JP2000096195A - Nonoriented silicon steel sheet for motor of electric automobile and its production - Google Patents

Nonoriented silicon steel sheet for motor of electric automobile and its production

Info

Publication number
JP2000096195A
JP2000096195A JP26548398A JP26548398A JP2000096195A JP 2000096195 A JP2000096195 A JP 2000096195A JP 26548398 A JP26548398 A JP 26548398A JP 26548398 A JP26548398 A JP 26548398A JP 2000096195 A JP2000096195 A JP 2000096195A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
hot
steel sheet
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26548398A
Other languages
Japanese (ja)
Other versions
JP4283354B2 (en
Inventor
Takahide Shimazu
高英 島津
Hiroaki Sato
浩明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26548398A priority Critical patent/JP4283354B2/en
Publication of JP2000096195A publication Critical patent/JP2000096195A/en
Application granted granted Critical
Publication of JP4283354B2 publication Critical patent/JP4283354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a nonoriented silicon steel sheet for the motor of an electric automobile combining excellent low to high frequency iron loss and magnetic flux density and to provide a stable producing method therefor. SOLUTION: This nonoriented silicon steel sheet for the motor of an electric automobile is the one having a compsn. contg., by weight, <=0.005% C, 1 to <2.2% Si <=1.5% Al, <=1.5% Mn <=0.005% B, and the balance Fe with inevitable impurities, the sheet thickness is controlled to 0.25 to 0.6 mm, the average crystal grain size is controlled to 50 to 125 μm, the surface is provided with an insulating film, the magnetic flux density is B50>1.70T, and, also, the iron loss and the magnetic flux density satisfy the following inequality: B50>=0.011×(W15/50+W10/400/10)+1.64.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車モータ
用の無方向性電磁鋼板およびその製造方法に関するもの
で、特に、電気自動車メインモータ用途に最適な高トル
クとバッテリー消費電力の少ない無方向性電磁鋼板およ
びその製造方法を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet for an electric vehicle motor and a method of manufacturing the same, and more particularly, to a non-oriented electrical steel sheet having a high torque and a low battery power consumption which is optimal for an electric vehicle main motor. Provided are an electromagnetic steel sheet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】地球環境の観点から近年のエネルギー多
消費文明の弊害が問題視されている。このため、無方向
性電磁鋼板の使用される電気機器の分野で更なる消費電
力の低減が求められている。特に、近年、排ガスの問題
からガソリン消費量の少ない電気自動車が大いに注目さ
れている。電気自動車用の駆動モータ、即ち、メインモ
ータに求められる性能としては、例えば、日本能率協会
主催の’92モータ技術シンポジュウム、’92モータ
ゼネラルセッション(1992.4.23,幕張メッ
セ)に報告がされている。
2. Description of the Related Art From the viewpoint of the global environment, the harmful effects of recent energy-intensive civilization have been regarded as a problem. For this reason, further reduction in power consumption is demanded in the field of electrical equipment using non-oriented electrical steel sheets. In particular, in recent years, electric vehicles with low gasoline consumption have attracted much attention due to the problem of exhaust gas. The performance required of a drive motor for an electric vehicle, that is, a main motor, has been reported in, for example, the '92 Motor Technology Symposium and '92 Motor General Session (1992.4.23, Makuhari Messe) sponsored by the Japan Management Association. ing.

【0003】モータ重量低減のための起動時や低速運転
時での高トルク、即ち、高磁束密度無方向性電磁鋼板で
あり、また高速道路等での高速回転、即ち高周波(40
0Hz程度)での高効率、低鉄損無方向性電磁鋼板であ
る。
It is a high-torque high-density non-oriented electrical steel sheet at the time of start-up or low-speed operation to reduce the motor weight.
This is a high-efficiency, low iron loss non-oriented electrical steel sheet at about 0 Hz).

