JP5025942B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP5025942B2
JP5025942B2 JP2005330830A JP2005330830A JP5025942B2 JP 5025942 B2 JP5025942 B2 JP 5025942B2 JP 2005330830 A JP2005330830 A JP 2005330830A JP 2005330830 A JP2005330830 A JP 2005330830A JP 5025942 B2 JP5025942 B2 JP 5025942B2
Authority
JP
Japan
Prior art keywords
electrical steel
rolled
hot
cold rolling
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005330830A
Other languages
Japanese (ja)
Other versions
JP2006291346A (en
Inventor
洋介 黒崎
猛 久保田
竜太郎 川又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005330830A priority Critical patent/JP5025942B2/en
Publication of JP2006291346A publication Critical patent/JP2006291346A/en
Application granted granted Critical
Publication of JP5025942B2 publication Critical patent/JP5025942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、回転機鉄心材料として望ましい、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板の製造方法を提供するものである。   The present invention provides a method for producing a non-oriented electrical steel sheet that is desirable as a rotating machine core material and has excellent in-plane magnetic properties within the plate surface of the steel sheet.

無方向性電磁鋼板は、大型発電機、モータ、音響機器用や安定器などの小型静止器に使用される。最近の省エネルギー、省資源のニーズが強く、エアコン、冷蔵庫などのコンプレッサーモータや、電気自動車の駆動モータでは特に高効率化が指向され、これらにはSi+Alが1.9%以上のクラスの磁束密度が高く鉄損の少ない高効率無方向性電磁鋼板が使用される場合が多い。   Non-oriented electrical steel sheets are used for small stationary devices such as large generators, motors, acoustic equipment and ballasts. There is a strong need for energy and resource saving in recent years, and compressor motors such as air conditioners and refrigerators, as well as drive motors for electric vehicles, are particularly aimed at higher efficiency. These have a magnetic flux density of 1.9% or more of Si + Al. High efficiency non-oriented electrical steel sheets with high iron loss and low iron loss are often used.

回転機などの鉄心として電気機器に使用される場合には、通常、JIS等で規定されている鋼板の圧延方向(以下、「L方向」と記す)とその直角方向(以下、「C方向」と記す)の平均の磁気特性のみでなく、鋼板板面内の全周磁気特性が優れていることが求められる。この目的のためには、鋼板面内に鉄の磁化容易軸を含まない{111}方位粒を可能な限り減らし、鋼板面内に鉄の磁化容易軸を含む{100}方位粒を極力集合組織を発達させることが望ましい。   When used in electrical equipment as an iron core such as a rotating machine, the rolling direction (hereinafter referred to as “L direction”) of steel sheets and the perpendicular direction (hereinafter referred to as “C direction”), which are normally specified by JIS, etc. In addition to the average magnetic properties of the steel sheet, it is required to have excellent all-round magnetic properties in the steel plate surface. For this purpose, the {111} orientation grains that do not include the iron easy axis in the steel plate surface are reduced as much as possible, and the {100} orientation grains that include the iron easy axis in the steel plate surface are as much as possible. It is desirable to develop.

Si+Alが1.9%以上のクラス無方向性電磁鋼板は、一般に熱延板焼鈍が適用され、{111}方位粒を少なくしようとはしているものの、それでも{111}方位粒は多く存在するのが現状である。{111}方位粒を減らし、その上で{100}方位粒を増やし、一段と全周の磁束密度を高め、鉄損を下げることが重要である。   Class non-oriented electrical steel sheets with Si + Al of 1.9% or more are generally applied with hot-rolled sheet annealing, and are trying to reduce {111} orientation grains, but there are still many {111} orientation grains. is the current situation. It is important to reduce {111} -oriented grains, increase {100} -oriented grains, further increase the magnetic flux density of the entire circumference, and reduce iron loss.

{100}方位粒を増やした鋼板の製造方法としては下記が提案されている。
特許文献1(特開平3−294422号)には、熱延板焼鈍を1000℃以上1200℃以下の温度で30秒から5分間行い、冷延を80%以上90%以下の冷延率とし、仕上焼鈍を850℃以上1000℃以下で15秒〜2分間行うことを特徴とする方法が提案されている。
The following has been proposed as a method for producing a steel sheet with increased {100} oriented grains.
In Patent Document 1 (Japanese Patent Laid-Open No. 3-294422), hot-rolled sheet annealing is performed at a temperature of 1000 ° C. or higher and 1200 ° C. or lower for 30 seconds to 5 minutes, and cold rolling is performed at a cold rolling rate of 80% or higher and 90% or lower, There has been proposed a method characterized in that finish annealing is performed at 850 ° C. or higher and 1000 ° C. or lower for 15 seconds to 2 minutes.

