JPH09137224A - Production of grain-oriented silicon steel sheet - Google Patents

Production of grain-oriented silicon steel sheet

Info

Publication number
JPH09137224A
JPH09137224A JP7294230A JP29423095A JPH09137224A JP H09137224 A JPH09137224 A JP H09137224A JP 7294230 A JP7294230 A JP 7294230A JP 29423095 A JP29423095 A JP 29423095A JP H09137224 A JPH09137224 A JP H09137224A
Authority
JP
Japan
Prior art keywords
annealing
hot
silicon steel
grain
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7294230A
Other languages
Japanese (ja)
Inventor
Kenichi Sadahiro
健一 定広
Atsuto Honda
厚人 本田
Hideo Yamagami
日出雄 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7294230A priority Critical patent/JPH09137224A/en
Publication of JPH09137224A publication Critical patent/JPH09137224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the magnetic properties of a silicon steel sheet and to improve its productivity by applying a cooling-heating cycle to hot rolled sheet annealing to a grain-oriented silicon steel sheet contg. Al and N as inhibitors and a specified amt. of Sb, and executing cold rolling at an ordinary temp. SOLUTION: A slab for a grain-oriented silicon steel sheet contg. Al and N as inhibitors and furthermore contg. >=0.03wt.% Sb is subjected to hot rolling, is next subjected to hot rolled sheet annealing, is thereafter subjected to each one time of cold rolling, decarburizing annealing and final finish annealing to obtain a grain-oriented silicon steel sheet. At this time, in the process of soaking in the temp. range of 1000 to 1180 deg.C in the hot rolled sheet annealing, a cooling-heating cycle to a temp. region lower by >=400 deg.C than the soaking temp. is applied, and if required, it is repeated for >= two times. Furthermore, the hot rolled sheet annealing is executed for >= two times according to necessary. The subsequent cold rolling is executed at an ordinary temp., e.g. of about 25 to 100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、方向性けい素鋼
板の製造方法に関し、とくに熱延板焼鈍に工夫を加える
ことによって、磁気特性の改善を生産性の向上とともに
実現しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet, and in particular, intends to realize improvement of magnetic characteristics together with improvement of productivity by adding a device to hot-rolled sheet annealing. .

【0002】[0002]

【従来の技術】方向性けい素鋼板は軟磁性材料として、
主に変圧器または回転機等の鉄心材料として使用される
もので、磁気特性として磁束密度が高く、鉄損および磁
気歪が小さいことが要求される。かかる方向性けい素鋼
板は、二次再結晶に必要なインヒビター、たとえば、Mn
S, MnSe, AlN等を含む方向性けい素鋼板用スラブを、加
熱後、熱間圧延し、ついで必要に応じて熱延板焼鈍を施
したのち、1回または中間焼鈍を挟む2回以上の冷間圧
延によって最終製品板厚とし、ついで脱炭焼鈍後、鋼板
にMgO などの焼鈍分離剤を塗布してから、最終仕上げ焼
鈍を行なって製造される。なお、方向性けい素鋼板の表
面には、特殊な場合を除いて、フォルステライト(Mg2Si
O4) 質絶縁被膜が形成されているのが普通である。この
被膜は表面の電気的絶縁だけでなく、その低熱膨張性を
利用して引張り応力を鋼板に付与することにより、鉄損
さらには磁気歪の改善にも寄与するものである。
2. Description of the Related Art Oriented silicon steel sheets are used as soft magnetic materials.
It is mainly used as an iron core material for transformers and rotating machines, and is required to have high magnetic flux density as magnetic characteristics and small iron loss and magnetostriction. Such a grain-oriented silicon steel sheet has an inhibitor necessary for secondary recrystallization, such as Mn.
After heating a slab for grain-oriented silicon steel sheet containing S, MnSe, AlN, etc., hot rolling it, and then subjecting it to hot-rolled sheet annealing, if necessary, once or two or more times with intermediate annealing sandwiched. It is manufactured by cold rolling to a final product thickness, decarburization annealing, applying an annealing separator such as MgO to the steel sheet, and then performing final finishing annealing. On the surface of grain-oriented silicon steel, except for special cases, forsterite (Mg 2 Si
O 4 ) It is common that a quality insulating film is formed. This coating contributes not only to electrical insulation of the surface but also to improvement of iron loss and magnetostriction by imparting tensile stress to the steel sheet by utilizing its low thermal expansion property.

【0003】この方向性けい素鋼板の製造方法において
磁気特性をコイル全長にわたって安定して良好に保つた
め、熱延板焼鈍の条件を規定する技術が知られている。
たとえば、特開昭57−198214号公報(高磁束密度一方向
性電磁鋼板の製造方法)においては、析出分散相として
MnS とAlN を利用する基本成分系において、熱延板焼鈍
を、昇温過程の800 ℃から1080〜1200℃の均熱温度域ま
でを2〜10℃/sの昇温速度で昇温し、この均熱温度域に
60秒間以内保ったのちの冷却過程において、その均熱温
度域から900 〜980 ℃の温度域までの滞留時間を20秒以
上500 秒間以内とし、ついで室温までを10℃/s以上の冷
却速度で急冷することを特徴とする技術が提案されてい
る。この技術の思想は、800 ℃以上の昇温速度を2 〜10
℃/sとしたこの昇温過程で熱延板に析出しているSi3N4
を分解させると同時にAlNを最適サイズに析出させ、ま
た、均熱時間を60秒間以内に限定することにより析出物
の粗大化を防止し、均熱温度域から900 〜980 ℃の温度
域までの冷却をコントロールすることによりAlN の析出
を十分行わせることにある。すなわち、AlNの析出制御
が中心的な技術思想である。
In this method for producing a grain-oriented silicon steel sheet, there is known a technique for prescribing the conditions for hot-rolled sheet annealing in order to keep the magnetic characteristics stable and good over the entire length of the coil.
For example, in Japanese Unexamined Patent Publication No. 57-198214 (manufacturing method of high magnetic flux density grain-oriented electrical steel sheet), the precipitation dispersed phase is
In the basic component system using MnS and AlN, hot-rolled sheet annealing is performed at a heating rate of 2-10 ° C / s from 800 ° C to 1080-1200 ° C during the heating process. In this soaking temperature range
In the cooling process after keeping the temperature for 60 seconds or less, the residence time from the soaking temperature range to the temperature range of 900 to 980 ° C is set to 20 seconds or more and 500 seconds or less, and then to room temperature at a cooling rate of 10 ° C / s or more. Techniques characterized by rapid cooling have been proposed. The idea of this technology is that the heating rate of 800 ℃ or more
Si 3 N 4 precipitated on the hot-rolled sheet during this heating process at ℃ / s
At the same time as decomposing the AlN, AlN is precipitated to an optimum size, and coarsening of the precipitate is prevented by limiting the soaking time to within 60 seconds, and the soaking temperature range from 900 to 980 ° C The purpose of this is to control the cooling so that AlN can be sufficiently precipitated. In other words, control of AlN precipitation is the central technical idea.

【0004】これに対し、特開平6−235027号公報(磁
気特性の良好な方向性けい素鋼板の製造方法)において
は、熱延板焼鈍のヒートサイクルにおいて、5℃/s以上
の昇温速度で1100〜1180℃の温度範囲に加熱したのち、
5℃/s以上の冷却速度で800〜1050℃の温度範囲まで冷
却する加熱サイクルを少なくとも一回以上繰り返したの
ち、800 〜1050℃の温度範囲で20〜300 秒間均熱保持す
ることを特徴とする技術が提案されている。この技術の
思想は、熱延板焼鈍均熱時に冷却・加熱のサイクルおよ
び800 ℃から1050℃に保持することによりγ→α変態を
促進し組織形成に有害なパーライトなどの組織を消滅さ
せ、かつ、固溶Cと結晶粒内微細析出カーバイドを増加
させることにある。このような固溶C、析出カーバイド
の生成は、最終冷間圧延を特公昭50−26493 号公報(高
磁束密度一方向性電磁鋼板の冷間圧延方法)に開示され
ているような温間圧延時およびパス間の時効を前提とし
た技術と言えると考えられるが、その明細書では冷間圧
延との組み合わせが提示されているもののその条件につ
いては記載されていない。
On the other hand, in Japanese Unexamined Patent Publication No. 6-235027 (method for producing a grain-oriented silicon steel sheet having good magnetic properties), in a heat cycle of hot-rolled sheet annealing, a heating rate of 5 ° C./s or more is used. After heating in the temperature range of 1100 to 1180 ℃,
It is characterized by repeating a heating cycle for cooling to a temperature range of 800 to 1050 ° C at a cooling rate of 5 ° C / s or more at least once and then maintaining the temperature soaking for 20 to 300 seconds in a temperature range of 800 to 1050 ° C. The technology to do is proposed. The idea of this technology is to accelerate the γ → α transformation by maintaining the cooling / heating cycle and maintaining the temperature from 800 ° C to 1050 ° C during the soaking of hot-rolled sheet to eliminate the structure such as pearlite which is harmful to the structure formation, and , To increase solid solution C and carbide in the crystal grains. The formation of such solid solution C and precipitated carbide is carried out by performing the final cold rolling by warm rolling as disclosed in Japanese Patent Publication No. 50-26493 (cold rolling method for high magnetic flux density unidirectional electrical steel sheet). It can be said that the technique is based on the prescription of aging between time and passes, but the specification does not describe the condition although the combination with cold rolling is presented.

【0005】しかしながらこの方法を行なうための冷間
圧延には、タンデム圧延にくらべ生産性が著しく劣るリ
バース圧延を行なうことのできるゼンジミアミルを用い
るのが普通である。したがって、上記技術は熱延板焼鈍
と温間圧延等との技術の組み合わせが考えられ、温間圧
延ひいては生産性に劣るリバース圧延を不要とする技術
ではない。
However, for the cold rolling for carrying out this method, it is usual to use a Sendzimir mill capable of performing reverse rolling, which is significantly inferior in productivity to tandem rolling. Therefore, the above-mentioned technique may be a combination of techniques such as hot-rolled sheet annealing and warm rolling, and is not a technique that does not require warm rolling and eventually reverse rolling which is inferior in productivity.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記の問
題点を有利に解決するもので、成分および熱延板焼鈍に
さらに工夫を加えることによって、冷間圧延における生
産性を低下させることのない、タンデム圧延にても優れ
る磁気特性を有する方向性けい素鋼板を得ることができ
る有利な製造方法を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and further improves the components and the annealing of hot-rolled sheet to reduce the productivity in cold rolling. An object of the present invention is to propose an advantageous manufacturing method capable of obtaining a grain-oriented silicon steel sheet having excellent magnetic properties even in tandem rolling.

【0007】[0007]

【課題を解決するための手段】この発明に至った経緯を
実験例を基にして以下に述べる。
The background of the invention is described below based on experimental examples.

【0008】発明者らは、まず成分組成と熱延板焼鈍パ
ターンについて種々実験・検討を行った。その結果下記
するようにSbを比較的多量に含む成分組成にて熱延板焼
鈍を2回行えば、温間圧延の必要性がなくなることを新
規に見出した。C:0.07wt%、Al:0.025wt %、N:0.
0090wt%、Sb:0.05wt%を含む3wt%Si鋼塊を用い、最
終板厚:0.34mmとする方向性けい素鋼板の製造工程にお
いて、熱延板焼鈍条件を変えて常温での冷間圧延に適し
た条件を探索すべく実験を行った。
The inventors first conducted various experiments and studies on the composition of components and the annealing pattern of hot-rolled sheet. As a result, it was newly found that the need for warm rolling can be eliminated by carrying out hot-rolled sheet annealing twice with a component composition containing a relatively large amount of Sb, as described below. C: 0.07 wt%, Al: 0.025 wt%, N: 0.
In the manufacturing process of the grain-oriented silicon steel sheet with a final thickness of 0.34 mm, using a 3 wt% Si ingot containing Sb: 0.05 wt% and Sb: 0.05 wt%, cold rolling at room temperature by changing the annealing conditions of the hot rolled sheet Experiments were conducted to find suitable conditions.

【0009】その実験結果を表1にまとめて示す。The experimental results are summarized in Table 1.

【表1】 [Table 1]

【0010】なお、表1において、常温圧延は、タンデ
ムミルにて、ロールおよびストリップクーラントを使用
し、50℃の温度で圧延したものであり、温間圧延は、リ
バースミルにてクーラントの減量により200 ℃の温度で
圧延したものである。
In Table 1, cold rolling is performed in a tandem mill using rolls and strip coolant at a temperature of 50 ° C., and warm rolling is performed in a reverse mill by reducing the amount of the coolant. It was rolled at a temperature of 200 ° C.

【0011】表1から明らかなように、熱延板焼鈍を2
回行うと、常温で冷間圧延を行っても、従来の温間で冷
間圧延を行った場合に比し、同等以上の磁気特性が得ら
れることが判明した。
As is clear from Table 1, the hot rolled sheet annealing
It has been found that when the rolling is performed once, even if cold rolling is performed at room temperature, magnetic characteristics equivalent to or higher than those obtained when cold rolling is performed at a conventional temperature are obtained.

【0012】しかし上記方法は、生産性の観点より熱延
板焼鈍を2度行うという不利な面もあることから、さら
に熱延板焼鈍でのヒートパターンについて検討した。は
じめに、単純な考え方として、熱延板焼鈍の均熱時間の
延長と均熱温度の高温化について検討した。その実験結
果を表2(時間延長)および表3(高温化)にそれぞれ
まとめて示す。
However, since the above method has a disadvantage that the hot-rolled sheet annealing is performed twice from the viewpoint of productivity, the heat pattern in the hot-rolled sheet annealing was further examined. First, as a simple idea, we investigated the extension of the soaking time and the raising of the soaking temperature in hot-rolled sheet annealing. The experimental results are summarized in Table 2 (extended time) and Table 3 (increased temperature).

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】なお、表2および表3に用いた鋼塊の成分
組成および最終板厚は表1の場合と同様であり、冷間圧
延はタンデム圧延対応のため常温(温度:50℃)で行っ
た。
The composition and final plate thickness of the steel ingots used in Tables 2 and 3 are the same as those in Table 1, and cold rolling is performed at room temperature (temperature: 50 ° C.) for tandem rolling. It was

【0016】表2および表3から明らかなように、均熱
時間の延長および均熱温度の高温化いずれの場合にも、
現在高磁束密度方向性けい素鋼板として用いられている
1.93T を超えるような磁束密度(B8)特性は得られなか
った。
As is clear from Tables 2 and 3, in both cases of extending the soaking time and raising the soaking temperature,
Currently used as a high magnetic flux density grain-oriented silicon steel sheet
The magnetic flux density (B 8 ) characteristics exceeding 1.93 T were not obtained.

【0017】そこで、熱延板焼鈍を2度行うことになん
らかの有効性があのではないかと考え、通常の熱延板焼
鈍の均熱(温度:1125℃時間:2分間)途中にて冷却・
加熱サイクルを付加して温度の低下した領域を有するヒ
ートパターンを考案し、種々実験を行った。なお、図1
に熱延板焼鈍におけるヒートパターンの模式図を示す。
Therefore, it is considered that the hot-rolled sheet annealing may be performed twice, so that cooling is performed during the soaking (temperature: 1125 ° C. time: 2 minutes) of the normal hot-rolled sheet annealing.
A heat pattern having a region where the temperature was lowered by adding a heating cycle was devised and various experiments were conducted. FIG.
Fig. 2 shows a schematic diagram of a heat pattern in annealing a hot rolled sheet.

【0018】その実験結果を表4にまとめて示す。The experimental results are summarized in Table 4.

【表4】 [Table 4]

【0019】なお、表4において、冷間圧延は常温(温
度:50℃)で行ったものであり、熱延板焼鈍途中の低下
温度差ΔTは次式であらわすものである。 ΔT=熱延板焼鈍均熱温度(1125℃) −低温領域の低下
到達温度 また、表4には1150℃・2分間の熱延板焼鈍2回通し材
も併記した。
In Table 4, cold rolling was carried out at room temperature (temperature: 50 ° C.), and the temperature drop ΔT during annealing of the hot rolled sheet is represented by the following equation. ΔT = annealed temperature of hot-rolled sheet annealing (1125 ° C.)-Lowering reaching temperature in low temperature region Table 4 also shows a material of two-pass hot-annealed sheet annealing at 1150 ° C. for 2 minutes.

【0020】さらに、上記のような均熱途中に低温領域
をもうけた熱延板焼鈍材における冷間圧延温度の影響を
調査した。このとき、熱延板焼鈍は、均熱温度:1125
℃、低温領域低下到達温度:625 ℃(低下温度差ΔT:
500 ℃)とした。
Further, the influence of the cold rolling temperature in the annealed hot rolled sheet having a low temperature region during the soaking was investigated. At this time, the hot-rolled sheet is annealed at a soaking temperature: 1125.
℃, low temperature region reaching temperature: 625 ℃ (falling temperature difference ΔT:
500 ° C).

【0021】その調査結果を表5にまとめて示す。The results of the investigation are summarized in Table 5.

【表5】 [Table 5]

【0022】ここで、表4および表5に示した実験に用
いた鋼塊の成分組成は表1の場合と同様であり、最終板
厚も0.34mmと表1の場合と同様にした。
The composition of the steel ingots used in the experiments shown in Tables 4 and 5 was the same as in Table 1, and the final plate thickness was 0.34 mm, which was the same as in Table 1.

【0023】これら表4および表5から明らかなよう
に、熱延板焼鈍の均熱途中に400 ℃以上( ΔT)の均熱
温度より低い温度領域をもうけることにより、温間圧延
をしなくても、すなわち、常温での冷間圧延で安定して
良好な磁気特性が得られることが判明した。
As is clear from Tables 4 and 5, warm rolling is not performed by providing a temperature region lower than the soaking temperature of 400 ° C. or more (ΔT) during soaking during hot-rolled sheet annealing. That is, it has been found that stable magnetic properties can be obtained stably by cold rolling at room temperature.

【0024】このように、熱延板焼鈍を2度行うことま
たは熱延板焼鈍の均熱途中に400 ℃以上の均熱温度より
低い温度領域を設けることと、常温での冷間圧延とによ
り、優れる磁気特性が得られることについては、以下の
ように推察する。熱延板焼鈍を2度行うことまたは、焼
鈍途中に400 ℃以上の低温領域を設けることにより、鋼
板は少なくとも2回のα−γ変態を経ることになる。こ
れにより、鋼板の粗大なパーライト、セメンタイトの組
織を均一に固溶・析出させることができる。この結果冷
延前の固溶C量が通常の熱板焼鈍に比べ大巾に増加し、
低温側に圧延温度の最適値が現れるものと考えられ。さ
らに、Sbについては、メカニズムは調査中であるが、粒
界に偏析し、粒内のカーボンの固溶量を増大させるもの
と考えている。
As described above, by performing the hot-rolled sheet annealing twice or by providing a temperature region lower than the soaking temperature of 400 ° C. or higher during the soaking of the hot-rolled sheet annealing, and by cold rolling at room temperature. The reason why excellent magnetic properties are obtained is presumed as follows. By performing the hot-rolled sheet annealing twice or by providing a low temperature region of 400 ° C. or higher during the annealing, the steel sheet undergoes at least two α-γ transformations. As a result, the coarse pearlite and cementite structures of the steel sheet can be uniformly solid-dissolved and precipitated. As a result, the amount of solid solution C before cold rolling is greatly increased as compared with normal hot plate annealing,
It is considered that the optimum rolling temperature appears on the low temperature side. Furthermore, although the mechanism of Sb is under investigation, it is believed that it segregates at the grain boundaries and increases the amount of carbon solid solution in the grains.

【0025】かくして、この発明は上記知見に立脚する
ものであり、その要旨とするところは以下のとおりであ
る。
Thus, the present invention is based on the above findings, and the gist thereof is as follows.

【0026】AlおよびNを主インヒビター成分として
含有し、かつ、Sbを0.03wt%以上含有する方向性けい素
鋼板用スラブを熱間圧延し、ついで熱延板焼鈍後、1回
の冷間圧延により最終板厚としたのち、脱炭焼鈍を施
し、ついで焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施す一連の工程によって方向性けい素鋼板を製造する
に際し、 1)熱延板焼鈍の1000から1180℃の温度域の均熱途中にて
該均熱温度よりも400℃以上温度の低い領域までの冷却
・加熱サイクルを付加すること 2)冷間圧延を常温で行うこと を特徴とする方向性けい素鋼板の製造方法(第1発
明)。
A slab for grain-oriented silicon steel sheet containing Al and N as main inhibitor components and containing Sb in an amount of 0.03 wt% or more was hot-rolled, then hot-rolled sheet was annealed, and then cold-rolled once. After making the final plate thickness by, apply decarburization annealing, then apply the annealing separator, and then, in the process of producing the grain-oriented silicon steel sheet by the series of steps of performing the final finish annealing, 1) Add a cooling / heating cycle up to a temperature lower than the soaking temperature by 400 ° C or more during soaking in the temperature range of 1000 to 1180 ° C 2) Cold rolling is performed at room temperature Method for manufacturing grain-oriented silicon steel sheet (first invention).

【0027】熱延板焼鈍均熱途中にて冷却・加熱サイ
クルを2回以上繰り返すことを特徴とする第1発明の方
向性けい素鋼板の製造方法(第2発明)。
The method for producing a grain-oriented silicon steel sheet according to the first aspect of the invention (the second aspect of the invention), characterized in that the cooling / heating cycle is repeated twice or more during the soaking of the hot-rolled sheet.

【0028】AlおよびNを主インヒビター成分として
含有し、かつ、Sbを0.03wt%以上含有する方向性けい素
鋼板用スラブを熱間圧延し、ついで熱延板焼鈍後、1回
の冷間圧延により最終板厚としたのち、脱炭焼鈍を施
し、ついで焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施す一連の工程によって方向性けい素鋼板を製造する
に際し、 1)熱延板焼鈍を2回以上行うこと 2)冷間圧延を常温で行うこと を特徴とする方向性けい素鋼板の製造方法(第3発
明)。
A slab for grain-oriented silicon steel sheet containing Al and N as main inhibitor components and containing Sb in an amount of 0.03 wt% or more was hot-rolled, then hot-rolled sheet was annealed, and then cold-rolled once. After making the final plate thickness by, apply decarburization annealing, then apply the annealing separator, and then, in the process of producing the grain-oriented silicon steel plate by the series of steps of performing the final finishing annealing, 1) hot-rolling plate annealing Performing two or more times 2) A method for producing a grain-oriented silicon steel sheet, characterized in that cold rolling is performed at room temperature (third invention).

【0029】ここで、常温で行う冷間圧延工程では、前
記した従来技術のように時効効果を不要とするものであ
り、その温度は25〜100 ℃の範囲が好ましい。
Here, in the cold rolling step performed at room temperature, the aging effect is unnecessary as in the above-mentioned prior art, and the temperature is preferably in the range of 25 to 100 ° C.

【0030】[0030]

【発明の実施の形態】まず、この発明における方向性け
い素鋼板用素材の成分組成範囲の限定理由および好適成
分組成範囲について述べる。
BEST MODE FOR CARRYING OUT THE INVENTION First, the reasons for limiting the component composition range of the grain-oriented silicon steel sheet material and the preferred component composition range will be described.

【0031】C:0.02〜0.15wt% Cは、熱間圧延時のα−γ変態を利用して結晶組織の改
善を行なうために重要な成分であるが、含有量が0.02wt
%に満たないとその添加効果に乏しく、0.15wt%を超え
て多量に含有させるとその後の脱炭が難しくなるので、
その含有量は0.02〜0.15wt%の範囲が好ましい。
C: 0.02 to 0.15 wt% C is an important component for improving the crystal structure by utilizing the α-γ transformation during hot rolling, but the content is 0.02 wt%.
%, The addition effect is poor, and if a large amount is added in excess of 0.15 wt%, subsequent decarburization becomes difficult.
Its content is preferably in the range of 0.02 to 0.15 wt%.

【0032】Si:2.0 〜4.5 wt% Siは、鋼板の電気抵抗を高めることにより、鉄損特性を
向上する有用な成分であるが、含有量が2.0 wt%に満た
ないと鋼板の電気抵抗が小さくなって渦電流損が増大す
るために良好な鉄損特性が得られず、一方4.5 wt%を超
えると冷間圧延が困難となる。したがって、その含有量
は2.5 〜4.5 wt%の範囲とするのが好ましい。
Si: 2.0-4.5 wt% Si is a useful component for improving the iron loss characteristics by increasing the electric resistance of the steel sheet, but if the content is less than 2.0 wt%, the electric resistance of the steel sheet will be low. Good iron loss characteristics cannot be obtained because the size decreases and eddy current loss increases. On the other hand, if it exceeds 4.5 wt%, cold rolling becomes difficult. Therefore, its content is preferably in the range of 2.5 to 4.5 wt%.

【0033】このC,Siの他、方向性けい素鋼板用素材
には、一次再結晶組織の中からゴス方位以外の粒成長を
抑制することにより、ゴス方位の粒のみを選択的に成長
させるという二次再結晶に不可欠の機能を有するインヒ
ビターの形成成分を含有させることが必須である。この
インヒビターには、AlN, MnSe, MnS等のように微細析出
物として機能するものと、Sb, Sn等のように粒界に偏析
して機能するものの二つのタイプが知られている。この
発明では、これらのうち、AlN インヒビターを不可欠と
する。というのは冷延1回法では圧下率が必然的に高く
なるが、かような高圧下圧延のもとではAlN インヒビタ
ーがとりわけ有利だからである。
In addition to C and Si, in the grain-oriented silicon steel sheet material, only grains having a Goss orientation are selectively grown by suppressing grain growth other than the Goss orientation from the primary recrystallization structure. That is, it is essential to include a component forming an inhibitor having an essential function for secondary recrystallization. Two types of inhibitors are known, one that functions as a fine precipitate such as AlN, MnSe, and MnS, and the other that functions by segregating at grain boundaries such as Sb and Sn. Of these, the AlN inhibitor is essential in the present invention. This is because the cold rolling one-time method inevitably increases the rolling reduction, but under such high pressure rolling, the AlN inhibitor is particularly advantageous.

【0034】ここに、好適量のAlN インヒビターを得る
には、それぞれ、sol.Al:0.01〜0.05wt%、N:0.004
〜0.012 wt%の範囲とすることがよい。というのは、Al
含有量が0.01wt%に満たないと磁束密度が低下し、一方
0.05wt%を超えると二次再結晶が不安定になるからであ
り、またN含有量が0.004wt %に満たないとAlN インヒ
ビターの量が不足して磁束密度が低下し、一方0.012 wt
%を超えるとブリスターと呼ばれる表面欠陥が製品に多
発するからである。
In order to obtain a suitable amount of AlN inhibitor, sol.Al: 0.01 to 0.05 wt% and N: 0.004, respectively.
~ 0.012 wt% is preferable. Because Al
If the content is less than 0.01 wt%, the magnetic flux density will decrease.
This is because secondary recrystallization becomes unstable when it exceeds 0.05 wt%, and when the N content is less than 0.004 wt%, the amount of AlN inhibitor is insufficient and the magnetic flux density decreases, while 0.012 wt%.
This is because when it exceeds%, the products often have surface defects called blister.

【0035】なお、この発明では、主インヒビターとし
てAlN さえ含有していれば、MnSeやMnS 等のいわゆるMn
Se系インヒビターを併用することに何ら支障はない。こ
こに、MnSe系インヒビターの各形成成分の好適範囲はそ
れぞれつぎのとおりである。
In the present invention, so-called MnSe such as MnSe and MnS is contained as long as it contains AlN as the main inhibitor.
There is no problem in using Se-based inhibitors together. Here, the preferable range of each forming component of the MnSe-based inhibitor is as follows.

【0036】Mn:0.03〜0.30wt% Mnは、含有量が0.03wt%未満ではインヒビター成分とし
て絶対量が不足し、一方0.30wt%を超えるとインヒビタ
ーの粒子径が粗大化して粒成長抑制力が低下する。した
がって、その含有量は0.03〜0.30wt%の範囲が好適であ
る。
Mn: 0.03 to 0.30 wt% When the content of Mn is less than 0.03 wt%, the absolute amount of Mn is insufficient as an inhibitor component. descend. Therefore, the content is preferably in the range of 0.03 to 0.30 wt%.

【0037】Seおよび/またはS:0.01〜0.05wt% SeおよびSは、含有量が0.01wt%に満たないとインヒビ
ター成分として絶対量が不足し、一方0.05wt%を超える
と仕上げ焼鈍での純化が困難となるため、単独または併
用いずれの場合においても、含有量はそれぞれ0.01〜0.
05wt%の範囲が好適である。
Se and / or S: 0.01 to 0.05 wt% If the content of Se and S is less than 0.01 wt%, the absolute amount is insufficient as an inhibitor component, while if it exceeds 0.05 wt%, purification by finish annealing is performed. Therefore, the content of each is 0.01 to 0, either alone or in combination.
The range of 05 wt% is suitable.

【0038】さらに、この発明では、粒界偏析型インヒ
ビターであるSbを用いることを特徴とする。ここにSbの
粒界偏析型インヒビター成分は、その含有量が少なすぎ
ると磁気特性の改善効果が少なく、その含有量は0.03wt
%以上を必要とする。一方多すぎると脆化やフォルステ
ライト被膜への悪影響が生じるため、含有量の上限は0.
30wt%とすることが好ましい。さらに、熱間圧延時の表
面脆化に起因する表面欠陥を防止するために、0.10wt%
以下のMoを添加することも有効である。
Further, the present invention is characterized by using Sb which is a grain boundary segregation type inhibitor. The grain boundary segregation-type inhibitor component of Sb here has a small effect of improving the magnetic properties when the content thereof is too small, and the content thereof is 0.03 wt.
% Or more is required. On the other hand, if the amount is too large, embrittlement and adverse effects on the forsterite coating occur, so the upper limit of the content is 0.
30 wt% is preferable. Furthermore, in order to prevent surface defects due to surface embrittlement during hot rolling, 0.10 wt%
It is also effective to add the following Mo.

【0039】つぎに、この発明の対象としている方向性
けい素鋼板の製造においては、従来用いられている製鋼
法で得られた溶鋼をたとえば連続鋳造法あるいは造塊法
で鋳造し、必要に応じて分塊圧延工程をはさんでスラブ
とし、誘導加熱炉により1350℃以上に板厚方向に均一加
熱したのち、熱間圧延をし、この発明に適合する熱延板
焼鈍を行なう。その後冷延1回法での常温の冷間圧延に
より最終板厚の冷延板を得る。これに続き脱炭焼鈍を行
ない、MgO を主成分とする焼鈍分離剤を塗布し、ついで
1200℃程度の温度で最終仕上げ焼鈍をおこない、張力を
付与するコーチングを施して製品とする。
Next, in the production of the grain-oriented silicon steel sheet which is the subject of the present invention, the molten steel obtained by the conventional steelmaking method is cast by, for example, the continuous casting method or the ingot casting method, and if necessary, After forming a slab by interposing the slabbing process and uniformly heating it in the plate thickness direction to 1350 ° C. or more in an induction heating furnace, hot rolling is performed and hot rolled sheet annealing conforming to the present invention is performed. Then, the cold-rolled sheet having the final thickness is obtained by cold rolling at room temperature by the cold rolling method. Following this, decarburization annealing is performed, an annealing separating agent containing MgO as the main component is applied, and then
Final finish annealing is performed at a temperature of about 1200 ° C, and the product is subjected to tensioning coating.

【0040】ここで、この発明に適合する熱延板焼鈍条
件としては、1000〜1180℃の温度域の均熱途中にて冷却
・加熱サイクルを付加して均熱温度より400 ℃以上温度
の低い低温領域をもうけること、その均熱途中での冷却
・加熱サイクルを2回以上繰り返すこと、または、熱延
板焼鈍を2回以上行うものであり、これらのような熱延
板焼鈍を行うことによりSbを0.03wt%以上含有させるこ
とと相まって、常温での最終冷間圧延を行って優れる磁
気特性を有する製品が得られることになる。
The hot rolled sheet annealing conditions applicable to the present invention are lower than the soaking temperature by 400 ° C. or more by adding a cooling / heating cycle during soaking in the temperature range of 1000 to 1180 ° C. By providing a low temperature region, repeating the cooling / heating cycle twice or more during the soaking, or performing hot-rolled sheet annealing twice or more. By performing hot-rolled sheet annealing such as these Combined with the inclusion of 0.03 wt% or more of Sb, final cold rolling at room temperature can be performed to obtain a product having excellent magnetic properties.

【0041】上記熱延板焼鈍において、均熱温度は、10
00℃未満ではγ変態量が少なく組織改善が不十分となり
良好な磁気特性が得られなくなり、1180℃を超えるとMn
S やMnSeなどの析出分散相が粗大化し磁気特性が劣化す
るので1000〜1180℃の範囲とした。
In the above hot-rolled sheet annealing, the soaking temperature is 10
If it is less than 00 ° C, the amount of γ-transformation is small and the improvement of the structure is insufficient and good magnetic properties cannot be obtained.
The precipitation dispersed phase of S, MnSe, etc. becomes coarse and the magnetic properties deteriorate, so the range was set to 1000 to 1180 ° C.

【0042】また、均熱途中における冷却・加熱サイク
ルの付加は、たとえば、発明会社が先に特開昭59−1932
19号公報に提案開示したような、鋼板を交互に懸け回し
つつ迂曲通板させる一対のターンロール群を断熱材をは
さんで対設させ、一方のターンロール群側を加熱帯、他
方のターンロール群を冷却帯とする連続焼鈍設備を用い
れば極めて容易に行うことができる。
The addition of a cooling / heating cycle in the course of soaking is, for example, first performed by the inventor in Japanese Patent Laid-Open No. 59-1932.
As disclosed in the proposal in Japanese Patent No. 19, a pair of turn roll groups that alternately pass through the steel plates and make detours are installed with a heat insulating material sandwiched between them, and one turn roll group side is a heating zone and the other turn is a turn band. This can be extremely easily performed by using a continuous annealing facility using the roll group as a cooling zone.

【0043】[0043]

【実施例】【Example】

実施例1 重量%でC:0.079 %、Si:3.35%、Mn:0.069 %、S
e:0.023 %、Al:0.023 %、N:0.0083%、Cu:0.13
%、Sb:0.035 %を含み残部は実質的にFeからなるけい
素鋼スラブを誘導加熱炉により1430℃・30分間加熱後、
熱間圧延して2.2mm の板厚の熱延板とした。この熱延板
を2分割し、一方は1100℃・1分間の条件で(比較
例)、他方は1100℃の温度での均熱中に550 ℃まで温度
低下するパターンを付加する条件で(適合例)、それぞ
れ熱延板焼鈍を行った。均熱後の冷却については、どち
らも800 ℃から400 ℃までを20℃/sの冷却速度にてミス
ト冷却した。その後、両者とも常温(温度:50℃)での
冷間圧延にて板厚:0.35mmに仕上げた。ついで840 ℃・
2分間の脱炭焼鈍を行い、MgO を塗布し1200℃・10時間
の仕上げ焼鈍を行い製品とした。かくして得られた製品
の磁気特性を表6に示す。
Example 1 C: 0.079% by weight, Si: 3.35%, Mn: 0.069%, S
e: 0.023%, Al: 0.023%, N: 0.0083%, Cu: 0.13
%, Sb: 0.035% and the balance being essentially Fe. After heating a silicon steel slab in an induction heating furnace at 1430 ° C for 30 minutes,
It was hot rolled into a hot rolled sheet with a thickness of 2.2 mm. This hot-rolled sheet was divided into two parts, one under conditions of 1100 ° C for 1 minute (comparative example), and the other under conditions of adding a pattern of decreasing temperature to 550 ° C during soaking at a temperature of 1100 ° C (compliance example). ), And each hot-rolled sheet was annealed. Regarding cooling after soaking, both were mist-cooled from 800 ° C to 400 ° C at a cooling rate of 20 ° C / s. After that, both were finished by cold rolling at room temperature (temperature: 50 ° C) to a plate thickness of 0.35 mm. Then 840 ° C
Decarburization annealing was performed for 2 minutes, MgO was applied, and finish annealing was performed at 1200 ° C for 10 hours to obtain a product. The magnetic properties of the product thus obtained are shown in Table 6.

【0044】[0044]

【表6】 [Table 6]

【0045】実施例2 重量%でC:0.079 %、Si:3.35%、Mn:0.069 %、S
e:0.023 %、Al:0.023 %、N:0.0083%、Cu:0.13
%、Sb:0.050 %を含み残部は実質的にFeからなるけい
素鋼スラブを誘導加熱炉により1430℃・30分間加熱後、
熱間圧延して2.2mm の板厚の熱延板とした。この熱延板
を2分割し、一方は1000℃・1分間の条件で(比較
例)、他方は1000℃の温度での均熱中に550 ℃まで温度
低下するパターンを付加する条件で(適合例)、それぞ
れ熱延焼鈍を行った。均熱後の冷却については、どちら
も800 ℃から400 ℃までを20℃/sの冷却速度にてミスト
冷却した。その後、両者とも常温(温度:40℃)での冷
間圧延にて板厚:0.30mmに仕上げた。ついで840 ℃・2
分間の脱炭焼鈍を行い、MgO を塗布し1200℃・10時間の
仕上げ焼鈍を行い製品とした。かくして得られた製品の
磁気特性を表7に示す。
Example 2 C: 0.079%, Si: 3.35%, Mn: 0.069%, S by weight%
e: 0.023%, Al: 0.023%, N: 0.0083%, Cu: 0.13
%, Sb: 0.050% and the balance substantially consisting of Fe. After heating a silicon steel slab at 1430 ° C for 30 minutes in an induction heating furnace,
It was hot rolled into a hot rolled sheet with a thickness of 2.2 mm. This hot-rolled sheet is divided into two parts, one under conditions of 1000 ° C for 1 minute (comparative example), and the other under conditions of adding a pattern in which the temperature drops to 550 ° C during soaking at a temperature of 1000 ° C (compliance example) ), And each was hot-rolled and annealed. Regarding cooling after soaking, both were mist-cooled from 800 ° C to 400 ° C at a cooling rate of 20 ° C / s. After that, both were finished by cold rolling at room temperature (temperature: 40 ° C) to a plate thickness of 0.30 mm. Then 840 ℃ ・ 2
After decarburization annealing for 1 minute, MgO was applied and finish annealing was performed at 1200 ° C for 10 hours to obtain a product. Table 7 shows the magnetic properties of the products thus obtained.

【0046】[0046]

【表7】 [Table 7]

【0047】実施例3 重量%でC:0.079 %、Si:3.35%、Mn:0.069 %、S
e:0.023 %、Al:0.023 %、N:0.0083%、Cu:0.13
%、Sb:0.035 %を含み残部は実質的にFeからなるけい
素鋼スラブを誘導加熱炉により1430℃・30分間加熱後、
熱間圧延して2.0mm の板厚の熱延板とした。この熱延板
を2分割し、一方は1100℃・1分間の条件で(比較
例)、他方は1100℃の温度での均熱中に650 ℃まで温度
低下するパターンを付加する条件で(適合例)、それぞ
れ熱延板焼鈍を行った。均熱後の冷却については、どち
らも800 ℃から400 ℃までを20℃/sの冷却速度にてミス
ト冷却した。その後、両者とも常温(温度:40℃)での
冷間圧延にて板厚:0.27mmに仕上げた。ついで840 ℃・
2分間の脱炭焼鈍を行い、MgO を塗布し1200℃・10時間
の仕上げ焼鈍を行い製品とした。かくして得られた製品
の磁気特性を表8に示す。
Example 3 C: 0.079% by weight, Si: 3.35%, Mn: 0.069%, S
e: 0.023%, Al: 0.023%, N: 0.0083%, Cu: 0.13
%, Sb: 0.035% and the balance being essentially Fe. After heating a silicon steel slab in an induction heating furnace at 1430 ° C for 30 minutes,
It was hot rolled into a hot rolled sheet with a thickness of 2.0 mm. This hot-rolled sheet is divided into two parts, one under conditions of 1100 ° C for 1 minute (comparative example), and the other under conditions where a pattern of decreasing temperature to 650 ° C is added during soaking at a temperature of 1100 ° C (comparative example). ), And each hot-rolled sheet was annealed. Regarding cooling after soaking, both were mist-cooled from 800 ° C to 400 ° C at a cooling rate of 20 ° C / s. After that, both were finished by cold rolling at room temperature (temperature: 40 ° C) to a plate thickness of 0.27 mm. Then 840 ° C
Decarburization annealing was performed for 2 minutes, MgO was applied, and finish annealing was performed at 1200 ° C for 10 hours to obtain a product. Table 8 shows the magnetic properties of the products thus obtained.

【0048】[0048]

【表8】 [Table 8]

【0049】実施例4 重量%でC:0.079 %、Si:3.35%、Mn:0.069 %、S
e:0.023 %、Al:0.023 %、N:0.0083%、Cu:0.13
%、Sb:0.035 %を含み残部は実質的にFeからなるけい
素鋼スラブを誘導加熱炉により1430℃・30分加熱後、熱
間圧延して1.8mmの板厚の熱延板とした。この熱延板を
2分割し、一方は1100℃・1分間の条件で(比較例)、
他方は1100℃の温度での均熱中に400 ℃まで温度低下す
るパターンを付加する条件で(適合例)、それぞれ熱延
板焼鈍を行った。均熱後の冷却については、どちらも80
0 ℃から400 ℃までを20℃/sの冷却速度にてミスト冷却
した。その後、両者とも常温(温度:60℃)での冷間圧
延にて板厚:0.23mmに仕上げた。ついで840 ℃・2分間
の脱炭焼鈍を行ない、MgO を塗布し1200℃・10時間の仕
上げ焼鈍を行い製品とした。かくして得られた製品の磁
気特性を表9に示す。
Example 4 C: 0.079% by weight, Si: 3.35%, Mn: 0.069%, S
e: 0.023%, Al: 0.023%, N: 0.0083%, Cu: 0.13
%, Sb: 0.035% and the balance being essentially Fe. A silicon steel slab was heated at 1430 ° C. for 30 minutes in an induction heating furnace and hot-rolled into a hot-rolled sheet having a thickness of 1.8 mm. This hot-rolled sheet was divided into two parts, and one was placed at 1100 ° C for 1 minute (comparative example).
On the other hand, hot-rolled sheet annealing was carried out under the condition that a pattern of decreasing the temperature to 400 ° C was added during soaking at a temperature of 1100 ° C (compliance example). For cooling after soaking, both are 80
Mist cooling was performed from 0 ° C to 400 ° C at a cooling rate of 20 ° C / s. After that, both were finished by cold rolling at room temperature (temperature: 60 ° C) to a plate thickness of 0.23 mm. Then, decarburization annealing was performed at 840 ° C for 2 minutes, MgO was applied, and finish annealing was performed at 1200 ° C for 10 hours to obtain a product. The magnetic properties of the product thus obtained are shown in Table 9.

【0050】[0050]

【表9】 [Table 9]

【0051】実施例5 重量%でC:0.079 %、Si:3.35%、Mn:0.069 %、S
e:0.023 %、Al:0.023 %、N:0.0083%、Cu:0.13
%、Sb:0.035 %を含み残部は実質的にFeからなるけい
素鋼スラブを誘導加熱炉により1430℃・30分間加熱後、
熱間圧延して1.8mm の板厚の熱延板とした。この熱延板
を2分割し、一方は1100℃・1分間の条件で(比較
例)、他方は1100℃の温度での均熱中に400 ℃まで温度
低下するパターンを付加する条件で(適合例)、それぞ
れ熱延板焼鈍を行った。均熱後の冷却については、どち
らもエアー中冷却とした。このとき800 ℃から400 ℃ま
での冷却速度は2℃/sであった。その後、両者とも常温
(温度:55℃)での冷間圧延にて板厚:0.23mmに仕上げ
た。ついで840 ℃・2分間の脱炭焼鈍を行い、MgO を塗
布し1200℃・10時間の仕上げ焼鈍を行い製品とした。か
くして得られた製品の磁気特性を表10に示す。
Example 5 C: 0.079% by weight, Si: 3.35%, Mn: 0.069%, S
e: 0.023%, Al: 0.023%, N: 0.0083%, Cu: 0.13
%, Sb: 0.035% and the balance being essentially Fe. After heating a silicon steel slab in an induction heating furnace at 1430 ° C for 30 minutes,
It was hot rolled into a hot rolled sheet with a thickness of 1.8 mm. This hot-rolled sheet is divided into two parts, one under conditions of 1100 ° C for 1 minute (comparative example), and the other under conditions of adding a pattern of temperature decrease to 400 ° C during soaking at a temperature of 1100 ° C (compliance example) ), And each hot-rolled sheet was annealed. Regarding cooling after soaking, both were in-air cooling. At this time, the cooling rate from 800 ° C to 400 ° C was 2 ° C / s. After that, both were finished by cold rolling at room temperature (temperature: 55 ° C) to a plate thickness of 0.23 mm. Then, decarburization annealing was performed at 840 ° C for 2 minutes, MgO was applied, and finish annealing was performed at 1200 ° C for 10 hours to obtain a product. Table 10 shows the magnetic properties of the products thus obtained.

【0052】[0052]

【表10】 [Table 10]

【0053】実施例6 重量%でC:0.079 %、Si:3.35%、Mn:0.069 %、S
e:0.023 %、Al:0.023 %、N:0.0083%、Cu:0.13
%、Sb:0.035 %を含み残部は実質的にFeからなるけい
素鋼スラブを誘導加熱炉により1430℃・30分間加熱後、
熱間圧延して2.2mm の板厚の熱延板とした。この熱延板
を2分割し、一方は1100℃・1分間の条件で(比較
例)、他方は1100℃の温度での均熱中に550 ℃まで2回
くりかえし温度低下するパターンを付加する条件で(適
合例)、それぞれ熱延板焼鈍を行った。均熱後の冷却に
ついては、どちらも800 ℃から400 ℃までを20℃/sの冷
却速度にてミスト冷却した。その後、両者とも常温(温
度:50℃)での冷間圧延にて板厚:0.35mmに仕上げた。
ついで840 ℃・2分間の脱炭焼鈍を行い、MgO を塗布し
1200℃・10時間の仕上げ焼鈍を行い製品とした。かくし
て得られた製品の磁気特性を表11に示す。
Example 6 C: 0.079% by weight, Si: 3.35%, Mn: 0.069%, S
e: 0.023%, Al: 0.023%, N: 0.0083%, Cu: 0.13
%, Sb: 0.035% and the balance being essentially Fe. After heating a silicon steel slab in an induction heating furnace at 1430 ° C for 30 minutes,
It was hot rolled into a hot rolled sheet with a thickness of 2.2 mm. This hot-rolled sheet was divided into two, one under the condition of 1100 ° C for 1 minute (comparative example), and the other under the condition of adding a pattern of repeated temperature decrease to 550 ° C twice during soaking at a temperature of 1100 ° C. (Compatible example), hot rolled sheet annealing was performed. Regarding cooling after soaking, both were mist-cooled from 800 ° C to 400 ° C at a cooling rate of 20 ° C / s. After that, both were finished by cold rolling at room temperature (temperature: 50 ° C) to a plate thickness of 0.35 mm.
Then, decarburization annealing was performed at 840 ° C for 2 minutes, and MgO was applied.
Finished annealing was performed at 1200 ℃ for 10 hours to obtain a product. Table 11 shows the magnetic properties of the products thus obtained.

【0054】[0054]

【表11】 [Table 11]

【0055】実施例7 重量%でC:0.079 %、Si:3.35%、Mn:0.069 %、S
e:0.023 %、Al:0.023 %、N:0.0083%、Cu:0.13
%、Sb:0.035 %を含み残部は実質的にFeからなるけい
素鋼スラブを誘導加熱炉により1430℃・30分間加熱後、
熱間圧延して2.2mm の板厚の熱延板とした。この熱延板
を2分割し、一方は1100℃・1分間の熱延板焼鈍を行い
(比較例)、他方は1100℃・1分間の熱延板焼鈍を2度
施した。均熱後の冷却については1回目はミスト中で80
0 〜400 ℃間20℃/sの冷却、2回目はエアー中での2℃
/sの空冷を行った。その後、両者も常温(温度:40℃)
での冷間圧延にて板厚:0.35mmに仕上げた。ついで840
℃・2分間の脱炭焼鈍を行い、MgO を塗布し1200℃・10
時間の仕上げ焼鈍を行い製品とした。かくして得られた
製品の磁気特性を表12に示す。
Example 7 C: 0.079% by weight, Si: 3.35%, Mn: 0.069%, S
e: 0.023%, Al: 0.023%, N: 0.0083%, Cu: 0.13
%, Sb: 0.035% and the balance being essentially Fe. After heating a silicon steel slab in an induction heating furnace at 1430 ° C for 30 minutes,
It was hot rolled into a hot rolled sheet with a thickness of 2.2 mm. This hot-rolled sheet was divided into two, one of which was annealed at 1100 ° C for 1 minute (comparative example), and the other was annealed twice at 1100 ° C for 1 minute. For the cooling after soaking, the first time is 80 in the mist.
Cooling at 0 ℃ to 400 ℃ at 20 ℃ / s, the second time at 2 ℃ in air
Air cooling of / s was performed. After that, both are at room temperature (temperature: 40 ℃)
Finished to a thickness of 0.35 mm by cold rolling. 840
Decarburization annealing at ℃ · 2 minutes, apply MgO and 1200 ℃ · 10
Finish annealing was performed for a time to obtain a product. Table 12 shows the magnetic properties of the products thus obtained.

【0056】[0056]

【表12】 [Table 12]

【0057】以上、表6〜12から明らかなように、この
発明の適合例は比較例に比し極めて優れた磁気特性を示
しており、これらは、この発明が、高Sb材にてAlN の分
散と結晶組織さらにはカーバイトの分散を良好にした熱
延板焼鈍方法により、タンデムミルで圧延できる常温で
の冷間圧延技術によっても良好な磁気特性が安定して得
られることを示すものである。
As is apparent from Tables 6 to 12, the conforming examples of the present invention have extremely excellent magnetic properties as compared with the comparative examples. It shows that good magnetic properties can be stably obtained even by cold rolling technology at room temperature that can be rolled in a tandem mill by the hot-rolled sheet annealing method in which the dispersion and crystal structure, and further the dispersion of carbide are improved. is there.

【0058】[0058]

【発明の効果】この発明は、Sbを0.03wt%以上含有し、
AlN を主インヒビターとする方向性けい素鋼板を製造す
るにあたり、熱延板焼鈍条件を特定するとともに冷間圧
延を常温で行うものであり、この発明によれば、冷間圧
延に生産性を低下させることのないタンデム圧延を採用
でき、生産性に優れるとともに磁気特性にも優れる方向
性けい素鋼板の製造が可能となる。
The present invention contains 0.03 wt% or more of Sb,
In producing a grain-oriented silicon steel sheet with AlN as the main inhibitor, the hot rolling sheet annealing conditions are specified and cold rolling is performed at room temperature.According to the present invention, the productivity is reduced in cold rolling. It is possible to adopt tandem rolling that does not cause it, and it is possible to manufacture grain-oriented silicon steel sheets with excellent productivity and magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延板焼鈍のヒートパターンの模式図である。FIG. 1 is a schematic diagram of a heat pattern of hot-rolled sheet annealing.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 AlおよびNを主インヒビター成分として
含有し、かつ、Sbを0.03wt%以上含有する方向性けい素
鋼板用スラブを熱間圧延し、ついで熱延板焼鈍後、1回
の冷間圧延により最終板厚としたのち、脱炭焼鈍を施
し、ついで焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施す一連の工程によって方向性けい素鋼板を製造する
に際し、 1)熱延板焼鈍の1000から1180℃の温度域の均熱途中にて
該均熱温度よりも400℃以上温度の低い領域までの冷却
・加熱サイクルを付加すること 2)冷間圧延を常温で行うこと を特徴とする方向性けい素鋼板の製造方法。
1. A slab for grain-oriented silicon steel sheet containing Al and N as main inhibitor components and containing 0.03 wt% or more of Sb is hot-rolled and then annealed once after hot-rolled sheet annealing. After the final thickness is obtained by hot rolling, decarburization annealing is applied, then an annealing separator is applied, and then final finishing annealing is performed. Add a cooling / heating cycle up to a temperature lower than the soaking temperature by 400 ° C or more during soaking in the temperature range of 1000 to 1180 ° C of annealing 2) Cold rolling at normal temperature And a method for manufacturing a grain-oriented silicon steel sheet.
【請求項2】 熱延板焼鈍均熱途中にて冷却・加熱サイ
クルを2回以上繰り返すことを特徴とする請求項1に記
載の方向性けい素鋼板の製造方法。
2. The method for producing a grain-oriented silicon steel sheet according to claim 1, wherein a cooling / heating cycle is repeated twice or more during the soaking of the hot-rolled sheet.
【請求項3】 AlおよびNを主インヒビター成分として
含有し、かつ、Sbを0.03wt%以上含有する方向性けい素
鋼板用スラブを熱間圧延し、ついで熱延板焼鈍後、1回
の冷間圧延により最終板厚としたのち、脱炭焼鈍を施
し、ついで焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施す一連の工程によって方向性けい素鋼板を製造する
に際し、 1)熱延板焼鈍を2回以上行うこと 2)冷間圧延を常温で行うこと を特徴とする方向性けい素鋼板の製造方法。
3. A slab for grain-oriented silicon steel sheet containing Al and N as main inhibitor components and containing 0.03 wt% or more of Sb is hot-rolled and then annealed once after hot-rolled sheet annealing. After the final thickness is obtained by hot rolling, decarburization annealing is applied, then an annealing separator is applied, and then final finishing annealing is performed. Annealing is performed twice or more. 2) A method for manufacturing a grain-oriented silicon steel sheet, which comprises performing cold rolling at room temperature.
JP7294230A 1995-11-13 1995-11-13 Production of grain-oriented silicon steel sheet Pending JPH09137224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7294230A JPH09137224A (en) 1995-11-13 1995-11-13 Production of grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7294230A JPH09137224A (en) 1995-11-13 1995-11-13 Production of grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH09137224A true JPH09137224A (en) 1997-05-27

Family

ID=17805032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7294230A Pending JPH09137224A (en) 1995-11-13 1995-11-13 Production of grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH09137224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299297A (en) * 2005-04-15 2006-11-02 Jfe Steel Kk Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299297A (en) * 2005-04-15 2006-11-02 Jfe Steel Kk Method for producing grain-oriented magnetic steel sheet excellent in magnetic characteristic

Similar Documents

Publication Publication Date Title
JPH0762436A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3160281B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH10130729A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JPH09137224A (en) Production of grain-oriented silicon steel sheet
JPH08143964A (en) Production of grain oriented silicon steel sheet
JPH0533056A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH10195537A (en) Production of grain oriented silicon steel sheet having stably excellent magnetic property
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH01162725A (en) Production of silicon steel sheet having good magnetic characteristic
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3392695B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent iron loss characteristics
JP3451652B2 (en) Method for producing unidirectional silicon steel sheet
JP2818290B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JP2724093B2 (en) Method for producing grain-oriented silicon steel sheet with excellent surface properties and magnetic properties
JPH06212262A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JP2724080B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties and surface properties