JP5037796B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP5037796B2
JP5037796B2 JP2005118367A JP2005118367A JP5037796B2 JP 5037796 B2 JP5037796 B2 JP 5037796B2 JP 2005118367 A JP2005118367 A JP 2005118367A JP 2005118367 A JP2005118367 A JP 2005118367A JP 5037796 B2 JP5037796 B2 JP 5037796B2
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005118367A
Other languages
Japanese (ja)
Other versions
JP2006299297A (en
Inventor
之啓 新垣
高島  稔
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005118367A priority Critical patent/JP5037796B2/en
Publication of JP2006299297A publication Critical patent/JP2006299297A/en
Application granted granted Critical
Publication of JP5037796B2 publication Critical patent/JP5037796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、方向性電磁鋼板の製造方法に関し、特に優れた磁気特性の方向性電磁鋼板を安価に得ようとするものである。 The present invention relates to a method of manufacturing a square oriented electrical steel sheet, it is intended to inexpensively obtain particularly superior grain-oriented electrical steel sheet of the magnetic properties.

方向性電磁鋼板は、トランスなどに使用される鉄心の素材として好適な材料である。近年、省エネルギー化のために、方向性電磁鋼板には商用周波数での低鉄損および低励磁場での高磁束密度が求められている。従って、このような要求に応えるべく、磁気特性の更なる改善が必要とされている。   A grain-oriented electrical steel sheet is a material suitable as a material for an iron core used in a transformer or the like. In recent years, in order to save energy, grain oriented electrical steel sheets are required to have a low iron loss at a commercial frequency and a high magnetic flux density in a low excitation field. Therefore, further improvement of magnetic properties is required to meet such demands.

方向性電磁鋼板は、鉄の磁化容易軸である<001>方位が鋼板の圧延方向に高度に揃った結晶組織を有するものである。このような集合組織は、方向性電磁鋼板の製造工程中、仕上焼鈍時に、いわゆるGoss方位と称される(110)[001]方位の結晶粒を優先的に巨大成長させる、二次再結晶を通じて形成される。従って、二次再結晶粒の結晶方位が磁気特性に大きな影響を及ぼす。   A grain-oriented electrical steel sheet has a crystal structure in which the <001> orientation, which is the easy axis of iron, is highly aligned with the rolling direction of the steel sheet. Such a texture is formed through secondary recrystallization, which preferentially grows crystal grains with a (110) [001] orientation, so-called Goss orientation, during finish annealing during the production process of grain-oriented electrical steel sheets. It is formed. Therefore, the crystal orientation of the secondary recrystallized grains has a great influence on the magnetic properties.

従来、このような方向性電磁鋼板は、Siを4.5mass%程度以下と、MnS,MnSe,AlNなどのインヒビター成分を含有するスラブを、1300℃以上に加熱後、熱間圧延し、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、ついで湿潤水素雰囲気中にて一次再結晶焼鈍を施すことにより、一次再結晶および脱炭を行い、ついでマグネシアを主剤とする焼鈍分離剤を塗布してから、二次再結晶およびインヒビター成分純化のために、1200℃,5時間程度の最終仕上焼鈍を行うことにより製造されてきた。例えば、特許文献1、特許文献2および特許文献3等に、その技術が開示されている。   Conventionally, such grain-oriented electrical steel sheets are hot-rolled after heating a slab containing about 4.5 mass% or less of Si and an inhibitor component such as MnS, MnSe, or AlN to 1300 ° C or higher. After carrying out hot-rolled sheet annealing, the final sheet thickness is obtained by cold rolling at least once with one or intermediate annealing, followed by primary recrystallization annealing in a wet hydrogen atmosphere, so that primary recrystallization and It has been manufactured by decarburizing and then applying an annealing separator mainly composed of magnesia, followed by final finishing annealing at 1200 ° C for about 5 hours for secondary recrystallization and purification of inhibitor components. . For example, the technology is disclosed in Patent Literature 1, Patent Literature 2, Patent Literature 3, and the like.

しかしながら、このような技術を正確に実施するためには、方向性電磁鋼板の製造工程に適した特殊な設備が必要であり、また工程も複雑である。その結果、方向性電磁鋼板の製造コストは極めて高いものとなっていた。   However, in order to carry out such a technique accurately, special equipment suitable for the production process of grain-oriented electrical steel sheets is necessary and the process is complicated. As a result, the manufacturing cost of the grain-oriented electrical steel sheet has been extremely high.

一方、磁気特性を向上させる手法として、最終冷間圧延前の焼鈍後の冷却過程を制御することによって、鋼中Cの形態を制御する方法が報告されている。例えば、特許文献4には、焼鈍後の冷却において、600℃から300℃までを150℃/min以上の速度で冷却することにより、冷却後の固溶Cを増加させる技術が開示されている。
また、特許文献5には、焼鈍後、300℃まで急冷し、300〜150℃間を徐冷する、あるいは100℃まで急冷し 300〜150℃の温度域で短時間の時効処理を施すことにより、100〜500Åの微細炭化物を析出させる技術が開示されている。
On the other hand, as a method for improving magnetic properties, a method for controlling the form of C in steel by controlling the cooling process after annealing before the final cold rolling has been reported. For example, Patent Document 4 discloses a technique for increasing the solid solution C after cooling by cooling from 600 ° C. to 300 ° C. at a rate of 150 ° C./min or higher in cooling after annealing.
Patent Document 5 discloses that after annealing, it is rapidly cooled to 300 ° C. and gradually cooled between 300 to 150 ° C., or rapidly cooled to 100 ° C. and subjected to a short-term aging treatment in the temperature range of 300 to 150 ° C. , A technique for precipitating fine carbides of 100 to 500 kg is disclosed.

上述した種々の手法は、冷間圧延時に導入される転位等の欠陥部に固溶C等を固着させ、いわゆるコットレル雰囲気を形成させるという技術思想を応用したものと考えられる。このような効果は、一般鋼でも、冷間圧延後の焼鈍において、再結晶後の集合組織中の(110)強度を増加させる手法として良く知られている。(110)組織は二次再結晶の良好な核として働くため、結果的に磁気特性を改善する。従って、方向性電磁鋼板では、再結晶焼鈍時の集合組織改善は極めて重要な要素である。   The various methods described above are considered to apply the technical idea of fixing a solid solution C or the like to a defect portion such as dislocation introduced during cold rolling to form a so-called Cottrell atmosphere. Such an effect is well known as a technique for increasing the (110) strength in the texture after recrystallization in the annealing after cold rolling even in general steel. Since the (110) structure serves as a good nucleus for secondary recrystallization, the magnetic properties are improved as a result. Therefore, in grain-oriented electrical steel sheets, texture improvement during recrystallization annealing is an extremely important factor.