【0004】従来、電気自動車用の駆動モータのコア、
即ち、無方向性電磁鋼板としては、例えば特開平8−4
9044号公報が知られている。しかしながら、その発
明における鉄損(W15/50 およびW5/1000)並びに磁束
密度B50の関係は、従来の例えば、出願人の無方向性電
磁鋼板の商品カタログの範疇を一歩も出るものではない
し、特に、W15/50 とB50との関係が不満で、鉄損の割
には磁束密度が低い問題があった。具体的には、実施例
にある如く、2%Si系での0.35mm厚、W15/50 =
2.96w/kg、B50=1.68Tや1.2%Si系での
0.35mm厚、W15/50=3.80w/kg、B50=1.62
T、同じく0.50mm厚、W15/50 =5.00w/kg、B
50=1.63Tなどである。このため、電気自動車の駆
動モータとしては、大きなサイズとなって、自動車とし
ての軽量化の阻害要因となっていたし、モータトルクの
面でも改善が求められていた。更に、開示されている1
000Hzでの鉄損は、電気自動車用途としては、周波数
が高すぎて実用的でなかった。電気自動車では、一般的
に400Hz程度の周波数領域が重要で、この周波数での
鉄損改善が求められている。また、従来、絶縁皮膜が無
方向性電磁鋼板の高周波磁気特性に及ぼす影響が明らか
でなかった。
Conventionally, the core of a drive motor for an electric vehicle,
That is, as a non-oriented electrical steel sheet, for example,
No. 9044 is known. However, the relationship between the iron loss (W15 / 50 and W5 / 1000) and the magnetic flux density B50 in the invention does not go out of the category of the conventional product catalog of non-oriented electrical steel sheets, for example, by one step. , W15 / 50 and B50 were unsatisfactory, and there was a problem that the magnetic flux density was low in spite of the iron loss. More specifically, as in the embodiment, 0.35 mm thickness in 2% Si system, W15 / 50 =
2.96 w / kg, B50 = 1.68 T or 0.35 mm thickness in 1.2% Si system, W15 / 50 = 3.80 w / kg, B50 = 1.62
T, 0.50mm thick, W15 / 50 = 5.00w / kg, B
For example, 50 = 1.63T. For this reason, the drive motor of an electric vehicle has a large size, which has been a hindrance to reducing the weight of the vehicle, and improvement in motor torque has been required. Further, the disclosed 1
Iron loss at 000 Hz was too high for electric vehicles to be practical. In an electric vehicle, a frequency range of about 400 Hz is generally important, and improvement of iron loss at this frequency is required. In addition, conventionally, the effect of the insulating film on the high-frequency magnetic properties of the non-oriented electrical steel sheet was not clear.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、優れた高周波鉄損と磁束密度を併せ持つ電気自動車
モータ用の無方向性電磁鋼板とその安定的な製造方法を
提供するものである。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a non-oriented electrical steel sheet for an electric vehicle motor having excellent high-frequency iron loss and magnetic flux density, and a method for stably manufacturing the same. is there.

【0006】[0006]

【課題を解決するための手段】(1)重量%で、C≦
0.005%、Siが1%以上、2.2%未満、Al≦
1.5%、Mn≦1.5%、B≦0.005%、残部不
可避的不純物およびFeよりなり、板厚が0.25〜
0.6mm、平均結晶粒径が50〜125μmであり、表
面に0.5〜3g/m2 の絶縁皮膜を有しており、磁束
密度B50>1.70Tで、なお且つ、鉄損と磁束密度が
下記式を満足することを特徴とする電気自動車モータ用
の無方向性電磁鋼板。 B50≧0.011×(W15/50 +W10/400/10)+
1.64 (2)重量%で、C≦0.005%、Siが1%以上、
2.2%未満、Al≦1.5%、Mn≦1.5%、B≦
0.005%、残部不可避的不純物およびFeよりなる
スラブを1200℃以下の温度で加熱し、熱間圧延を行
い、1.0〜2.0mm厚の熱延板となし、次いで、70
0℃以上の温度で熱延板焼鈍を実施し、冷延して0.2
5〜0.6mm厚さとし、次いで、800℃以上の温度で
焼鈍を行って結晶粒径を50〜125μmとしてから、
表面に0.5〜3g/m2 の絶縁皮膜を塗布・焼き付け
することを特徴とする電気自動車モータ用の無方向性電
磁鋼板の製造方法。
(1) By weight%, C ≦
0.005%, Si is 1% or more and less than 2.2%, Al ≦
1.5%, Mn ≦ 1.5%, B ≦ 0.005%, the balance consists of unavoidable impurities and Fe, and the plate thickness is 0.25 to
0.6 mm, the average crystal grain size is 50 to 125 μm, the surface has an insulating film of 0.5 to 3 g / m 2 , the magnetic flux density B50> 1.70T, and the iron loss and the magnetic flux A non-oriented electrical steel sheet for an electric vehicle motor, wherein the density satisfies the following expression. B50 ≧ 0.011 × (W15 / 50 + W10 / 400/10) +
1.64 (2) By weight%, C ≦ 0.005%, Si is 1% or more,
Less than 2.2%, Al ≦ 1.5%, Mn ≦ 1.5%, B ≦
A slab consisting of 0.005%, the remaining unavoidable impurities and Fe is heated at a temperature of 1200 ° C. or less, hot-rolled, and a hot-rolled sheet having a thickness of 1.0 to 2.0 mm is formed.
Perform hot-rolled sheet annealing at a temperature of 0 ° C. or higher,
5 to 0.6 mm thickness, then annealing at a temperature of 800 ° C. or more to reduce the crystal grain size to 50 to 125 μm,
A method for producing a non-oriented electrical steel sheet for an electric vehicle motor, comprising applying and baking an insulating film of 0.5 to 3 g / m 2 to the surface.

【0007】本発明のポイントは、以下の4点である。
第1は、冷延率が少ないと製品での集合組織が改善され
て磁束密度が向上すること。このため、熱延板の厚みを
薄くする必要がある。第2に、更なる磁束密度改善のた
めには、熱延板焼鈍を高温熟熱焼鈍する必要があるこ
と。第3に、製品結晶粒径制御により、優れた高周波鉄
損と磁束密度の両立ができること。第4に、絶縁皮膜の
塗布量制御により、高周波特性を改善することである。
The points of the present invention are the following four points.
First, when the cold rolling reduction is small, the texture of the product is improved and the magnetic flux density is improved. For this reason, it is necessary to reduce the thickness of the hot rolled sheet. Second, in order to further improve the magnetic flux density, it is necessary to perform high-temperature ripening annealing in hot-rolled sheet annealing. Third, excellent control of both high-frequency iron loss and magnetic flux density can be achieved by controlling the crystal grain size of the product. Fourth, high-frequency characteristics are improved by controlling the amount of the insulating film applied.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
C量は、0.005%以下とする。0.005%Cを超
えると、磁気時効に問題があるためである。Si量を1
%以上、2.2%未満に限定する。Si量は多い方が、
鉄損が減少することが知られている。限定の理由は、S
i量が1%未満では、本発明の目的とする鉄損が不満で
あるためで、2.2%以上では、磁束密度が不満である
ため避けなければならない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The amount of C is 0.005% or less. If the content exceeds 0.005% C, there is a problem in magnetic aging. Si amount 1
% To less than 2.2%. The higher the Si content,
It is known that iron loss is reduced. The reason for the limitation is S
When the i amount is less than 1%, the iron loss aimed at by the present invention is unsatisfactory, and when it is 2.2% or more, the magnetic flux density is unsatisfactory, so it must be avoided.

【0009】Al量を1.5%以下に制限する。Alも
鉄損を減少させるが、Al量が1.5%超では磁束密度
が不満のため避ける。Mn量を1.5%以下とする。M
nは熱延での赤熱脆性を防止して熱延板の耳荒れを改善
するのに有効で必要であるが、多すぎるとコストアップ
の問題があるので、1.5%以下とする。
The amount of Al is limited to 1.5% or less. Although Al also reduces iron loss, it is avoided when the amount of Al exceeds 1.5% because the magnetic flux density is unsatisfactory. The Mn content is 1.5% or less. M
n is effective and necessary to prevent red-hot brittleness in hot rolling and to improve the edge roughness of the hot-rolled sheet, but if too much, there is a problem of cost increase, so n is set to 1.5% or less.

【0010】B量は、0.005%以下とする。Bはヒ
ステリシス損を改善するが、0.005%を超えると連
続鋳造スラブが割れるので避ける。その他の成分、P,
S,N,Ti,Nb,Vなどの不純物は極力少ない方
が、鉄損を改善する。
The B content is set to 0.005% or less. B improves the hysteresis loss, but if it exceeds 0.005%, the continuous cast slab is broken, so that it is avoided. Other components, P,
Impurities such as S, N, Ti, Nb, and V are as small as possible to improve iron loss.

【0011】また、以上の元素の他に、磁気特性を損な
わない元素として公知のSn,Ni,Cu,Sb,C
r,Moなどを添加しても本発明の効果は損なわない
が、添加コストの面から各々0.1%以下が好ましい。
In addition to the above elements, Sn, Ni, Cu, Sb, and C, which are known as elements that do not impair magnetic properties, are known.
Addition of r, Mo or the like does not impair the effects of the present invention, but is preferably 0.1% or less in view of the cost of addition.

【0012】熱延のスラブ加熱温度は、1200℃以下
とする。高周波鉄損の劣化を防止する目的で低温が良
く、その限界が1200℃である。次いで、通常の熱間
圧延を行うが、熱延板の厚みは、1.0〜2.0mmに制
限する。
The slab heating temperature of hot rolling is 1200 ° C. or less. The low temperature is good for the purpose of preventing the deterioration of the high frequency iron loss, and its limit is 1200 ° C. Next, normal hot rolling is performed, but the thickness of the hot rolled sheet is limited to 1.0 to 2.0 mm.

【0013】熱延板厚みは、薄い方が磁束密度が改善さ
れるが、1.0mm未満では熱間圧延中の仕上温度の低下
が著しくなって圧下のパワー不足となるため工業的には
難しく、また、2.0mmを超えると磁束密度が劣化する
ので避けなければならない。
The thinner the hot-rolled sheet, the better the magnetic flux density is. However, if the thickness is less than 1.0 mm, the finishing temperature during hot rolling is remarkably reduced, resulting in insufficient power for reduction. If it exceeds 2.0 mm, the magnetic flux density deteriorates and must be avoided.

【0014】次いで、熱延板の焼鈍を行う。熱延板の焼
鈍には長時間のバッチ焼鈍、短時間の連続焼鈍がある
が、いずれの方式でも問題ない。焼鈍温度は、焼鈍時間
によっても異なるが、700℃以上は磁束密度の確保の
ために必要である。
Next, the hot rolled sheet is annealed. There are long-time batch annealing and short-time continuous annealing in the annealing of the hot-rolled sheet, but any method is acceptable. Although the annealing temperature varies depending on the annealing time, 700 ° C. or more is necessary to secure the magnetic flux density.

【0015】熱延板焼鈍の前、もしくは後に酸洗を行
い、次いで、冷延を施す。冷延は、通常のレバースまた
はタンデムで行われるが、ゼンジマーミルなどのレバー
スが磁束密度の面で好ましい。なお、公知のように磁束
密度改善のため温度100〜300℃程度での温間圧延
を行うことも好ましい。
Before or after the hot rolled sheet annealing, pickling is performed, and then cold rolling is performed. Cold rolling is performed by ordinary reversal or tandem, but reversals such as Sendzimer mill are preferable in terms of magnetic flux density. In addition, it is also preferable to perform warm rolling at a temperature of about 100 to 300 ° C. to improve the magnetic flux density, as is well known.

【0016】冷延での板厚は、0.25〜0.6mmとす
る。0.25mm未満では、薄いため鋼板剛性が少なくモ
ータのティース部先端などで変形し易く、騒音が大きく
なったり、巻線が難しくなるため電気自動車用の駆動モ
ータとして不適格で、また、0.6mm超では高周波鉄損
が不満のため避ける。
The thickness of the cold-rolled sheet is 0.25 to 0.6 mm. When the thickness is less than 0.25 mm, the steel plate is thin and has a low rigidity, so that it is easily deformed at the tip of the teeth of the motor and the like, and the noise is increased and the winding becomes difficult. If it exceeds 6 mm, avoid high frequency iron loss due to dissatisfaction.

【0017】冷延後は、脱脂して、通常の連続焼鈍に供
される。焼鈍の温度は、800℃以上とする。この時、
特に結晶粒径を50μm以上、125μm以下に制御す
る必要がある。50μm未満では、低周波での鉄損が劣
化し、また、125μm超では高周波鉄損が劣化するの
で避ける。結晶粒径の制御は、温度または均熱時間によ
って行うが、Si,Al,Mn量や不純物量などによっ
ても結晶粒成長速度が異なってくるため、十分注意して
焼鈍条件を決定する必要がある。800℃未満では、均
熱時間を5分程度とっても、結晶粒径が50μm未満と
なるため経済的に不可であり、また、温度の上限は、結
晶粒径が125μmとなる温度であるが、成分系などに
よりその温度は異なる。また、この焼鈍で鋼板の表面酸
化による高磁場鉄損の劣化を防止するため、特開昭56
−16623号公報にあるように還元性雰囲気が好まし
い。焼鈍の後は有機質と無機質との混合、全有機または
全無機質の絶縁被膜を塗布、焼付けする。皮膜の塗布量
は、片面当たり、0.5〜3g/m2 に制限する。0.
5g/m2 未満では、高周波鉄損に絶縁不良のためか異
常値が発生し、また、3g/m2 超では占積率が劣化
し、モータコアとしての有効な磁束密度が劣化するため
である。焼き付け温度は、通常の100〜600℃であ
る。以下、本発明の実施例について説明する。
After cold rolling, it is degreased and subjected to ordinary continuous annealing. The annealing temperature is 800 ° C. or higher. At this time,
In particular, it is necessary to control the crystal grain size from 50 μm to 125 μm. If it is less than 50 μm, iron loss at a low frequency deteriorates, and if it exceeds 125 μm, high-frequency iron loss deteriorates, so that it is avoided. The crystal grain size is controlled by the temperature or the soaking time, but since the crystal grain growth rate varies depending on the amounts of Si, Al, Mn and the amount of impurities, it is necessary to carefully determine the annealing conditions. . If the temperature is less than 800 ° C., even if the soaking time is about 5 minutes, the crystal grain size is less than 50 μm, which is economically impossible. The upper limit of the temperature is the temperature at which the crystal grain size becomes 125 μm. The temperature differs depending on the system. Further, in order to prevent the deterioration of the high-field iron loss due to the surface oxidation of the steel sheet by this annealing, Japanese Patent Application Laid-Open No.
A reducing atmosphere is preferred as described in US Pat. After annealing, a mixture of organic and inorganic substances, an all-organic or all-inorganic insulating coating is applied and baked. The coating amount of the film is limited to 0.5 to 3 g / m 2 per one side. 0.
If it is less than 5 g / m 2 , an abnormal value occurs due to insulation failure in high-frequency iron loss, and if it exceeds 3 g / m 2 , the space factor deteriorates, and the effective magnetic flux density as a motor core deteriorates. . The baking temperature is usually 100 to 600C. Hereinafter, examples of the present invention will be described.

【0018】〔実施例1〕C量を0.002%、S量を
0.0009%、N量を0.0011%、B量を0.0
001%と固定して、その他の成分を表1とした真空溶
解インゴットを鋳造し、加熱温度を1000℃として、
熱延を行い、1.6mmの熱延板を得た。この熱延板に対
して、酸洗後、750℃×6時間の焼鈍を窒素ガス中で
行った。次いで、酸洗後、ゼンジマーミルで冷延を行
い、0.5mmとし、脱脂、焼鈍した。焼鈍は、50%水
素+50%窒素中で900〜1000℃×30秒均熱
し、結晶粒径を、約90μmに調整した。結晶粒径は、
光顕組織の鋼板厚み方向に直線を引いて、それと交わる
結晶粒界の数をカウントして求める方法で求めた。それ
から、エポキシ樹脂とクロム酸の混合絶縁皮膜を2g/
2 焼き付け、得られた製品を100mm角試料に切り出
し、L,C方向を平均して磁性を測定した。
Example 1 The amount of C is 0.002%, the amount of S is 0.0009%, the amount of N is 0.0011%, and the amount of B is 0.0
001%, and the other components were cast into a vacuum melting ingot as shown in Table 1.
Hot rolling was performed to obtain a 1.6 mm hot rolled sheet. After the pickling, the hot-rolled sheet was annealed at 750 ° C. for 6 hours in a nitrogen gas. Next, after pickling, cold rolling was performed with a Sendzimer mill to a thickness of 0.5 mm, followed by degreasing and annealing. Annealing was carried out in 50% hydrogen + 50% nitrogen at 900 to 1000 ° C. for 30 seconds to adjust the crystal grain size to about 90 μm. The crystal grain size is
A straight line was drawn in the thickness direction of the steel sheet in the light microscopic structure, and the number of crystal grain boundaries intersecting with the straight line was counted and determined. Then, a mixed insulating film of epoxy resin and chromic acid was applied at 2 g /
m 2 baking, cut the resulting product to 100mm square sample was measured magnetic average L, and C directions.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示すように、本発明範囲の成分系
で、優れた低周波〜高周波鉄損と優れた磁束密度が得ら
れることが分かる。なお、磁束密度B50は、50Hzで計
測したが、5000A/mの最大磁化力を与えた時の最
大磁束密度が周波数によって変化するかどうかを、直流
から1KHz まで調査したが、最大磁束密度は、周波数に
よらず一定の値を示した。
As shown in Table 1, it can be seen that excellent low frequency to high frequency iron loss and excellent magnetic flux density can be obtained with the component system in the range of the present invention. The magnetic flux density B50 was measured at 50 Hz, and whether or not the maximum magnetic flux density when a maximum magnetizing force of 5000 A / m was given changed with frequency from DC to 1 KHz was investigated. The value was constant regardless of the frequency.

【0021】〔実施例2〕C≦0.002%、Si:1
%以上で2.2%未満、Al≦1.5%、S≦0.00
01%、N≦0.002%の真空溶解材を1150℃加
熱して、1.8mm熱延板を造った。次いで、特開平8−
49044号公報のグラフにある従来の熱延板焼鈍なし
と670℃で窒素中2hr均熱、並びに本発明例の900
℃で30秒窒素中で熱延板焼鈍を施し、酸洗してから、
タンデム冷延し、0.25〜0.6mmに仕上げた。これ
を脱脂し、800〜1050℃で20秒の連続焼鈍を6
0%H2 +40%N2 雰囲気で実施して、結晶粒径50
〜125μmを得た。次いで、エポキシ樹脂を片面当た
り2g/m2 焼き付けた。100mm角試料に切り出し、
L,C方向を平均して磁性を測定して、図1を得た。比
較例を熱延板焼鈍なしと670℃焼鈍をプロットし、本
発明例を900℃熱延板焼鈍材でプロットした。
Example 2 C ≦ 0.002%, Si: 1
% To less than 2.2%, Al ≦ 1.5%, S ≦ 0.00
A vacuum melting material of 01% and N ≦ 0.002% was heated at 1150 ° C. to produce a 1.8 mm hot-rolled sheet. Then, JP-A-8-
In the graph of Japanese Patent No. 49044, the conventional hot-rolled sheet without annealing, soaking at 670 ° C. for 2 hours in nitrogen, and 900 of the present invention were used.
After performing hot-rolled sheet annealing in nitrogen at 30 ° C. for 30 seconds and pickling,
It was tandem cold rolled and finished to 0.25 to 0.6 mm. This was degreased and subjected to continuous annealing at 800 to 1050 ° C for 20 seconds for 6 seconds.
0% H 2 + 40% N 2 atmosphere, crystal grain size 50%
125125 μm was obtained. Next, the epoxy resin was baked at 2 g / m 2 per side. Cut out 100mm square sample,
The magnetism was measured by averaging the L and C directions to obtain FIG. The comparative example was plotted with no hot-rolled sheet annealing and 670 ° C. annealing, and the present invention example was plotted with a 900 ° C. hot-rolled sheet annealing material.

【0022】図1で見る如く、本発明範囲の条件で優れ
た低〜高周波鉄損と磁束密度を示した。本発明範囲を数
式で示すと、以下の2式を同時に満足する範囲であるこ
とが分かった。 B50>1.70T B50≧0.011×(W15/50 +W10/400/10)+
1.64
As shown in FIG. 1, excellent low to high frequency iron loss and magnetic flux density were exhibited under the conditions of the present invention. When the range of the present invention was expressed by a mathematical expression, it was found that the range satisfied the following two expressions at the same time. B50> 1.70T B50 ≧ 0.011 × (W15 / 50 + W10 / 400/10) +
1.64

【0023】なお、本発明の目的ではないが、W5/1000
も本発明例で測定すると、例えば、W15/50 +W10/100
0 /10の値が4.5で、B50が1.73Tなどと、公
知の特開平8−49044号公報のグラフにある発明例
を大幅に改善した特性が、本発明の全てのプロットで得
られていることが分かった。
Although not an object of the present invention, W5 / 1000
Is also measured in the present invention, for example, W15 / 50 + W10 / 100
With the value of 0/10 being 4.5 and the B50 being 1.73T, all the plots of the present invention show characteristics that are significantly improved from the invention examples shown in the graph of the known JP-A-8-49044. I knew it was being done.

【0024】〔実施例3〕0.003%C、1.2%S
i、0.03%Al、Mn:0.3%、0.001%
S、0.0015%N、0.002%B、0.02%
P、0.07%Cu、0.05%Ni、0.03%S
n、0.01%Cr、0.001%Ti、0.003%
Nbを含むスラブをスラブ加熱温度を変更として均熱時
間を2時間とった。次いで、熱延板の厚みも変更して熱
延した。この熱延板に対して、1000℃×20秒間の
均熱処理を窒素ガス中で行った。次いで、酸洗し、ゼン
ジマーミルで約200℃の温間圧延を行って、0.35
mm厚とした。次いで、焼鈍温度1000℃で均熱時間5
秒の水素中焼鈍を行って、エポキシ樹脂、水酸化マグネ
シュウムとクロム酸の混合絶縁皮膜を片面当たり1g/
2 焼き付けてから、エプスタインで磁性を測定した。
なお、製品での結晶粒径は、95μmと一定であった。
Example 3 0.003% C, 1.2% S
i, 0.03% Al, Mn: 0.3%, 0.001%
S, 0.0015% N, 0.002% B, 0.02%
P, 0.07% Cu, 0.05% Ni, 0.03% S
n, 0.01% Cr, 0.001% Ti, 0.003%
The soaking time of the slab containing Nb was set to 2 hours while changing the slab heating temperature. Next, the thickness of the hot rolled sheet was also changed and hot rolled. The hot rolled sheet was subjected to a soaking treatment at 1000 ° C. for 20 seconds in a nitrogen gas. Next, it was pickled and warm-rolled at about 200 ° C. with a Sendzimir mill to obtain 0.35 mm.
mm thickness. Next, a soaking time of 5 minutes at an annealing temperature of 1000 ° C.
Annealing in hydrogen for 2 seconds to form a mixed insulating film of epoxy resin, magnesium hydroxide and chromic acid at 1 g /
After baking m 2 , the magnetism was measured with Epstein.
The crystal grain size of the product was constant at 95 μm.

【0025】[0025]

【表2】 [Table 2]

【0026】表2に示すように、熱延条件が本発明範囲
のもので、優れた磁気特性が得られた。
As shown in Table 2, the hot rolling conditions were within the range of the present invention, and excellent magnetic properties were obtained.

【0027】〔実施例4〕C:0.001%、Si:
2.1%、Al:0.45%、Mn:0.1%、S:
0.0004%、N:0.0029%を含むスラブを1
160℃×2時間加熱してから、1.9mmに熱延し、熱
延板焼鈍を1100℃×25秒実施してから、酸洗後、
0.3mmまでゼンジマーミルで冷延し、次いで、表3に
示す条件で連続焼鈍を均熱20秒で行って、絶縁皮膜
(エポキシ樹脂、水酸化マグネシュウムとクロム酸の混
合)を片面当たり、表3に示す条件で焼き付けた。エプ
スタイン測定で得られた結果を表3に示す。
Example 4 C: 0.001%, Si:
2.1%, Al: 0.45%, Mn: 0.1%, S:
1 slab containing 0.0004%, N: 0.0029%
After heating at 160 ° C. for 2 hours, hot-rolling to 1.9 mm, performing hot-rolled sheet annealing at 1100 ° C. for 25 seconds, and then pickling,
Cold-rolled to 0.3 mm with a Sendzimer mill, and then continuous annealing was performed under the conditions shown in Table 3 at a soaking temperature of 20 seconds to apply an insulating film (epoxy resin, a mixture of magnesium hydroxide and chromic acid) on one side. Was baked under the conditions shown in FIG. Table 3 shows the results obtained by the Epstein measurement.

【0028】[0028]

【表3】 [Table 3]

【0029】表3に示すように、冷延板の焼鈍温度、結
晶粒径、絶縁皮膜を本発明範囲に制御したものは、優れ
た磁気特性が得られた。また、絶縁皮膜量が上限を外れ
たものは占積率が劣化し、下限外れのものは、高周波鉄
損が異常値を示した。
As shown in Table 3, when the annealing temperature, crystal grain size and insulating film of the cold rolled sheet were controlled within the range of the present invention, excellent magnetic properties were obtained. When the amount of the insulating film was outside the upper limit, the space factor was deteriorated, and when the amount was outside the lower limit, the high-frequency iron loss showed an abnormal value.

【0030】[0030]

【発明の効果】以上の如く、優れた低〜高周波鉄損と磁
束密度を併せ持つ電気自動車モータ用の無方向性電磁鋼
板を提供することができた。この結果、高トルク・コン
パクトな電気自動車用モータを提供でき、電気自動車と
しての軽量化、バッテリー消費の低減に寄与することが
できる。
As described above, a non-oriented electrical steel sheet for an electric vehicle motor having excellent low to high frequency iron loss and magnetic flux density can be provided. As a result, it is possible to provide a high-torque and compact motor for an electric vehicle, which contributes to a reduction in the weight of the electric vehicle and a reduction in battery consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2で得た製品の鉄損と磁束密度の関係を
示した図である。
FIG. 1 is a diagram showing the relationship between iron loss and magnetic flux density of a product obtained in Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C≦0.005%、Siが1
%以上2.2%未満、Al≦1.5%、Mn≦1.5
%、B≦0.005%、残部不可避的不純物およびFe
よりなり、板厚が0.25〜0.6mm、平均結晶粒径が
50〜125μmであり、表面に0.5〜3g/m2
絶縁皮膜を有しており、磁束密度B50>1.70Tで、
なお且つ、鉄損と磁束密度が下記式を満足することを特
徴とする電気自動車モータ用の無方向性電磁鋼板。 B50≧0.011×(W15/50 +W10/400/10)+
1.64
(1) C ≦ 0.005% by weight and Si is 1% by weight
% To less than 2.2%, Al ≦ 1.5%, Mn ≦ 1.5
%, B ≦ 0.005%, balance unavoidable impurities and Fe
It has a thickness of 0.25 to 0.6 mm, an average crystal grain size of 50 to 125 μm, has an insulating film of 0.5 to 3 g / m 2 on the surface, and has a magnetic flux density B50> 1. At 70T,
A non-oriented electrical steel sheet for an electric vehicle motor, wherein the iron loss and the magnetic flux density satisfy the following expressions. B50 ≧ 0.011 × (W15 / 50 + W10 / 400/10) +
1.64
【請求項2】 重量%で、C≦0.005%、Siが1
%以上2.2%未満、Al≦1.5%、Mn≦1.5
%、B≦0.005%、残部不可避的不純物およびFe
よりなるスラブを1200℃以下の温度で加熱し、熱間
圧延を行い、1.0〜2.0mm厚の熱延板となし、次い
で、700℃以上の温度で熱延板焼鈍を実施し、冷延し
て0.25〜0.6mm板厚とし、次いで、800℃以上
の温度で焼鈍を行って結晶粒径を50〜125μmとし
てから、表面に0.5〜3g/m2 の絶縁皮膜を塗布・
焼き付けすることを特徴とする電気自動車モータ用の無
方向性電磁鋼板の製造方法。
2. In% by weight, C ≦ 0.005% and Si is 1%.
% To less than 2.2%, Al ≦ 1.5%, Mn ≦ 1.5
%, B ≦ 0.005%, balance unavoidable impurities and Fe
The slab is heated at a temperature of 1200 ° C. or less, hot-rolled to form a hot-rolled sheet having a thickness of 1.0 to 2.0 mm, and then subjected to hot-rolled sheet annealing at a temperature of 700 ° C. or more, After cold rolling to a sheet thickness of 0.25 to 0.6 mm, and then annealing at a temperature of 800 ° C. or more to reduce the crystal grain size to 50 to 125 μm, a 0.5 to 3 g / m 2 insulating film is formed on the surface. Apply
A method for producing a non-oriented electrical steel sheet for an electric vehicle motor, the method comprising baking.
JP26548398A 1998-09-18 1998-09-18 Method for producing non-oriented electrical steel sheet for electric vehicle motor Expired - Fee Related JP4283354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26548398A JP4283354B2 (en) 1998-09-18 1998-09-18 Method for producing non-oriented electrical steel sheet for electric vehicle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26548398A JP4283354B2 (en) 1998-09-18 1998-09-18 Method for producing non-oriented electrical steel sheet for electric vehicle motor

Publications (2)

Publication Number Publication Date
JP2000096195A true JP2000096195A (en) 2000-04-04
JP4283354B2 JP4283354B2 (en) 2009-06-24

Family

ID=17417813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26548398A Expired - Fee Related JP4283354B2 (en) 1998-09-18 1998-09-18 Method for producing non-oriented electrical steel sheet for electric vehicle motor

Country Status (1)

Country Link
JP (1) JP4283354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200755A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
CN110484698A (en) * 2019-09-10 2019-11-22 浙江鑫可精密机械有限公司 The magneto preparation method and driving device of the changeable counter electromotive force of novel electric vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200755A (en) * 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd Method for producing non-oriented silicon steel sheet
JP4599843B2 (en) * 2004-01-19 2010-12-15 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet
JP2013517380A (en) * 2010-08-26 2013-05-16 宝山鋼鉄股▲分▼有限公司 Method for improving coarse crystal grains of non-oriented silicon steel
CN110484698A (en) * 2019-09-10 2019-11-22 浙江鑫可精密机械有限公司 The magneto preparation method and driving device of the changeable counter electromotive force of novel electric vehicle
CN110484698B (en) * 2019-09-10 2020-12-25 浙江鑫可精密机械有限公司 Preparation method and driving device of permanent magnet motor capable of changing back electromotive force for electric automobile

Also Published As

Publication number Publication date
JP4283354B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP3307872B2 (en) Motor for electric vehicle using non-oriented electrical steel sheet and method of manufacturing the electrical steel sheet
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
EP3859032A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same, and motor core and method for manufacturing same
WO2018131710A1 (en) Non-oriented electromagnetic steel sheet and production method of non-oriented electromagnetic steel sheet
JP3307897B2 (en) Non-oriented electrical steel sheet for electric power steering / motor core and method of manufacturing the same
JP2001172753A (en) High grade nonoriented silicon steel sheet and its manufacturing method
JPH11229095A (en) Nonoriented silicon steel sheet for high frequency use and its production
JP4613414B2 (en) Electrical steel sheet for motor core and method for manufacturing the same
JP2910508B2 (en) Non-oriented electrical steel sheet for high frequency with excellent iron loss characteristics
JPH1018005A (en) High strength nonoriented silicon steel sheet excellent in magnetic property and its production
JPH0860311A (en) Thin nonoriented silicon steel sheet reduced in iron loss and its production
JP4283354B2 (en) Method for producing non-oriented electrical steel sheet for electric vehicle motor
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP6690244B2 (en) Bidirectional electrical steel sheet and method for manufacturing bidirectional electrical steel sheet
JP7389323B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP3508436B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP3492075B2 (en) Non-oriented electrical steel sheet having excellent thermal conductivity and method for producing the same
JP3331401B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties all around
JP3352904B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4374095B2 (en) Method for producing non-oriented electrical steel sheet
JP2003034820A (en) Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP3337117B2 (en) Semi-process non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JP2000119822A (en) High grade nonoriented silicon steel sheet and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees