JP4269138B2 - Non-oriented electrical steel sheet for semi-process - Google Patents

Non-oriented electrical steel sheet for semi-process Download PDF

Info

Publication number
JP4269138B2
JP4269138B2 JP2002235679A JP2002235679A JP4269138B2 JP 4269138 B2 JP4269138 B2 JP 4269138B2 JP 2002235679 A JP2002235679 A JP 2002235679A JP 2002235679 A JP2002235679 A JP 2002235679A JP 4269138 B2 JP4269138 B2 JP 4269138B2
Authority
JP
Japan
Prior art keywords
less
annealing
steel sheet
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002235679A
Other languages
Japanese (ja)
Other versions
JP2004076056A (en
Inventor
浩志 藤村
一郎 田中
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002235679A priority Critical patent/JP4269138B2/en
Publication of JP2004076056A publication Critical patent/JP2004076056A/en
Application granted granted Critical
Publication of JP4269138B2 publication Critical patent/JP4269138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明が属する技術分野】
本発明は、モータなど電気機器の鉄心材料に適用される、打抜き等の成形加工後歪取り焼鈍をおこなって使用する無方向性電磁鋼板、すなわちセミプロセス無方向性電磁鋼板に関する。
【0002】
【従来の技術】
地球温暖化防止や省エネルギーなどの観点から、各種電気機器の高効率化が進められており、回転機や変圧器などに使用される鉄心材の電磁鋼板にも、低コストであることとともに低鉄損かつ高磁束密度のすぐれた磁気特性を有することが要求されている。
【0003】
小形のモータや小形のトランスに対しては無方向性電磁鋼板が主として使用されるが、これら小形電気機器用では、上記のように低鉄損かつ高磁束密度であることに加えて、打抜き性にすぐれていることも要望される。
【0004】
無方向性電磁鋼板の鉄損値を低下させる手段としては、Si、AlおよびMnの含有量を増し、結晶粒径を大きくする方法が有効であることが知られている。しかしながら、Si、AlあるいはMnの含有量増加は磁束密度を低下させ、さらに、これらの元素の含有量増加は鋼を硬くし、打抜き性の劣化すなわち連続打抜き時の工具摩耗の増大をもたらす。また、複雑化する小形モータのコア形状に対し、結晶粒が大きいことは、ばりやかえりを増し打抜き品の加工精度を悪くする要因の一つとなっている。
【0005】
このように、無方向性電磁鋼板の特性を向上させるために取り得る手段には、一つの特性に着目して改善をおこなうと他の必要特性が劣化することが多く、鋼板のメーカーでは需要家の要望する各特性と製造コストとのバランスから、より性能のすぐれた電磁鋼板の製造が進められている。
【0006】
従来、小形モータ用鉄心に対し、米国では打抜き加工後需要家で焼鈍されることを前提として、軽度の圧延歪みを付加しておき、需要家での焼鈍にて結晶粒が粗大化し、磁気特性が向上するセミプロセス材といわれる電磁鋼板が多く使用されてきた。これに対し鉄鋼メーカー側で十分に焼鈍して所要の電磁特性を持たせ、需要家では焼鈍せずに使用できるようにしたものをフルプロセス材と称する。
【0007】
我が国では、小形モータを主対象とする無方向性電磁鋼板は、多くの場合フルプロセス材の形態を取ってきた。しかし、小形モータのメーカーなど需要家の側では、このフルプロセス材でもモータ用鉄心等の所要形状に打抜いた後、歪取り焼鈍をおこなうと、モータ性能が大きく向上することが知られていた。そして、モータの高性能化の要求が高まるにつれ、製造ラインにこの歪取り焼鈍工程を組込むことも一般的におこなわれるようになっている。
【0008】
需要家で、歪取り焼鈍をおこなうセミプロセス材のような処理方法が多く採用されるようになると、電磁鋼板も当然これに対応した製品が望まれるようになってくる。鉄鋼メーカーでは、通常、出荷時点で良好な特性を備えていることを目標に電磁鋼板を製造しているが、セミプロセス材では、出荷時に磁気特性は悪くても、歪取り焼鈍後には良好な特性が得られることが前提になる。
【0009】
このため、歪取り焼鈍時に容易に粒成長し、しかもそのときに形成される集合組織が、無方向性電磁鋼板の磁気特性に、より好ましいものとなることが要望される。フルプロセス材の場合、磁気特性の確保には結晶粒を大きくすることが望ましく、軟質の鋼板になりやすい。硬さが低下すると打抜き性に関しては、かえりやだれの増加による寸法精度の劣化が問題になるので、硬さを維持するための成分を含有させる必要がある。しかし、セミプロセス材では歪取り焼鈍後に軟質化しても、これは必要特性の対象にはならないので、打抜き性を配慮した成分限定は緩和される利点がある。
【0010】
無方向性電磁鋼板の磁気特性向上対策として、一般的にはCを0.01%以下にした極低炭素鋼をベースに、磁気特性を悪くする非金属介在物形成の原因となるSやOなどの不純物元素元素をできるだけ少なくし、これにSiやAlの電気抵抗を高め磁気特性を向上させ、そして硬さを増す元素を適宜含有させた組成の鋼が使用され、製造工程としては熱間圧延後の、冷間圧延の前に熱延板焼鈍を施すという手段が採用される。
【0011】
セミプロセス型の無方向性電磁鋼板に対しては、組成や製造方法に加え、とくに打抜き後歪取り焼鈍されることを前提に、さらに改良を加えたいくつかの発明が提案されている。たとえば、特開平8-3699号公報にはSiを1.0%以下、Alを0.2〜1.5%とし、Tiを15ppm以下そしてZrを80ppm以下に低くしてREMを2〜80ppm含有させた、歪取り焼鈍後の鉄損のすぐれた無方向性電磁鋼板発明が開示され、特開平8-325678号公報にはSiが1.0〜2.5%である以外は、REMを含有させた同様な組成の鋼板の発明が開示されている。
【0012】
また、特開平11-158589号公報に開示された発明は、とくに不純物のTiの量を0.0015〜0.0050%の範囲内に限定し、歪取り焼鈍後の磁気特性ばらつきを抑止しており、さらに特開2001-294997号公報には、SiとAlとの合計の含有量を1.6〜2.7%の範囲とし、歪取り焼鈍後の磁束密度の向上を図った無方向性電磁鋼板の発明が開示されている。
【0013】
これらの発明は、いずれも熱間圧延後冷間圧延までの間、あるいは熱間圧延後の冷間圧延途中において十分な焼鈍を施し、冷間圧延終了後仕上げ焼鈍した鋼板が、打抜きなどの加工後に歪取り焼鈍を受けたとき、良好な磁気特性が得られるようにしている。
【0014】
需要家における歪取り焼鈍を前提とするセミプロセス無方向性電磁鋼板に関し、上述のように種々開発はおこなわれているが、セミプロセス材の特徴である打抜き加工性にすぐれ、そして歪取り焼鈍後にとくに良好な磁気特性が得られ、かつ合理的に製造できるという観点からは、十分満足できる鋼板が得られているとは言い難い。
【0015】
【発明が解決しようとする課題】
本発明の目的は、打抜き性が良好で、歪取り焼鈍をおこなったとき、とくにすぐれた磁気特性を示すセミプロセス無方向性電磁鋼板およびその製造方法の提供にある。
【0016】
【課題を解決するための手段】
本発明者らは、需要家にて歪取り焼鈍をおこなう、セミプロセス無方向性電磁鋼板の性能を向上すべく種々検討をおこなった。歪取り焼鈍は、現状、打抜き加工後750℃にて1〜2時間均熱する、という条件が需要家にて標準的に採用されており、この焼鈍が施されたときに、すぐれた磁気特性となるものでなければならない。ただし、打抜き加工は歪取り焼鈍前に実施されるので、工場から出荷するときは、打抜き性を向上させる表面絶縁コーティングが施されていることはいうまでもないが、打抜き品の寸法精度がよくかつ工具摩耗を少なくするため、硬さが適度の範囲にある必要がある。
【0017】
無方向性電磁鋼板には、通常Si,Al,MnおよびPなどが添加される。そこで、これら主要元素の効果を再確認すべく、含有量を種々変えた鋼を溶製し、電磁鋼板試料を作製して、その硬さおよび歪取り焼鈍後の磁気特性などへの影響を調査した。
【0018】
750℃にて1〜2時間均熱する歪取り焼鈍は、結晶粒が十分に成長できる条件であり、無方向性電磁鋼板の磁気特性は、一般的に結晶粒が大きいほどすぐれたものとなる。そこで、これらの鋼の溶製に際しては、結晶粒成長を阻害する析出物や介在物を形成するC、S、N、O、あるいはTiなどの不純物元素の含有をできるだけ低くした。
【0019】
鋼板試料の作製は、素材を1140℃に加熱後熱間圧延をおこない、得られた熱延鋼板は800℃、10時間の焼鈍後、圧延率78%として冷間圧延し厚さ0.5mmにした。冷間圧延後の鋼板は、800℃、30秒の仕上げ焼鈍をおこなった。これは工場出荷状態に対応するが、実際の製品では、表面に絶縁皮膜がコーティングされる。仕上げ焼鈍後の鋼板については、硬さおよび結晶粒径を測定した。
【0020】
仕上げ焼鈍した鋼板から、幅30mm、長さ100mmの試験片を打抜き、750℃、2時間の焼鈍をおこなった後、小形単板磁気測定器により鉄損W15/50および磁束密度B50を測定し、断面にて結晶粒径を調査した。なおこの磁気特性は、長さ方向が圧延に平行および直角の方向となる二種の試験片を採取して測定し、その平均値を求めた。
【0021】
このようにして得られた測定結果から、上記主要元素の含有量のおよぼす影響について整理したところ、いくつかの効果があきらかになってきた。まず、Siは、鉄損低下に効果があるが、仕上げ焼鈍後の硬さに大きく影響するので、多くは含有させられない。AlはSi同様鉄損を低下させるが、多く含有させると磁束密度が低下してくる。MnもAlと同様な効果があるがAlほど影響は大きくないようである。このような傾向からそれぞれの元素の含有限界範囲が大略定まってくる。
【0022】
これら3元素の影響について、さらに相互関係もあわせて調べてみると、
Si(%)+0.5Mn(%)+Al(%) ・・・・・・(3)
の式の値で整理すれば、歪取り焼鈍後の鉄損および磁束密度とよい相関があることがわかった。
【0023】
上記(3)式の値が大きくなると鉄損が低下し、それとともに磁束密度も低下する。したがって鉄損の目標上限値と、磁束密度の目標下限値が決まれば、(3)式の上限値と下限値が設定できる。この式は鋼の電気抵抗とよい相関があり、電気抵抗の増加が鋼板の渦電流損を低下させ、鉄損値を低くするが、一方において、これらの元素の含有量増加は、単位体積あたりのFe量を減少させることになり、磁束密度が低下してくると推測される。
【0024】
しかしながら、各組成の鋼試料の鉄損および磁束密度について調べていくと、上記(3)式だけでは、整理できないものも多くあることがわかった。とくに、Mnの含有量の影響は、(3)式の関係で整理できるときもあるが、そうでない場合もある。そこで、Mnの影響についてさらに検討した結果、次のようなことがあきらかになってきた。
【0025】
Mn量を変えて鉄損など磁気特性を改善しようとするとき、多すぎる添加は好ましくないのである。その限界を調べてみると、
Mn(%)≦Si(%)+2Al(%)−0.5 ・・・・・(2)
を満足している必要があることがわかった。すなわち、Mnの含有量増加は、ある程度SiやAlが含有されていないと効果が得られない。Mn量がこの(2)式を満足しない値になると、(3)式で整理される鉄損や磁束密度と成分含有量との関係が成立しなくなり、予期する磁気特性を大きく下回る性能のものしか得られなくなってしまう。すなわち(3)式を使って目的の磁気特性を有する電磁鋼板得るための成分選定ができなくなる。
【0026】
この(2)式で示された条件は、主として歪取り焼鈍時の結晶粒成長性に関係しているようであり、Mn含有量が(2)式の値を満足しない場合、結晶粒が大きくなりにくい。SiおよびAlはフェライト相生成元素であるが、Mnはオーステナイト相生成元素である。このため、熱間圧延や熱延板焼鈍の過程で、変態温度低下により粒成長を阻害する微細析出物の分散状態に影響し、これが歪取り焼鈍時の結晶粒成長に影響しているのではないかと思われた。
【0027】
無方向性電磁鋼板の磁気特性向上には、前述のように電気抵抗を増すことが鉄損改善に効果があり、合金成分を必要以上に多くしないことが磁束密度確保に有効である。そして結晶粒径を大きくすることは、磁化によるヒシテリシス損を低減させるので、鉄損低減に効果がある。Mn量が不適当で(2)式が満足されない場合、結晶粒の成長が不十分となると推測されたが、結晶粒が大きくならないことはこのように磁気特性が改善されない結果となる。
【0028】
また、MnはPとの相互作用があり、P量が高くなるとMn量を増すことによる鉄損の低減効果が小さくなることがわかった。その上、P量が高ければ、Mn増加により磁束密度が低下するが、P量を少なくすると、Mnを増すことにより磁束密度が増加する傾向も見出された。したがって、Mn含有量を増加して鉄損低下など磁気特性を改善しようとするとき、P含有量はできるだけ少なくする方がよい。
【0029】
フルプロセス無方向性電磁鋼板の場合、Pは少量で鋼板の硬さを増加させ、しかも磁気特性にはほとんど影響しないので、打抜き性の改善に好んで添加される。これに対しセミプロセス無方向性電磁鋼板では、歪取り焼鈍の前に打抜きがおこなわれるので、仕上げ焼鈍条件を制御して結晶粒径を小さくしたり、歪みを導入したりして硬くできるので、Pを多く添加する必要はない。
【0030】
無方向性電磁鋼板の磁気特性向上には、前述のように合金元素をできるだけ増さないで電気抵抗を大きくすること、そして結晶粒径を大きくすることが鉄損改善に効果があるが、それに加えて、鋼板を構成する結晶の優先方位、すなわち集合組織が磁化に好ましい状態であるとき、ヒシテリシス損減少による鉄損低減が得られ、その上磁束密度が向上する。
【0031】
Mn含有量とP含有量がそれぞれ異なる歪取り焼鈍後の鋼板試料にて、板面に平行な{222}結晶方位についてのX線回折積分強度を調べてみると、Mn量が少なくP量が多い場合はこの{222}面の積分強度が強く、Mn量が多くP量が少ない場合はその強度が弱い。集合組織として板面に平行な{222}面の積分強度が強いということは、鋼板が磁化される板面方向において、鉄の結晶の容易磁化方位である<100>軸の存在量が少ないことを意味しており、それが磁化特性が劣る結果をもたらしたと考えられる。MnとPの存在が、何故このように集合組織に影響するのかその理由はよくわからないが、Mn量とP量とを制御することにより、歪取り焼鈍後の磁気特性を向上させ得ることはあきらかである。
【0032】
鋼の組成に関し、上述のようにして範囲を選定するとともに、鋼塊をセミプロセス無方向性電磁鋼板とするための、好ましい製造条件についても種々検討をおこなった。まず、熱間圧延をおこなう際の鋼片加熱温度は、できるだけ低くすることが、歪取り焼鈍時の結晶粒成長を促進するために必要である。しかし、過度に低くすると熱間圧延加工が困難になったり、熱延板の焼鈍時に結晶粒が十分成長しないこともあるので、加熱温度範囲は限定される。
【0033】
無方向性電磁鋼板の製造に一般的に用いられている熱間圧延後の熱延板の焼鈍は、このセミプロセス無方向性電磁鋼板においても磁気特性を向上させる。これは、冷間圧延前の鋼板の結晶粒を大きくしておくことにより、冷間圧延後の焼鈍で、鋼板の磁気特性に好ましい集合組織が形成されるためとされている。さらに微細析出物の分布や形態を変化させ、歪取り焼鈍の際の結晶粒成長を阻害しないようにする効果もあると考えられる。
【0034】
冷間圧延後の仕上げ焼鈍は、フルプロセス無方向性電磁鋼板の場合、十分に焼鈍して圧延の加工歪みを取り結晶粒を大きくしておく必要がある。しかし、セミプロセス無方向性電磁鋼板では、後で歪取り焼鈍が施されるので、打抜きに適した硬さとし、歪取り焼鈍時に結晶粒成長が容易になる適度の大きさの結晶粒になるよう、焼鈍温度は低く抑える。
【0035】
以上のような検討結果に基づき、セミプロセス電磁鋼板製品として良好な打抜き性を示す領域である、ビッカース硬さHV125〜145の範囲内にあること、そして750℃、2時間の歪取り焼鈍後の磁気特性が板厚が0.5mmに対し鉄損は3.0W/kg以下でかつ磁束密度は1.70以上であること、を目標とし、成分範囲および製造方法の限界条件をさらに検討した。本発明は、このような検討の結果によるものであり、その要旨は以下のとおりである。
【0036】
(1)質量%にてC:0.005%以下、Si:0.4〜1.7%、Mn:0.65〜1.5%、sol.Al:0.3〜2.3%、P:0.02 以下、S:0.004%以下、Ti:0.002%以下、N:0.005%以下で、残部がFeおよび不純物であり、Si、MnおよびAlの含有量が下記(1)および(2)式を満足し、平均結晶粒径が10〜35μmであることを特徴とするセミプロセス無方向性電磁鋼板。
【0037】
2≦Si(%)+0.5Mn(%)+Al(%)≦3 ・・・・・(1)
Mn(%)≦Si(%)+2Al(%)−0.5 ・・・・・(2)
(2)質量%にてC:0.005%以下、Si:0.4〜1.7%、Mn:0.65〜1.5%、sol.Al:0.3〜2.3%、P:0.02 以下、S:0.004%以下、Ti:0.002%以下、N:0.005%以下で、残部がFeおよび不純物であり、Si、MnおよびAlの含有量が下記(1)および(2)式を満足し、平均結晶粒径が10〜35μmであって、かつ750℃、2時間の歪取り焼鈍後、板面に平行な{222}結晶方位の積分強度が3.0未満であることを特徴とするセミプロセス無方向性電磁鋼板。
【0038】
2≦Si(%)+0.5Mn(%)+Al(%)≦3 ・・・・・(1)
Mn(%)≦Si(%)+2Al(%)−0.5 ・・・・・(2)
(3)鋼片加熱温度を1000〜1160℃として熱間圧延し、得られた熱延板に750〜950℃で5〜50時間の箱焼鈍、または950〜1100℃の連続焼鈍を施し、冷間圧延後、700〜900℃にて仕上げ焼鈍をおこなうことを特徴とする上記(1)または(2)のセミプロセス無方向性電磁鋼板の製造方法。
【0039】
【発明の実施の形態】
本発明の無方向性電磁鋼板において、成分範囲を限定した理由は次のとおりである。含有量はいずれも質量%で示す。
【0040】
C:0.005%以下
Cは鋼の磁気特性を低下させるので、その含有量は少なければ少ないほどよい。0.005%以下であればその影響はほとんど無視できるが、0.005%を超えると磁気時効を生じ使用中の磁気特性劣化をもたらすことがあるので、0.005%以下とする。なお0.0005%以上含有していると打抜き性が改善されることもある。
【0041】
Si:0.4〜1.7%
Siは鋼の電気抵抗を増し、硬さを上昇させる。このため鉄損低減および打抜き性確保のため含有させるが、0.4%未満ではこのような効果が十分得られない。しかし、1.7%を超えると硬くなりすぎ、打抜き工具の摩耗が増大する。したがって含有範囲を0.4〜1.7%とするが、好ましい磁気特性と硬さを得るには0.6〜1.4%とするのが望ましい。
【0042】
Mn:0.65〜1.5%
Mnは、電磁鋼板に対しては、鋼に不可避的に混入してくるSが微細析出物となって、結晶粒成長を阻害しないよう、0.2〜0.3%程度含有させるのが普通である。しかし、Mnは、鉄損の低減や磁気特性に好ましい集合組織をもたらす効果があり、本発明では通常よりは多く含有させる。このMnの効果を十分発揮させるにはSiおよびAlを多く含有させる必要があり、それによる硬さ上昇や磁束密度低下が著しくなるので、Mnの含有量は多くても1.5%までとする。
【0043】
sol.Al:0.3〜2.3%
sol.Al(酸可溶Al)はSiと同様、電気抵抗を増加させ、鉄損を低減させる効果がある。Alの添加はSiに比し鋼の硬さの上昇が少ないので、鉄損の低減に有効に利用できる。この鉄損低減の作用を効果的に活用するため0.3%以上を含有させる。また鋼中のNはAlと結合してAlNを形成し、AlNが微細に分散していると磁気特性に悪影響をもたらすが、sol.Alを0.3%以上含有させれば、AlN析出物が粗大になり無害化する効果もある。しかし、sol.Alは多くなると磁束密度が低下してくるので、2.3%までとする。上記のようなsol.Al含有の効果をより十分に発揮させるためには、その含有範囲を0.5〜1.5%とするのが望ましい。
【0044】
Si、MnおよびAlの個々の元素の含有範囲は上記のとおりであるが、これらの三元素を含有させたセミプロセス無方向性電磁鋼板とするときは、各元素の含有量は、次の▲1▼式および▲2▼式を満足していなければならない。
【0045】
2 ≦ Si(%)+0.5Mn(%)+Al(%) ≦ 3 ・・・・・ ▲1▼
Mn(%) ≦ Si(%)+2Al(%)−0.5 ・・・・・ ▲2▼
▲1▼式中央のSi、MnおよびAlの合計量、すなわち前出▲3▼式の値は、2(%)を下回るときは歪取り焼鈍後の鉄損が高くなってしまい、3(%)を超えるときは磁束密度が低下し、いずれも磁気特性としては劣るものとなる。またMnの含有量は▲2▼式を満足する範囲でなければならず、この範囲を超えてMn含有量が高いときは、鉄損、磁束密度とも劣った特性になる。
【0046】
P:0.02 以下
Pは少量の含有で硬さを大きく上昇させる作用があり、打抜き性改善のために硬さを確保する場合、効果的に使用できる。しかしながら本発明においては、Pの含有量を0.02 以下に限定する。これはMn量が高い場合、0.02 を超えるPの含有は磁気特性を悪くするからである。
【0047】
前述の主要元素の歪取り焼鈍後の磁気特性におよぼす効果を調査した際の、Mn含有量の異なる材料にて、鉄損および磁束密度におよぼすP含有量の影響を調べた結果の例を図1および図2に示す。この場合、Siは1.0%、Alは1.0%の一定とし、圧延や焼鈍などの条件はすべて同じとしている。
【0048】
これらの図から、P含有量を低減すると鉄損は低下し、磁束密度が増加する傾向のあることがわかる。ところが、Mn含有量が0.7%の場合は、Mnが0.2%の場合に比較して、P含有量低減による鉄損の低下は大きく、そして磁束密度の向上ははるかに大きいのである。これからMnを多く含有させるとき、P含有量は低く、すなわち0.02 以下とするのが、磁気特性向上に有効であることがあきらかである。
【0049】
このようにPの含有量は0.02 以下とするが、少なければ少ないほど磁気特性は向上する。
【0050】
S:0.004%以下
Sは微細析出物を形成し、結晶粒成長を阻害するばかりでなく、磁気特性を悪くするので少なければ少ないほどよい。このような悪影響が現れない範囲として0.004%以下に限定する。
【0051】
Ti:0.002%以下
Tiは原料鉄鉱石等から混入してくるが、C、SおよびNなどと結合して微細な析出物を形成し、結晶粒の成長を著しく阻害する。したがって歪取り焼鈍にて結晶粒成長をさせるセミプロセス無方向性電磁鋼板においては、極力低減する必要がある。このような悪影響が顕著に現れない範囲として0.002%以下に限定する。
【0052】
N:0.005%以下
NはTiやAlと結合して微細な析出物を形成し結晶粒成長を阻害する。したがってこのような影響が現れないように、0.005%以下に限定するが、その含有量は少なければ少ないほどよい。
【0053】
セミプロセス無方向性電磁鋼板の平均結晶粒径は10〜35μmであることとする。これは鋼板の硬さが打抜き性に好ましい硬さになっているためである。10μmを下回る場合、硬すぎて打抜き金型の摩耗が進みやすい。35μmを超えると柔らかすぎて、打抜き品の寸法精度低下を来したり、降伏点の低下により、スリットコイルにしたとき巻き癖を残すことがある。また、この歪取り焼鈍前の鋼板の結晶粒径は、小さすぎても大きすぎても、歪取り焼鈍時の粒成長がよくない結果を示すので、平均結晶粒径は10〜35μmとする。
【0054】
750℃、2時間の歪取り焼鈍をおこなった後の鋼板において、板面に平行な{222}面のX線回折積分強度が3.0未満であることが好ましい。{222}面の積分強度は鉄損および磁束密度とよい相関があり、この値が小さいほどすぐれた磁気特性を示す。歪取り焼鈍後に、よりすぐれた磁気特性を示す場合は、{222}面の積分強度が3.0以下になる。この積分強度は、全く集合組織を持たない鉄の結晶粉末試料における{222}のX線回折積分強度を1としたときの比で示した相対強度であり、0までの値を取り得る。この値は小さければ小さいほど相対的に板面方向の磁気特性に好ましい方位が増すと考えられるので、とくに下限値は定めないが、望ましいのは2.0以下である。
【0055】
なお、この積分強度の測定は、板厚方向の位置での平均値に近い値が得られるので、板面に平行な1/4厚さの位置とする。
【0056】
上述のセミプロセス無方向性電磁鋼板の製造は、通常の無方向性電磁鋼板の製造方法に準じておこなえばよく、とくに目的とする特性を実現するために次のような点に配慮するとよい。
【0057】
熱間圧延の鋼片加熱温度を1000〜1160℃とする。1160℃を超える温度に加熱すると、結晶粒成長性が悪くなり、歪取り焼鈍後に十分な磁気特性が得られなくなる。これは、1160℃を超える加熱は、MnSなどの析出物相が再固溶してしまい、熱間圧延中に有害な微細析出物化するためである。しかし加熱温度を低くしすぎると、熱間圧延や冷間圧延での板厚精度低下の原因になることがあるので1000℃以上とする。
【0058】
熱間圧延後、熱延板の焼鈍をおこなう。この焼鈍は、歪取り焼鈍時の粒成長性をよくし、磁気特性を向上させる効果があり、コイル箱焼鈍法でも連続焼鈍法でもよい。箱焼鈍法の場合、750〜950℃で、5〜50時間均熱がよく、連続焼鈍法の場合は、950〜1100℃の加熱でよい。この焼鈍は、冷間圧延前の鋼板の結晶粒を大きくし、微細析出物を凝集させたり粗大化させ無害化する効果がある。焼鈍の温度または時間が上記の範囲を下回る場合は、このような効果が十分得られず、その限定範囲を超える場合は、それ以上の改善が得られず無駄な加熱となるばかりでなく、析出相の再固溶が生じ、粒成長性を悪くすることもある。
【0059】
焼鈍後の熱延板は、目的とする板厚にまで冷間圧延するが、冷間圧延率は60〜90%の範囲でおこなえばよく、要すれば中間で焼鈍してもよい。冷間圧延率がこの範囲であれば、目的とするセミプロセス無方向性電磁鋼板製品としての平均結晶粒にすることができる。
【0060】
冷間圧延後の仕上げ焼鈍は、通常の無方向性電磁鋼板の連続焼鈍処理設備でおこなうが、温度範囲は700〜900℃とすればよい。仕上げ焼鈍温度が700℃未満では、十分に軟化せず打抜きには硬すぎたり、結晶粒が小さすぎる結果になり、900℃を超える場合、打抜きには柔らかすぎたり、結晶粒が大きくなりすぎて、コイルにしたときの巻き癖が生じて打抜き後鉄心の積層不良を生じやすくする。焼鈍の均熱時間は、この温度に到達すればよく、とくには限定しないが、長すぎても生産性を低下させるだけなので、60秒以下とするのがよい。
【0061】
【実施例】
〔実施例1〕
表1に示す組成の鋳片を真空溶解にて溶製し、加熱温度を1150℃として熱間圧延して3mmに仕上げ、これら熱延鋼板を800℃にて10時間焼鈍後、表面の脱スケ−ルおよび研削をおこなって板厚2.3mmとし、冷間圧延して0.5mm厚とした。得られた鋼板は、800℃にて30秒間の仕上げ焼鈍をおこなった後、結晶粒径および表面硬さを測定した。仕上げ焼鈍後の鋼板から幅30mm、長さ100mmの試験片をプレス打抜きにより、試験片の長さ方向が圧延方向および圧延直角方向となるように取り、750℃、2時間の歪取り焼鈍焼鈍して、小形単板磁気測定器により平均の鉄損W15/50および磁束密度B50を測定し、断面にて結晶粒径の調査、1/4厚さ位置にてX線回折による{222}面の反射積分強度を測定した。
【0062】
結果を表2に示すが、試験番号2、3、6、7および8が、当初目標とした歪取り焼鈍後の磁気特性が鉄損W15/50が3.0W/kg以下、磁束密度B50が1.7以上という判定基準を満たす結果になっている。これに対し、試験番号4および10は鉄損が3.0W/kgを超えており、試験番号5および9は磁束密度が1.7を下回っている。試験番号4、5および9はいずれも式(1)にて規制したSi、MnおよびAl含有量の関係を逸脱するものであり、試験番号10はMn量が規制範囲を超えているばかりでなく、式(2)にて規制する範囲も満足していない。また、試験番号1は、歪取り焼鈍後磁気特性は目標値を超えているが、硬さが高く好ましくない。
【0063】
【表1】

Figure 0004269138
【0064】
【表2】
Figure 0004269138
【0065】
〔実施例2〕
転炉にて精錬し真空処理後連続鋳造して得た、厚さ230mmの表3に示す化学組成の鋼片を用い、加熱温度1140℃として熱間圧延をおこない厚さ2.3mmの熱延鋼板とした。熱延鋼板は水素雰囲気中にて800℃、10時間の焼鈍をおこなった後、冷間圧延して0.5mm厚とし、連続処理ラインにて仕上げ焼鈍を施し表面に絶縁皮膜を塗布した。このようにして得られた鋼板について、表面硬さおよび結晶粒径を測定した。これらの鋼板から幅30mm、長さ280mmの試験片を長さ方向が圧延方向または幅方向となるようにして二方向で採取し、窒素雰囲気中にて750℃、2時間の歪取り焼鈍をおこなった。歪取り焼鈍後の試験片はJIS-C-2550に準じてエプスタイン枠を用い鉄損W15/50および磁束密度B50を測定した。またこれらの試験片については、平均結晶粒径および1/4厚さ位置における{222}面積分強度も測定した。上述の各特性の測定結果を表4に示す。
【0066】
【表3】
Figure 0004269138
【0067】
【表4】
Figure 0004269138
【0068】
表3にて鋼番号MおよびNは、化学成分が本発明で定める範囲に入っているが、他の番号の鋼はいずれも本発明範囲外である。これら二種の鋼から製造された電磁鋼板は、表4の特性測定結果の試験番号13および14と他の試験結果との比較からあきらかなように、歪取り焼鈍後の鉄損が低く、かつ磁束密度が高い結果を示している。また、{222}面積分強度も他の鋼の場合に比し低い値となっている。
【0069】
〔実施例3〕
表3にて、MおよびNとして示した化学組成の鋼片を用い、熱間圧延の加熱温度、熱延板の焼鈍条件、および冷間圧延後の仕上げ焼鈍温度を変え、得られた鋼板について、表面硬さおよび結晶粒径を測定し、さらに試験片を切り出して歪取り焼鈍のおこなった後、磁気特性および{222}面積分強度を測定した。これら鋼板の特性測定方法はいずれも実施例2と同じである。この場合、内径510mm幅80mmのスリットコイルの内径近くから長さ300mmを切り出し、定盤上においてそのそり高さを測定することにより、巻き癖の発生を調査した。これらの処理条件、および特性測定結果を合わせて表5に示す。
【0070】
【表5】
Figure 0004269138
【0071】
鋼番号MおよびNは、化学組成がいずれも本発明で規定する範囲内である。このため、表5の結果では、歪取り焼鈍後の磁気特性はほとんどの場合、W15/50が3.0W/kg以下、B50が1.70以上という当初の目標値が達成されている。そして、試験番号21、23、28および30の結果と、試験番号19、20、22、24、25、26、27、29、31および32の結果との対比から、本発明の組成範囲を有する鋼にて、鋼板製造工程の諸条件を限定することにより、さらに一層すぐれた歪取り焼鈍後磁気特性を有するセミプロセス無方向性電磁鋼板の得られることがわかる。
【0072】
ただし、仕上げ焼鈍の温度が低すぎる試験番号24および31では、結晶粒が小さく硬さの高い鋼板となっており、仕上げ焼鈍温度が高すぎる試験番号25および32では、結晶粒が大きくなりすぎて、コイルに巻き癖が残って切り出し試験片にそりが生じている。
【0073】
【発明の効果】
本発明のセミプロセス無方向性電磁鋼板は、打抜き性に好ましい硬さを有し、歪取り焼鈍後の磁気特性がすぐれている。したがって、小形のモータや変圧器など電気機器用の鉄心として、とくに歪取り焼鈍して使用する場合に、低損失かつ高効率な機器とすることができ、省エネルギーなど産業へ寄与が大きい。
【図面の簡単な説明】
【図1】歪取り焼鈍後の鉄損W15/50におよぼす、Mn量が異なる場合のP含有量の影響を示す図である。
【図2】歪取り焼鈍後の磁束密度B50におよぼす、Mn量が異なる場合のP含有量の影響を示す図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a non-oriented electrical steel sheet that is applied to a core material of an electrical device such as a motor and is used after performing post-molding distortion removal annealing such as punching, that is, a semi-processed non-oriented electrical steel sheet.
[0002]
[Prior art]
From the viewpoint of global warming prevention and energy saving, various types of electrical equipment are being made more efficient. Iron core electrical steel sheets used in rotating machines and transformers are also low in cost and low in iron. It is required to have excellent magnetic properties such as loss and high magnetic flux density.
[0003]
Non-oriented electrical steel sheets are mainly used for small motors and small transformers, but for these small electrical devices, in addition to the above-mentioned low iron loss and high magnetic flux density, punchability It is also required to be excellent.
[0004]
As a means for reducing the iron loss value of the non-oriented electrical steel sheet, it is known that a method of increasing the crystal grain size by increasing the contents of Si, Al and Mn is known. However, an increase in the content of Si, Al or Mn decreases the magnetic flux density, and further, an increase in the content of these elements hardens the steel, leading to a deterioration in punchability, that is, an increase in tool wear during continuous punching. In addition, the larger crystal grains compared to the complicated core shape of a small motor is one of the factors that increase flashing and burr and deteriorate the processing accuracy of punched products.
[0005]
In this way, the means that can be taken to improve the characteristics of non-oriented electrical steel sheets are that other required characteristics often deteriorate if attention is focused on one characteristic, and the steel sheet maker is a consumer. The production of electrical steel sheets with better performance is being promoted from the balance between the characteristics desired by the company and the production costs.
[0006]
Conventionally, in the United States, mild rolling distortion has been added to the small motor core in the United States, assuming that it will be annealed by the customer after punching, and the grains become coarse due to the annealing by the customer. Many electrical steel sheets, which are said to be semi-processed materials, have been used. On the other hand, a material that is sufficiently annealed on the steel manufacturer side to have the required electromagnetic characteristics and that can be used without annealing by the customer is called a full process material.
[0007]
In Japan, non-oriented electrical steel sheets mainly for small motors have often taken the form of full process materials. However, it has been known on the side of customers such as small motor manufacturers that motor performance is greatly improved by performing strain relief annealing after punching into the required shape such as a motor core even with this full process material. . As the demand for higher performance of motors increases, it is common to incorporate this strain relief annealing process into the production line.
[0008]
When a processing method such as a semi-process material that performs strain relief annealing is widely adopted by customers, naturally, products corresponding to this will be desired. Steel manufacturers usually manufacture electrical steel sheets with the goal of having good characteristics at the time of shipment, but semi-processed materials are good after strain relief annealing even if their magnetic properties are poor at the time of shipment. The premise is that characteristics can be obtained.
[0009]
For this reason, it is desired that the grain growth easily occurs at the time of strain relief annealing, and that the texture formed at that time is more favorable for the magnetic properties of the non-oriented electrical steel sheet. In the case of a full-process material, it is desirable to increase the crystal grains in order to ensure the magnetic properties, and it tends to be a soft steel plate. When the hardness is lowered, the punchability is deteriorated due to the deterioration of dimensional accuracy due to an increase in burr and drool. Therefore, it is necessary to contain a component for maintaining the hardness. However, even if the semi-processed material is softened after strain relief annealing, this is not an object of necessary characteristics, so that there is an advantage that the component limitation considering punchability is relaxed.
[0010]
As a measure to improve the magnetic properties of non-oriented electrical steel sheets, it is generally based on ultra-low carbon steel with C of 0.01% or less, such as S and O that cause the formation of non-metallic inclusions that deteriorate the magnetic properties. Steel with a composition that appropriately contains elements that increase the electrical resistance of Si and Al, improve the magnetic properties, and increase the hardness appropriately is used as much as possible, and the manufacturing process is after hot rolling. The means of performing hot-rolled sheet annealing before cold rolling is employed.
[0011]
For semi-process type non-oriented electrical steel sheets, in addition to the composition and manufacturing method, several inventions with further improvements have been proposed, especially on the premise of being subjected to strain relief annealing after punching. For example, JP-A-8-3699 discloses a strain relief annealing in which Si is 1.0% or less, Al is 0.2 to 1.5%, Ti is 15 ppm or less, Zr is reduced to 80 ppm or less, and REM is contained in 2 to 80 ppm. A later non-oriented electrical steel sheet invention with excellent iron loss was disclosed, and JP-A-8-325678 discloses a steel sheet having a similar composition containing REM, except that Si is 1.0 to 2.5%. It is disclosed.
[0012]
In addition, the invention disclosed in Japanese Patent Laid-Open No. 11-158589 particularly limits the amount of impurity Ti within a range of 0.0015 to 0.0050%, and suppresses variations in magnetic properties after strain relief annealing. Kai 2001-294997 discloses an invention of a non-oriented electrical steel sheet in which the total content of Si and Al is in the range of 1.6 to 2.7%, and the magnetic flux density is improved after strain relief annealing. Yes.
[0013]
In these inventions, all steel sheets subjected to sufficient annealing during the cold rolling after hot rolling or during the cold rolling after hot rolling are processed by punching or the like. When it is subjected to stress relief annealing later, good magnetic properties are obtained.
[0014]
As described above, various developments have been made on semi-processed non-oriented electrical steel sheets on the premise of strain relief annealing by customers, but it has excellent punching workability, which is a characteristic of semi-process materials, and after strain relief annealing. In particular, it is difficult to say that a sufficiently satisfactory steel sheet has been obtained from the viewpoint that good magnetic properties are obtained and that it can be reasonably manufactured.
[0015]
[Problems to be solved by the invention]
  The object of the present invention is a semi-processed non-oriented electrical steel sheet that has excellent punching properties and exhibits excellent magnetic properties when subjected to strain relief annealing.And manufacturing method thereofIs in the provision of.
[0016]
[Means for Solving the Problems]
The present inventors have made various studies in order to improve the performance of semi-processed non-oriented electrical steel sheets that are subjected to strain relief annealing by customers. Strain relief annealing is currently adopted by customers as a standard condition of soaking for 1 to 2 hours at 750 ° C after punching, and excellent magnetic properties are obtained when this annealing is performed. Must be. However, since punching is performed before strain relief annealing, it goes without saying that a surface insulation coating is applied to improve punchability when shipped from the factory, but the dimensional accuracy of the punched product is good. In order to reduce tool wear, the hardness needs to be in an appropriate range.
[0017]
Usually, Si, Al, Mn, P and the like are added to the non-oriented electrical steel sheet. Therefore, in order to reconfirm the effects of these main elements, steels with various contents were melted, magnetic steel sheet samples were prepared, and their effects on hardness and magnetic properties after strain relief annealing were investigated. did.
[0018]
The strain relief annealing that soaks at 750 ° C for 1 to 2 hours is a condition that allows the crystal grains to grow sufficiently, and the magnetic properties of non-oriented electrical steel sheets generally become better as the crystal grains become larger. . Therefore, in the melting of these steels, the content of impurity elements such as C, S, N, O, and Ti that form precipitates and inclusions that inhibit crystal grain growth was made as low as possible.
[0019]
Preparation of the steel plate sample was performed by hot rolling after heating the material to 1140 ° C, and the obtained hot-rolled steel plate was annealed at 800 ° C for 10 hours and then cold-rolled at a rolling rate of 78% to a thickness of 0.5 mm. . The steel sheet after cold rolling was finish-annealed at 800 ° C. for 30 seconds. This corresponds to the factory shipment state, but in an actual product, the surface is coated with an insulating film. About the steel plate after finish annealing, the hardness and the crystal grain size were measured.
[0020]
A 30mm wide, 100mm long test piece is punched from the steel sheet that has been annealed, annealed at 750 ° C for 2 hours, and then subjected to iron loss W using a small single plate magnetic measuring instrument.15/50And magnetic flux density B50Was measured, and the crystal grain size was examined in the cross section. The magnetic properties were measured by collecting two types of test pieces whose length directions were parallel and perpendicular to the rolling, and the average value was obtained.
[0021]
From the measurement results obtained in this way, the effects of the contents of the main elements are summarized, and several effects have become apparent. First, Si is effective in lowering iron loss, but it greatly affects the hardness after finish annealing, so a large amount cannot be contained. Al decreases the iron loss like Si, but if it is contained in a large amount, the magnetic flux density decreases. Mn has the same effect as Al, but the effect is not as great as that of Al. From this tendency, the content limit range of each element is roughly determined.
[0022]
  When we investigate the effects of these three elements together,
Si (%) + 0.5Mn (%) + Al (%) ・ ・ ・ ・ ・ ・(3)
It was found that there is a good correlation with the iron loss and magnetic flux density after strain relief annealing.
[0023]
  the above(3)As the value of the equation increases, the iron loss decreases, and the magnetic flux density also decreases. Therefore, once the target upper limit of iron loss and the target lower limit of magnetic flux density are determined,(3)The upper and lower limits of the formula can be set. This equation has a good correlation with the electrical resistance of steel, and increasing the electrical resistance reduces the eddy current loss of the steel sheet and lowers the iron loss value, while increasing the content of these elements per unit volume It is presumed that the magnetic flux density will decrease as the amount of Fe decreases.
[0024]
  However, when examining the iron loss and magnetic flux density of the steel samples of each composition,(3)It turns out that there are many things that cannot be organized by the formula alone. In particular, the influence of the Mn content is(3)Sometimes it can be organized in relation to formulas, but sometimes it is not. Then, as a result of further examination about the influence of Mn, the following has become apparent.
[0025]
  When the amount of Mn is changed to improve magnetic properties such as iron loss, too much addition is not preferable. When I examine the limits,
    Mn (%) ≤ Si (%) + 2Al (%) -0.5(2)
It was found that it was necessary to be satisfied. That is, the increase in the Mn content cannot be achieved unless Si or Al is contained to some extent. Mn amount is this(2)If the value does not satisfy the expression,(3)The relationship between the iron loss and magnetic flux density arranged in the formula and the component content is not established, and only the performance that is significantly lower than the expected magnetic characteristics can be obtained. Ie(3)Electrical steel sheet with desired magnetic properties using the formulaTheIt becomes impossible to select components for obtaining.
[0026]
  this(2)The condition shown by the equation seems to be mainly related to the crystal grain growth during the stress relief annealing, and the Mn content is(2)If the value of the formula is not satisfied, the crystal grains are difficult to increase. Si and Al are ferrite phase forming elements, while Mn is an austenite phase forming element. For this reason, in the process of hot rolling and hot-rolled sheet annealing, it affects the dispersion state of fine precipitates that hinder grain growth by lowering the transformation temperature, and this affects the grain growth during strain relief annealing. I thought it was.
[0027]
  In order to improve the magnetic properties of the non-oriented electrical steel sheet, increasing the electrical resistance as described above is effective in improving the iron loss, and ensuring that the alloy components are not increased more than necessary is effective in securing the magnetic flux density. Increasing the crystal grain size is effective for reducing iron loss because it reduces hysteresis loss due to magnetization. Inappropriate amount of Mn(2)If the equation is not satisfied, it has been estimated that the growth of crystal grains is insufficient. However, the fact that the crystal grains do not increase does not improve the magnetic characteristics in this way.
[0028]
Further, it has been found that Mn has an interaction with P, and when the amount of P increases, the effect of reducing iron loss by increasing the amount of Mn decreases. In addition, if the amount of P is high, the magnetic flux density decreases due to an increase in Mn, but if the amount of P is decreased, a tendency that the magnetic flux density increases due to an increase in Mn has also been found. Therefore, when increasing the Mn content to improve magnetic properties such as lowering iron loss, it is better to reduce the P content as much as possible.
[0029]
In the case of a full process non-oriented electrical steel sheet, a small amount of P increases the hardness of the steel sheet and has little influence on the magnetic properties, so it is preferably added to improve punchability. On the other hand, in semi-processed non-oriented electrical steel sheets, punching is performed before strain relief annealing, so it can be hardened by controlling the finish annealing conditions to reduce crystal grain size or introducing strain. It is not necessary to add much P.
[0030]
To improve the magnetic properties of non-oriented electrical steel sheets, increasing the electrical resistance without increasing the alloy elements as much as possible and increasing the crystal grain size are effective in improving iron loss. In addition, when the preferred orientation of the crystals constituting the steel sheet, that is, the texture is in a state favorable for magnetization, iron loss can be reduced by reducing hysteresis loss, and magnetic flux density can be improved.
[0031]
When examining the X-ray diffraction integrated intensity for the {222} crystal orientation parallel to the plate surface in the steel plate samples after strain relief annealing with different Mn content and P content, the Mn content is small and the P content is low. When the amount is large, the integral strength of the {222} plane is strong, and when the amount of Mn is large and the amount of P is small, the strength is weak. The strong integrated strength of the {222} plane parallel to the plate surface as a texture means that the <100> axis, which is the easy magnetization orientation of iron crystals, is small in the plate surface direction where the steel plate is magnetized. This is considered to have resulted in inferior magnetization characteristics. The reason why the presence of Mn and P affects the texture in this way is not well understood, but it is clear that the magnetic properties after strain relief annealing can be improved by controlling the amount of Mn and the amount of P. It is.
[0032]
Regarding the composition of the steel, the range was selected as described above, and various studies were also conducted on preferable manufacturing conditions for making the steel ingot a semi-processed non-oriented electrical steel sheet. First, it is necessary to make the steel slab heating temperature during hot rolling as low as possible in order to promote crystal grain growth during strain relief annealing. However, if the temperature is too low, the hot rolling process becomes difficult, and the crystal grains may not grow sufficiently during annealing of the hot-rolled sheet, so the heating temperature range is limited.
[0033]
Annealing of a hot-rolled sheet after hot rolling, which is generally used in the manufacture of non-oriented electrical steel sheets, improves the magnetic properties even in this semi-processed non-oriented electrical steel sheet. This is because by increasing the crystal grains of the steel sheet before cold rolling, a texture favorable to the magnetic properties of the steel sheet is formed by annealing after cold rolling. Further, it is considered that there is an effect of changing the distribution and form of fine precipitates so as not to inhibit the crystal grain growth during the strain relief annealing.
[0034]
In the case of a full-process non-oriented electrical steel sheet, the finish annealing after the cold rolling needs to be sufficiently annealed to take up the processing distortion of the rolling and enlarge the crystal grains. However, since the semi-processed non-oriented electrical steel sheet is subjected to strain relief annealing later, the hardness should be suitable for punching, so that the crystal grains are of an appropriate size that facilitates grain growth during strain relief annealing. Keep the annealing temperature low.
[0035]
Based on the above examination results, it is in the range of Vickers hardness HV125 to 145, which is a region showing good punchability as a semi-processed electrical steel sheet product, and after 750 ° C, 2 hours of strain relief annealing With a goal of magnetic properties of a core thickness of 0.5 mm or less and an iron loss of 3.0 W / kg or less and a magnetic flux density of 1.70 or more, the component range and manufacturing method limit conditions were further investigated. The present invention is based on the results of such studies, and the gist thereof is as follows.
[0036]
  (1) In mass%, C: 0.005% or less, Si: 0.4 to 1.7%, Mn: 0.65 to 1.5%, sol. Al: 0.3 to 2.3%, P:0.02 %Hereinafter, S: 0.004% or less, Ti: 0.002% or less, N: 0.005% or less, the balance is Fe and impurities, and the contents of Si, Mn and Al are as follows.(1)and(2)A semi-processed non-oriented electrical steel sheet satisfying the formula and having an average crystal grain size of 10 to 35 μm.
[0037]
    2 ≦ Si (%) + 0.5Mn (%) + Al (%) ≦ 3(1)
    Mn (%) ≤ Si (%) + 2Al (%) -0.5(2)
  (2) By mass%: C: 0.005% or less, Si: 0.4-1.7%, Mn: 0.65-1.5%, sol.Al: 0.3-2.3%, P:0.02 %Hereinafter, S: 0.004% or less, Ti: 0.002% or less, N: 0.005% or less, the balance is Fe and impurities, and the contents of Si, Mn and Al are as follows.(1)and(2)The average grain size is 10 to 35 μm, and the integrated intensity of {222} crystal orientation parallel to the plate surface is less than 3.0 after distorted annealing at 750 ° C. for 2 hours. Semi-process non-oriented electrical steel sheet.
[0038]
    2 ≦ Si (%) + 0.5Mn (%) + Al (%) ≦ 3(1)
    Mn (%) ≤ Si (%) + 2Al (%) -0.5(2)
  (3) Hot-rolling at a billet heating temperature of 1000 to 1160 ° C, and subjecting the obtained hot-rolled sheet to box annealing at 750 to 950 ° C for 5 to 50 hours or continuous annealing at 950 to 1100 ° C, The method for producing a semi-processed non-oriented electrical steel sheet according to (1) or (2), wherein finish annealing is performed at 700 to 900 ° C. after the hot rolling.
[0039]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the component range is limited in the non-oriented electrical steel sheet of the present invention is as follows. All the contents are indicated by mass%.
[0040]
C: 0.005% or less
C lowers the magnetic properties of the steel, so the lower the content, the better. If it is 0.005% or less, the effect is almost negligible. However, if it exceeds 0.005%, magnetic aging occurs and magnetic characteristics may be deteriorated during use. In addition, if it contains 0.0005% or more, the punchability may be improved.
[0041]
Si: 0.4-1.7%
Si increases the electrical resistance of the steel and increases the hardness. For this reason, it is contained for reducing iron loss and ensuring punchability, but if it is less than 0.4%, such an effect cannot be sufficiently obtained. However, if it exceeds 1.7%, it becomes too hard and wear of the punching tool increases. Therefore, the content range is 0.4 to 1.7%, but 0.6 to 1.4% is desirable to obtain preferable magnetic properties and hardness.
[0042]
Mn: 0.65 to 1.5%
Mn is usually contained in the magnetic steel sheet in an amount of about 0.2 to 0.3% so that S inevitably mixed in the steel becomes fine precipitates and does not inhibit crystal grain growth. However, Mn has an effect of bringing about a texture preferable for reduction of iron loss and magnetic properties, and in the present invention, Mn is contained more than usual. In order to fully exhibit the effect of Mn, it is necessary to contain a large amount of Si and Al, and the resulting increase in hardness and decrease in magnetic flux density are significant. Therefore, the Mn content is limited to 1.5% at most.
[0043]
sol.Al: 0.3-2.3%
sol.Al (acid-soluble Al), like Si, has the effect of increasing electrical resistance and reducing iron loss. Addition of Al can be effectively used for reducing iron loss since the hardness of steel is less increased than Si. In order to effectively utilize the action of reducing iron loss, 0.3% or more is contained. N in the steel combines with Al to form AlN. If AlN is finely dispersed, the magnetic properties are adversely affected. However, if sol. Al is contained in an amount of 0.3% or more, the AlN precipitates are coarse. It also has the effect of becoming harmless. However, if the amount of sol.Al increases, the magnetic flux density decreases. In order to fully exhibit the above-described effects of containing sol.Al, the content range is desirably 0.5 to 1.5%.
[0044]
The content ranges of individual elements of Si, Mn, and Al are as described above. When a semi-processed non-oriented electrical steel sheet containing these three elements is used, the content of each element is as follows: The formulas 1 and 2 must be satisfied.
[0045]
2 ≦ Si (%) + 0.5 Mn (%) + Al (%) ≦ 3 (1)
Mn (%) ≤ Si (%) + 2Al (%) -0.5 (2)
(1) The total amount of Si, Mn and Al in the center of the formula, that is, the value of the formula (3) above is less than 2 (%), the iron loss after strain relief annealing becomes high, and 3 (% ) Exceeds the magnetic flux density, both of which are inferior in magnetic properties. The Mn content must be in a range that satisfies the formula (2). If the Mn content exceeds this range and the Mn content is high, both iron loss and magnetic flux density are inferior.
[0046]
  P:0.02 %Less than
  P has the effect of greatly increasing the hardness when contained in a small amount, and can be effectively used when ensuring the hardness for improving punchability. However, in the present invention, the P content is0.02 %Limited to: If the amount of Mn is high,0.02 %This is because the inclusion of P in excess of the above deteriorates the magnetic properties.
[0047]
Fig. 4 shows an example of the results of examining the effects of P content on iron loss and magnetic flux density in materials with different Mn contents when investigating the effect of the main elements on the magnetic properties after strain relief annealing. 1 and FIG. In this case, Si is constant at 1.0% and Al is constant at 1.0%, and the conditions such as rolling and annealing are all the same.
[0048]
  From these figures, it can be seen that when the P content is reduced, the iron loss decreases and the magnetic flux density tends to increase. However, when the Mn content is 0.7%, compared with the case where the Mn is 0.2%, the decrease in iron loss due to the reduction in the P content is large, and the improvement in the magnetic flux density is much larger. From now on, when a large amount of Mn is contained, the P content is low, that is,0.02 %The following is clearly effective in improving the magnetic characteristics.
[0049]
  Thus, the content of P is0.02 %The magnetic properties improve as the number decreases.The
[0050]
S: 0.004% or less
S forms fine precipitates and not only inhibits the growth of crystal grains, but also deteriorates the magnetic properties. The range in which such an adverse effect does not appear is limited to 0.004% or less.
[0051]
Ti: 0.002% or less
Ti enters from the raw iron ore, etc., but combines with C, S, N, etc. to form fine precipitates, which significantly inhibits the growth of crystal grains. Therefore, it is necessary to reduce as much as possible in the semi-processed non-oriented electrical steel sheet in which crystal grain growth is performed by strain relief annealing. The range where such adverse effects do not appear remarkably is limited to 0.002% or less.
[0052]
N: 0.005% or less
N combines with Ti and Al to form fine precipitates and inhibits crystal grain growth. Therefore, it is limited to 0.005% or less so that such an effect does not appear, but the smaller the content, the better.
[0053]
The average crystal grain size of the semi-processed non-oriented electrical steel sheet is 10 to 35 μm. This is because the hardness of the steel sheet is favorable for punchability. When it is less than 10 μm, the die is too hard and wear of the punching die is likely to proceed. If it exceeds 35 μm, it may be too soft, resulting in a decrease in the dimensional accuracy of the punched product or a decrease in the yield point. Moreover, even if the crystal grain size of the steel sheet before strain relief annealing is too small or too large, the grain growth at the time of strain relief annealing is not good, so the average grain size is 10 to 35 μm.
[0054]
In the steel plate after the strain relief annealing at 750 ° C. for 2 hours, the X-ray diffraction integrated intensity of the {222} plane parallel to the plate surface is preferably less than 3.0. The integrated intensity of the {222} plane has a good correlation with iron loss and magnetic flux density, and the smaller this value, the better the magnetic properties. In the case where excellent magnetic properties are exhibited after strain relief annealing, the integrated intensity of the {222} plane is 3.0 or less. This integrated intensity is a relative intensity expressed as a ratio when the X-ray diffraction integrated intensity of {222} is 1 in an iron crystal powder sample having no texture at all, and can take a value up to 0. Since it is considered that the smaller this value is, the more preferable orientation is increased in the magnetic properties in the direction of the plate surface. Therefore, the lower limit value is not particularly defined, but is preferably 2.0 or less.
[0055]
Note that this integrated intensity is measured at a position of 1/4 thickness parallel to the plate surface because a value close to the average value at the position in the plate thickness direction is obtained.
[0056]
The above-described semi-processed non-oriented electrical steel sheet may be manufactured in accordance with a normal non-oriented electrical steel sheet manufacturing method. In particular, the following points should be considered in order to achieve the desired characteristics.
[0057]
The steel strip heating temperature for hot rolling is set to 1000 to 1160 ° C. When heated to a temperature exceeding 1160 ° C., the crystal grain growth property deteriorates, and sufficient magnetic properties cannot be obtained after strain relief annealing. This is because heating exceeding 1160 ° C. causes a precipitate phase such as MnS to be re-dissolved, resulting in harmful fine precipitates during hot rolling. However, if the heating temperature is too low, it may cause a reduction in sheet thickness accuracy in hot rolling or cold rolling, so the temperature is set to 1000 ° C. or higher.
[0058]
After hot rolling, the hot rolled sheet is annealed. This annealing has the effect of improving grain growth at the time of strain relief annealing and improving the magnetic properties, and may be a coil box annealing method or a continuous annealing method. In the case of the box annealing method, the soaking is good at 750 to 950 ° C. for 5 to 50 hours, and in the case of the continuous annealing method, heating at 950 to 1100 ° C. is sufficient. This annealing has the effect of increasing the crystal grains of the steel sheet before cold rolling and agglomerating or coarsening fine precipitates to render them harmless. When the annealing temperature or time is below the above range, such an effect cannot be obtained sufficiently, and when it exceeds the limited range, further improvement cannot be obtained and not only wasteful heating but also precipitation is caused. Re-solution of phases occurs, and the grain growth property may be deteriorated.
[0059]
The hot-rolled sheet after annealing is cold-rolled to the target thickness, but the cold rolling rate may be in the range of 60 to 90%, and may be annealed in the middle if necessary. If the cold rolling rate is within this range, it is possible to obtain an average crystal grain as a target semi-processed non-oriented electrical steel sheet product.
[0060]
Finish annealing after cold rolling is performed with a normal non-oriented electrical steel sheet continuous annealing treatment facility, but the temperature range may be 700 to 900 ° C. If the final annealing temperature is less than 700 ° C, it will not soften sufficiently and will be too hard for punching or the crystal grains will be too small.If it exceeds 900 ° C, it will be too soft for punching or the crystal grains will be too large. When the coil is formed, winding wrinkles are generated, and iron cores are likely to be poorly stacked after punching. The soaking time for annealing only needs to reach this temperature, and is not particularly limited. However, if it is too long, productivity is lowered, so it is preferable to set it to 60 seconds or less.
[0061]
【Example】
[Example 1]
The slabs having the composition shown in Table 1 are melted by vacuum melting, hot-rolled to 1150 ° C and finished to 3 mm, and these hot-rolled steel sheets are annealed at 800 ° C for 10 hours, and then the surface is descaled. -A sheet thickness of 2.3 mm was obtained by grinding and grinding, and a thickness of 0.5 mm was obtained by cold rolling. The obtained steel sheet was subjected to finish annealing at 800 ° C. for 30 seconds, and then the crystal grain size and surface hardness were measured. A 30 mm wide and 100 mm long test piece is punched from the steel sheet after finish annealing so that the length direction of the test piece is in the rolling direction and the direction perpendicular to the rolling direction, and tempered annealing is performed at 750 ° C for 2 hours. The average iron loss W with a small single-plate magnetometer15/50And magnetic flux density B50Was measured for the crystal grain size in the cross section, and the reflection integral intensity of the {222} plane was measured by X-ray diffraction at the 1/4 thickness position.
[0062]
  The results are shown in Table 2. Test numbers 2, 3, 6, 7 and 8 indicate that the magnetic characteristics after the stress relief annealing as the initial target are iron loss W15/50Is 3.0W / kg or less, magnetic flux density B50The result satisfies the criterion of 1.7 or higher. On the other hand, in test numbers 4 and 10, the iron loss exceeds 3.0 W / kg, and in test numbers 5 and 9, the magnetic flux density is lower than 1.7. Test numbers 4, 5 and 9 are all formulas(1)The test number 10 deviates from the relationship between the Si, Mn, and Al contents regulated in (1).(2)The range regulated by is not satisfied. In Test No. 1, the magnetic properties after strain relief annealing exceed the target value, but the hardness is not preferable.
[0063]
[Table 1]
Figure 0004269138
[0064]
[Table 2]
Figure 0004269138
[0065]
[Example 2]
Hot rolled steel sheet with a thickness of 2.3 mm that was hot rolled at a heating temperature of 1140 ° C using a steel piece with the chemical composition shown in Table 3 with a thickness of 230 mm obtained by refining in a converter and vacuum casting. It was. The hot-rolled steel sheet was annealed in a hydrogen atmosphere at 800 ° C. for 10 hours, and then cold-rolled to a thickness of 0.5 mm, subjected to finish annealing in a continuous processing line, and applied an insulating film on the surface. The steel sheet thus obtained was measured for surface hardness and crystal grain size. Specimens with a width of 30 mm and a length of 280 mm were collected from these steel plates in two directions with the length direction being the rolling direction or the width direction, and subjected to strain relief annealing at 750 ° C. for 2 hours in a nitrogen atmosphere. It was. The specimen after strain relief annealing uses an Epstein frame in accordance with JIS-C-2550 and iron loss W15/50And magnetic flux density B50Was measured. Moreover, about these test pieces, the average crystal grain diameter and the intensity | strength for {222} area in a 1/4 thickness position were also measured. Table 4 shows the measurement results of the above characteristics.
[0066]
[Table 3]
Figure 0004269138
[0067]
[Table 4]
Figure 0004269138
[0068]
In Table 3, steel numbers M and N are within the range defined by the present invention for chemical components, but all other numbers of steel are outside the scope of the present invention. The electrical steel sheets produced from these two types of steel have low iron loss after stress relief annealing, as is apparent from the comparison of test numbers 13 and 14 of the characteristic measurement results in Table 4 with other test results, and The result shows that the magnetic flux density is high. The {222} area strength is also lower than that of other steels.
[0069]
Example 3
About steel plates obtained by using steel pieces having chemical compositions shown as M and N in Table 3, changing the heating temperature of hot rolling, the annealing conditions of hot-rolled sheets, and the final annealing temperature after cold rolling Then, the surface hardness and the crystal grain size were measured, and further, the test piece was cut out and subjected to strain relief annealing, and then the magnetic properties and the strength for {222} area were measured. The method for measuring the characteristics of these steel plates is the same as that in Example 2. In this case, the occurrence of curl was investigated by cutting out a length of 300 mm from the inner diameter of a slit coil having an inner diameter of 510 mm and a width of 80 mm and measuring the warp height on a surface plate. These processing conditions and characteristic measurement results are shown together in Table 5.
[0070]
[Table 5]
Figure 0004269138
[0071]
Steel numbers M and N are both within the range defined by the present invention in chemical composition. For this reason, in the results of Table 5, the magnetic properties after strain relief annealing are almost always W15/50Is less than 3.0W / kg, B50The initial target of over 1.70 has been achieved. And from the comparison of the results of test numbers 21, 23, 28 and 30 and the results of test numbers 19, 20, 22, 24, 25, 26, 27, 29, 31 and 32, the composition range of the present invention is obtained. It can be seen that by limiting the conditions of the steel plate manufacturing process with steel, a semi-processed non-oriented electrical steel sheet having even better post-strain annealing magnetic properties can be obtained.
[0072]
However, in test numbers 24 and 31, where the final annealing temperature is too low, the steel grains are small and hard, and in test numbers 25 and 32, where the final annealing temperature is too high, the crystal grains are too large. The curl remains on the coil, and the cut specimen is warped.
[0073]
【The invention's effect】
The semi-processed non-oriented electrical steel sheet of the present invention has a hardness that is favorable for punchability and has excellent magnetic properties after strain relief annealing. Therefore, as an iron core for electrical equipment such as a small motor and a transformer, when used with strain relief annealing, it can be a low-loss and high-efficiency equipment, which greatly contributes to industries such as energy saving.
[Brief description of the drawings]
FIG. 1 Iron loss W after strain relief annealing15/50It is a figure which shows the influence of P content in the case where the amount of Mn is different.
Fig. 2 Magnetic flux density B after strain relief annealing50It is a figure which shows the influence of P content in the case where the amount of Mn is different.

Claims (3)

質量%にてC:0.005%以下、Si:0.4〜1.7%、Mn:0.65〜1.5%、sol.Al:0.3〜2.3%、P:0.02 以下、S:0.004%以下、Ti:0.002%以下、N:0.005%以下で、残部がFeおよび不純物であり、Si、MnおよびAlの含有量が下記(1)および(2)式を満足し、平均結晶粒径が10〜35μmであることを特徴とするセミプロセス無方向性電磁鋼板。
2≦Si(%)+0.5Mn(%)+Al(%)≦3 ・・・・・(1)
Mn(%)≦Si(%)+2Al(%)−0.5 ・・・・・(2)
In mass% C: 0.005% or less, Si: 0.4 to 1.7%, Mn: 0.65 to 1.5%, sol. Al: 0.3 to 2.3%, P: 0.02 % or less, S: 0.004% or less, Ti: 0.002% or less , N: 0.005% or less, the balance being Fe and impurities, the contents of Si, Mn and Al satisfy the following formulas (1) and (2) , and the average crystal grain size is 10 to 35 μm A semi-processed non-oriented electrical steel sheet.
2 ≦ Si (%) + 0.5Mn (%) + Al (%) ≦ 3 (1)
Mn (%) ≦ Si (%) + 2Al (%) − 0.5 (2)
質量%にてC:0.005%以下、Si:0.4〜1.7%、Mn:0.65〜1.5%、sol.Al:0.3〜2.3%、P:0.02 以下、S:0.004%以下、Ti:0.002%以下、N:0.005%以下で、残部がFeおよび不純物であり、Si、MnおよびAlの含有量が下記(1)および(2)式を満足し、平均結晶粒径が10〜35μmであって、かつ750℃、2時間の歪取り焼鈍後、板面に平行な{222}結晶方位の積分強度が3.0未満であることを特徴とするセミプロセス無方向性電磁鋼板。
2≦Si(%)+0.5Mn(%)+Al(%)≦3 ・・・・・(1)
Mn(%)≦Si(%)+2Al(%)−0.5 ・・・・・(2)
In mass% C: 0.005% or less, Si: 0.4 to 1.7%, Mn: 0.65 to 1.5%, sol. Al: 0.3 to 2.3%, P: 0.02 % or less, S: 0.004% or less, Ti: 0.002% or less N: 0.005% or less, the balance being Fe and impurities, the contents of Si, Mn and Al satisfy the following formulas (1) and (2) , and the average grain size is 10 to 35 μm, A semi-processed non-oriented electrical steel sheet characterized by having an integrated strength of {222} crystal orientation parallel to the plate surface of less than 3.0 after strain relief annealing at 750 ° C. for 2 hours.
2 ≦ Si (%) + 0.5Mn (%) + Al (%) ≦ 3 (1)
Mn (%) ≦ Si (%) + 2Al (%) − 0.5 (2)
鋼片加熱温度を1000〜1160℃として熱間圧延し、得られた熱延板に750〜950℃で5〜50時間の箱焼鈍、または950〜1100℃の連続焼鈍を施し、冷間圧延後、700〜900℃にて仕上げ焼鈍をおこなうことを特徴とする請求項1または2に記載のセミプロセス無方向性電磁鋼板の製造方法。  After hot-rolling with a billet heating temperature of 1000-1160 ° C, the obtained hot-rolled sheet is subjected to box annealing at 750-950 ° C for 5-50 hours, or continuous annealing at 950-1100 ° C, and after cold rolling Finishing annealing is performed at 700-900 degreeC, The manufacturing method of the semi process non-oriented electrical steel sheet of Claim 1 or 2 characterized by the above-mentioned.
JP2002235679A 2002-08-13 2002-08-13 Non-oriented electrical steel sheet for semi-process Expired - Fee Related JP4269138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235679A JP4269138B2 (en) 2002-08-13 2002-08-13 Non-oriented electrical steel sheet for semi-process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235679A JP4269138B2 (en) 2002-08-13 2002-08-13 Non-oriented electrical steel sheet for semi-process

Publications (2)

Publication Number Publication Date
JP2004076056A JP2004076056A (en) 2004-03-11
JP4269138B2 true JP4269138B2 (en) 2009-05-27

Family

ID=32020098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235679A Expired - Fee Related JP4269138B2 (en) 2002-08-13 2002-08-13 Non-oriented electrical steel sheet for semi-process

Country Status (1)

Country Link
JP (1) JP4269138B2 (en)

Also Published As

Publication number Publication date
JP2004076056A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP2700505B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
CN110573640B (en) Non-oriented electromagnetic steel sheet
JP4855225B2 (en) Non-oriented electrical steel sheet with small anisotropy
EP0229846A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
CN110612358A (en) Non-oriented electromagnetic steel sheet
CN110573639B (en) Non-oriented electromagnetic steel sheet
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP3843955B2 (en) Non-oriented electrical steel sheet
JP4855221B2 (en) Non-oriented electrical steel sheet for split core
JP4269138B2 (en) Non-oriented electrical steel sheet for semi-process
JP2001152300A (en) Nonoriented silicon steel sheet minimal in magnetic anisotropy in high frequency region and excellent in press workability
CN112840041B (en) Method for producing an electrical NO tape with intermediate thickness
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
TWI774241B (en) Hot-rolled steel sheet for non-oriented electrical steel sheet, method for producing hot-rolled steel sheet for non-oriented electrical steel sheet, and method for producing non-oriented electrical steel sheet
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4288811B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
WO2022176158A1 (en) Hot-pressed steel sheet for non-oriented electromagnetic steel sheet, manufacturing method of hot-pressed steel sheet for non-oriented electromagnetic steel sheet, and manufacturing method of non-oriented electromagnetic steel sheet
WO2022196805A1 (en) Non-directional electromagnetic steel sheet and method for manufacturing same
EP4310203A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
EP4060061A1 (en) Non-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees