.6 W /
kg and magnetic flux density and 1.79 T at B 50, hot-rolled steel sheet without excellent properties so far were obtained.

【0018】ここで、特定の方位の集積度は、その方位
をもつ結晶粒の存在頻度が、完全にランダムな方位分布
をもつ組織に対して、どの程度であるかを示しており、
次のように求めることができる。すなわち、鋼板試料の
板面に平行の板厚中央部分を研磨し、その研磨面につい
て、X線回折のシュルツ法にて、(110) 、(200) および
(211) の不完全極点図を数値データとして測定する。こ
の測定データを、H.J.Bunge 著の“Texture Analys
is Materials Science”に記載されている、級数展開法
を用いて、3次元方位分布関数に変換する。この分布関
数は、完全ランダム分布であれば、いずれの方位も存在
頻度が1になるように正規化されていて、特定の方位の
集積度を求めるには、その方位、ここでは{100}<
001>または{100}<011>方位における分布
関数の値を採用すればよい。この値が、正しくランダム
分布に対する集積度の倍数になる。なお、圧延終了温
度:700 ℃の条件で圧延した同組成の鋼板についても同
様に調査した結果、{100}<001>および{10
0}<011>方位への集積度が低下していることが判
明した。
Here, the degree of integration of a specific orientation indicates how much the frequency of existence of crystal grains having that orientation is relative to a structure having a completely random orientation distribution.
It can be determined as follows. That is, the central portion of the plate thickness parallel to the plate surface of the steel plate sample is polished, and the polished surface is subjected to the (110), (200) and
Measure the incomplete pole figure of (211) as numerical data. This measurement data is described in H. J. Bunge's “Texture Analys
It is converted into a three-dimensional azimuth distribution function using the series expansion method described in "Is Materials Science". If this distribution function is a perfect random distribution, the frequency of occurrence in any azimuth will be 1 To determine the degree of integration of a particular orientation that has been normalized, the orientation, here {100} <
The value of the distribution function in the <001> or {100} <011> direction may be adopted. This value is correctly a multiple of the degree of integration for the random distribution. In addition, the steel plate having the same composition rolled under the condition of the rolling end temperature: 700 ° C. was similarly examined, and it was found that {100} <001> and {10}.
It has been found that the degree of integration in the 0 ° <011> direction has decreased.

【0019】さらに、上記の圧延終了温度が950 ℃の熱
間圧延で得られた熱延板を0.5 mmに冷間圧延(圧下率:
29%)し、850 ℃で1分間の焼鈍を施したのち、その集
合組織と磁気特性を調査した結果、{100}<001
>および{100}<011>方位への集積度がランダ
ム組織のそれのそれぞれ5.0 倍および4.6 倍と、熱延板
段階での集積度がほぼ保たれており、またリング試料の
鉄損はW15/50 で4.8W/kg、磁束密度はB50で 1.80 T
と、同程度の鉄損の従来の無方向性電磁鋼板に比べる
と、リング試料による評価としては格段に高い磁束密度
を持つ電磁鋼板が得られた。一方、熱間圧延における圧
延終了温度が700 ℃であった場合は、冷延板においても
{100}<001>および{100}<011>方位
への集積度がいずれも低下していた。
Further, the hot-rolled sheet obtained by the hot rolling at a rolling end temperature of 950 ° C. is cold-rolled to a thickness of 0.5 mm (reduction ratio:
29%), and annealed at 850 ° C. for 1 minute. After examining the texture and magnetic properties, {100} <001
> And {100} <011> orientations are 5.0 times and 4.6 times that of the random structure, respectively, and the degree of accumulation at the hot-rolled sheet stage is almost maintained. 4.8W / kg at 15/50, flux density is B 50 1.80 T
As compared with the conventional non-oriented electrical steel sheet having the same iron loss, an electrical steel sheet having a remarkably high magnetic flux density was obtained as a result of evaluation using a ring sample. On the other hand, when the rolling end temperature in the hot rolling was 700 ° C., the degree of integration in the {100} <001> and {100} <011> orientations in the cold-rolled sheet both decreased.

【0020】この発明は、上記の実験事実に基づいたも
のであり、成分組成に加えて、熱間圧延条件が重要にな
る。すなわち、熱間圧延終了時における鋼板の温度が十
分に高く、かつ圧下率も十分に高い場合に限って、好適
な集合組織が得られるのである。さらに、適切な圧下率
の冷間圧延を施すことによって、この集合組織が強化さ
れるのである。この理由については完全に解明されてい
ないが、熱間圧延については、特定の条件下での圧延変
形時の再結晶において、圧延面に平行に{100}面を
持つ結晶粒が優先的に出現するためと考えられる。ま
た、冷間圧延および焼鈍における集合組織の維持につい
ては、従来知見によれば冷間での圧下により集合組織が
破壊されて集積度が低下すると考えられてきたが、ここ
では集積度が維持されており、磁気特性は向上してい
る。これは、熱延板の特殊な集合組織と関連していると
考えられるが、明確な説明ができるには至っていない。
The present invention is based on the above experimental facts, and the hot rolling conditions become important in addition to the component composition. That is, a suitable texture can be obtained only when the temperature of the steel sheet at the end of hot rolling is sufficiently high and the rolling reduction is also sufficiently high. Furthermore, by performing cold rolling at an appropriate draft, this texture is strengthened. Although the reason for this has not been completely elucidated, in hot rolling, in recrystallization during rolling deformation under specific conditions, crystal grains having {100} planes parallel to the rolling plane appear preferentially It is thought to be. In addition, regarding the maintenance of the texture during cold rolling and annealing, according to conventional knowledge, it has been considered that the texture is destroyed by the reduction during cold and the degree of accumulation is reduced, but here the degree of accumulation is maintained. And the magnetic properties have been improved. This is thought to be related to the special texture of the hot-rolled sheet, but has not yet been clearly explained.

【0021】さて、この発明における各種条件の限定理
由について説明する。まず、成分組成について述べる
と、Pは比抵抗を増大させ、滑電流損を低減させる効果
がある。すなわち、Pの添加量が増加するとともに磁束
密度は若干低下するが、同一の比抵抗レベルでPとSiと
を比較すると、PはSiよりも磁束密度の低下が少ない点
で有利である。ここに、Pの含有量が0.2 wt%未満で
は、上記の効果が十分に現れず、一方1.2 wt%をこえる
とFe3P等が主に粒界に沿って析出するため、急激に磁束
密度が低下しかつ鉄損が増大するほか、加工性の劣化も
まねく。従って、P含有量は、0.2 〜1.2 wt%の範囲に
限定した。
Now, the reasons for limiting various conditions in the present invention will be described. First, regarding the component composition, P has the effect of increasing the specific resistance and reducing the slip current loss. That is, although the magnetic flux density slightly decreases as the amount of P added increases, when P and Si are compared at the same specific resistance level, P is advantageous in that the decrease in magnetic flux density is smaller than that of Si. Here, if the content of P is less than 0.2 wt%, the above effect is not sufficiently exhibited, while if it exceeds 1.2 wt%, Fe 3 P and the like mainly precipitate along the grain boundaries, so that the magnetic flux density sharply increases. And iron loss increases, and workability also deteriorates. Therefore, the P content was limited to the range of 0.2 to 1.2 wt%.

【0022】また、Pの働きを補助することを目的とし
て、比抵抗を増大する、Si、AlおよびMnのうちから選ん
だ1種または2種以上を合計で0.1 〜5.0 wt%含有する
ことができる。すなわち、これらの1種または2種以上
の合計が0.1 wt%未満では、添加効果が現れずに不純物
の域をこえないため、0.1 wt%を下限とする。一方、5.
0 wt%をこえると、磁束密度が低下し、また加工性も劣
化するため、5.0 wt%を上限とする。
Further, for the purpose of assisting the function of P, one or more selected from Si, Al and Mn, which increase the specific resistance, may be contained in a total amount of 0.1 to 5.0 wt%. it can. That is, if the total of one or two or more of these is less than 0.1 wt%, the effect of addition does not appear and does not exceed the range of impurities, so the lower limit is 0.1 wt%. Meanwhile, 5.
If it exceeds 0 wt%, the magnetic flux density decreases and the workability also deteriorates, so the upper limit is 5.0 wt%.

【0023】一方、CおよびOについては、磁気特性、
その後の冷間圧延性や打ち抜き性の観点から、いずれも
0.01wt%以下に抑制することが好ましい。
On the other hand, C and O have magnetic properties,
From the viewpoint of subsequent cold rolling and punching properties,
It is preferable to suppress the content to 0.01 wt% or less.

【0024】次に、集合組織について説明すると、この
発明は{100}<001>および{100}<011
>方位に集積している組織を特徴とし、この効果を電磁
鋼板製品として十分に活かすためには、その集積度をラ
ンダム組織のそれの3倍以上とすることが重要である。
Next, the texture will be described. The present invention relates to {100} <001> and {100} <011.
> It is characterized by a structure that accumulates in the orientation, and in order to fully utilize this effect as an electrical steel sheet product, it is important that the degree of accumulation be at least three times that of a random structure.

【0025】次に、製造条件について述べる。まず、熱
間圧延における圧延終了温度については、 750℃未満で
は{100}<001>および{100}<011>方
位の集積強度がランダム組織のそれの3倍に満たず、一
方1050℃を超えると加熱炉送出から圧延までに時間的制
約を受けるだけでなく、高温での加熱を必要としコスト
の上昇を招くので、圧延終了温度は 750〜1050℃の範囲
に限定した。また、熱間圧延の圧下率については、圧下
率が50%未満では、好適な集合組織を持つ再結晶に必要
となる、十分な歪を付与できないため、圧下率は50%以
上に定めた。
Next, the manufacturing conditions will be described. First, as for the rolling end temperature in hot rolling, if it is less than 750 ° C., the integrated strength of the {100} <001> and {100} <011> orientations is less than three times that of the random structure, while it exceeds 1050 ° C. In addition to the time limitation from the feeding of the heating furnace to the rolling, the heating at a high temperature is required and the cost rises. Therefore, the rolling end temperature is limited to the range of 750 to 1,050 ° C. If the rolling reduction of the hot rolling is less than 50%, sufficient strain required for recrystallization having a suitable texture cannot be imparted. Therefore, the rolling reduction is set to 50% or more.

【0026】さらに、{100}<001>および{1
00}<011>の双方の方位の集積度をバランスよく
高めるために、熱延板焼鈍を施すことが有利である。こ
の焼鈍温度が700 ℃をこえると、とくに{100}<0
11>方位の集積度が弱くなり、圧延面内にあって圧延
方向に対して45°傾いた方向の磁気特性が劣化し、結果
として圧延面内全方位平均の磁気特性が劣化する。従っ
て、熱延板の焼鈍温度を700 ℃以下とする。
Further, {100} <001> and {1}
In order to increase the degree of integration in both directions of 00 <011> in a well-balanced manner, it is advantageous to perform hot-rolled sheet annealing. When the annealing temperature exceeds 700 ° C., particularly, {100} <0
11> The degree of integration in the orientation is weakened, and the magnetic properties in the direction in the rolling plane and inclined at 45 ° to the rolling direction are deteriorated. As a result, the average magnetic properties in all directions in the rolling plane are deteriorated. Therefore, the annealing temperature of the hot rolled sheet is set to 700 ° C. or less.

【0027】ここで、熱間圧延後の熱延板はコイルに巻
き取るのが、工業的規模での製造における通常である
が、この巻取りを実施する場合には、その巻取り温度に
応じて焼鈍が施されることになる。従って、コイルの巻
取り温度が高いと、熱延板焼鈍を高温で行ったことにな
るから、熱延板をコイルに巻き取る場合は、巻取り温度
を、上記した焼鈍の温度と同様に、700 ℃以下とする必
要がある。なお、この巻取り段階において焼鈍と同等の
効果が得られるのであれば、熱延板の焼鈍工程を新たに
設ける必要はないのは勿論である。
Here, it is usual in the production on an industrial scale that the hot-rolled sheet after hot rolling is wound on a coil, but when this winding is carried out, it depends on the winding temperature. Annealing. Therefore, when the coil winding temperature is high, the hot-rolled sheet annealing is performed at a high temperature.When the hot-rolled sheet is wound around the coil, the winding temperature is the same as the annealing temperature described above. It must be below 700 ° C. In addition, if an effect equivalent to annealing can be obtained in this winding step, it is needless to say that it is not necessary to newly provide an annealing step for the hot-rolled sheet.

【0028】さらに、上記の熱間仕上げ圧延後に、冷間
圧延次いで焼鈍を行う際は、冷間圧延における圧下率が
40%以上であると、熱延板の段階で得られたランダム立
方組織が変化し、面内での等方的な性質が失われるた
め、40%未満の圧下率で冷間圧延を行う。
Further, when performing cold rolling and then annealing after the above hot finish rolling, the rolling reduction in the cold rolling is
If it is at least 40%, the random cubic structure obtained at the stage of hot-rolled sheet changes, and the in-plane isotropic property is lost. Therefore, cold rolling is performed at a rolling reduction of less than 40%.

【0029】[0029]

【実施例】実施例1 真空小型溶解炉にて、表1に示す各成分組成の50kg鋼塊
をそれぞれ溶解した。表1において、鋼(C) 、(D) およ
び(E) がこの発明に従う成分組成であり、鋼(D) がP単
独、そして鋼(C) および(E) がPに加えてSi、Alおよび
Mnを添加した例である。また、鋼(A) および(B) は通常
のけい素鋼板の組成の比較例である。さらに、鋼(F) は
Si、AlおよびMnの添加量がこの発明の範囲を外れた例で
ある。
Example 1 In a small vacuum melting furnace, a 50 kg steel ingot having each component composition shown in Table 1 was melted. In Table 1, steels (C), (D) and (E) are the component compositions according to the present invention, steel (D) is P alone, and steels (C) and (E) are Si, Al and
This is an example in which Mn is added. Steels (A) and (B) are comparative examples of the composition of ordinary silicon steel sheets. In addition, steel (F)
This is an example in which the added amounts of Si, Al and Mn are out of the range of the present invention.

【0030】次いで、これら鋼塊を1150℃に加熱後、熱
間粗圧延により 1.3〜4.0 mm厚の板とした。この板を、
1100℃に加熱後、圧延終了温度を 600〜950 ℃に制御
し、 800m/min の圧延速度で1パスにて 0.8mmに仕上
げ(圧下率:40〜80%)、その後600 ℃, 2時間の焼鈍
を施した。
Next, these ingots were heated to 1150 ° C., and then subjected to hot rough rolling to obtain plates having a thickness of 1.3 to 4.0 mm. This board,
After heating to 1100 ° C, the rolling end temperature is controlled at 600 to 950 ° C, and at a rolling speed of 800m / min, it is finished to 0.8mm in one pass (rolling reduction: 40 to 80%), and then at 600 ° C for 2 hours. Annealed.

【0031】かくして得られた各熱延鋼板について、X
線解析にて (110), (200), (211)極点図を求め、上記し
た級数展開法を用いて3次元方位解析を行い、3次元方
位分布密度を求めた。さらに、外径35mmおよび内径25mm
のリング状に切り出した試料によって磁気測定を行い、
1.5T励磁の時の鉄損値W15/50 および励磁磁場5000A/
mの時の磁束密度B50を求めた。得られた結果を表2に
示す。
For each of the hot-rolled steel sheets thus obtained, X
(110), (200), and (211) pole figures were obtained by line analysis, and three-dimensional azimuth analysis was performed using the series expansion method described above to obtain three-dimensional azimuth distribution density. In addition, outer diameter 35mm and inner diameter 25mm
Perform magnetic measurement with the sample cut out in a ring shape of
Iron loss value W 15/50 at 1.5T excitation and 5000A /
It was determined magnetic flux density B 50 in the case of m. Table 2 shows the obtained results.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】No.1〜3は、通常のけい素鋼板組成によ
る比較例であり、その No.1と2との比較からわかるよ
うに、一般には合金添加量が増すと鉄損は減少するが磁
束密度も低下してしまう。次に、 No.3は、この発明の
圧延条件には適合するが、組成は従来のけい素鋼の一般
に従う、比較例である。 No.3は、高温かつ強圧下の圧
延を経たことによって{100}<001>および{1
00}<011>方位の集積強度が高まり、その結果と
して、とりわけリング状試料の磁束密度が No.1および
2に対して改善されたことがわかる。
Nos. 1 to 3 are comparative examples using ordinary silicon steel sheet compositions. As can be seen from a comparison between Nos. 1 and 2, generally, the iron loss decreases as the alloy addition amount increases. The magnetic flux density also decreases. Next, No. 3 is a comparative example which conforms to the rolling conditions of the present invention but has a composition generally in accordance with conventional silicon steel. No. 3 shows that {100} <001> and {1}
It can be seen that the integrated strength in the 00 ° <011> orientation was increased, and as a result, the magnetic flux density of the ring-shaped sample was particularly improved with respect to Nos. 1 and 2.

【0035】これに対して、 No.3と同様の圧延条件
で、かつこの発明の組成範囲に適合する No.4および5
は、とくにリング状試料の磁束密度において、同等の鉄
損値のNo.3に比べて高い磁束密度が得られることが注
目される。すなわち、この発明の圧延条件で得られた従
来組成の鋼板 No.3に比べて、この発明の圧延条件およ
び組成に従う鋼板 No.4および5は、板面内の全方位に
対する平均的鉄損が低くかつ磁束密度が格段に高い、優
れた特性が得られる。これは、この発明に従う No.6お
よび8についても同様である。
On the other hand, No. 4 and No. 5 which are in the same rolling conditions as No. 3 and which conform to the composition range of the present invention.
It is noteworthy that, in the magnetic flux density of the ring-shaped sample, a higher magnetic flux density can be obtained as compared with No. 3 having the same iron loss value. That is, compared with the steel sheet No. 3 of the conventional composition obtained under the rolling conditions of the present invention, the steel sheets Nos. 4 and 5 according to the rolling conditions and the composition of the present invention have an average iron loss in all directions in the sheet plane. Excellent characteristics with a low and extremely high magnetic flux density can be obtained. This is the same for Nos. 6 and 8 according to the present invention.

【0036】また、 No.10は、Pに加えてSiおよびAlを
含有する発明例であり、この場合も従来の比較例 No.1
に比べ、同等の鉄損水準において格段に高い磁束密度と
なっている。
No. 10 is an invention example containing Si and Al in addition to P. In this case, too, the comparative example No. 1
The magnetic flux density is much higher at the same iron loss level as compared with.

【0037】一方、 No.7および9は、成分組成は発明
範囲であるが、圧延条件が発明範囲から外れているた
め、従来組成の No.2よりは特性が優れるものの、 No.
3と同等程度の特性となる。なお、 No.11は、Si、Alお
よびMnの総量が発明範囲をこえるため、従来の磁気特性
の水準をこえることができない。
On the other hand, the compositions of Nos. 7 and 9 are within the scope of the invention, but the rolling conditions are out of the scope of the invention.
The characteristics are almost the same as those of No. 3. In No. 11, since the total amount of Si, Al and Mn exceeds the scope of the invention, the level of the conventional magnetic properties cannot be exceeded.

【0038】実施例2 次に、冷間圧延の圧下率に関する実施例を示す。真空小
型溶解炉にて、表1に示した鋼(C)の成分組成の50kg
鋼塊を溶解し、この鋼塊を1150℃に加熱後、熱間粗圧延
により2〜3mm厚の板とした。この板を、1100℃に加熱
後、圧延終了温度を950 ℃に制御し、 800m/min の圧
延速度で1パス(圧下率:65〜70%)にて0.6 〜1.0 mm
に仕上げた。その後熱延板の表面のスケールをショット
ブラスト処理にて除去し、水素:35%および窒素65%の
雰囲気中で650 ℃、2時間の焼鈍を施したのち、圧下率
17〜50%にて0.5 mm厚まで冷間圧延を行ってから、水
素:35%および窒素65%の雰囲気中で850 ℃、1分間の
焼鈍を施した。
Embodiment 2 Next, an embodiment relating to the rolling reduction of cold rolling will be described. 50kg of the composition of steel (C) shown in Table 1 in a small vacuum melting furnace
The steel ingot was melted, heated to 1150 ° C., and then subjected to hot rough rolling to obtain a plate having a thickness of 2 to 3 mm. After heating this plate to 1100 ° C, the rolling end temperature was controlled at 950 ° C, and the rolling speed was 800 m / min, and the rolling speed was 0.6 to 1.0 mm in one pass (rolling reduction: 65 to 70%).
Finished. Thereafter, the scale on the surface of the hot-rolled sheet is removed by shot blasting, and annealed at 650 ° C. for 2 hours in an atmosphere of 35% hydrogen and 65% nitrogen.
After cold rolling to a thickness of 0.5 mm at 17 to 50%, annealing was performed at 850 ° C. for 1 minute in an atmosphere of 35% hydrogen and 65% nitrogen.

【0039】かくして得られた各冷延鋼板について、X
線解析にて (110), (200), (211)極点図を求め、上記し
た級数展開法を用いて3次元方位解析を行い、3次元方
位分布密度を求めた。さらに、外径35mmおよび内径25mm
のリング状に切り出した試料によって磁気測定を行い、
1.5T励磁の時の鉄損値;W15/50 および励磁磁場:50
00 A/mの時の磁束密度;B50を求めた。得られた結果を
表3に示す。
For each of the cold rolled steel sheets thus obtained, X
(110), (200), and (211) pole figures were obtained by line analysis, and three-dimensional azimuth analysis was performed using the series expansion method described above to obtain three-dimensional azimuth distribution density. In addition, outer diameter 35mm and inner diameter 25mm
Perform magnetic measurement with the sample cut out in a ring shape of
Iron loss value at 1.5T excitation; W 15/50 and excitation magnetic field: 50
Magnetic flux density at 00 A / m; B50 was determined. Table 3 shows the obtained results.

【0040】[0040]

【表3】 [Table 3]

【0041】No.12および13は、冷間圧延の圧下率が適
合範囲にある実施例であり、{100}<001>およ
び{100}<011>方位の集積強度が高く、とりわ
け板面全方位の平均磁束密度が極めて高くなっている。
Nos. 12 and 13 are examples in which the rolling reduction of the cold rolling is within the applicable range, the integrated strength of the {100} <001> and {100} <011> directions is high, and The average magnetic flux density in the direction is extremely high.

【0042】これに対して、 No.14は冷間圧延の圧下率
が過大であるため、{100}<001>方位の集積度
は高くなるものの、{100}<011>方位の集積度
はさほど大きくなく、磁束密度もやや低下している。
On the other hand, in No. 14, since the rolling reduction of the cold rolling is excessive, the degree of integration in the {100} <001> direction is high, but the degree of integration in the {100} <011> direction is It is not so large and the magnetic flux density is slightly lower.

【0043】実施例3 ここでは、熱延板焼鈍に関する実施例を示す。真空小型
溶解炉にて、表1に示した鋼(C)の成分組成の50kg鋼
塊を溶解し、この鋼塊を1150℃に加熱後、熱間粗圧延に
より 2.0mm厚の板とした。この板を、1100℃に加熱後、
圧延終了温度を950 ℃に制御し、800 m/min の圧延速度
で1パスにて0.7 mmに仕上げ(圧下率:65%)、仕上熱
延板を得た。この仕上熱延板の表面にショットをかけて
スケールを落とし、水素35%、窒素65%の雰囲気中で30
0 〜900 ℃、2時間の焼鈍を施したのち、0.5mm まで圧
下率29%にて冷間圧延し、水素35%、窒素65%の雰囲気
中で850 ℃、1分間の焼鈍を施した。
Embodiment 3 Here, an embodiment relating to hot rolled sheet annealing will be described. In a small vacuum melting furnace, a 50 kg steel ingot having the composition of steel (C) shown in Table 1 was melted, and the steel ingot was heated to 1150 ° C. and then hot-rolled into a 2.0 mm thick plate. After heating this plate to 1100 ° C,
The rolling end temperature was controlled at 950 ° C., and the roll was finished to 0.7 mm in one pass at a rolling speed of 800 m / min (reduction rate: 65%) to obtain a finished hot rolled sheet. A shot is applied to the surface of the hot-rolled sheet to reduce the scale, and the scale is removed in an atmosphere of 35% hydrogen and 65% nitrogen.
After annealing at 0 to 900 ° C. for 2 hours, it was cold-rolled to 0.5 mm at a reduction of 29%, and annealed at 850 ° C. for 1 minute in an atmosphere of 35% hydrogen and 65% nitrogen.

【0044】かくして得られた各電磁鋼板について、X
線解析にて(110), (200), (211) 極点図を求め、上記し
た級数展開法を用いて3次元方位解析を行い、3次元方
位分布密度を求めた。さらに、外径35mmおよび内径25mm
のリング状に切り出した試料によって磁気測定を行い、
1.5 T励磁の時の鉄損値W15/50 および励磁磁場5000A/
mの時の磁束密度B50を求めた。得られた結果を表4に
示す。
For each of the magnetic steel sheets thus obtained, X
(110), (200), and (211) pole figures were obtained by line analysis, and three-dimensional azimuth analysis was performed using the series expansion method described above to obtain three-dimensional azimuth distribution density. In addition, outer diameter 35mm and inner diameter 25mm
Perform magnetic measurement with the sample cut out in a ring shape of
Iron loss W 15/50 at 1.5 T excitation and 5000 A /
It was determined magnetic flux density B 50 in the case of m. Table 4 shows the obtained results.

【0045】[0045]

【表4】 [Table 4]

【0046】No.15 〜17は、熱延板焼鈍温度が適合する
実施例であり、{100}<001>および{100}
<011>双方の方位の集積強度が高く、特に板面全方
位平均の磁束密度が極めて高くなっている。
Nos. 15 to 17 are examples in which the hot-rolled sheet annealing temperature is suitable, and {100} <001> and {100}.
<011> The integrated strength in both directions is high, and in particular, the average magnetic flux density in all directions in the plate surface is extremely high.

【0047】これに対して、No. 18および19は、熱延板
焼鈍温度が高すぎるため、{100}<001>方位の
集積度は高くなるものの、{100}<011>方位の
集積度が低下し、その結果、リング試料の磁束密度がや
や低下している。
On the other hand, in Nos. 18 and 19, since the annealing temperature of the hot-rolled sheet was too high, the degree of integration in the {100} <001> direction was high, but the degree of integration in the {100} <011> direction was high. Is reduced, and as a result, the magnetic flux density of the ring sample is slightly reduced.

【0048】[0048]

【発明の効果】この発明によれば、従来、通常の製造方
法では実現不可能であった、磁化方向が面内無方向、す
なわちランダム立方組織に高度に集積した高磁束密度電
磁鋼板を、熱間圧延のままで、また特殊な冷間圧延や焼
鈍工程に頼ることなしに、安価に提供することができ
る。
According to the present invention, a high magnetic flux density electromagnetic steel sheet whose magnetization direction is in-plane non-direction, that is, highly integrated in a random cubic structure, which cannot be realized by the conventional manufacturing method, can be used. It can be provided inexpensively as it is during cold rolling and without resorting to a special cold rolling or annealing step.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 P:0.2 〜1.2 wt%を含有し、残部が実
質的にFeの組成になり、{100}<001>方位およ
び{100}<011>方位の集積強度が、いずれもラ
ンダム組織のそれの3倍以上である集合組織を有するこ
とを特徴とする磁気特性に優れた電磁鋼板。
1. P: 0.2 to 1.2 wt%, with the balance substantially consisting of Fe, and the {100} <001> orientation and the {100} <011> orientation are both random. An electrical steel sheet having excellent magnetic properties, characterized by having a texture that is at least three times that of the texture.
【請求項2】 P:0.2 〜1.2 wt%を含み、さらにSi、
AlおよびMnのうちから選んだ1種または2種以上を合計
で0.1 〜5.0 wt%含有し、残部が実質的にFeの組成にな
り、{100}<001>方位および{100}<01
1>方位の集積強度が、いずれもランダム組織のそれの
3倍以上である集合組織を有することを特徴とする磁気
特性に優れた電磁鋼板。
2. P: contains 0.2 to 1.2 wt%, and further contains Si,
One or two or more selected from Al and Mn are contained in a total amount of 0.1 to 5.0 wt%, and the remainder substantially has a Fe composition, and has {100} <001> orientation and {100} <01.
1> An electrical steel sheet having excellent magnetic properties, characterized by having a texture whose accumulated strength in each direction is at least three times that of a random texture.
【請求項3】 P:0.2 〜1.2 wt%を含有する組成にな
る鋼スラブに、熱間粗圧延を施し、次いで圧下率(1パ
ス):50%以上および圧延終了温度:750 〜1050℃の条
件下で熱間仕上げ圧延を施したのち、得られた熱延板を
700 ℃以下の温度域で焼鈍することを特徴とする磁気特
性に優れた電磁鋼板の製造方法。
3. A steel slab having a composition containing P: 0.2 to 1.2 wt% is subjected to hot rough rolling, and then a reduction ratio (1 pass): 50% or more and a rolling end temperature: 750 to 1050 ° C. After hot finishing rolling under the conditions, the resulting hot rolled sheet
A method for producing an electrical steel sheet having excellent magnetic properties, characterized by annealing at a temperature of 700 ° C or lower.
【請求項4】 P:0.2 〜1.2 wt%を含み、さらにSi、
AlおよびMnのうちから選んだ1種または2種以上を合計
で0.1 〜5.0 wt%含有する組成になる鋼スラブに、熱間
粗圧延を施し、次いで圧下率(1パス):50%以上およ
び圧延終了温度:750 〜1050℃の条件下で熱間仕上げ圧
延を施したのち、得られた熱延板を700 ℃以下の温度域
で焼鈍することを特徴とする磁気特性に優れた電磁鋼板
の製造方法。
4. A composition containing P: 0.2 to 1.2 wt%, further comprising Si,
A steel slab having a composition containing a total of 0.1 to 5.0 wt% of one or more selected from Al and Mn is subjected to hot rough rolling, and then a reduction (1 pass): 50% or more and Rolling end temperature: After finishing hot rolling under the condition of 750 to 1050 ° C, the obtained hot rolled sheet is annealed in a temperature range of 700 ° C or less. Production method.
【請求項5】 請求項3または4において、熱間仕上げ
圧延後に、圧下率40%未満の冷間圧延次いで焼鈍を行う
ことを特徴とする磁気特性に優れた電磁鋼板の製造方
法。
5. The method for producing an electrical steel sheet having excellent magnetic properties according to claim 3 or 4, wherein after the hot finishing rolling, cold rolling and annealing are performed at a rolling reduction of less than 40%.
JP9328047A 1997-11-28 1997-11-28 Silicon steel sheet excellent in magnetic property and its production Withdrawn JPH11158590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9328047A JPH11158590A (en) 1997-11-28 1997-11-28 Silicon steel sheet excellent in magnetic property and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9328047A JPH11158590A (en) 1997-11-28 1997-11-28 Silicon steel sheet excellent in magnetic property and its production

Publications (1)

Publication Number Publication Date
JPH11158590A true JPH11158590A (en) 1999-06-15

Family

ID=18205928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9328047A Withdrawn JPH11158590A (en) 1997-11-28 1997-11-28 Silicon steel sheet excellent in magnetic property and its production

Country Status (1)

Country Link
JP (1) JPH11158590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277539A1 (en) * 2005-11-21 2009-11-12 Yuuji Kimura Steel for Warm Working, Warm Working Method Using the Steel, and Steel Material and Steel Component Obtainable Therefrom
JP2018168413A (en) * 2017-03-29 2018-11-01 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same
US20220010400A1 (en) * 2018-11-26 2022-01-13 Jfe Steel Corporation Method of manufacturing non-oriented electrical steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090277539A1 (en) * 2005-11-21 2009-11-12 Yuuji Kimura Steel for Warm Working, Warm Working Method Using the Steel, and Steel Material and Steel Component Obtainable Therefrom
JP2018168413A (en) * 2017-03-29 2018-11-01 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same
US20220010400A1 (en) * 2018-11-26 2022-01-13 Jfe Steel Corporation Method of manufacturing non-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
CA2525742C (en) Improved method for production of non-oriented electrical steel strip
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
KR101975685B1 (en) Grain-oriented electromagnetic steel sheet
JP2015516503A (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN111819301A (en) Non-oriented electromagnetic steel sheet
US5669989A (en) Ni-Fe magnetic alloy and method for producing thereof
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP4258854B2 (en) Manufacturing method of electrical steel sheet
JPH055126A (en) Production of nonoriented silicon steel sheet
JPH11158590A (en) Silicon steel sheet excellent in magnetic property and its production
CN114901850A (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheet
JP7268803B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
US6500278B1 (en) Hot rolled electrical steel sheet excellent in magnetic characteristics and corrosion resistance and method for production thereof
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPS59123715A (en) Production of non-directional electromagnetic steel
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
WO2024150732A1 (en) Non-oriented electromagnetic steel sheet
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JPH05279826A (en) Production of &#39;permalloy(r)&#39; excellent in impedance relative magnetic permeability
JPH11350032A (en) Production of silicon steel sheet
JPH1171649A (en) Silicon steel sheet excellent in magnetic property and its production
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JPH05287471A (en) Manufacture of permalloy(r) excellent in impedance relative permeability in low temperature range lower than zero

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201