特許文献2(特開2004−197217号)には、熱延板焼鈍後の平均結晶粒径を400μm以上とし、冷間圧延を圧下率80%以上90%以下で施し、仕上焼鈍を800℃以上950℃以下で10秒以上1分以下施すことを特徴とする方法が提案されている。   In Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-197217), the average grain size after hot-rolled sheet annealing is set to 400 μm or more, cold rolling is performed at a reduction rate of 80% to 90%, and finish annealing is performed at 800 ° C. or more. There has been proposed a method characterized by performing the treatment at 950 ° C. or lower for 10 seconds to 1 minute.

特許文献3(特開平8−100215号)には、冷間圧延時の板厚と圧延ロール径の関係について、下記(1)式のM値を0.1〜7とする方法が提案されている。

Figure 0005025942
ここで、n:冷延パス回数、Hi:iパス目の入り側板厚、Hi+1:iパス目の出側板厚(i+1パス目の入り側板厚)、Ri:iパス目の圧延ロール径 Patent Document 3 (Japanese Patent Application Laid-Open No. Hei 8-100205) proposes a method of setting the M value of the following formula (1) to 0.1 to 7 regarding the relationship between the sheet thickness during cold rolling and the diameter of the rolling roll. Yes.
Figure 0005025942
Here, n: number of cold rolling passes, H i : entry thickness of the i- th pass, H i + 1 : exit thickness of the i-th pass (i + 1-th entry thickness), R i : i-th pass Roll diameter

非特許文献1には、0.26%Si成分系、熱延板焼鈍なし、冷延率82%の条件で、上記(1)式のM値が小さい方が、冷延に続く再結晶処理後の鋼板の1/5層の{111}方位粒が抑制され、キューブ方位粒が増加すると報告されている。   Non-Patent Document 1 discloses that a recrystallization treatment following cold rolling is performed when the M value of the above formula (1) is small under the conditions of 0.26% Si component system, no hot-rolled sheet annealing, and a cold rolling rate of 82%. It has been reported that {111} oriented grains in 1/5 layer of later steel plates are suppressed and cube oriented grains increase.

特許文献4(特許2578074号)には、無方向性電磁鋼板の冷間圧延時の板温度を、150℃〜470℃の温度域で圧延する方法が提案されている。
特開平3−294422号公報 特開2004−197217号公報 特開平8−100215号公報 特許2578074号公報 R.Kawamata, T.Kubota and K.Yamada : JMEPEG, 6(1997), p.701
Patent Document 4 (Patent No. 2578074) proposes a method of rolling the non-oriented electrical steel sheet in the temperature range of 150 ° C. to 470 ° C. during cold rolling.
JP-A-3-294422 JP 2004-197217 A Japanese Patent Laid-Open No. 8-110085 Japanese Patent No. 2578074 R. Kawamata, T. Kubota and K. Yamada: JMEPEG, 6 (1997), p.701

しかし、特開平3−294422号公報、特開平8−100215号公報の方法は、L,C方向の磁束密度を高くする技術である。加えて、特開平8−100215号公報の方法は、Si+Alが1.9%以上では磁束密度の向上が少ない。非特許文献1の方法も測定例にB50と記載があるが、無方向性電磁鋼板はJIS C2550により、L,C方向の試料により測定すると規程されているので、これもL,C方向の磁束密度で評価したものと考えられ、L,C方向の磁束密度を高くする技術と解される。   However, the methods disclosed in Japanese Patent Laid-Open Nos. 3-294422 and 8-11005 are techniques for increasing the magnetic flux density in the L and C directions. In addition, the method disclosed in Japanese Patent Laid-Open No. 8-100185 has little improvement in magnetic flux density when Si + Al is 1.9% or more. Although the method of Non-Patent Document 1 also describes B50 in the measurement example, the non-oriented electrical steel sheet is regulated by JIS C2550 to measure with a sample in the L and C directions. It is considered that the density is evaluated, and it is understood that the magnetic flux density in the L and C directions is increased.

特開2004−197217号公報の方法は、明細書にも記載されているとおり、{100}集合組織の発達を目的とした技術であるが、特に冷延率を90%超に上げた場合、{111}方位粒の発達による全周磁束密度の低下を招いてしまうという欠点があった。 本発明は、前記の従来の技術の課題を解決した、冷延率が90%超の場合においても全周の磁束密度の高い無方向性電磁鋼板を提供するものである。   As described in the specification, the method of Japanese Patent Application Laid-Open No. 2004-197217 is a technique aimed at the development of {100} texture, but particularly when the cold rolling rate is increased to over 90%, There was a drawback that the reduction of the magnetic flux density around the periphery due to the development of {111} oriented grains. The present invention provides a non-oriented electrical steel sheet that solves the above-described problems of the prior art and has a high magnetic flux density on the entire circumference even when the cold rolling rate exceeds 90%.

特許2578074号では、請求項1に板温度150℃〜470℃で圧延することが規定されているが、これはSi:4.5重量%〜7.1重量%含有されており、脆いために圧延時のわれ対策として温度を上げて圧延するものであって、本発明とは目的が異なり、また成分も異なる。   In Japanese Patent No. 2578074, it is specified in claim 1 that rolling is performed at a plate temperature of 150 ° C. to 470 ° C. This is because Si: 4.5 wt% to 7.1 wt% is contained and is brittle. As a countermeasure against cracking during rolling, rolling is performed at a higher temperature, and the purpose is different from that of the present invention, and the components are also different.

すなわち本発明は、
(1)質量%で、
C :0.004%以下、 Si:3.04%〜3.5%、
Al:0.2%〜3.0%、 3.24%≦(%Si+%Al)、
Mn:0.02〜1.0%、 S :0.0030%以下、
N :0.0030%以下、
残部Fe及び不可避的不純物の組成よりなるスラブをスラブ加熱し、熱延し、熱延板焼鈍を行い、冷延、仕上焼鈍を行う無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を300μm以上、冷間圧延において下記式で表されるM値を0.1以上5以下、冷延率を85%〜93%とすることを特徴とした無方向性電磁鋼板の製造方法。

Figure 0005025942
ここで、n:冷延パス回数、H:iパス目の入り側板厚、Hi+1:iパス目の出側板厚(i+1パス目の入り側板厚)、R:iパス目の圧延ロール径 That is, the present invention
(1) In mass%,
C: 0.004% or less, Si: 3.04 % to 3.5%,
Al: 0.2% to 3.0%, 3.24 % ≦ (% Si +% Al),
Mn: 0.02 to 1.0%, S: 0.0030% or less,
N: 0.0030% or less,
In the manufacturing method of the non-oriented electrical steel sheet in which the slab composed of the remaining Fe and the inevitable impurities is slab-heated, hot-rolled, hot-rolled sheet annealed, cold-rolled, and finish-annealed, A non-oriented electrical steel sheet characterized by having an average crystal grain size of 300 μm or more, an M value represented by the following formula in cold rolling of 0.1 to 5 and a cold rolling rate of 85% to 93% Production method.
Figure 0005025942
Here, n: number of cold rolling passes, H i : entry side plate thickness of i- th pass, H i + 1 : exit side plate thickness of i-th pass (i + 1-th pass entry plate thickness), R i : rolling roll of i-th pass Diameter

(2)質量%で、Sn,Sbの1種または2種を各々の含有量で0.02〜0.4%含有させることを特徴とする前記(1)に記載無方向性電磁鋼板の製造方法。 (2) The non-oriented electrical steel sheet according to (1), wherein one or two of Sn and Sb is contained in an amount of 0.02 to 0.4% in terms of mass%. Production method.

(3)質量%で、REM,Mg,Caの1種または2種以上を各々の含有量で0.0005%〜0.020%を含有させることを特徴とする前記(1)または(2)に記載無方向性電磁鋼板の製造方法。 (3) The above (1) or (2), characterized by containing 0.0005% to 0.020% of each of REM, Mg, and Ca in a content of 1% by mass The manufacturing method of the non-oriented electrical steel sheet described in 1 .

本発明によれば、冷延率が85%〜93%と高い場合に、熱延板焼鈍後の平均結晶粒径を300μm以上、かつ、前記(1)式のM値を0.1以上5以下に制御することにより、{111}方位粒の減少と{100}方位粒の発達の効果によって、従来の方法よりも全周磁束密度の非常に高い磁気特性の優れた無方向性電磁鋼板を製造する方法を提供できる。エアコン、冷蔵庫などのコンプレッサーモータや、電気自動車の駆動モータなどの高効率モータの鉄心に使用されるSi+Alが1.9%以上のクラスの無方向性電磁鋼板への要請に十分応えたものであり、その工業的価値は極めて高いものである。   According to the present invention, when the cold rolling rate is as high as 85% to 93%, the average crystal grain size after hot-rolled sheet annealing is 300 μm or more, and the M value of the formula (1) is 0.1 or more and 5 By controlling the following, a non-oriented electrical steel sheet having excellent magnetic properties with a much higher magnetic flux density than the conventional method due to the reduction of {111} orientation grains and the development of {100} orientation grains. A method of manufacturing can be provided. It fully meets the demand for non-oriented electrical steel sheets with a 1.9% or higher Si + Al class used in the cores of high-efficiency motors such as compressor motors for air conditioners and refrigerators, and drive motors for electric vehicles. , Its industrial value is extremely high.

以下、本発明の詳細について説明する。
本発明者らはSi+Alが1.9%以上のクラスで全周磁束密度の高い無方向性電磁鋼板を製造する方法を鋭意検討した結果、熱延板焼鈍後の平均結晶粒径を300μm以上、冷間圧延において前記(1)式で表される定数Mが0.1以上5以下とし、冷延率85%〜93%とすることが非常に有効であり、冷延を180〜350℃で行うと更に有効であることを見いだした。
Details of the present invention will be described below.
As a result of earnestly examining the method for producing a non-oriented electrical steel sheet having a high total magnetic flux density in a class of Si + Al of 1.9% or more, the present inventors have determined that the average grain size after hot-rolled sheet annealing is 300 μm or more, In cold rolling, it is very effective that the constant M represented by the formula (1) is 0.1 to 5 and the cold rolling rate is 85% to 93%. I found it more effective when done.

表1は、本発明者が行なった実験結果の一例である。C:0.0025%、Si:2.1%、Al:0.3%、Mn:0.23%、S:0.0017%、N:0.0015%、残部不可避的不純物を含むスラブをスラブ加熱し、3.90mm厚と1.40mm厚に熱延し(冷延前板厚t:3.90mm,1.40mm)、1100℃×1分の熱延板焼鈍を行い、熱延板焼鈍板の平均結晶粒径を352μmとした。そして、冷延ワークロール径を200mmφとし、5パスで75%と91%の圧下率で0.35mmに冷間圧延し、850℃で1分の仕上焼鈍を行い、磁気測定した。全周磁束密度y-Rは、圧延方向からX度方向の磁束密度の値をy-Xとして下記の式で求めた。
-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
冷延の圧下率、圧延スケジュール、M値と全周磁束密度の関係を表1に示す。図1には、圧延方向からの角度と磁束密度の関係を示す。
Table 1 is an example of experimental results conducted by the present inventors. A slab containing C: 0.0025%, Si: 2.1%, Al: 0.3%, Mn: 0.23%, S: 0.0017%, N: 0.0015%, and the balance inevitable impurities Slab heated, hot rolled to 3.90 mm thickness and 1.40 mm thickness (sheet thickness before cold rolling t: 3.90 mm, 1.40 mm), hot-rolled sheet annealed at 1100 ° C x 1 minute, hot-rolled sheet The average crystal grain size of the annealed plate was 352 μm. And the diameter of the cold-rolled work roll was 200 mmφ, cold rolled to 0.35 mm at 75% and 91% reduction ratios in 5 passes, finish annealing at 850 ° C. for 1 minute, and magnetically measured. The total circumferential magnetic flux density y −R was obtained by the following equation, where y −X represents the value of the magnetic flux density in the X degree direction from the rolling direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
Table 1 shows the relationship between the rolling reduction of the cold rolling, the rolling schedule, the M value, and the total magnetic flux density. FIG. 1 shows the relationship between the angle from the rolling direction and the magnetic flux density.

Figure 0005025942
Figure 0005025942

冷延率が91%でM値が4.71の本発明例では、0度,90度方向共に高い磁束密度を得られ、45度方向も比較例と比べ高く、比較例1〜3と比べ全周磁束密度が非常に高くなることが分かる。   In the example of the present invention with a cold rolling rate of 91% and an M value of 4.71, a high magnetic flux density can be obtained in both the 0 degree and 90 degree directions, and the 45 degree direction is also higher than the comparative examples, compared with the comparative examples 1-3 It can be seen that the total magnetic flux density is very high.

次に、熱延板焼鈍板平均結晶粒径の影響を検討した。表1の実験と同じC:0.0025%、Si:2.1%、Al:0.3%、Mn:0.23%、S:0.0017%、N:0.0015%、残部不可避的不純物を含むスラブをスラブ加熱し、3.90mm厚に熱延し(冷延前板厚t:3.90mm)、種々の温度で熱延板焼鈍し、平均結晶粒径を変更した。そして、冷延ワークロール径:200mmφ、5パスで表1の本発明例,M:4.71と比較例1,M:6.75の圧延スケジュールで0.35mmに冷延率91%で冷間圧延し、850℃、1分の仕上焼鈍を行い、磁気測定した。このときの熱延板焼鈍板平均結晶粒径と全周磁束密度の関係を図2に示す。これより、M値が4.71、かつ、熱延板焼鈍板平均結晶粒径が300μm以上の場合に顕著に高い磁束密度を得られることが分かる。   Next, the influence of the average crystal grain size of the hot-rolled sheet annealed sheet was examined. Same as the experiment of Table 1 C: 0.0025%, Si: 2.1%, Al: 0.3%, Mn: 0.23%, S: 0.0017%, N: 0.0015%, the remainder is inevitable A slab containing a typical impurity was slab heated, hot-rolled to a thickness of 3.90 mm (sheet thickness t before cold rolling: 3.90 mm), and annealed at various temperatures to change the average crystal grain size. Then, cold rolled work roll diameter: 200 mmφ, 5 passes, Table 1 of the present invention, M: 4.71, Comparative Example 1, M: 6.75 Rolling schedule to 0.35 mm with a cold rolling rate of 91% It was hot rolled, subjected to a final annealing at 850 ° C. for 1 minute, and magnetically measured. FIG. 2 shows the relationship between the average grain size of the hot-rolled sheet annealed plate and the total magnetic flux density. This shows that a remarkably high magnetic flux density can be obtained when the M value is 4.71 and the hot-rolled sheet annealed plate average crystal grain size is 300 μm or more.

以下に本発明の限定理由を説明する。
Cは、オーステナイト、フェライト2相域とせず、フェライト1相とするため0.004%以下とした。
The reason for limitation of the present invention will be described below.
C is 0.004% or less in order to make it a ferrite one phase, not an austenite or ferrite two phase region.

Si:1.5%〜3.5%、Al:0.2%〜3.0%、1.9%≦(%Si+%Al):Cが0.004%以下で、1.9%≦(%Si+%Al)であればオーステナイト、フェライト2相域とならずフェライト1相となるため、1.9%≦(%Si+%Al)とした。Si,Alは電気抵抗を上げ、渦電流損失を下げるため、下限は各々1.5%,0.2%とした。Si,Alを各々3.5%超,3.0%超添加すると加工性が著しく劣化する。   Si: 1.5% to 3.5%, Al: 0.2% to 3.0%, 1.9% ≦ (% Si +% Al): C is 0.004% or less, and 1.9% ≦ If (% Si +% Al), the austenite and ferrite do not become the two-phase region, but the ferrite one-phase, so 1.9% ≦ (% Si +% Al). Since Si and Al increase the electric resistance and decrease the eddy current loss, the lower limits are set to 1.5% and 0.2%, respectively. When Si and Al are added in excess of 3.5% and 3.0%, respectively, the workability is remarkably deteriorated.

Mnは、脆性を改善するため、0.02%以上とする。上限の1%は、これ以上添加すると磁束密度が劣化する。   Mn is made 0.02% or more in order to improve brittleness. When the upper limit of 1% is added, the magnetic flux density deteriorates.

Sは、微細な硫化物をつくり、鉄損に有害な作用を演ずるため、0.0030%以下とする。   S forms 0.0030% or less in order to produce a fine sulfide and to play a harmful effect on iron loss.

NはAlNなど微細な窒化物をつくり、鉄損に有害な作用を演ずるため、0.0030%以下とする。   N forms fine nitrides such as AlN and exerts a harmful effect on iron loss, so 0.0030% or less.

熱延板焼鈍後の平均結晶粒径は300μm以上とする。図2に示すように300μm未満であると高い磁束密度を得られない。   The average crystal grain size after hot-rolled sheet annealing is set to 300 μm or more. As shown in FIG. 2, when it is less than 300 μm, a high magnetic flux density cannot be obtained.

また更に磁気特性を向上させたい場合には、下記の手段を採用することができる。
Sn,Sbの1種または2種を各々の含有量で0.02〜0.4%含有させる。0.02%以上とすると磁束密度B50を高くできる。上限の0.4%は効果が飽和するためである。
If it is desired to further improve the magnetic characteristics, the following means can be employed.
One or two of Sn and Sb are contained in an amount of 0.02 to 0.4%. If it is 0.02% or more, the magnetic flux density B50 can be increased. The upper limit of 0.4% is because the effect is saturated.

REM,Mg,Caを1種または2種以上を各々の含有量で0.0005%以上含有すると、鋼中のSがREM硫化物、Mg硫化物、Ca硫化物を粗大に生成し、微細な硫化物が少なくなり、良好な磁気特性を得られる。上限の0.020%は、これを超えて含有するとかえって磁気特性が悪化するためである。   When one or more of REM, Mg, and Ca are contained in each content of 0.0005% or more, S in the steel generates REM sulfide, Mg sulfide, and Ca sulfide coarsely and is fine. Sulfide is reduced and good magnetic properties can be obtained. If the upper limit of 0.020% is contained, the magnetic properties deteriorate.

下記式のM値は0.1〜5とする。5を超えると高い磁束密度を得られず、0.1未満では、冷延のパス回数が多くなりすぎたり、冷延ワークロール径が小さくなりすぎるなどの生産上の負荷が大きくなりすぎる。

Figure 0005025942
ここで、n:冷延パス回数、Hi:iパス目の入り側板厚、Hi+1:iパス目の出側板厚(i+1パス目の入り側板厚)、Ri:iパス目の圧延ロール径 The M value of the following formula is 0.1-5. If it exceeds 5, a high magnetic flux density cannot be obtained, and if it is less than 0.1, the production load such as too many cold rolling passes or too small cold rolling work roll diameter becomes too large.
Figure 0005025942
Here, n: number of cold rolling passes, H i : entry thickness of the i- th pass, H i + 1 : exit thickness of the i-th pass (i + 1-th entry thickness), R i : i-th pass Roll diameter

冷延率は85%〜93%とする。85%未満や93%を超えると高い全周磁束密度を得られない。   The cold rolling rate is 85% to 93%. If it is less than 85% or exceeds 93%, it is impossible to obtain a high magnetic flux density.

冷間圧延の温度は、180〜350℃とする。180℃未満や350℃超では、実施例に示すように良好な磁気特性改善効果を得られないためである。   The temperature of cold rolling shall be 180-350 degreeC. This is because if the temperature is lower than 180 ° C. or higher than 350 ° C., a good effect of improving magnetic characteristics cannot be obtained as shown in the examples.

C:0.0014%、Si:2.21%、Mn:0.19%、Al:0.30%、S:0.0012%、N:0.0019%を含有するスラブを1150℃で加熱し、2.70mm厚に熱間圧延した。1050℃で120秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を321μmとした。そして、種々の条件でM値を変えて0.35mmに冷延し、980℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。このとき冷延率は87%である。全周磁束密度または全周鉄損は、全周値をy−R、X度方向の実測値をy−Xとして下記の式で求めた。
−R={y−0+y−90+2×(y−22.5+y−45+y−67.5)}/8
この時の冷延条件と磁気特性の関係を表2に示す。
これより、参考例では良好な磁気特性を得られることが分かる。
A slab containing C: 0.0014%, Si: 2.21%, Mn: 0.19%, Al: 0.30%, S: 0.0012%, N: 0.0019% is heated at 1150 ° C. And hot rolled to a thickness of 2.70 mm. Hot rolled sheet annealing was performed at 1050 ° C. for 120 seconds, and the average crystal grain size of the hot rolled sheet annealed sheet was set to 321 μm. Then, the M value was changed under various conditions, cold-rolled to 0.35 mm, continuously annealed at 980 ° C. for 60 seconds, and an insulating film was applied to obtain a product. At this time, the cold rolling rate is 87%. The total magnetic flux density or the total iron loss was determined by the following equation, where y− R was the total value and y− X was the actual measurement in the X degree direction.
y -R = {y -0 + y -90 + 2 × (y -22.5 + y -45 + y -67.5)} / 8
Table 2 shows the relationship between the cold rolling conditions and the magnetic properties at this time.
From this, it can be seen that good magnetic properties can be obtained in the reference example .

Figure 0005025942
Figure 0005025942

C:0.0012%、Si:2.19%、Mn:0.17%、Al:0.33%、S:0.0020%、N:0.0012%を含有するスラブを1150℃で加熱し、2.70mm厚に熱間圧延した。種々の温度で120秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を変化させた。そして、実施例1のNo.2の冷延スケジュールで0.35mmに冷延し、980℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。
この時の、熱延板焼鈍温度、熱延板焼鈍板平均結晶粒径と磁気特性の関係を表3に示す。全周磁束密度または全周鉄損は、全周値をy−R、X度方向の実測値をy−Xとして下記の式で求めた。
−R={y−0+y−90+2×(y−22.5+y−45+y−67.5)}/8
これより、参考例では良好な磁気特性を得られることが分かる。
A slab containing C: 0.0012%, Si: 2.19%, Mn: 0.17%, Al: 0.33%, S: 0.0020%, N: 0.0012% is heated at 1150 ° C. And hot rolled to a thickness of 2.70 mm. Hot-rolled sheet annealing was performed at various temperatures for 120 seconds to change the average crystal grain size of the hot-rolled sheet annealed sheet. And No. 1 of Example 1. The product was cold-rolled to 0.35 mm according to the cold-rolling schedule of No. 2, continuously annealed at 980 ° C. for 60 seconds, and an insulating film was applied to obtain a product.
Table 3 shows the relationship between the hot-rolled sheet annealing temperature, the hot-rolled sheet annealed plate average crystal grain size, and the magnetic properties at this time. The total magnetic flux density or the total iron loss was determined by the following equation, where y− R was the total value and y− X was the actual measurement in the X degree direction.
y -R = {y -0 + y -90 + 2 × (y -22.5 + y -45 + y -67.5)} / 8
From this, it can be seen that good magnetic properties can be obtained in the reference example .

Figure 0005025942
Figure 0005025942

C:0.0019%、Si:2.00%、Mn:0.31%、Al:0.29%、S:0.0009%、N:0.0014%を含有するスラブを1150℃で加熱し、種々の板厚に熱間圧延した。1050℃で90秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を321μmとした。そして、表4の条件で0.35mmに冷延し、980℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。この時の、冷延率、冷延条件と磁気特性の関係を表4に示す。全周磁束密度または全周鉄損は、全周値をy−R、X度方向の実測値をy−Xとして下記の式で求めた。
−R={y−0+y−90+2×(y−22.5+y−45+y−67.5)}/8
これより、参考例では良好な磁気特性を得られることが分かる。
A slab containing C: 0.0019%, Si: 2.00%, Mn: 0.31%, Al: 0.29%, S: 0.0009%, N: 0.0014% is heated at 1150 ° C. And hot rolled to various plate thicknesses. Hot-rolled sheet annealing was performed at 1050 ° C. for 90 seconds, and the average crystal grain size of the hot-rolled sheet annealed sheet was set to 321 μm. And it cold-rolled to 0.35 mm on the conditions of Table 4, 980 degreeC x 60 second continuous annealing, apply | coated the insulating film, and was set as the product. Table 4 shows the relationship between the cold rolling rate, cold rolling conditions, and magnetic properties at this time. The total magnetic flux density or the total iron loss was determined by the following equation, where y− R was the total value and y− X was the actual measurement in the X degree direction.
y -R = {y -0 + y -90 + 2 × (y -22.5 + y -45 + y -67.5)} / 8
From this, it can be seen that good magnetic properties can be obtained in the reference example .

Figure 0005025942
Figure 0005025942

C:0.0011%、Si:3.04%、Mn:0.19%、Al:0.60%、S:0.0009%、N:0.0011%を含有し、表5に示す成分を含有するスラブを1100℃で加熱し、2.70mm厚に熱間圧延した。1100℃で90秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を334μmとした。そして、冷延ロール径70mmφで表6に示す条件で0.35mmに冷延し、1020℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。この時の、成分と磁気特性の関係を表5に示す。全周磁束密度または全周鉄損は、全周値をy-R、X度方向の実測値をy-Xとして下記の式で求めた。
-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
これより、Sn,Sbを含有するとB50が高くなり、REM,Ca,Mgを含有するとW15/50が低くなることが分かる。
C: 0.0011%, Si: 3.04%, Mn: 0.19%, Al: 0.60%, S: 0.0009%, N: 0.0011%, components shown in Table 5 Was heated at 1100 ° C. and hot-rolled to a thickness of 2.70 mm. Hot-rolled sheet annealing was performed at 1100 ° C. for 90 seconds, and the average crystal grain size of the hot-rolled sheet annealed sheet was set to 334 μm. And it cold-rolled to 0.35 mm on the conditions shown in Table 6 by the diameter of 70 mm of cold-rolled rolls, continuously annealed at 1020 ° C. for 60 seconds, and applied an insulating film to obtain a product. Table 5 shows the relationship between components and magnetic characteristics at this time. The total magnetic flux density or total iron loss was determined by the following equation, where y −R was the total value and y −X was the measured value in the X-degree direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
From this, it can be seen that when Sn and Sb are contained, B50 is high, and when REM, Ca and Mg are contained, W15 / 50 is low.

Figure 0005025942
Figure 0005025942

冷延率、M値とB50の角度特性を示す図である。It is a figure which shows the angle characteristic of a cold rolling rate, M value, and B50. 熱延板焼鈍板平均結晶粒径、M値と全周B50の関係を示す図である。It is a figure which shows the relationship between hot rolled sheet annealing board average crystal grain diameter, M value, and perimeter B50.

Claims (3)

質量%で、
C :0.004%以下、
Si:3.04%〜3.5%、
Al:0.2%〜3.0%、
3.24%≦(%Si+%Al)、
Mn:0.02〜1.0%、
S :0.0030%以下、
N :0.0030%以下、
残部Fe及び不可避的不純物の組成よりなるスラブをスラブ加熱し、熱延し、熱延板焼鈍を行い、冷延、仕上焼鈍を行う無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を300μm以上、冷間圧延において下記式で表されるM値を0.1以上5以下、冷延率を85%〜93%とすることを特徴とした無方向性電磁鋼板の製造方法。
Figure 0005025942
ここで、n:冷延パス回数、H:iパス目の入り側板厚、Hi+1:iパス目の出側板厚(i+1パス目の入り側板厚)、R:iパス目の圧延ロール径
% By mass
C: 0.004% or less,
Si: 3.04 % to 3.5%,
Al: 0.2% to 3.0%,
3.24 % ≦ (% Si +% Al),
Mn: 0.02 to 1.0%,
S: 0.0030% or less,
N: 0.0030% or less,
In the manufacturing method of the non-oriented electrical steel sheet in which the slab composed of the remaining Fe and the inevitable impurities is slab-heated, hot-rolled, hot-rolled sheet annealed, cold-rolled, and finish-annealed, A non-oriented electrical steel sheet characterized by having an average crystal grain size of 300 μm or more, an M value represented by the following formula in cold rolling of 0.1 to 5 and a cold rolling rate of 85% to 93% Production method.
Figure 0005025942
Here, n: number of cold rolling passes, H i : entry side plate thickness of i- th pass, H i + 1 : exit side plate thickness of i-th pass (i + 1-th pass entry plate thickness), R i : rolling roll of i-th pass Diameter
質量%で、Sn,Sbの1種または2種を各々の含有量で0.02〜0.4%含有させることを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。   2. The method for producing a non-oriented electrical steel sheet according to claim 1, wherein 0.02 to 0.4% of each of Sn and Sb is contained in an amount of mass%. 質量%で、REM,Mg,Caの1種または2種以上を各々の含有量で0.0005%〜0.020%を含有させることを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。   The non-directionality according to claim 1 or 2, wherein 0.0005% to 0.020% of REM, Mg, or Ca is contained in each content by mass%. A method for producing electrical steel sheets.
JP2005330830A 2005-03-14 2005-11-15 Method for producing non-oriented electrical steel sheet Active JP5025942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330830A JP5025942B2 (en) 2005-03-14 2005-11-15 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005072041 2005-03-14
JP2005072041 2005-03-14
JP2005330830A JP5025942B2 (en) 2005-03-14 2005-11-15 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006291346A JP2006291346A (en) 2006-10-26
JP5025942B2 true JP5025942B2 (en) 2012-09-12

Family

ID=37412217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330830A Active JP5025942B2 (en) 2005-03-14 2005-11-15 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5025942B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817114B2 (en) * 2010-12-28 2015-11-18 Jfeスチール株式会社 Manufacturing method of high strength electrical steel sheet
KR20180034573A (en) 2015-10-02 2018-04-04 제이에프이 스틸 가부시키가이샤 Non-oriented electromagnetic steel sheet and manufacturing method of same
JP6414172B2 (en) * 2015-12-04 2018-10-31 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870818B2 (en) * 1989-06-29 1999-03-17 新日本製鐵株式会社 Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties
JP3379053B2 (en) * 1994-08-03 2003-02-17 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JP3934904B2 (en) * 2001-10-12 2007-06-20 新日本製鐵株式会社 Low iron loss non-oriented electrical steel sheet excellent in workability and manufacturing method thereof
JP4319889B2 (en) * 2002-12-06 2009-08-26 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same

Also Published As

Publication number Publication date
JP2006291346A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP5760504B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6651759B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
KR102239708B1 (en) Grain-oriented electrical steel sheet and its manufacturing method
US9579701B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP5896112B2 (en) Oriented electrical steel sheet, method of manufacturing the same, and transformer
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
TWI692534B (en) Multilayer electromagnetic steel plate
WO2018135414A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
TWI718973B (en) Non-directional electromagnetic steel sheet and its manufacturing method and motor core
JP2020509184A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2020503444A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2016003371A (en) Non-oriented magnetic steel sheet having good entire circumferential magnetic property
JP2019183185A (en) Nonoriented electromagnetic steel sheet
JP4855225B2 (en) Non-oriented electrical steel sheet with small anisotropy
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP6954464B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP5447167B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6662501B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP5100000B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP7052391B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP5025942B2 (en) Method for producing non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110706

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5025942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350