しかしながら、固溶Cや微細炭化物を用いる技術を実施するためには、焼鈍後、急冷処理、冷延過程におけるパス間時効処理、あるいは板温を200℃以上として通板する温間圧延、中間焼鈍や時効処理等の工程が必要となり、やはり工程の煩雑化、特殊設備の導入が避けられなかった。また、焼鈍後に急冷を行うことで鋼板が硬化、変形し、通板が困難となる問題も見受けられた。   However, in order to carry out the technology using solute C and fine carbides, after annealing, rapid cooling treatment, aging treatment between passes in the cold rolling process, or warm rolling that passes the plate at 200 ° C. or higher, intermediate annealing In addition, processes such as aging treatment and the like are necessary, which again complicates the process and introduces special equipment. Moreover, the steel plate hardened | cured and deform | transformed by carrying out rapid cooling after annealing, and the problem that it became difficult to pass was also seen.

米国特許No.1965559号US Patent No. 1965559 特公昭40−15611号公報Japanese Patent Publication No. 40-15611 特公昭51−13469号公報Japanese Patent Publication No.51-13469 特公昭56−3892号公報Japanese Patent Publication No.56-3892 特開昭58−157917号公報JP 58-1557917 A

前述したとおり、方向性電磁鋼板において、鋼中Cを利用して磁気特性を向上させるためには、急冷によって固溶Cとして粒内に残留させるか、炭化物として微細析出させる必要がある。また、これらの手法は、適切な圧延条件、時効処理との組み合わせにより、効果を発現させるものであるため、工程は煩雑化し、製造コストは高くなっていた。
従って、安価でかつ容易に製造でき、磁気特性についても近年の高特性材の要求に対し十分に応えるためには、固溶Cや微細炭化物によらない集合組織の改善方法が必要である。
As described above, in the grain-oriented electrical steel sheet, in order to improve the magnetic properties by using C in the steel, it is necessary to cause solid solution C to remain in the grains by rapid cooling or to finely precipitate as carbide. In addition, these techniques are effective in combination with appropriate rolling conditions and an aging treatment, so that the process is complicated and the manufacturing cost is high.
Therefore, in order to sufficiently meet the recent demand for high-performance materials with low cost and easy manufacturing, a method for improving the texture that does not depend on solute C or fine carbide is required.

本発明は、上記の問題を有利に解決するもので、優れた磁気特性を低コストで得ることができる方向性電磁鋼板の有利な製造方法を提案することを目的とする。   An object of the present invention is to solve the above-mentioned problems advantageously and to propose an advantageous method for producing a grain-oriented electrical steel sheet capable of obtaining excellent magnetic properties at low cost.

以下、本発明の解明経緯について説明する。
さて、発明者らは、冷延前の焼鈍後に析出するカーバイド(炭化物)の形態に着目して鋭意研究を進めた結果、1回の冷間圧延で最終板厚とする場合、従来の知見とは逆に強冷延前に2μm以上の粗大な炭化物を結晶粒内に適量析出させることが、集合組織の改善に有効であるを見出した。
The elucidation process of the present invention will be described below.
Now, as a result of diligent research focusing on the form of carbide (carbide) that precipitates after annealing before cold rolling, the inventors found that when the final sheet thickness is obtained by one cold rolling, On the other hand, it was found that it is effective in improving the texture to precipitate a suitable amount of coarse carbides of 2 μm or more in crystal grains before cold rolling.

図1に、冷延前の焼鈍後に析出した炭化物の粒径およびその存在頻度が、1回強冷延・再結晶板の集合組織に及ぼす影響について調べた結果を示す。
同図より明らかなように、粒径が2μm 以上の粗大炭化物をある程度存在させることによって、集合組織が改善されることが分かる。
FIG. 1 shows the results of investigating the influence of the grain size of carbides precipitated after annealing before cold rolling and the frequency of their presence on the texture of a single cold rolled / recrystallized plate.
As can be seen from the figure, the texture is improved by the presence of coarse carbide having a particle size of 2 μm or more to some extent.

なお、上記の実験の際における、集合組織の良不良は、板厚中心部での(211)インバース強度によって評価するものとし、この(211)インバース強度が1.1以下の場合を良、1.1よりも高かった場合を不良とした。
この理由は、1回冷延後の一次再結晶板の板厚中心部で、(211),(110),(200),(222),(321),(411)の計6つの結晶面についてインバース強度を測定し、それぞれの値と最終製品板での磁気特性(磁束密度)との相関を取った結果、従来、二次再結晶の良好な核として働くことが知られている(110)インバース強度よりも(211)インバース強度の方が磁気特性と強い相関が見られたからである。
In addition, the quality of the texture in the above experiment is evaluated by the (211) inverse strength at the center of the plate thickness, and (211) the case where the inverse strength is 1.1 or less is good, than 1.1 When it was high, it was regarded as defective.
This is because a total of six crystal planes (211), (110), (200), (222), (321), and (411) at the center of the thickness of the primary recrystallized plate after one cold rolling. As a result of measuring the inverse strength of each and correlating each value with the magnetic properties (magnetic flux density) in the final product plate, it has been conventionally known that it functions as a good nucleus for secondary recrystallization (110 This is because (211) inverse strength was more strongly correlated with magnetic characteristics than inverse strength.

図2に、組成が異なる2種類の鋼板A,Bについて、(211)インバース強度と最終製品板の磁束密度B8との関係について調べた結果を示す。
同図より明らかなように、鋼板A,Bとも、(211)インバース強度が1.1以下の場合に良好な磁束密度B8が得られている。
FIG. 2 shows the results of examining the relationship between (211) inverse strength and magnetic flux density B 8 of the final product plate for two types of steel plates A and B having different compositions.
As is clear from the figure, both the steel plates A and B have a good magnetic flux density B 8 when the (211) inverse strength is 1.1 or less.

また、炭化物の観察は、走査型電子顕微鏡で行い、観察視野はコイル幅方向中央部から圧延直角方向の断面を切り出し、板厚中心から上下にそれぞれ100μm、幅方向に5mmの範囲を観察し、1μm以上の粗大炭化物の存在頻度を求めた。
一般に炭化物の析出は、600℃以下から徐冷した場合、高温においては結晶粒界に析出し、より低温になって結晶粒内に析出するようになる。この際、比較的高温、または低温でも長時間保持することにより、針状粗大粒が析出することが知られている(W.C.Leslie,R.L.Rickett,C.P. Stroble,and G.Konoval;Trans-ASM,1961,Vol.53, P.715, Fig.12)。
Carbide is observed with a scanning electron microscope, and the observation field of view is a cross section in the direction perpendicular to the rolling from the central part in the coil width direction, and a range of 100 μm vertically from the center of the plate thickness and 5 mm in the width direction are observed. The existence frequency of coarse carbides of 1 μm or more was determined.
In general, when carbide is gradually cooled from 600 ° C. or lower, carbide precipitates at a grain boundary at a high temperature, and precipitates in the crystal grain at a lower temperature. At this time, it is known that acicular coarse grains precipitate by holding for a long time even at relatively high or low temperatures (WCLeslie, RLRickett, CP Stroble, and G. Konoval; Trans-ASM, 1961, Vol. .53, P.715, Fig.12).

その結果、上述したとおり、2μm以上の針状あるいはプレート状のカーバイドを、圧延直角方向断面の板厚中心から上下100μmの範囲内で50個/mm2以上析出させることによって、磁気特性が改善されることが確認された。 As a result, as described above, the magnetic characteristics are improved by depositing 50 μm / mm 2 or more of needle-shaped or plate-shaped carbide of 2 μm or more within the range of 100 μm above and below the center of the thickness in the cross section perpendicular to the rolling direction. It was confirmed that

そこで、次に、かような粗大な炭化物を適量析出させる手段について検討を行った。
その結果、集合組織改善に必要な2μm以上という粗大な炭化物を焼鈍冷却過程で得るためには、550〜300℃の温度域を緩冷却とする、すなわち該温度域に少なくとも45秒以上滞留させる必要があることが判明した。
Then, next, the means for depositing an appropriate amount of such coarse carbides was examined.
As a result, in order to obtain a coarse carbide of 2 μm or more necessary for texture improvement in the annealing cooling process, it is necessary to slowly cool the temperature range of 550 to 300 ° C., that is, to stay in the temperature range for at least 45 seconds or more. Turned out to be.

図3は、550〜300℃の温度域に10sec, 30secおよび45sec滞留させた時の炭化物の析出状況を示す顕微鏡写真である。
同図に示したとおり、550〜300℃の温度域での滞留時間が45secの場合には、針状の炭化物が明瞭に形成されていることが分かる。
また、図4には、別の試料を、やはり550〜300℃の温度域に10sec, 30secおよび45sec滞留させた時の炭化物の析出状況を示す顕微鏡写真を示すが、この場合も550〜300℃の温度域での滞留時間が45secの時にプレート状のカーバイドが明瞭に析出している。
FIG. 3 is a photomicrograph showing the state of precipitation of carbides when retained for 10 seconds, 30 seconds and 45 seconds in a temperature range of 550 to 300 ° C.
As shown in the figure, it can be seen that when the residence time in the temperature range of 550 to 300 ° C. is 45 seconds, needle-like carbides are clearly formed.
FIG. 4 shows a micrograph showing the precipitation of carbides when another sample was retained in the temperature range of 550 to 300 ° C. for 10 seconds, 30 seconds and 45 seconds. When the residence time in the temperature range is 45 seconds, plate-like carbide is clearly precipitated.

ところで、室温まで冷却した熱延板焼鈍後の鋼板に対しても、その後に熱処理を施すことによって、針状あるいはプレート状の炭化物が得られることが考えられる。
そこで、室温まで冷却した熱延板焼鈍後の鋼板に対し、100℃,200℃,300℃でそれぞれ1時間の熱処理を施してみたところ、図5に示すように、200℃または300℃で1時間の熱処理を施した場合には、粒径が2μm以上の針状あるいはプレート状の粗大炭化物が得られることが確認された。
By the way, it is conceivable that needle-like or plate-like carbides can be obtained by subjecting the steel sheet after hot-rolled sheet annealing cooled to room temperature to heat treatment.
Thus, when the steel sheet after hot-rolled sheet cooling cooled to room temperature was subjected to heat treatment at 100 ° C., 200 ° C., and 300 ° C. for 1 hour, respectively, as shown in FIG. It was confirmed that when the heat treatment was carried out for a long time, a needle-like or plate-like coarse carbide having a particle size of 2 μm or more was obtained.

本発明は、上記の知見を基に、さらに工業的規模での適用を誠みた結果、開発されたものである。   The present invention has been developed as a result of sincerity of application on an industrial scale based on the above knowledge.

すなわち、本発明の要旨構成は次のとおりである。
(1)質量%で、Cを0.01%以上 0.10%以下、Siを2.0%以上 4.5%以下含有し、残部Feおよび不可避的不純物からなる電磁鋼素材スラブを、熱間圧延し、熱延板焼鈍後、圧下率:80%以上の1回の冷間圧延により最終板厚としたのち、一次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布してから、二次再結晶焼鈍を施す工程からなる方向性電磁鋼板の製造方法において、
上記熱延板焼鈍後の冷却時、550〜300℃の温度域に滞留させる滞留時間を調整するか、または上記熱延板焼鈍後、室温まで冷却したのち、200℃以上550℃以下の温度域で熱処理を施す熱処理時間を調整して、上記冷間圧延前の鋼板に、該鋼板の圧延直角方向断面に見られる2μm以上の針状あるいはプレート状のカーバイドを、圧延直角方向断面の板厚中心から上下100μmの範囲内で50個/mm2以上存在させることを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) Hot rolled steel sheet slab containing mass%, C containing 0.01% or more and 0.10% or less, Si containing 2.0% or more and 4.5% or less, balance Fe and inevitable impurities, and hot-rolled sheet annealing After that, the rolling reduction ratio is set to a final sheet thickness by one cold rolling of 80% or more, followed by a primary recrystallization annealing, followed by an annealing separator and then a secondary recrystallization annealing. In the manufacturing method of grain-oriented electrical steel sheet,
Adjust the residence time to stay in the temperature range of 550 to 300 ° C during cooling after the hot-rolled sheet annealing, or cool to room temperature after the hot-rolled sheet annealing, and then the temperature range from 200 ° C to 550 ° C. in adjusting the heat treatment time of heat treatment, the steel sheet before the cold rolled, needle-like or plate-like carbides 2μm or more seen in the direction perpendicular to the rolling direction cross-section of the steel plate, the thickness of the perpendicular to the rolling direction cross-section A method for producing a grain-oriented electrical steel sheet, wherein at least 50 pieces / mm 2 are present within a range of 100 μm above and below the center.

(2)前記550〜300℃の温度域での滞留時間が、少なくとも45秒であることを特徴とする上記(1)記載の方向性電磁鋼板の製造方法。 (2) pre-Symbol residence time in the temperature range of 550 to 300 ° C. is above, wherein at least 45 seconds der Rukoto (1) The method of producing oriented electrical steel sheet according.

(3)前記200℃以上550℃以下の温度域での熱処理時間が、30秒以上であることを特徴とする上記(1)記載の方向性電磁鋼板の製造方法。
(4)前記電磁鋼素材スラブに、さらに質量%で、Al:0.010〜0.080%、N:0.005〜0.015%、Mn:0.02〜1.0%、Se:0.001〜0.05%およびS:0.001〜0.05%のうちから選んだ1種または2種以上を含有することを特徴とする上記(1)〜(3)のいずれかに記載の方向性電磁鋼板の製造方法。
(5)前記電磁鋼素材スラブに、さらに質量%で、B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびInのうちから選んだ1種または2種以上を、それぞれ0.0005〜1.0%含有することを特徴とする上記(1)〜(4)のいずれかに記載の方向性電磁鋼板の製造方法。
(3) heat treatment time in the temperature range of the previous SL 200 ° C. or higher 550 ° C. or less, the production method of the grain-oriented electrical steel sheet of the above (1), wherein the at least 30 seconds.
(4) In the electromagnetic steel material slab, Al: 0.010 to 0.080%, N: 0.005 to 0.015%, Mn: 0.02 to 1.0%, Se: 0.001 to 0.05% and S: 0.001 to 0.05%. The method for producing a grain-oriented electrical steel sheet according to any one of the above (1) to (3), comprising one or more selected from among them.
(5) In addition to B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, Ti, Cu, Pb, Zn, and In, in addition to the electromagnetic steel material slab. 1 or 2 types or more are contained 0.0005-1.0%, respectively, The manufacturing method of the grain-oriented electrical steel sheet in any one of said (1)-(4) characterized by the above-mentioned.

本発明によれば、方向性電磁鋼板の製造に際し、冷間圧延前焼鈍での急冷処理や圧延での特殊な装置を必要とせず、ただ1回の冷間圧延と再結晶焼鈍によって集合組織の改善が可能となり、その結果、磁気特性に優れた方向性電磁鋼板を安価かつ容易に得ることができる。   According to the present invention, the production of grain-oriented electrical steel sheets does not require a rapid cooling process in the annealing before cold rolling or a special apparatus in rolling, and the texture of the texture is formed by only one cold rolling and recrystallization annealing. As a result, a grain-oriented electrical steel sheet having excellent magnetic properties can be obtained inexpensively and easily.

以下、本発明を具体的に説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
本発明のスラブは、公知の方法、例えば製鋼−連続鋳造法あるいは造塊−分塊圧延法によって製造される。その際、スラブ組成については、以下のように限定される。
C:0.01%以上 0.10%以下
Cは、一次再結晶集合組織の改善に有用な元素であり、かつ粗大炭化物を発現させる上でも必要なものである。しかしながら、含有量が、0.01%未満では炭化物の量が少なすぎて集合組織改善の効果が得られず、一方0.10%超では製品板までに脱炭が極めて困難となり、残留Cによる磁気時効が起こって製品特性が劣化するので、C量は0.01%以上 0.10%以下の範囲に限定した。
Hereinafter, the present invention will be specifically described. Unless otherwise specified, “%” in relation to ingredients means mass%.
The slab of the present invention is produced by a known method such as a steelmaking-continuous casting method or an ingot-bundling rolling method. At that time, the slab composition is limited as follows.
C: 0.01% or more and 0.10% or less C is an element useful for improving the primary recrystallization texture, and is also necessary for developing coarse carbides. However, if the content is less than 0.01%, the amount of carbide is too small to achieve the effect of improving the texture. On the other hand, if it exceeds 0.10%, decarburization by the product plate becomes extremely difficult, and magnetic aging due to residual C occurs. Therefore, the C content is limited to a range of 0.01% to 0.10%.

Si:2.0%以上 4.5%以下
Siは,電気抵抗を高めることによって鉄損を改善する有用元素であるが、含有量が2.0%に満たないとその添加効果に乏しく、一方 4.5%を超えると冷間圧延が著しく困難になるため、Siは2.0%以上 4.5%の範囲に限定した。
Si: 2.0% to 4.5%
Si is a useful element that improves iron loss by increasing electrical resistance. However, if the content is less than 2.0%, the effect of addition is poor, while if it exceeds 4.5%, cold rolling becomes extremely difficult. , Si was limited to the range of 2.0% to 4.5%.

また、鋼中には、上記の元素の他に、インヒビター形成元素として、AlやN,Mn,Se等をそれぞれ、Al:0.010〜0.080%、N:0.005〜0.015%、Mn:0.02〜1.0%、Seおよび/またはS:0.001〜0.05%程度含有させることができる。その他、B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびIn等のインヒビター形成元素を、各々5ppm〜1.0%程度単独または複合して適宜含有させることもできる。
さらに、特開2000−129356号公報等に開示されるような、インヒビターを使用しないで製造される方向性電磁鋼板に対しても、本発明の適用は可能である。
In addition to the above-mentioned elements, Al, N, Mn, Se, etc. are contained in the steel as Al: 0.010-0.080%, N: 0.005-0.015%, Mn: 0.02-1.0%. , Se and / or S: About 0.001 to 0.05% can be contained. In addition, inhibitor-forming elements such as B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, Ti, Cu, Pb, Zn, and In, each of about 5 ppm to 1.0%, each alone or in combination. Can be contained as appropriate.
Furthermore, the present invention can also be applied to grain-oriented electrical steel sheets that are produced without using an inhibitor, as disclosed in JP-A-2000-129356.

上記のスラブを、スラブ加熱後、熱間圧延に供する。スラブ加熱は、スラブの成分によって必要となる温度が異なる。通常、AlN,MnSやMnSe等のインヒビターを用いる鋼種においては、スラブ加熱時にインヒビター成分を完全に固溶させる必要があるため、これらの鋼種では1350℃以上の高温加熱を行うことが望ましい。一方、インヒビター成分を含有させずに二次再結晶させる技術(インヒビターレス法)を利用する場合には、1050℃から1250℃程度とするのが好適である。1250℃を超える高温スラブ加熱は、スラブにインヒビター成分を含まない鋼種においては不要であり、一方1050℃未満ではスラブを円滑に圧延することができなくなる。   The slab is subjected to hot rolling after slab heating. Slab heating requires different temperatures depending on the slab components. Usually, in steel types using inhibitors such as AlN, MnS and MnSe, it is necessary to completely dissolve the inhibitor component during slab heating. Therefore, it is desirable to heat these steel types at a high temperature of 1350 ° C. or higher. On the other hand, when using a technique (inhibitorless method) in which secondary recrystallization is performed without containing an inhibitor component, it is preferable to set the temperature to about 1050 ° C. to 1250 ° C. High-temperature slab heating above 1250 ° C is not necessary for steel types that do not contain an inhibitor component in the slab, while slabs cannot be smoothly rolled below 1050 ° C.

ついで、熱延鋼板に熱延板焼鈍を施す。この冷却時に、550〜300℃の温度域を緩冷却とし、すなわちこの温度域に45秒以上滞留させて、2μm以上の針状あるいはプレート状炭化物を析出させる。
ここで、針状炭化物とは、図3に示したように、一次元的に粗大化した炭化物を指し、またプレート状炭化物とは、図4に示したように、二次元的に粗大化した炭化物を指すこととする。
Next, hot-rolled sheet annealing is performed on the hot-rolled steel sheet. During this cooling, the temperature range of 550 to 300 ° C. is slowly cooled, that is, stays in this temperature range for 45 seconds or more to precipitate needle-like or plate-like carbides of 2 μm or more.
Here, as shown in FIG. 3, the acicular carbide refers to a carbide that is one-dimensionally coarsened, and the plate-like carbide is two-dimensionally coarsened as shown in FIG. It shall refer to carbide.

熱延板焼鈍後の冷却過程における炭化物の析出については、600℃以下であれば針状炭化物を得ることは可能であるが、550℃を超える温度では粒界への析出も進行し、結晶粒内のC濃度が低下してしまう結果、粗大炭化物の量が減少し、集合組織改善の効果が得られない。一方、300℃を下回っても、針状炭化物は生成するものの粗大化に必要な時間が長くなりすぎるので、工程化は困難となる。
そこで、緩冷却を施すべき温度域として、550〜300℃の温度範囲を定めたのである。また、滞留時間については少なくとも45秒を必要とするが、滞留時間をあまりに長くすると生産性が阻害されるので、滞留時間の上限は100秒程度とするのが好適である。
With regard to carbide precipitation in the cooling process after hot-rolled sheet annealing, it is possible to obtain needle-like carbides at temperatures below 600 ° C, but at temperatures exceeding 550 ° C, precipitation at grain boundaries also proceeds, and crystal grains As a result, the amount of coarse carbide decreases, and the effect of improving the texture cannot be obtained. On the other hand, even if the temperature is lower than 300 ° C., needle-like carbides are produced, but the time required for coarsening becomes too long, so that the process becomes difficult.
Therefore, a temperature range of 550 to 300 ° C. was determined as a temperature range where gentle cooling should be performed. The residence time needs at least 45 seconds, but if the residence time is too long, productivity is hindered, so the upper limit of the residence time is preferably about 100 seconds.

また、冷却過程で緩冷却を実施できない場合には、200℃以上 550℃以下の温度域で熱処理を行うことによって、炭化物を2μm以上に粗大化させることが可能である。この熱処理温度が200℃未満 600℃超では針状炭化物を得ることができず、また550℃超、600℃以下の温度域に関しては、上述したとおり、粒界への析出も進行するため、結晶粒内でのC濃度が低下し、粗大炭化物の量が減ってしまい、集合組織改善の効果が得られない。
そこで、かかる熱処理については、処理温度を200℃以上 550℃以下の範囲に限定したのである。また、処理時間については、少なくとも30秒必要であることが判明した。なお、あまりに長い処理時間は生産性の低下を招くので、その上限は10h程度とするのが好ましい。
In addition, when the slow cooling cannot be performed in the cooling process, the carbide can be coarsened to 2 μm or more by performing a heat treatment in a temperature range of 200 ° C. or more and 550 ° C. or less. If the heat treatment temperature is less than 200 ° C. and more than 600 ° C., acicular carbide cannot be obtained, and in the temperature range of more than 550 ° C. and less than 600 ° C., as described above, precipitation at grain boundaries also proceeds, so The C concentration in the grains decreases, the amount of coarse carbides decreases, and the effect of improving the texture cannot be obtained.
Therefore, for such heat treatment, the treatment temperature is limited to the range of 200 ° C. or more and 550 ° C. or less. It was also found that the processing time required at least 30 seconds. It should be noted that an excessively long processing time leads to a decrease in productivity, so the upper limit is preferably about 10 hours.

得られた熱延鋼板に対しては、中間焼鈍を施さずに、圧下率:80%以上の1回の強冷延により最終板厚とする。圧下率が80%未満では、再結晶時の集合組織改善が不十分なものとなってしまう。これは、粗大炭化物の周辺に転位を蓄積するには、1回でしかも強圧下の圧延が必要不可欠なためと考えられる。この点、中間焼鈍を挟む2回圧延では、中間焼鈍時に一次的に転位が開放され、十分に転位が蓄積されないため、満足いくほどの集合組織の改善効果は得られない。   The obtained hot-rolled steel sheet is not subjected to intermediate annealing, and the final sheet thickness is obtained by one cold rolling with a reduction ratio of 80% or more. If the rolling reduction is less than 80%, the texture improvement during recrystallization will be insufficient. This is considered to be because rolling at a high pressure is indispensable once in order to accumulate dislocations around coarse carbides. In this regard, in the two-roll rolling with intermediate annealing, dislocations are primarily released during intermediate annealing, and the dislocations are not accumulated sufficiently, so that a satisfactory texture improvement effect cannot be obtained.

ついで、最終冷間圧延板に、一次再結晶焼鈍を施した後、鋼板の表面に焼鈍分離剤を塗布する。焼鈍分離剤としては、従来から公知のものいずれもが適合する。特に、マグネシアを主剤とし、必要に応じてチタニア、ストロンチウム化合物、硫化物、塩化物およびほう化物などの添加剤を添加したものを、水スラリーとして塗布したものが好適である。その他の焼鈍分離剤としては、シリカやアルミナなどを用いることもできる。   Next, after subjecting the final cold-rolled sheet to primary recrystallization annealing, an annealing separator is applied to the surface of the steel sheet. Any conventionally known annealing separator is suitable. In particular, it is preferable to apply magnesia as a main agent, and to which additives such as titania, strontium compounds, sulfides, chlorides and borides are applied as a water slurry. Silica, alumina, etc. can also be used as other annealing separation agents.

次に、二次再結晶焼鈍を行う。この二次再結晶焼鈍についてはとくに制限はなく、インヒビターを使用する方法またはインヒビターレス法いずれの場合も、従来公知の方法に従って行えばよい。
上記の仕上焼鈍後、鋼板表面に絶縁被膜を塗布、焼き付けることもできる。絶縁被膜の種類については、特に限定されないが、従来公知の絶縁被膜いずれもが適合する。例えば、特開昭50−79442号公報や特開昭48−39338号公報に記載されている、リン酸塩−クロム酸−コロイダルシリカを含有する塗布液を、鋼板に塗布し、800℃程度で焼き付ける方法が好適である。
また、平坦化焼鈍により、鋼板の形状を整えることも可能であり、さらには絶縁被膜の焼き付けを兼ねた平坦化焼鈍を行うこともできる。
Next, secondary recrystallization annealing is performed. The secondary recrystallization annealing is not particularly limited, and any method using an inhibitor or an inhibitorless method may be performed according to a conventionally known method.
After the above finish annealing, an insulating film can be applied and baked on the surface of the steel sheet. The type of insulating coating is not particularly limited, but any conventionally known insulating coating is suitable. For example, a coating solution containing phosphate-chromic acid-colloidal silica described in JP-A-50-79442 and JP-A-48-39338 is applied to a steel plate at about 800 ° C. A baking method is preferred.
Further, the shape of the steel sheet can be adjusted by the planarization annealing, and further, the planarization annealing that doubles the baking of the insulating film can be performed.

実施例1
C:0.04%,Si:3.35%,Mn:0.1%,S:0.01%およびSe:0.02%を含有し、残部はFeおよび不可避的不純物の組成になる電磁鋼素材スラブを、1350℃に加熱後、熱間圧延により2.3mm厚の熱延板とした。ついで、1030℃、60秒の熱延板焼鈍後、冷却時 550〜300℃の温度域を30℃/s、10℃/s、5℃/s、3℃/sの冷却速度で冷却した。また、30℃/s、10℃/sで冷却した素材は、350℃で0秒保持、20秒保持、30秒保持、45秒保持を行い、その後、300℃まで同じ冷却速度で冷却した。
かくして得られた熱延焼鈍板のコイル幅方向中央部から圧延直角方向の断面を切り出し、板厚中心から上下にそれぞれ100μm、幅方向に5mmの範囲を観察し、2μm以上の粗大炭化物の存在頻度を求めた。
Example 1
C: 0.04%, Si: 3.35%, Mn: 0.1%, S: 0.01% and Se: 0.02%, and the remainder after heating to 1350 ° C, an electromagnetic steel material slab with a composition of Fe and inevitable impurities A hot-rolled sheet having a thickness of 2.3 mm was obtained by hot rolling. Next, after annealing at 1030 ° C. for 60 seconds, the temperature range of 550 to 300 ° C. during cooling was cooled at a cooling rate of 30 ° C./s, 10 ° C./s, 5 ° C./s, 3 ° C./s. The materials cooled at 30 ° C./s and 10 ° C./s were held at 350 ° C. for 0 second, 20 seconds, 30 seconds, and 45 seconds, and then cooled to 300 ° C. at the same cooling rate.
Cut the cross section in the direction perpendicular to the rolling direction from the center of the coil width direction of the hot-rolled annealed sheet thus obtained, observe the range of 100 μm vertically from the center of the plate thickness, and 5 mm in the width direction, and the presence frequency of coarse carbides of 2 μm or more. Asked.

ついで、圧下率:90%の1回の冷間圧延により0.23mm厚の冷延板としたのち、均熱温度:800℃、均熱時間:30sの一次再結晶焼鈍を施した。その後、MgO:95mass%、TiO2:5mass%の焼鈍分離剤を、水スラリーとして鋼板表面に塗布し、二次再結晶焼鈍に供した。このようにして得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイタルシリカを重量比3:1:3で含有する塗布液を塗布し、800℃で焼き付けた。 Next, a cold rolled sheet having a thickness of 0.23 mm was formed by one cold rolling with a rolling reduction of 90%, and then primary recrystallization annealing was performed at a soaking temperature of 800 ° C. and a soaking time of 30 s. Then, MgO: 95mass%, TiO 2 : a 5 mass% of the annealing separator was applied on the surface of the steel sheet as a water slurry, and subjected to secondary recrystallization annealing. A coating solution containing phosphate-chromate-colloidal silica at a weight ratio of 3: 1: 3 was applied to the surface of the finish annealed plate thus obtained and baked at 800 ° C.

かくして得られた製品板コイルの幅中央部の磁気特性を調査した。磁気特性は、800℃、3時間の歪取焼鈍を行った後、800 A/mで励磁したときの磁束密度B8で評価した。
得られた結果を、熱延板焼鈍後の冷却速度および2μm以上の粗大炭化物の存在頻度との関係で表1に示す。
なお、2μm以上の粗大炭化物の存在頻度については、圧延直角方向断面の板厚中心から上下100μmの範囲内で、2μm以上の粗大炭化物が50個/mm2以上存在した場合を○、それ未満の場合を×で示す。
The magnetic properties at the center of the width of the product plate coil thus obtained were investigated. The magnetic characteristics were evaluated based on the magnetic flux density B 8 when excited at 800 A / m after strain relief annealing at 800 ° C. for 3 hours.
The obtained results are shown in Table 1 in relation to the cooling rate after hot-rolled sheet annealing and the presence frequency of coarse carbides of 2 μm or more.
Regarding the existence frequency of coarse carbides of 2 μm or more, the case where there are 50 carbide / mm 2 or more of coarse carbides of 2 μm or more within the range of 100 μm above and below the sheet thickness center of the cross section in the direction perpendicular to the rolling is less than that. Cases are indicated by x.

同表より明らかなように、本発明に従い、熱延板焼鈍後の冷却過程において、550〜300℃の温度域に45秒以上滞留させて、圧延直角方向断面の板厚中心から上下100μmの範囲内に2μm以上の粗大炭化物を50個/mm2以上析出させた場合には、高い磁束密度を得ることができた。 As is clear from the table, according to the present invention, in the cooling process after hot-rolled sheet annealing, it stays in the temperature range of 550 to 300 ° C. for 45 seconds or more, and the range of 100 μm above and below the sheet thickness center in the cross section perpendicular to the rolling direction. In the case where 50 carbide / mm 2 or more of coarse carbides of 2 μm or more were deposited, a high magnetic flux density could be obtained.

実施例2
C:0.03%、Si:3.5%およびMn:0.05%を含有し、S,Se,Oを各々50ppm未満、Nを60ppm未満に抑制し、残部はFeおよび不可避的不純物の組成になる、インヒビター成分を含有しない電磁鋼素材スラブを、1220℃に加熱後、熱間圧延により板厚:1.60mmの熱延板とし、1050℃,40秒の熱延板焼鈍後、50℃/sの速度で室温まで冷却したのち、100〜400℃で60minの時効処理を行った。
かくして得られた熱延焼鈍板のコイル幅方向中央部から圧延直角方向の断面を切り出し、板厚中心から上下にそれぞれ100μm、幅方向に5mmの範囲を観察し、2μm以上の粗大炭化物の存在頻度を求めた。
Example 2
Inhibitor component containing C: 0.03%, Si: 3.5% and Mn: 0.05%, suppressing S, Se and O to less than 50 ppm and N to less than 60 ppm respectively, with the balance being a composition of Fe and inevitable impurities Slabs that do not contain steel are heated to 1220 ° C, hot-rolled to a thickness of 1.60 mm, annealed at 1050 ° C for 40 seconds, and room temperature at a rate of 50 ° C / s After cooling to 100 ° C., aging treatment was performed at 100 to 400 ° C. for 60 minutes.
Cut the cross section in the direction perpendicular to the rolling direction from the center of the coil width direction of the hot-rolled annealed sheet thus obtained, observe the range of 100 μm vertically from the center of the plate thickness, and 5 mm in the width direction, and the presence frequency of coarse carbides of 2 μm or more. Asked.

ついで、1回の冷間圧延により、板厚:0.30mm(圧下率:81%),0.35mm(圧下率:78%)としたのち、均熱温度:880℃、均熱時間:30sの一次再結晶焼鈍を施した。その後、MgO:95mass%、SrSO4:5mass%の焼鈍分離剤を、水スラリーとして鋼板に塗布し、二次再結晶焼鈍に供した。このようにして得られた仕上焼鈍板の表面に、リン酸塩−クロム酸塩−コロイタルシリカを重量比3:1:2で含有する塗布液を塗布し、800℃で焼き付けた。 Next, after a single cold rolling, the sheet thickness was set to 0.30 mm (rolling rate: 81%), 0.35 mm (rolling rate: 78%), and the soaking temperature was 880 ° C. and the soaking time was 30 s. Recrystallization annealing was performed. Then, MgO: 95mass%, SrSO 4 : a 5 mass% of the annealing separator was applied to the steel sheet as a water slurry, and subjected to secondary recrystallization annealing. A coating solution containing phosphate-chromate-colloidal silica at a weight ratio of 3: 1: 2 was applied to the surface of the finish annealed plate thus obtained and baked at 800 ° C.

かくして得られた製品板コイルの幅中央部の磁気特性を調査した。磁気特性は、800℃、3時間の歪取焼鈍を行った後、800 A/mで励磁したときの磁束密度B8で評価した。
得られた結果を、熱延板焼鈍後の冷却速度および2μm以上の粗大炭化物の存在頻度との関係で表2に示す。
なお、2μm以上の粗大炭化物の存在頻度については、圧延直角方向断面の板厚中心から上下100μmの範囲内で、2μm以上の粗大炭化物が50個/mm2以上存在した場合を○、それ未満の場合を×で示す。
The magnetic properties at the center of the width of the product plate coil thus obtained were investigated. The magnetic characteristics were evaluated based on the magnetic flux density B 8 when excited at 800 A / m after strain relief annealing at 800 ° C. for 3 hours.
The obtained results are shown in Table 2 in relation to the cooling rate after the hot-rolled sheet annealing and the existence frequency of coarse carbides of 2 μm or more.
Regarding the existence frequency of coarse carbides of 2 μm or more, the case where there are 50 carbide / mm 2 or more of coarse carbides of 2 μm or more within the range of 100 μm above and below the sheet thickness center of the cross section in the direction perpendicular to the rolling is less than that. Cases are indicated by x.

同表より明らかなように、熱延板焼鈍後、室温まで冷却した場合であっても、その後に200〜550の温度域で時効処理を施し、圧延直角方向断面の板厚中心から上下100μmの範囲内に2μm以上の粗大炭化物を50個/mm2以上析出させた場合には、高い磁束密度を得ることができた。 As is apparent from the table, even after cooling to room temperature after hot-rolled sheet annealing, it was then subjected to an aging treatment in the temperature range of 200 to 550, and 100 μm above and below the sheet thickness center of the cross section in the direction perpendicular to the rolling direction. When 50 carbide / mm 2 or more of coarse carbides of 2 μm or more were deposited in the range, a high magnetic flux density could be obtained.

本発明によれば、磁気特性に優れた方向性電磁鋼板を、工業的規模で安定して得ることが可能となり、その工業的価値は極めて大きい。   According to the present invention, a grain-oriented electrical steel sheet having excellent magnetic properties can be stably obtained on an industrial scale, and its industrial value is extremely large.

冷延前の焼鈍後に析出した炭化物の粒径およびその存在頻度が、1回強冷延・再結晶板の集合組織改善に及ぼす効果を示した図である。It is the figure which showed the effect which the grain size of the carbide | carbonized_material precipitated after annealing before cold rolling, and its presence frequency have on the texture improvement of a strong cold rolling and a recrystallized board once. (211)インバース強度と最終製品板の磁束密度B8との関係を示す図である。(211) is a diagram showing the relationship between the magnetic flux density B 8 of inverse strength and the final product sheet. 550〜300℃の温度域に10sec, 30secおよび45sec滞留させた時の炭化物の析出状況を示す顕微鏡写真である。It is a microscope picture which shows the precipitation condition of the carbide | carbonized_material when it was made to stay in the temperature range of 550-300 degreeC for 10sec, 30sec, and 45sec. 別の試料を、550〜300℃の温度域に10sec, 30secおよび45sec滞留させた時の炭化物の析出状況を示す顕微鏡写真である。It is a microscope picture which shows the precipitation condition of the carbide | carbonized_material when another sample was made to stay for 10 seconds, 30 seconds, and 45 seconds in the temperature range of 550-300 degreeC. 室温まで冷却した熱延板焼鈍後の鋼板に対し、100℃,200℃,300℃でそれぞれ1時間の熱処理を施した時の炭化物の析出状況を示す顕微鏡写真である。It is a microscope picture which shows the precipitation condition of the carbide | carbonized_material when the steel plate after hot-rolled sheet annealing cooled to room temperature was heat-processed at 100 degreeC, 200 degreeC, and 300 degreeC for 1 hour, respectively.

Claims (5)

質量%で、Cを0.01%以上 0.10%以下、Siを2.0%以上 4.5%以下含有し、残部Feおよび不可避的不純物からなる電磁鋼素材スラブを、熱間圧延し、熱延板焼鈍後、圧下率:80%以上の1回の冷間圧延により最終板厚としたのち、一次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布してから、二次再結晶焼鈍を施す工程からなる方向性電磁鋼板の製造方法において、
上記熱延板焼鈍後の冷却時、550〜300℃の温度域に滞留させる滞留時間を調整するか、または上記熱延板焼鈍後、室温まで冷却したのち、200℃以上550℃以下の温度域で熱処理を施す熱処理時間を調整して、上記冷間圧延前の鋼板に、該鋼板の圧延直角方向断面に見られる2μm以上の針状あるいはプレート状のカーバイドを、圧延直角方向断面の板厚中心から上下100μmの範囲内で50個/mm2以上存在させることを特徴とする方向性電磁鋼板の製造方法。
In mass%, electrical steel slab containing 0.01% or more and 0.10% or less of C, 2.0% or more and 4.5% or less of Si, and the balance Fe and inevitable impurities, hot-rolled, hot-rolled sheet annealed, and then rolled Rate: Directional electromagnetic consisting of the steps of making the final sheet thickness by one cold rolling of 80% or more, then applying the primary recrystallization annealing, then applying the annealing separator and then applying the secondary recrystallization annealing In the manufacturing method of the steel sheet,
Adjust the residence time to stay in the temperature range of 550 to 300 ° C during cooling after the hot-rolled sheet annealing, or cool to room temperature after the hot-rolled sheet annealing, and then the temperature range from 200 ° C to 550 ° C. in adjusting the heat treatment time of heat treatment, the steel sheet before the cold rolled, needle-like or plate-like carbides 2μm or more seen in the direction perpendicular to the rolling direction cross-section of the steel plate, the thickness of the perpendicular to the rolling direction cross-section A method for producing a grain-oriented electrical steel sheet, wherein at least 50 pieces / mm 2 are present within a range of 100 μm above and below the center.
前記550〜300℃の温度域での滞留時間が、少なくとも45秒であることを特徴とする請求項1記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein a residence time in the temperature range of 550 to 300 ° C is at least 45 seconds. 前記200℃以上550℃以下の温度域での熱処理時間が、30秒以上であることを特徴とする請求項1記載の方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the heat treatment time in the temperature range of 200 ° C to 550 ° C is 30 seconds or more. 前記電磁鋼素材スラブに、さらに質量%で、Al:0.010〜0.080%、N:0.005〜0.015%、Mn:0.02〜1.0%、Se:0.001〜0.05%およびS:0.001〜0.05%のうちから選んだ1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の方向性電磁鋼板の製造方法。   The electromagnetic steel material slab is further selected by mass from Al: 0.010 to 0.080%, N: 0.005 to 0.015%, Mn: 0.02 to 1.0%, Se: 0.001 to 0.05% and S: 0.001 to 0.05%. The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, further comprising at least one kind. 前記電磁鋼素材スラブに、さらに質量%で、B,Bi,Sb,Mo,Te,Sn,P,Ge,As,Nb,Cr,Ti,Cu,Pb,ZnおよびInのうちから選んだ1種または2種以上を、それぞれ0.0005〜1.0%含有することを特徴とする請求項1〜4のいずれかに記載の方向性電磁鋼板の製造方法。   One type selected from B, Bi, Sb, Mo, Te, Sn, P, Ge, As, Nb, Cr, Ti, Cu, Pb, Zn, and In, in addition to the electromagnetic steel material slab. Or 2 or more types are contained 0.0005-1.0%, respectively, The manufacturing method of the grain-oriented electrical steel sheet in any one of Claims 1-4 characterized by the above-mentioned.
JP2005118367A 2005-04-15 2005-04-15 Method for producing grain-oriented electrical steel sheet Active JP5037796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118367A JP5037796B2 (en) 2005-04-15 2005-04-15 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118367A JP5037796B2 (en) 2005-04-15 2005-04-15 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006299297A JP2006299297A (en) 2006-11-02
JP5037796B2 true JP5037796B2 (en) 2012-10-03

Family

ID=37467949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118367A Active JP5037796B2 (en) 2005-04-15 2005-04-15 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5037796B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034633B1 (en) 2006-06-26 2018-08-22 Godo Kaisha IP Bridge 1 Radio communication terminal device, radio communication base station device, and radio communication method
EP2460902B1 (en) * 2009-07-31 2016-05-04 JFE Steel Corporation Grain-oriented magnetic steel sheet
MX338627B (en) * 2010-06-18 2016-04-26 Jfe Steel Corp Oriented electromagnetic steel plate production method.
US11459629B2 (en) 2016-02-22 2022-10-04 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
JP6572855B2 (en) * 2016-09-21 2019-09-11 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR101919528B1 (en) 2016-12-22 2018-11-16 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
JP7338511B2 (en) * 2020-03-03 2023-09-05 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613736B2 (en) * 1986-09-06 1994-02-23 川崎製鉄株式会社 Method for manufacturing unidirectional silicon steel sheet
JPH09137224A (en) * 1995-11-13 1997-05-27 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet

Also Published As

Publication number Publication date
JP2006299297A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
KR101620763B1 (en) Grain-oriented electrical steel sheet and method of producing the same
JP5988026B2 (en) Method for producing grain-oriented electrical steel sheet
RU2597464C2 (en) Method for making sheets of textured electrical steel
JP4735766B2 (en) Oriented electrical steel sheet
WO2014017590A1 (en) Oriented electromagnetic steel plate production method
JP5037796B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014132354A1 (en) Production method for grain-oriented electrical steel sheets
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP7350069B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5287641B2 (en) Method for producing grain-oriented electrical steel sheet
WO2019131974A1 (en) Oriented electromagnetic steel sheet
JP5810506B2 (en) Oriented electrical steel sheet
JP3928275B2 (en) Electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
CN114555860B (en) Electromagnetic steel sheet with insulating coating film
JP4377477B2 (en) Method for producing high magnetic flux density unidirectional electrical steel sheet
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP7338812B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2005126742A (en) Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
CN116940695A (en) Method for producing oriented electrical steel sheet, and hot-rolled steel sheet for oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5037796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250