JP4313127B2 - Manufacturing method of electromagnetic steel sheet rotor - Google Patents

Manufacturing method of electromagnetic steel sheet rotor Download PDF

Info

Publication number
JP4313127B2
JP4313127B2 JP2003325797A JP2003325797A JP4313127B2 JP 4313127 B2 JP4313127 B2 JP 4313127B2 JP 2003325797 A JP2003325797 A JP 2003325797A JP 2003325797 A JP2003325797 A JP 2003325797A JP 4313127 B2 JP4313127 B2 JP 4313127B2
Authority
JP
Japan
Prior art keywords
rotor
steel sheet
electromagnetic steel
magnet
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003325797A
Other languages
Japanese (ja)
Other versions
JP2005094941A (en
Inventor
尚 茂木
和文 半澤
米男 山田
猛 久保田
洋介 黒崎
宗勝 島田
優 大和田
眞 加納
秀昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Steel Corp
Original Assignee
Nissan Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nippon Steel Corp filed Critical Nissan Motor Co Ltd
Priority to JP2003325797A priority Critical patent/JP4313127B2/en
Publication of JP2005094941A publication Critical patent/JP2005094941A/en
Application granted granted Critical
Publication of JP4313127B2 publication Critical patent/JP4313127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、モータ等のアクチュエータに用いられる電磁鋼板コアに関し、より具体的には永久磁石式モータにおけるロータの電磁鋼板ロータの製造方法に関するものである。   The present invention relates to a magnetic steel sheet core used for an actuator such as a motor, and more specifically to a method for manufacturing a magnetic steel sheet rotor of a rotor in a permanent magnet motor.

永久磁石式同期モータは、ロータに永久磁石を内蔵(IPM)したもので、EV、HEV、FCVの駆動モータとして用いられている。そのロータのコア形状の例を図1に示す。このロータ1は8極で、磁石1極が2個(符号2、3で示す)に分割されており、磁石間の部分をセンターブリッジ4と呼ぶことにする。ロータによってはこのセンターブリッジが無い場合もある。また、ロータの外周部において磁石を保持する部分をアウターブリッジ5と呼ぶ。ロータが回転すると磁石に遠心力が働きこれらのブリッジに力が加わる。   The permanent magnet type synchronous motor has a built-in permanent magnet (IPM) in a rotor, and is used as a drive motor for EV, HEV, and FCV. An example of the core shape of the rotor is shown in FIG. The rotor 1 has eight poles, and one magnet pole is divided into two pieces (indicated by reference numerals 2 and 3), and a portion between the magnets is called a center bridge 4. Some rotors do not have this center bridge. A portion that holds the magnet in the outer peripheral portion of the rotor is referred to as an outer bridge 5. When the rotor rotates, centrifugal force acts on the magnets and forces are applied to these bridges.

モータは高速回転させた方が小型にできるので、モータの高速回転化が図られている。モータの最高回転数は、ロータに使われている電磁鋼板の強度に依存する。できるだけ回転数を上げるために、例えば、特許文献1に開示されているような、応力集中を拡散させる磁石挿入口の形に関する技術がある。この形は応力集中を外周より最短の部位からずれた部位に生じさせる形状としている。さらに高速回転化を可能にする技術内容として例えば、特許文献2を挙げることができる。その技術では1極の磁石が2個に分割されており、磁石間の真中に(センター)ブリッジが設けてあるから、遠心耐力がさらに増す。すなわちより高速回転化が可能になる。
また、ロータコアに機械的強度の高い電磁鋼板を使うことも考えられるが、強度の高い電磁鋼板の鉄損は大きいため、ロータの冷却、ロータ軸の冷却が必要になる。
特開2001−16809号公報 特開2002−112481号公報
Since the motor can be reduced in size by rotating at high speed, the motor is rotated at high speed. The maximum rotational speed of the motor depends on the strength of the electrical steel sheet used in the rotor. In order to increase the number of revolutions as much as possible, there is a technique relating to the shape of a magnet insertion opening that diffuses stress concentration, as disclosed in Patent Document 1, for example. This shape is a shape in which stress concentration is generated in a portion shifted from the shortest portion from the outer periphery. Further, for example, Patent Document 2 can be cited as a technical content that enables high-speed rotation. In this technique, a single-pole magnet is divided into two pieces, and a (center) bridge is provided in the middle between the magnets, so that the centrifugal strength is further increased. That is, higher speed rotation is possible.
Although it is conceivable to use an electromagnetic steel sheet having high mechanical strength for the rotor core, the iron loss of the electromagnetic steel sheet having high strength is large, so that cooling of the rotor and cooling of the rotor shaft are required.
JP 2001-16809 A JP 2002-112481 A

本発明は、鉄損の低い電磁鋼板、すなわち機械的強度はそれほど高くない電磁鋼板を使って、高速回転化を達成することを課題とするものである。   An object of the present invention is to achieve high-speed rotation by using a magnetic steel sheet having a low iron loss, that is, a magnetic steel sheet having not so high mechanical strength.

本発明の具体的な手段は以下の通りである。
(1) 磁石を内蔵するロータを有するモータ用の電磁鋼板ロータの製造方法において、ロータの外周部にて磁石を保持するアウターブリッジ部の磁石側と、磁石1極を2個に分割するセンターブリッジ部の付け根部とに塑性加工により板厚減少部を形成し、該板厚減少部分を200℃以上、350℃以下で加熱したのち、350℃以下、且つECRプラズマCVD方式で窒化処理することを特徴とする電磁鋼板ロータの製造方法。
本発明の具体的な手段は以下の通りである。
(2) 板厚減少部形成手段がプレスによる塑性加工であることを特徴とする(1)記載の電磁鋼板ロータの製造方法。
(3) 板厚減少部形成手段としてプレスによる塑性加工、更にレーザーピーニングを施すことを特徴とする(1)記載の電磁鋼板ロータの製造方法。
(4) 前記レーザーピーニングを油中で施すことを特徴とする(3)記載の電磁鋼板ロータの製造方法。
(5) (1)乃至(4)のいずれかに記載の方法で製造した電磁鋼板ロータを用いたことを特徴とするモータ。
(6) (5)に記載のモータを搭載したことを特徴とする車両。
Specific means of the present invention are as follows.
(1) In a manufacturing method of an electromagnetic steel plate rotor for a motor having a rotor with a built-in magnet, a magnet side of an outer bridge portion that holds the magnet at the outer peripheral portion of the rotor, and a center bridge that divides one magnet into two poles Forming a reduced thickness portion by plastic working at the base of the portion , heating the reduced thickness portion at 200 ° C. or higher and 350 ° C. or lower, and then performing nitriding treatment at 350 ° C. or lower and using the ECR plasma CVD method. A method for manufacturing a magnetic steel sheet rotor characterized by the following.
Specific means of the present invention are as follows.
(2) The method for manufacturing an electromagnetic steel sheet rotor according to (1), wherein the plate thickness reducing portion forming means is plastic working by pressing.
(3) The method of manufacturing a magnetic steel sheet rotor according to (1), wherein plastic working by pressing and laser peening are further performed as a means for forming a reduced thickness portion.
(4) The method for manufacturing a magnetic steel sheet rotor according to (3), wherein the laser peening is performed in oil.
(5) A motor using an electromagnetic steel plate rotor manufactured by the method according to any one of (1) to (4).
(6) A vehicle comprising the motor according to (5).

以上のように本発明によれば、これまでの技術では、設計を工夫しても電磁鋼板基材の強度を超えられなかったが、本技術をもってすれば、基材強度の低い低鉄損の電磁鋼板が用いて、高速回転化を可能にすることができるという優れた効果がもたらされる。   As described above, according to the present invention, the conventional technology did not exceed the strength of the electrical steel sheet substrate even if the design was devised, but with this technology, the low iron loss of the substrate strength is low. The magnetic steel sheet is used, and an excellent effect that high-speed rotation can be achieved is brought about.

上記の各請求項に記載の各条件を満たすように実施することにより、鉄損増加がほとんどなく高速回転化を可能にすることが確認できた。また、モータ性能(トルク・効率)への影響はほとんどなく、改善されることも確認された。
発明者等は、本発明の技術を構築するために、以下に示す基礎的な解析を行ってきた。図1における形状のロータが回転状態で、磁石に加わる遠心力による応力分布をFEM弾性解析にて求めた。その結果、アウターブリッジ部の磁石側とセンターブリッジ部の付け根部に応力集中部があることがわかった。
It was confirmed that by carrying out the process so as to satisfy the respective conditions described in the above claims, it was possible to achieve high speed rotation with almost no increase in iron loss. It was also confirmed that the motor performance (torque / efficiency) was hardly affected and improved.
The inventors have conducted the following basic analysis in order to construct the technique of the present invention. The stress distribution due to the centrifugal force applied to the magnet was obtained by FEM elastic analysis while the rotor having the shape in FIG. As a result, it was found that there was a stress concentration part at the magnet side of the outer bridge part and at the base part of the center bridge part.

また、電磁鋼板1枚からなるダミーロータをワイヤカットにて試作し、ロータスピンテストを行い、ロータにおける塑性変形の進行を調査した。ロータスピンテストは大気との摩擦熱の影響を排除するため、真空チャンバー内において室温にて実施した。磁石の挿入口には電磁鋼板1枚分に相当するダミー磁石を入れた。このロータスピンテストにおいては、塑性変形の始まる回転数を応力解析より予測し、数水準の回転数でテストしたロータサンプルを作製した。塑性変形の度合いはエッチピット法により、エッチピットの発生している面積の大きさにより見積もった。その結果、塑性変形は応力の分布の中で、アウターブリッジ部とセンターブリッジ部の応力集中部より開始することがわかった。しかも、塑性変形が開始する条件は、最大応力が電磁鋼板の引張試験より求めた降伏応力の値に達するとき(回転数)であることがわかった。
塑性変形は回転数が塑性変形開始回転数より増すにつれて進行する。寸法変化が外径において明らかに認められる状態は、塑性変形が進行し、変形がブリッジ部を貫通してからである。これはピット発生領域の観察により確認することができた。
In addition, a dummy rotor made of one electromagnetic steel sheet was prototyped by wire cutting, a rotor spin test was performed, and the progress of plastic deformation in the rotor was investigated. The rotor spin test was performed at room temperature in a vacuum chamber to eliminate the effect of frictional heat with the atmosphere. A dummy magnet corresponding to one electromagnetic steel sheet was placed in the magnet insertion slot. In this rotor spin test, the rotational speed at which plastic deformation starts was predicted from stress analysis, and a rotor sample tested at several rotational speeds was produced. The degree of plastic deformation was estimated by the etch pit method and the size of the area where the etch pit occurred. As a result, it was found that plastic deformation starts from the stress concentration part of the outer bridge part and the center bridge part in the stress distribution. Moreover, it was found that the condition for starting plastic deformation is when the maximum stress reaches the yield stress value obtained from the tensile test of the electrical steel sheet (rotation speed).
Plastic deformation proceeds as the rotational speed increases above the plastic deformation start rotational speed. The state in which the dimensional change is clearly recognized at the outer diameter is after plastic deformation proceeds and the deformation penetrates the bridge portion. This could be confirmed by observing the pit generation area.

磁石ブリッジ部の静的な強度は図2に示す方法で測定した。磁石1極分に分割された1枚のロータ部(この場合は60度分)を、図のように径方向において拘束する。磁石穴には磁石形状の治具6を入れる。治具6のセンター(重心位置)にはピン穴7がありピン8が入れてあるため治具6は回転自在で、引っ張りの方向に落ち着く構造にある。また、治具6は磁石挿入穴のロータ径方向外側の直線辺部のみで図示のように接触している。
ピン8を上方に引っ張ったときの変位と力(荷重)Fの関係を実測した一例を図3に示す。ロータは磁石6極の形状で、外径100mmであり、0.35tの電磁鋼板(市販の35H300)を打ち抜いて作製した。
The static strength of the magnet bridge portion was measured by the method shown in FIG. One rotor portion (in this case, 60 degrees) divided into one magnet pole is constrained in the radial direction as shown in the figure. A magnet-shaped jig 6 is placed in the magnet hole. Since the jig 6 has a pin hole 7 at the center (center of gravity position) and a pin 8 is inserted, the jig 6 is rotatable and is structured to settle in the direction of pulling. Further, the jig 6 is in contact with only the linear side portion on the outer side in the rotor radial direction of the magnet insertion hole as illustrated.
An example in which the relationship between the displacement and the force (load) F when the pin 8 is pulled upward is measured is shown in FIG. The rotor has a shape of 6 magnets, has an outer diameter of 100 mm, and is manufactured by punching out a 0.35 t electrical steel sheet (commercially available 35H300).

変位−荷重曲線は応力−歪曲線と似た関係になり、直線的に立ち上がるが、やがて直線から外れてくる。応力集中部において降伏が起こり、塑性変形が始まるからである。さらに変位が増すと加工硬化しながら塑性変形する。
図3において、変位−荷重曲線の接線から変位量が10μm離れたところでの力は210Nとなっている。以下においては、10μm変位での力を降伏力(あるいは強度)と定義して用いる。この電磁鋼板ロータのブリッジ部強度は210Nである。
The displacement-load curve is similar to the stress-strain curve and rises linearly, but eventually deviates from the straight line. This is because yielding occurs in the stress concentration portion and plastic deformation starts. When the displacement further increases, plastic deformation occurs while work hardening.
In FIG. 3, the force when the displacement is 10 μm away from the tangent to the displacement-load curve is 210N. In the following, a force at a displacement of 10 μm is defined and used as a yield force (or strength). The bridge strength of this electromagnetic steel sheet rotor is 210N.

また、ロータスピンテストにおける強度と上記静的強度の関係も把握できている。ロータスピンテストにおいては、回転数を増すにつれて永久変形が残り、径は指数関数的に増加する。径が規定した量だけ(例えば20μm)増加する回転数を使用限界回転数と定義すると、上記打ち抜きロータの場合20.8krpmになる。
なお、上記した静的引張のFEM弾性解析も実施している。その応力分布は回転状態における応力分布と類似の応力分布となっている。特に、応力集中部の位置は同じになっている。
In addition, the relationship between the strength in the rotor spin test and the static strength can be grasped. In the rotor spin test, permanent deformation remains as the number of revolutions increases, and the diameter increases exponentially. If the rotational speed at which the diameter increases by a specified amount (for example, 20 μm) is defined as the use limit rotational speed, the punched rotor has 20.8 krpm.
In addition, the above-mentioned static tensile FEM elasticity analysis is also performed. The stress distribution is similar to that in the rotational state. In particular, the position of the stress concentration portion is the same.

また、図2に示した領域9を部分的に強化すれば、ロータの強度向上が図れることも既に確認済みである。図2領域9の強化手段の一つとして、レーザーピーニングがある。レーザーピーニング(以下ではLPと表記する)は文献:小畑稔他「パルス状レーザー照射による応力改善技術---SUS304鋼に対する応力改善効果の検討」(「材料」、第49巻、第2号、193−199ページ、平成12年、2月発行)にあるものと同様な装置によって実施した。グリーンのレーザーパルス光を水中にて電磁鋼板ロータに照射することによってピーニングした。なお、レーザーピーニングによる強化メカニズムは衝撃波による加工硬化である。レーザーピーニング条件として例えば、エネルギー:60mJ、スポット径:φ0.4mm、パルス密度:50P/mmの場合、前述の引張試験でのブリッジ部強度は約250Nであった。 Further, it has already been confirmed that the strength of the rotor can be improved by partially strengthening the region 9 shown in FIG. As one of the reinforcing means of the region 9 in FIG. 2, there is laser peening. Laser peening (referred to as LP in the following) is documented by Satoshi Obata et al. “Stress Improvement Technology by Pulsed Laser Irradiation --- Examination of Stress Improvement Effect on SUS304 Steel” (“Materials”, Vol. 49, No. 2, 193-199 pages, issued in February 2000). Peening was performed by irradiating the electromagnetic steel plate rotor with green laser pulse light in water. The strengthening mechanism by laser peening is work hardening by shock waves. As laser peening conditions, for example, when the energy is 60 mJ, the spot diameter is φ0.4 mm, and the pulse density is 50 P / mm 2 , the bridge strength in the tensile test described above is about 250 N.

また、ブリッジ部に図2の9で示す領域に段差(板厚減少部)を設けるとロータ強度向上が図れることもわかっている。特に、プレスにより段差を設けた場合には塑性変形により加工硬化するので、強度向上効果が著しい。図2の9で示す領域に、約3%の板厚減少部(約10μmのへこみ段差)をプレスにて設けた場合、電磁鋼板ロータにおけるブリッジ部強度はレーザーピーニングと同程度で約250Nであった。
電磁鋼板には20−30ppm程度のC、Nが含有されており、加工硬化させた状態でさらに200℃以上、350℃以下で1時間保持するとC、Nが転位に固着することにより強度が向上する。これにより引張強度はさらに約5%向上した。
It has also been found that the rotor strength can be improved by providing a step (plate thickness reducing portion) in the region indicated by 9 in FIG. In particular, when a step is provided by pressing, it is hardened by plastic deformation, so the effect of improving the strength is remarkable. In the region indicated by 9 in FIG. 2, when a reduced thickness portion of about 3% (indentation step of about 10 μm) is provided by a press, the strength of the bridge portion in the electromagnetic steel plate rotor is about 250 N, which is similar to that of laser peening. It was.
The electrical steel sheet contains about 20-30ppm of C and N, and if it is kept at 200 ° C or higher and 350 ° C or lower for 1 hour in the work-hardened state, the strength is improved by fixing C and N to dislocations. To do. This further improved the tensile strength by about 5%.

さて、鋼板の耐磨耗性、耐熱衝撃性および疲労強さのさらなる向上手法として窒化処理がある。例えば、Siは機械的な強度が強く、微細粒状で極めて硬い。鋳鉄窒化に際しての硬さはSi量によって決まり、Si量とともに上昇する。例えば、C:3.41%、Si:2.62%で最外層はビッカ−ス硬さ(100g荷重)900以上に達し、拡散層でも大きい硬さを示す。 There is a nitriding treatment as a method for further improving the wear resistance, thermal shock resistance and fatigue strength of a steel sheet. For example, Si 3 N 4 has high mechanical strength, is finely granular, and is extremely hard. The hardness at the time of cast iron nitriding is determined by the amount of Si and increases with the amount of Si. For example, when C: 3.41% and Si: 2.62%, the outermost layer reaches Vickers hardness (100 g load) 900 or more, and the diffusion layer also exhibits high hardness.

窒化処理としてはアンモニアガスのみによる純窒化、浸炭性ガス+アンモニアガスによるガス軟窒化、青酸塩類による塩浴軟窒化、グロー放電によるイオン窒化などがある。しかしながら、窒化で留意する点は基盤(鋼板)温度が350℃超では、前述した加熱履歴による炭素、窒素による転位の固着をといてしまうことになり、好ましくない。したがって、350℃以下の低温で窒化する必要がある。
ここで窒化手法として近年大きな進歩を遂げている半導体分野で使用されているECR(Electron Cyclotron Resonance)プラズマCVD(Chemical Vapor Deposition)に着目した。この手法によると共鳴現象により電子が効率よくマイクロ波のエネルギーを吸収し、運動エネルギーに変換されるもので、低ガス圧でも高密度・高活性のプラズマを発生させることができる。各種CVD方式について表1に示す。
The nitriding treatment includes pure nitriding using only ammonia gas, gas soft nitriding using carburizing gas + ammonia gas, salt bath soft nitriding using cyanates, ion nitriding using glow discharge, and the like. However, a point to be noted in nitriding is that if the substrate (steel plate) temperature is higher than 350 ° C., dislocation fixation due to carbon and nitrogen due to the above-described heating history is taken, which is not preferable. Therefore, it is necessary to nitride at a low temperature of 350 ° C. or lower.
Here, attention was paid to ECR (Electron Cyclotron Resonance) plasma CVD (Chemical Vapor Deposition) used in the semiconductor field which has made great progress in recent years as a nitriding method. According to this technique, electrons efficiently absorb microwave energy by the resonance phenomenon and are converted into kinetic energy, and high density and high activity plasma can be generated even at low gas pressure. Table 1 shows various CVD methods.

Figure 0004313127
Figure 0004313127

加熱温度ではECRが一番低く、かつガス圧も低い。一方、付着速度は一桁大きい。これらの点からECRプラズマCVD方式について実験を行ってきた。
以下、実施例に基づき本発明を説明する。
At the heating temperature, the ECR is the lowest and the gas pressure is also low. On the other hand, the deposition rate is an order of magnitude higher. From these points, experiments have been conducted on the ECR plasma CVD method.
Hereinafter, the present invention will be described based on examples.

プレスにて板厚減少部「図2において9で示す領域」を設けた電磁鋼板ロータ(外径φ130mm、6極)に、レーザーピーニング条件としてエネルギー:60mJ、スポット径:φ0.4mm、パルス密度:50P/mmを施した。前述の引張試験でのブリッジ部強度は約273N(30%増)であった。前述の条件にてレーザーピーニングしたロータに250℃、1時間の加熱を試みた。この場合の引張強度の上昇は約5%で288Nとなった。 In an electromagnetic steel plate rotor (outer diameter φ130 mm, 6 poles) provided with a plate thickness reduced portion “area indicated by 9 in FIG. 2” by pressing, energy: 60 mJ, spot diameter: φ0.4 mm, pulse density: 50 P / mm 2 was applied. The bridge portion strength in the above-described tensile test was about 273 N (30% increase). An attempt was made to heat the laser-peened rotor under the above conditions at 250 ° C. for 1 hour. In this case, the increase in tensile strength was about 5%, which was 288N.

さらに、プレス加工部を強化するため板厚減少部分に窒化処理を施した。図4はECRプラズマCVDの概観図である。ECRプラズマ室は使用するマイクロ波に対して円筒共振器10になっており、その周りに設置された電磁石11により発生される磁界と共振器内の電界は直交する。その結果、電子のサイクロトロン角周波数とマイクロ波の角周波数が等しくなると、電子は共鳴的にマイクロ波のエネルギーを吸収して加速され、高密度なプラズマを発生させることができる。発生したプラズマはECRプラズマ室底部に開けられた開孔部を通って成膜室12に導入される。原料ガスはプラズマにより解離、あるいは電離されて活性種となり、基板13上に膜として堆積する。基板はバッチ処理できるように窒化処理後成膜室を移動する構造になっている。
加工強化を行った部分に窒化するような遮蔽を施し、SiHとNガスを導入して約2.1μmの膜を形成した。これにより電磁鋼板ロータにおけるブリッジ部強度は約317Nであった。
Furthermore, nitriding treatment was applied to the thickness-reduced portion in order to strengthen the press working portion. FIG. 4 is an overview of ECR plasma CVD. The ECR plasma chamber is a cylindrical resonator 10 with respect to the microwave to be used, and the magnetic field generated by the electromagnet 11 installed around the chamber is orthogonal to the electric field in the resonator. As a result, when the cyclotron angular frequency of the electron and the angular frequency of the microwave become equal, the electron is accelerated by absorbing the energy of the microwave in a resonant manner, and high-density plasma can be generated. The generated plasma is introduced into the film forming chamber 12 through an opening formed in the bottom of the ECR plasma chamber. The source gas is dissociated or ionized by plasma to become active species and is deposited on the substrate 13 as a film. The substrate is structured to move in the film forming chamber after nitriding so that batch processing can be performed.
The portion subjected to processing strengthening was shielded to be nitrided, and SiH 4 and N 2 gas were introduced to form a film of about 2.1 μm. Thereby, the bridge | bridging part intensity | strength in an electromagnetic steel plate rotor was about 317N.

Figure 0004313127
Figure 0004313127

プレスにて板厚3%段差(板厚減少部)を設けたロータ(外径φ125mm、8極)を用い、レーザーピーニング条件にてレーザーピーニングしたロータに250℃、1時間の加熱を試みた。この場合の引張強度の上昇は約11%で、段差をつける前の引張強度と比較すると約38%の上昇があつた。
さらに、プレス加工部を強化するためこの板厚減少部分に窒化処理を施した。板厚減少部分に窒化するような遮蔽を施し、SiHとNガスを原料として用いECRプラズマCVDで約2.3μmの膜を形成した。これにより電磁鋼板ロータにおけるブリッジ部強度は約320Nであった。
Using a rotor (outer diameter φ125 mm, 8 poles) provided with a 3% thickness step (plate thickness reduced portion) by pressing, 250 ° C. heating for 1 hour was attempted on the laser peened rotor under laser peening conditions. In this case, the increase in tensile strength was about 11%, which was an increase of about 38% compared to the tensile strength before making the step.
Furthermore, nitriding treatment was applied to the reduced thickness portion in order to strengthen the pressed portion. The portion where the thickness was reduced was shielded by nitriding, and a film of about 2.3 μm was formed by ECR plasma CVD using SiH 4 and N 2 gas as raw materials. Thereby, the bridge | bridging part intensity | strength in an electromagnetic steel plate rotor was about 320N.

Figure 0004313127
Figure 0004313127

プレスにて板厚の約3%の段差(板厚減少部)を設けた電磁鋼板ロータシート(外径φ150mm、6極、35H300)に250℃にて1時間の加熱を試みた。引張試験によるブリッジ部の強度は約5.6%上昇し、段差を設けない前と比較すると約25%の引張強度が増していた。
さらに、プレス加工部を強化するためこの板厚減少部分に窒化処理を施した。板厚減少部分に窒化するような遮蔽を施し、SiHとNガスを原料として用いECRプラズマCVDで約2μmの膜を形成した。これにより本発明のロータにおけるブリッジ部強度は約290Nであった。
An electromagnetic steel plate rotor sheet (outer diameter φ150 mm, 6 poles, 35H300) provided with a step (plate thickness reduced portion) of about 3% of the plate thickness by pressing was tried to heat at 250 ° C. for 1 hour. The strength of the bridge portion in the tensile test increased by about 5.6%, and the tensile strength increased by about 25% compared to before the step was not provided.
Furthermore, nitriding treatment was applied to the reduced thickness portion in order to strengthen the pressed portion. The portion where the thickness was reduced was shielded by nitriding, and a film of about 2 μm was formed by ECR plasma CVD using SiH 4 and N 2 gas as raw materials. Thereby, the bridge | bridging part intensity | strength in the rotor of this invention was about 290N.

Figure 0004313127
Figure 0004313127

以上のように本発明のロータの例について説明したが、次に実施例4として本発明のロータを用いた埋込磁石同期モータ(IPM)を説明する。
図5は本実施形態の埋込磁石同期モータ14の概略構成を示している。このロータ15はロータ鉄心16と、ロータ鉄心に設けられた挿入口17に挿入される永久磁石18を有する。また、図示していないが、ロータはその中心に取り付けられた軸を有する。
ロータ鉄心は例として上記図2に示されるのロータシートを複数枚にわたって積層して構成されている。このとき、ロータシートはそれぞれの挿入口が整列するように積層される。
複数枚のロータシートは、たとえば所定の焼きばめ温度にて軸に焼きばめされる。また、磁石18は挿入口内に接着剤で接着される。また、接着の際には接着剤のキュアリング温度にて接着剤のキュアリングがなされる。
The example of the rotor of the present invention has been described above. Next, an embedded magnet synchronous motor (IPM) using the rotor of the present invention will be described as a fourth embodiment.
FIG. 5 shows a schematic configuration of the embedded magnet synchronous motor 14 of the present embodiment. The rotor 15 has a rotor core 16 and a permanent magnet 18 inserted into an insertion port 17 provided in the rotor core. Although not shown, the rotor has a shaft attached to the center thereof.
The rotor iron core is configured by laminating a plurality of rotor sheets shown in FIG. 2 as an example. At this time, the rotor sheet is laminated so that the respective insertion openings are aligned.
The plurality of rotor sheets are shrink fitted on the shaft at a predetermined shrink fit temperature, for example. Further, the magnet 18 is bonded to the insertion port with an adhesive. Further, at the time of bonding, the adhesive is cured at the curing temperature of the adhesive.

このように上述した段差部を持った本発明のロータによれば、遠心力に対する耐性が高く、高速回転特性の向上を図ることができる。そして、図5に示されるように、本実施形態の埋込磁石同期モータは、このような特徴をもったロータと、このロータの外周側に配置されるステータを有する。なお、ステータの構造は従来のものと同様であるので、詳しい説明を省略する。   As described above, according to the rotor of the present invention having the above-described stepped portion, resistance to centrifugal force is high and high-speed rotation characteristics can be improved. As shown in FIG. 5, the embedded magnet synchronous motor of the present embodiment includes a rotor having such characteristics and a stator disposed on the outer peripheral side of the rotor. Since the structure of the stator is the same as that of the conventional one, detailed description is omitted.

次に、本実施形態の埋込磁石同期モータの性能を評価するために出力60kWクラスの埋込磁石同期モータを製作した。なお、比較例として板厚減少部がないことを除いて形状が同じであるロータシートを複数にわたって積層して構成したロータを製作し、そのロータをステータに組み込んだモータについても性能を評価した。そして、本実施形態の埋込磁石同期モータと比較例としてのモータの性能を比較した。   Next, in order to evaluate the performance of the embedded magnet synchronous motor of this embodiment, an embedded magnet synchronous motor with an output of 60 kW class was manufactured. In addition, as a comparative example, a rotor formed by laminating a plurality of rotor sheets having the same shape except that there is no plate thickness reduction portion was manufactured, and performance was evaluated for a motor in which the rotor was incorporated in the stator. And the performance of the internal magnet synchronous motor of this embodiment and the motor as a comparative example were compared.

具体的には18000rpm(回転/分)、60kWでの効率を比較したところ、本実施形態の埋込磁石同期モータの方が比較例と比べて効率が上回っていた。このような結果の主な要因は、トルクが増大しているためと考えられる。したがって、各ロータシートに段差形状を持たせることに起因するロータ鉄損の増加はわずかであり、問題とならないことがわかった。
また、ロータを作製する過程で加えられる温度および埋込磁石同期モータの動作温度では、ロータ強度の低下は現れなかった。このことは、これらの温度では板厚減少部を形成する際に導入された加工硬化は劣化しないことを示している。
Specifically, when the efficiency at 18000 rpm (rotation / min) and 60 kW was compared, the efficiency of the embedded magnet synchronous motor of this embodiment was higher than that of the comparative example. The main cause of such a result is considered to be an increase in torque. Therefore, it has been found that the increase in rotor iron loss due to giving each rotor sheet a step shape is slight and does not cause a problem.
Moreover, the rotor strength did not decrease at the temperature applied in the process of manufacturing the rotor and the operating temperature of the embedded magnet synchronous motor. This indicates that the work hardening introduced when forming the reduced thickness portion does not deteriorate at these temperatures.

なお、以上の説明では図5の埋込磁石同期モータを例にとって説明したが、埋込磁石型モータに本発明を適用することが出来ることは明らかである。すなわち、本発明は同期モータ以外の電動機にも適用することもでき、また、高速回転性が要求されている発電機にも適用することができる。   In the above description, the embedded magnet synchronous motor of FIG. 5 has been described as an example. However, it is apparent that the present invention can be applied to an embedded magnet type motor. That is, the present invention can be applied to electric motors other than synchronous motors, and can also be applied to generators that require high-speed rotation.

以上のように、本実施形態によれば、遠心力に対する耐性が強く、高速回転可能な回転子が実現できる。また、本実施の形態の埋込磁石同期モータによれば、性能を悪化させること無く、高速回転可能な回転機を実現することが出来る。   As described above, according to this embodiment, it is possible to realize a rotor that is highly resistant to centrifugal force and can rotate at high speed. Further, according to the embedded magnet synchronous motor of the present embodiment, it is possible to realize a rotating machine capable of rotating at high speed without deteriorating the performance.

次に、本発明の車両について説明する。本発明のロータを搭載した車両はEV(電気自動車)、HEV(ハイブリッド電気自動車)、またはFCV(燃料電池自動車)である。本実施形態では、EVを例にとって説明する。
図6は本実施形態にかかわるEVを模式的に示している。図6に示されるEV21は上記実施例4で説明した埋込磁石同期モータ20によりトランスミッション22およびデファレンシャルギヤ23を介してトルクを分配してタイヤ24を駆動している。
しかしながら、本発明の車両はこの場合に限られない。トランスミッション機械を持っていないタイプ、モータ2つでそれぞれ独立に車輪を駆動するタイプ、車輪の内部にモータを取り付けたホイールインモータによってタイヤを独立駆動するタイプなど、種々のタイプの車両に利用することが出来ることはもちろんである。
Next, the vehicle of the present invention will be described. A vehicle equipped with the rotor of the present invention is an EV (electric vehicle), HEV (hybrid electric vehicle), or FCV (fuel cell vehicle). In the present embodiment, an explanation will be given by taking EV as an example.
FIG. 6 schematically shows an EV according to the present embodiment. The EV 21 shown in FIG. 6 distributes torque via the transmission 22 and the differential gear 23 by the embedded magnet synchronous motor 20 described in the fourth embodiment to drive the tire 24.
However, the vehicle of the present invention is not limited to this case. Used for various types of vehicles, such as a type that does not have a transmission machine, a type that drives two wheels independently with two motors, and a type that independently drives tires with a wheel-in motor with a motor installed inside the wheels. Of course you can.

本実施形態の車両によれば、本発明のロータを用いた高速回転性能の高い埋込磁石型モータを駆動力源として用いているので、駆動部分の機械強度に優れ、かつ高速回転領域を含む広範囲にわたっての出力運転を容易に達成する車両を提供できる。   According to the vehicle of the present embodiment, since an embedded magnet type motor having high speed rotation performance using the rotor of the present invention is used as a driving force source, the driving portion has excellent mechanical strength and includes a high speed rotation region. A vehicle that easily achieves output operation over a wide range can be provided.

以上の通り、本発明の好適な実施形態を説明したが、本発明は、これらの場合に限られるものではなく、当業者によって種々の追加、省略、および変形が可能であることは明らかである。たとえば、上記の説明ではロータシートの材料として0.35mm厚の電磁鋼板を使用する場合を示したが、本発明はこの場合に限られない。たとえば、0.20mm厚の電磁鋼板を使用する場合にも適用することが出来る。   As described above, the preferred embodiments of the present invention have been described. However, the present invention is not limited to these cases, and it is obvious that various additions, omissions, and modifications can be made by those skilled in the art. . For example, in the above description, a case where a 0.35 mm thick electromagnetic steel sheet is used as the material of the rotor sheet is shown, but the present invention is not limited to this case. For example, the present invention can also be applied when using a 0.20 mm thick electromagnetic steel sheet.

従来技術のおけるIPMのロータコア形状の図である。It is a figure of the rotor core shape of IPM in a prior art. 変位−荷重曲線を求める治具等のレイアウトを説明する図である。It is a figure explaining layout, such as a jig | tool which calculates | requires a displacement-load curve. 図2で求めた変位と荷重の関係を示すデータ図である。It is a data figure which shows the relationship between the displacement calculated | required in FIG. 2, and a load. ECRプラズマCVDの構成を示す説明図である。It is explanatory drawing which shows the structure of ECR plasma CVD. 本発明の埋込磁石同期モータの一例を示す図である。It is a figure which shows an example of the embedded magnet synchronous motor of this invention. 本発明の車両の一例を示す図である。It is a figure which shows an example of the vehicle of this invention.

Claims (6)

磁石を内蔵するロータを有するモータ用の電磁鋼板ロータの製造方法において、ロータの外周部にて磁石を保持するアウターブリッジ部の磁石側と、磁石1極を2個に分割するセンターブリッジ部の付け根部とに塑性加工により板厚減少部を形成し、該板厚減少部分を200℃以上、350℃以下で加熱したのち、350℃以下、且つECRプラズマCVD方式で窒化処理することを特徴とする電磁鋼板ロータの製造方法。 In a method of manufacturing an electromagnetic steel plate rotor for a motor having a rotor with a built-in magnet, the base side of a center bridge portion that divides one pole of a magnet into two magnets and a magnet side of an outer bridge portion that holds the magnet on the outer periphery of the rotor A thickness reduction portion is formed by plastic working on the portion, and the thickness reduction portion is heated at 200 ° C. or more and 350 ° C. or less, and then nitriding is performed at 350 ° C. or less and by an ECR plasma CVD method. A method of manufacturing an electromagnetic steel sheet rotor. 板厚減少部形成手段がプレスによる塑性加工であることを特徴とする請求項1記載の電磁鋼板ロータの製造方法。 2. The method of manufacturing an electromagnetic steel sheet rotor according to claim 1, wherein the plate thickness reducing portion forming means is plastic working by pressing. 板厚減少部形成手段としてプレスによる塑性加工、更にレーザーピーニングを施すことを特徴とする請求項1記載の電磁鋼板ロータの製造方法。 2. The method of manufacturing an electromagnetic steel sheet rotor according to claim 1, wherein the plate thickness reduction part forming means is subjected to plastic working by press and laser peening. 前記レーザーピーニングを油中で施すことを特徴とする請求項3記載の電磁鋼板ロータの製造方法。 The method of manufacturing a magnetic steel sheet rotor according to claim 3, wherein the laser peening is performed in oil. 請求項1乃至請求項4のいずれかに記載の方法で製造した電磁鋼板ロータを用いたことを特徴とするモータ。 A motor using the electromagnetic steel plate rotor manufactured by the method according to any one of claims 1 to 4. 請求項5に記載のモータを搭載したことを特徴とする車両。 A vehicle equipped with the motor according to claim 5.
JP2003325797A 2003-09-18 2003-09-18 Manufacturing method of electromagnetic steel sheet rotor Expired - Fee Related JP4313127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325797A JP4313127B2 (en) 2003-09-18 2003-09-18 Manufacturing method of electromagnetic steel sheet rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325797A JP4313127B2 (en) 2003-09-18 2003-09-18 Manufacturing method of electromagnetic steel sheet rotor

Publications (2)

Publication Number Publication Date
JP2005094941A JP2005094941A (en) 2005-04-07
JP4313127B2 true JP4313127B2 (en) 2009-08-12

Family

ID=34456147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325797A Expired - Fee Related JP4313127B2 (en) 2003-09-18 2003-09-18 Manufacturing method of electromagnetic steel sheet rotor

Country Status (1)

Country Link
JP (1) JP4313127B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8749103B2 (en) 2010-09-15 2014-06-10 Remy Technologies, L.L.C. Permanent magnet rotor for electric machine
JP6725209B2 (en) * 2015-03-25 2020-07-15 日本製鉄株式会社 High strength member for motor and method of manufacturing high strength member for motor
JP6852966B2 (en) * 2015-09-16 2021-03-31 日本製鉄株式会社 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods
CN111086193B (en) * 2018-10-24 2021-06-25 捷普电子(新加坡)公司 Moulding equipment
CN114302976B (en) * 2019-08-13 2023-03-28 日产自动车株式会社 Electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2005094941A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP3951905B2 (en) Magnetic steel sheet forming body for rotor core, rotor for built-in permanent magnet type rotating electric machine using the same, method for producing electromagnetic steel sheet forming body for rotor core, and permanent magnet built-in type rotating electric machine
JP2005130604A (en) Electromagnetic steel plate body, rotor for rotary machine incorporating permanent magnet employing it, rotary machine incorporating permanent magnet, and vehicle employing rotary machine incorporating permanent magnet
KR102602877B1 (en) Adhesive laminated cores for stators and rotating electrical machines
KR20240052877A (en) Stator adhesive laminated core and rotating electrical machine
US8754560B2 (en) Rotor for a permanent magnet electric machine
US8984742B2 (en) Method of making soft magnetic amorphous metal electromechanical component
JP5256724B2 (en) A rotor core manufacturing method, a rotor core manufactured by the manufacturing method, a rotor thereof, an embedded magnet type rotating electric machine having the rotor, and a vehicle, an elevator, and a processing machine using the rotating electric machine.
JP2008245384A (en) Permanent magnet type rotary electric machine, and compressor using the same
CN1342339A (en) Bulk amorphous metal magnetic components for electric motors
US10574122B2 (en) Method of forming a rotor
JP2011135667A (en) Permanent magnet type rotary electric machine
JP2004088970A (en) Stacked iron core and rotating electric machine and transformer using the same
US11646615B2 (en) Rotor of rotating electrical machine and arc magnet manufacturing method
JP4313127B2 (en) Manufacturing method of electromagnetic steel sheet rotor
JP2009038843A (en) Alternator for vehicle and manufacturing method thereof
JPH0919093A (en) Permanent magnet of rotor
WO2005031946A1 (en) Rotor using electrical steel sheet of low iron loss, rotor manufacturing method, laser peening method, and laser peening device
JP4160469B2 (en) Manufacturing method of rotor core steel plate
JP2005094940A (en) Method for manufacturing magnetic steel sheet rotor
JP2005160133A (en) Electromagnetic steel plate forming object, rotor for rotating machine with built-in permanent magnet using it, rotating machine with built-in permanent magnet, and vehicle using this rotating machine with built-in permanent magnet
JP2011041446A (en) Method of manufacturing rotor core, rotor core manufactured by the manufacturing method, and embedded magnet type rotary electric machine having the rotor core
JP2019161795A (en) Rotary electric machine
JP2005130605A (en) Piece for stator core, stator, rotary machine, and vehicle employing rotary machine
JP2015042015A (en) Motor with reduced iron loss deterioration caused by shrink-fit
JP4788360B2 (en) Rotor for high-speed motor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4313127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees