JPH0919093A - Permanent magnet of rotor - Google Patents
Permanent magnet of rotorInfo
- Publication number
- JPH0919093A JPH0919093A JP7161671A JP16167195A JPH0919093A JP H0919093 A JPH0919093 A JP H0919093A JP 7161671 A JP7161671 A JP 7161671A JP 16167195 A JP16167195 A JP 16167195A JP H0919093 A JPH0919093 A JP H0919093A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- rotor
- fiber
- permanent magnet
- wound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011347 resin Substances 0.000 claims abstract description 24
- 229920005989 resin Polymers 0.000 claims abstract description 24
- 238000004804 winding Methods 0.000 claims abstract description 24
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims description 51
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 11
- 239000004917 carbon fiber Substances 0.000 claims description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 7
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 6
- 229920002530 polyetherether ketone Polymers 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000009719 polyimide resin Substances 0.000 claims description 3
- 230000006872 improvement Effects 0.000 abstract description 6
- 238000013329 compounding Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 27
- 238000005452 bending Methods 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 150000002910 rare earth metals Chemical class 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000003733 fiber-reinforced composite Substances 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 230000004323 axial length Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009730 filament winding Methods 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
Landscapes
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば永久磁石式高速
発電機または電動機(容量約20〜300kw)等の回転
子(ロータ)内に組込まれる永久磁石に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet incorporated in a rotor such as a permanent magnet type high speed generator or an electric motor (capacity: about 20 to 300 kw).
【0002】[0002]
【従来の技術】従来の永久磁石式高速発電機または電動
機(容量約20〜300kw)等に用いる回転子の構造を
概略を図9,10に示す。図9中、符号01はシャフ
ト、02は希土類磁石、03は非磁性金属円筒及び04
は非磁性円板を各々図示する。図9に示すように、従来
の回転子においては、希土類磁石の曲げ強度や剛性が低
いため、オーステナイト系ステンレス鋼等の非磁性金属
材料薄肉円筒で外周部からその内側の磁石02を拘束
し、ロータとしての強度、剛性を増す方法が採用されて
いる。9 and 10 schematically show the structure of a rotor used in a conventional permanent magnet type high speed generator or electric motor (capacity: about 20 to 300 kw). In FIG. 9, reference numeral 01 is a shaft, 02 is a rare earth magnet, 03 is a non-magnetic metal cylinder, and 04.
Each show a non-magnetic disc. As shown in FIG. 9, in the conventional rotor, since the bending strength and rigidity of the rare earth magnet are low, a non-magnetic metal material thin cylinder such as austenitic stainless steel is used to restrain the magnet 02 inside from the outer peripheral portion, A method of increasing the strength and rigidity of the rotor is adopted.
【0003】尚、図10は他の回転子構造を示し、鉄心
05に形成された磁石02の拘束を施す鉄心溝06を断
面くさび型とすることにより、遠心力作用時には、上記
鉄心溝06の両側面からも該磁石02を拘束している。FIG. 10 shows another rotor structure, in which the iron core groove 06 for restraining the magnet 02 formed in the iron core 05 has a wedge-shaped cross section so that when the centrifugal force acts, the iron core groove 06 is The magnet 02 is also constrained from both side surfaces.
【0004】[0004]
(1)ところで、Nd−Fe─B系磁石に代表される希
土類磁石の出現で永久磁石の磁気特性は飛躍的に向上し
た。このような強力磁石を回転子に組込んだ永久磁石式
同期機では、誘導機や巻線式同期機に比べ単位体積当り
のエネルギ密度を高め、かつ、回転速度を増して出力向
上をはかることにより、電動機や発電機の小形・高性能
化,高効率化が可能となる。(1) By the advent of rare earth magnets represented by Nd-Fe-B system magnets, the magnetic characteristics of permanent magnets have been dramatically improved. In a permanent magnet type synchronous machine that incorporates such a strong magnet in the rotor, it is necessary to increase the energy density per unit volume and to increase the output by increasing the rotation speed, compared with induction machines and winding type synchronous machines. As a result, motors and generators can be made smaller, have higher performance, and have higher efficiency.
【0005】(2)一方、これら回転電機の高速化や大
容量化に伴い、回転子に作用する遠心力は一段と増大す
るが、希土類磁石は本質的にぜい性材料であり、強度,
剛性,変形能等の機械特性は回転子を構成する鉄心その
他の金属材料部材に比べかなり低い。(2) On the other hand, the centrifugal force acting on the rotor further increases with the increase in speed and capacity of these rotary electric machines, but the rare earth magnet is essentially a brittle material, and its strength,
Mechanical properties such as rigidity and deformability are much lower than those of iron cores and other metallic materials that make up the rotor.
【0006】(3)たとえば、Nd−Fe─B系磁石の
曲げ強度は約260MPa(鋼の1/2以下)、弾性率
は約150GPa(鋼の3/4)、破断伸びは約0.2
%(鋼の1/10以下)ときわめて小さく、しかもほとん
ど塑性変形せずに弾性変形のみで破断に至る。しかし、
曲げや引張強度に比べ圧縮強度は約2倍以上と大きい。(3) For example, the bending strength of an Nd-Fe-B magnet is about 260 MPa (1/2 or less of steel), the elastic modulus is about 150 GPa (3/4 of steel), and the elongation at break is about 0.2.
% (1/10 of steel or less), which is extremely small, and almost only plastic deformation does not lead to elastic deformation. But,
Compressive strength is more than twice as large as bending and tensile strength.
【0007】(4)同一容量の回転機で小形化をはかる
には、ロータ径を大きくするか、又は回転数を上げて回
転子周速を増す必要があるが、磁石部材の強度、剛性を
改善しない限り、遠心力(F)増大に対応するのは困難
である。(4) To reduce the size of a rotating machine having the same capacity, it is necessary to increase the rotor diameter or increase the rotational speed to increase the rotor peripheral speed. Unless improved, increasing centrifugal force (F) is difficult to cope with.
【0008】[0008]
【数1】遠心力 F=mrω2 ここで m:質量 r:半径 ω:角速度[Equation 1] Centrifugal force F = mrω 2 where m: mass r: radius ω: angular velocity
【0009】また、ロータ径を大きくすると、ロータ重
量が同じでもGD2 (慣性モーメント)は増大する。When the rotor diameter is increased, GD 2 (moment of inertia) is increased even if the rotor weight is the same.
【0010】[0010]
【数2】GD2 =(D2 /2)W ここで D:ロータ直径 W:ロータ質量[Number 2] GD 2 = (D 2/2 ) W where D: rotor diameter W: rotor mass
【0011】(5)また、ロータ径と回転数を変えない
で回転機容量を増す場合には回転子の軸方向長さを増す
ことが必要となるが、その際に軸受(つまり軸荷重支持
点)間の距離が拡大するため、回転子の曲げ・ねじり強
度や曲げ・ねじり剛性をさらに高めなければならない。(5) Further, when the rotary machine capacity is increased without changing the rotor diameter and the rotation speed, it is necessary to increase the axial length of the rotor. At that time, the bearing (that is, the axial load support) is required. As the distance between the points increases, the bending and torsional strength and bending and torsional rigidity of the rotor must be further increased.
【0012】(6)上記(4)(5)に関連して前述し
た図9,図10に示した非磁性金属円筒の肉厚を厚くし
た場合、ロータの強度,剛性は増すものの、この場合、
固定子と回転子磁石とのギャップも大きくなり、回転機
としての効率低下をもたらすため、この方法を採ること
ができない、という問題がある。(6) When the thickness of the nonmagnetic metal cylinder shown in FIGS. 9 and 10 described above in relation to (4) and (5) is increased, the strength and rigidity of the rotor are increased, but in this case ,
There is a problem that this method cannot be adopted because the gap between the stator and the rotor magnet also becomes large and the efficiency of the rotating machine is reduced.
【0013】本発明は以上の事情に鑑み、ロータの遠心
力強度,曲げねじり剛性の向上を図り、ロータへの磁石
の組込みに際し、局所的な応力集中を緩和し、磁石の割
れや欠けを防止できる回転子に組込まれる永久磁石を提
供することを目的とする。In view of the above circumstances, the present invention improves centrifugal force strength and bending torsional rigidity of a rotor, alleviates local stress concentration when assembling a magnet into a rotor, and prevents cracking or chipping of the magnet. It is an object of the present invention to provide a permanent magnet incorporated in a rotor that can be manufactured.
【0014】[0014]
【課題を解決するための手段】前記目的を達成する本発
明に係る回転子用永久磁石の構成は、磁石表面に単繊維
を所定の方向に常に一定張力をかけつつ層状に巻上げて
なり、マトリックス樹脂により複合化してなることを特
徴とする。The structure of a permanent magnet for a rotor according to the present invention which achieves the above object is obtained by winding monofilaments on the surface of a magnet in a layered manner while always applying a constant tension in a predetermined direction. It is characterized in that it is compounded with a resin.
【0015】上記回転子の永久磁石において、単繊維が
樹脂含浸セミキュア繊維であり、巻上げ後加熱硬化して
なることを特徴とする。The permanent magnet of the rotor is characterized in that the single fiber is a resin-impregnated semi-cure fiber, which is formed by winding and heating and curing.
【0016】上記回転子の永久磁石において、単繊維を
巻上げ後、オートクレーブ中で樹脂含浸、加圧加熱硬化
してなることを特徴とする。The permanent magnet of the rotor is characterized in that it is obtained by winding monofilaments, impregnating them with a resin in an autoclave, and heating and curing under pressure.
【0017】上記回転子の永久磁石において、上記単繊
維が炭素繊維,炭化ケイ素繊維,チラノ繊維(SiTi
C),ケプラー繊維又はガラス繊維のいずれかであるこ
とを特徴とする。In the rotor permanent magnet, the monofilaments are carbon fibers, silicon carbide fibers, and tyranno fibers (SiTi).
C), either Kepler fiber or glass fiber.
【0018】上記回転子の永久磁石において、上記単繊
維としての炭素繊維が、ピッチ系高弾性率炭素繊維ある
ことを特徴とする。In the permanent magnet of the rotor, the carbon fiber as the single fiber is a pitch type high elastic modulus carbon fiber.
【0019】上記回転子の永久磁石において、上記マト
リックス樹脂が、エポキシ樹脂,PEEK(ポリエーテ
ルエーテルケトン)樹脂又はポリイミド樹脂のいずれか
であることを特徴とする。The permanent magnet of the rotor is characterized in that the matrix resin is any one of an epoxy resin, a PEEK (polyether ether ketone) resin and a polyimide resin.
【0020】以下、本発明の好適な一実施例について説
明する。A preferred embodiment of the present invention will be described below.
【0021】[0021]
【実施例】図1〜図3に丸棒磁石の表面に単繊維の巻き
上げの一例を示す。これらの図面に示すように、本発明
では磁石11の表面において、所定の方向に高弾性率高
強度繊維(以下「強化繊維」という。)を常時一定張力
のもとに単繊維で順次層状に巻上げていくという「フィ
ラメントワインディング法」により巻き付けるようにし
ている。この巻付けにより、磁石11本体に圧縮応力を
付与するとともに、曲げやねじりの剛性も併せ付与する
こととなる。ここで、半径方向の圧縮応力付与は、遠心
力により磁石内に生じる半径方向引張応力を低減させる
効果がある。これは、初期値として圧縮応力が負荷され
ているためである。EXAMPLES FIGS. 1 to 3 show an example of winding a single fiber on the surface of a round bar magnet. As shown in these drawings, according to the present invention, high elastic modulus and high strength fibers (hereinafter referred to as “reinforcing fibers”) are formed in a predetermined direction on the surface of the magnet 11 in a layered manner with monofilaments under constant constant tension. The filament is wound by the "filament winding method". By this winding, a compressive stress is applied to the main body of the magnet 11 as well as bending and torsional rigidity. Here, the application of the compressive stress in the radial direction has an effect of reducing the tensile stress in the radial direction generated in the magnet by the centrifugal force. This is because compressive stress is applied as an initial value.
【0022】以下に具体的なフィラメントワインディン
グ法により巻き付けた一例を説明する。An example of winding by a specific filament winding method will be described below.
【0023】(1)図1に示す丸棒磁石表面への単繊維
巻上げ方法 工程1:軸方向と直交する方向で、磁石11の表面に軸
心と同方向の軸線Lを引いた場合にその角度(α1 )が
90度となる方向に、単繊維12を層状に巻上げる(図
1(a)参照)。この工程1により、圧縮応力が付与さ
れる。 工程2:軸方向と交差する方向で、磁石11の表面に軸
線Lとの角度(α2 )が15度となる方向で図中左下が
りに単繊維12を層状に巻上げる(図1(b)参照)。
この工程2により、曲げ剛性が付与される。 工程3:工程2と同様で、軸方向と交差する方向で、磁
石11の表面に軸線Lとの角度(α2 )が15度となる
方向で図中右下がりに単繊維12を層状に巻上げる(図
1(c)参照)。この工程3により、曲げ剛性が付与さ
れる。 工程(最終工程)4:工程1と同様で、軸方向と直交す
る方向で、磁石11の表面に軸心と同方向の軸線Lを引
いた場合にその角度(α1 )が90度となる方向に、単
繊維12を層状に巻上げる(図1(d)参照)。この工
程4により、圧縮応力が付与されると共に、下層巻上げ
繊維の曲げ剛性の固定化がなされる。このようにして、
工程1〜4によって、磁石11に対して半径方向引張強
度と軸方向曲げ剛性の改善を図ることができた。尚、各
工程を少なくとも一層以上必ず行い、上記工程2及び工
程3は必ず対で行う必要がある。但し、工程2及び3の
順序は逆にしてもよい。(1) Method for winding monofilament on the surface of a round bar magnet shown in FIG. 1 Step 1: When an axis L in the same direction as the axis is drawn on the surface of the magnet 11 in the direction orthogonal to the axial direction, The single fibers 12 are wound in layers in a direction in which the angle (α 1 ) is 90 degrees (see FIG. 1A). By this step 1, compressive stress is applied. Step 2: The monofilaments 12 are wound in layers in a direction that intersects the axial direction and that has an angle (α 2 ) with the axis L of 15 degrees on the surface of the magnet 11 in the lower left direction in the figure (see FIG. 1 (b )reference).
This step 2 imparts bending rigidity. Step 3: Similar to Step 2, the monofilament 12 is wound in layers downward in the drawing in the direction intersecting the axial direction and at the angle (α 2 ) with the axis L of 15 degrees on the surface of the magnet 11. (See FIG. 1 (c)). This step 3 imparts bending rigidity. Step (final step) 4: Similar to step 1, when the axis L of the same direction as the axis is drawn on the surface of the magnet 11 in the direction orthogonal to the axial direction, the angle (α 1 ) becomes 90 degrees. The monofilaments 12 are wound in layers in the direction (see FIG. 1 (d)). By this step 4, compressive stress is applied and the bending rigidity of the lower layer wound fiber is fixed. In this way,
Through steps 1 to 4, it was possible to improve the radial tensile strength and the axial bending rigidity of the magnet 11. It is necessary to perform at least one step of each step without fail, and to perform the above steps 2 and 3 in pairs. However, the order of steps 2 and 3 may be reversed.
【0024】図2に示す丸棒磁石表面への単繊維巻上げ
方法 工程1:軸方向と直交する方向で、磁石11の表面に軸
心と同方向の軸線Lを引いた場合にその角度(α1 )が
90度となる方向に、単繊維12を層状に巻上げる(図
2(a)参照)。この工程1により、圧縮応力が付与さ
れる。 工程2:軸方向と交差する方向で、磁石11の表面に軸
線Lとの角度(α3 )が45度となる方向で図中左下が
りに単繊維12を層状に巻上げる(図2(b)参照)。
この工程2により、ねじり剛性が付与される。 工程3:工程2と同様で、軸方向と交差する方向で、磁
石11の表面に軸線Lとの角度(α3 )が45度となる
方向で図中右下がりに単繊維12を層状に巻上げる(図
2(c)参照)。この工程3により、ねじり剛性が付与
される。 工程(最終工程)4:工程1と同様で、軸方向と直交す
る方向で、磁石11の表面に軸心と同方向の軸線Lを引
いた場合にその角度(α1 )が90度となる方向に、単
繊維12を層状に巻上げる(図2(d)参照)。この工
程4により、圧縮応力が付与されると共に、下層巻上げ
繊維のねじり剛性の固定化がなされる。このようにし
て、工程1〜4によって、磁石11に対して半径方向引
張強度と軸方向ねじり剛性の改善を図ることができた。
尚、各工程を少なくとも一層以上必ず行い、上記工程2
及び工程3は必ず対で行う必要がある。但し、工程2及
び3の順序は逆にしてもよい。半径方向引張強度と軸方
向ねじり剛性の改善を図る。Method for winding monofilament around the surface of a round bar magnet shown in FIG. 2 Step 1: When an axis L in the same direction as the axis is drawn on the surface of the magnet 11 in the direction orthogonal to the axial direction, the angle (α The single fiber 12 is wound in layers in the direction in which 1 ) becomes 90 degrees (see FIG. 2A). By this step 1, compressive stress is applied. Step 2: The monofilaments 12 are wound in layers in a direction that intersects the axial direction and that has an angle (α 3 ) with the axis L of 45 degrees on the surface of the magnet 11 in the lower left direction in the figure (see FIG. )reference).
This step 2 imparts torsional rigidity. Step 3: Similar to Step 2, the monofilament 12 is wound in layers downward in the figure in a direction that intersects the axial direction and the angle (α 3 ) with the axis L is 45 degrees on the surface of the magnet 11. (See FIG. 2 (c)). Torsional rigidity is imparted by this step 3. Step (final step) 4: Similar to step 1, when the axis L of the same direction as the axis is drawn on the surface of the magnet 11 in the direction orthogonal to the axial direction, the angle (α 1 ) becomes 90 degrees. The monofilaments 12 are wound in layers in the direction (see FIG. 2D). By this step 4, a compressive stress is applied and the torsional rigidity of the lower layer winding fiber is fixed. In this way, in steps 1 to 4, it was possible to improve the tensile strength in the radial direction and the torsional rigidity in the axial direction with respect to the magnet 11.
In addition, each step must be performed at least one layer, and the above step 2
And step 3 must be performed in pairs. However, the order of steps 2 and 3 may be reversed. Improves radial tensile strength and axial torsional rigidity.
【0025】図3に示す丸棒磁石表面への単繊維巻上げ
方法 この方法は、上述した図1及び図2に示す巻上げ方法を
組み合わせたものである。 工程1:軸方向と直交する方向で、磁石11の表面に軸
心と同方向の軸線Lを引いた場合にその角度(α1 )が
90度となる方向に、単繊維12を層状に巻上げる(図
3(a)参照)。この工程1により、圧縮応力が付与さ
れる。 工程2:軸方向と交差する方向で、磁石11の表面に軸
線Lとの角度(α2 )が15度となる方向で図中左下が
りに単繊維12を層状に巻上げる(図3(b)参照)。
この工程2により、曲げ剛性が付与される。 工程3:工程2と同様で、軸方向と交差する方向で、磁
石11の表面に軸線Lとの角度(α2 )が15度となる
方向で図中右下がりに単繊維12を層状に巻上げる(図
3(c)参照)。この工程3により、曲げ剛性が付与さ
れる。 工程4:軸方向と交差する方向で、磁石11の表面に軸
線Lとの角度(α3 )が45度となる方向で図中左下が
りに単繊維12を層状に巻上げる(図3(d)参照)。
この工程4により、ねじり剛性が付与される。 工程5:工程4と同様で、軸方向と交差する方向で、磁
石11の表面に軸線Lとの角度(α3 )が45度となる
方向で図中右下がりに単繊維12を層状に巻上げる(図
3(e)参照)。この工程5により、ねじり剛性が付与
される。 工程(最終工程)6:工程1と同様で、軸方向と直交す
る方向で、磁石11の表面に軸心と同方向の軸線Lを引
いた場合にその角度(α1 )が90度となる方向に、単
繊維12を層状に巻上げる(図3(f)参照)。この工
程6により、圧縮応力が付与されると共に、下層巻上げ
繊維の曲げ・ねじり剛性の固定化がなされる。このよう
にして、工程1〜6によって、磁石11に対して半径方
向引張強度と軸方向曲げ・ねじり剛性の改善を図ること
ができた。尚、各工程を少なくとも一層以上必ず行い、
上記工程2及び3並びに工程4及び5は必ず対で行う必
要がある。但し、工程2,3及び工程4,5の順序は逆
にしてもよい。また、必要に応じて工程1〜工程5は交
互に繰り返してもよい。Method for winding single fiber around the surface of a round bar magnet shown in FIG. 3 This method is a combination of the above-described winding methods shown in FIGS. 1 and 2. Step 1: The monofilament 12 is wound in layers in a direction orthogonal to the axial direction in a direction in which the angle (α 1 ) is 90 degrees when the axis L in the same direction as the axis is drawn on the surface of the magnet 11. (See FIG. 3A). By this step 1, compressive stress is applied. Step 2: The monofilament 12 is wound in layers in a direction that intersects the axial direction and that has an angle (α 2 ) with the axis L of 15 degrees on the surface of the magnet 11 in the lower left direction in the figure (see FIG. )reference).
This step 2 imparts bending rigidity. Step 3: Similar to Step 2, the monofilament 12 is wound in layers downward in the drawing in the direction intersecting the axial direction and at the angle (α 2 ) with the axis L of 15 degrees on the surface of the magnet 11. (See FIG. 3 (c)). This step 3 imparts bending rigidity. Step 4: The monofilaments 12 are wound in layers in a direction that intersects the axial direction, and the angle (α 3 ) to the surface of the magnet 11 is 45 degrees on the surface of the magnet 11 in the downward left direction in the figure (see FIG. )reference).
Torsional rigidity is imparted by this step 4. Step 5: Similar to Step 4, the monofilaments 12 are wound in layers downward in the figure in a direction intersecting the axial direction and at an angle (α 3 ) with the axis L of 45 degrees on the surface of the magnet 11. (See Fig. 3 (e)). Torsional rigidity is imparted by this step 5. Step (final step) 6: Similar to step 1, when the axis L of the same direction as the axis is drawn on the surface of the magnet 11 in the direction orthogonal to the axial direction, the angle (α 1 ) becomes 90 degrees. The single fibers 12 are wound up in layers in the direction (see FIG. 3 (f)). By this step 6, a compressive stress is applied and the bending and torsional rigidity of the lower layer winding fiber is fixed. In this way, by steps 1 to 6, it was possible to improve the tensile strength in the radial direction and the bending and torsional rigidity in the axial direction for the magnet 11. In addition, be sure to perform each step at least one more,
The above steps 2 and 3 and steps 4 and 5 must be performed in pairs. However, the order of steps 2 and 3 and steps 4 and 5 may be reversed. Moreover, you may repeat process 1-process 5 by turns as needed.
【0026】上記工程によって、単繊維を磁石の表面に
層状に巻付けることにより、以下のように大別される。 (a)軸方向に直角(α1 )、つまり、円周方向または
板幅方向に単繊維を層状に巻上げることにより、圧縮応
力の付与がなされる。 (b)軸方向に対し±15°(α2 )の方向で単繊維を
層状に巻上げることにより、曲げ剛性の付与がなされ
る。 (c)軸方向に対し±45°(α3 )の方向で単繊維を
層状に巻上げることにより、ねじり剛性の付与がなされ
る。By the above steps, the monofilaments are wound around the surface of the magnet in layers to be roughly classified as follows. (A) Compressive stress is imparted by winding a single fiber in a layer shape in a direction perpendicular to the axial direction (α 1 ), that is, in the circumferential direction or the plate width direction. (B) Bending rigidity is imparted by winding monofilaments in layers in the direction of ± 15 ° (α 2 ) with respect to the axial direction. (C) Torsional rigidity is imparted by winding the single fibers in layers in a direction of ± 45 ° (α 3 ) with respect to the axial direction.
【0027】ここで、本発明で上記層状に巻上げる単繊
維として用いる強化繊維とは、例えば炭素繊維(特に、
ピッチ系高弾性率炭素繊維),炭化ケイ素繊維,チラノ
繊維(SiTiC),ケプラー繊維,ガラス繊維、アル
ミナ繊維、ボロン繊維、ウィスカ等を挙げることができ
る。Here, the reinforcing fibers used as the monofilaments to be wound into the above layer in the present invention are, for example, carbon fibers (particularly,
Pitch-based high elastic modulus carbon fiber), silicon carbide fiber, tyranno fiber (SiTiC), Kepler fiber, glass fiber, alumina fiber, boron fiber, whisker and the like can be mentioned.
【0028】次に、このような繊維強化の対象となる磁
石形状を図4に示す。図4において、(a)は中実丸棒
(円形及び楕円形断面)を示し、(b)は中空丸棒(円
形及び楕円形断面)を示す。また、(c)は多角形断面
棒として中実又は中空の六角形のものを示す。また、
(d)は矩形断面棒(板状)及び(e)はカマボコ形断
面棒(板状)のものを各々示している。なお、本発明に
おいては、磁石の形状は上記の形状に限定されるもので
はなく、適宜その目的に応じて変更したものを用いるよ
うにしてもよい。Next, FIG. 4 shows the shape of the magnet which is the object of such fiber reinforcement. In FIG. 4, (a) shows a solid round bar (circular and elliptical cross section), and (b) shows a hollow round bar (circular and elliptical cross section). Further, (c) shows a solid or hollow hexagonal rod having a polygonal cross section. Also,
(D) shows a rectangular cross-section rod (plate-like) and (e) shows a semi-cylindrical cross-section rod (plate-like), respectively. In addition, in the present invention, the shape of the magnet is not limited to the above-mentioned shape, and a magnet appropriately modified according to the purpose may be used.
【0029】多層に形成した単繊維巻上げ層はその後、
マトリックス樹脂によって複合化することにより、単繊
維がばらばらにさばけないようにしっかりと固着するよ
うにして、本発明にかかる磁石補強用繊維強化複合材を
得るようにしている。このマトリックス樹脂によって固
定化して、上記磁石補強用繊維強化複合材を得る方法と
して、その一例を(1),(2)に示す。The monofilament winding layer formed in multiple layers is then
By forming a composite with a matrix resin, the single fibers are firmly fixed so as not to be separated, and the fiber-reinforced composite material for magnet reinforcement according to the present invention is obtained. As a method for obtaining the above-mentioned fiber-reinforced composite material for magnet reinforcement by fixing with this matrix resin, examples thereof are shown in (1) and (2).
【0030】<固着方法(1)>シランカップリング剤
で表面活性化させた繊維の表面に樹脂を塗布(含浸)さ
せ、セミキュア状態で単繊維巻上げ後、加熱硬化させる
(必要に応じ加圧するともある)。なお、本発明で上記
「セミキュア状態」とは、単繊維への従来含浸時に較べ
樹脂の粘度が増加し、硬化反応がやや進行した状態をい
う。すなわち、繊維に樹脂を含浸し、この樹脂を少し加
熱して半硬化状にしたものをいい、セミキュア状にした
繊維は柔らかい状態であるが、更に熱を加えると樹脂が
本格的に硬化し、硬くするようにしている。<Fixing method (1)> A resin is applied (impregnated) to the surface of the fiber surface-activated with a silane coupling agent, wound into a single fiber in a semi-cure state, and then heat-cured (if necessary, if pressure is applied. There is also). In the present invention, the above-mentioned "semi-cured state" refers to a state in which the viscosity of the resin is increased and the curing reaction is slightly advanced as compared with the conventional impregnation of single fibers. That is, a fiber is impregnated with a resin, and the resin is heated a little to be semi-cured. The semi-cured fiber is in a soft state, but when heat is further applied, the resin is fully cured, I try to make it hard.
【0031】<固着方法(2)>シランカップリング剤
で表面活性化させた繊維を単繊維巻上げ、その後、オー
トクレーブ中で樹脂を真空含浸、加圧加熱硬化させる。
尚、シランカップリング剤は含浸樹脂に配合することも
ある。ここで、マトリックス樹脂とは、通常はエポキシ
樹脂を用いるのが好適である。また、上記エポキシ樹脂
よりも強度,じん性が要求される場合には、PEEK
(ポリエーテルエーテルケトン)樹脂を用いるのが好ま
しい。更に、耐熱性が要求される場合(Max.150
〜200℃)には、構造部材としてポリイミド樹脂を用
いるのが好ましい。<Fixing method (2)> A fiber whose surface has been activated by a silane coupling agent is wound into a single fiber, and thereafter, a resin is vacuum-impregnated in an autoclave and is cured by heating under pressure.
The silane coupling agent may be mixed with the impregnating resin. Here, as the matrix resin, it is usually preferable to use an epoxy resin. When strength and toughness are required more than the above epoxy resin, PEEK
It is preferable to use a (polyether ether ketone) resin. When heat resistance is required (Max. 150)
Up to 200 ° C.), it is preferable to use a polyimide resin as a structural member.
【0032】次に、本発明による繊維強化の中実、中空
丸棒磁石の回転機ロータへの適用例を、それぞれ図5,
図6に示す。図5は、中実丸棒磁石に適用した場合であ
り、図6は中空丸棒磁石に適用した場合を示す。これら
の図面において、符号21はシャフト、22は希土類磁
石、23は非磁性金属円筒、24は非磁性金属円板、3
1は磁石補強用繊維強化複合材を各々示す。 (a)直径に比べ軸長さが大きくなる場合は、曲げ剛性
改善を重視する必要がある。 (b)ただし、実使用時に大きなトルク変動が想定され
る場合は、ねじり剛性改善も加味する必要がある。 (c)直径に比べ軸長さが短い場合は、ねじり剛性の改
善を重視する必要がある。 (d)圧縮応力付与による遠心力対策(径方向引張強度
の向上)は、全ての場合共通で重視する必要があり、特
にロータ径を大きくする場合は最も重要となる。Next, application examples of the fiber-reinforced solid and hollow round bar magnets according to the present invention to a rotor of a rotating machine are shown in FIGS.
As shown in FIG. FIG. 5 shows the case of application to a solid round bar magnet, and FIG. 6 shows the case of application to a hollow round bar magnet. In these drawings, reference numeral 21 is a shaft, 22 is a rare earth magnet, 23 is a non-magnetic metal cylinder, 24 is a non-magnetic metal disc, 3
Reference numeral 1 denotes a fiber-reinforced composite material for magnet reinforcement. (A) When the axial length is larger than the diameter, it is necessary to focus on improving bending rigidity. (B) However, if a large torque fluctuation is expected during actual use, it is necessary to take into consideration the improvement in torsional rigidity. (C) When the axial length is shorter than the diameter, it is necessary to focus on improving the torsional rigidity. (D) Countermeasures against centrifugal force (improvement of tensile strength in the radial direction) by applying compressive stress must be emphasized in all cases, and are especially important when increasing the rotor diameter.
【0033】繊維強化の矩形、カマボコ形断面棒磁石の
回転機ロータへの適用例をそれぞれ図7,図8に示す。
図7は、矩形棒磁石に適用した場合であり、図6はカマ
ボコ形棒磁石に適用した場合を示す。これらの図面にお
いて、符号21はシャフト、22は希土類磁石、23は
非磁性金属円筒、24は非磁性金属円板、25は鉄心、
26は矩形形又はカマボコ形の鉄心溝及び31は磁石補
強用繊維強化複合材を各々示す。 (a)この場合には圧縮応力付与と曲げ剛性の改善を重
視し、ねじり剛性の改善はそれほど考慮しなくてもよ
い。 (b)また、軸長さや板幅が増すほど、曲げ剛性の改善
が重要となる。7 and 8 show examples of application of fiber-reinforced rectangular and semi-cylindrical bar magnets to a rotor of a rotary machine, respectively.
FIG. 7 shows a case where the present invention is applied to a rectangular bar magnet, and FIG. 6 shows a case where it is applied to a semi-cylindrical bar magnet. In these drawings, reference numeral 21 is a shaft, 22 is a rare earth magnet, 23 is a non-magnetic metal cylinder, 24 is a non-magnetic metal disc, 25 is an iron core,
Reference numeral 26 is a rectangular or chamfered iron core groove, and 31 is a fiber-reinforced composite material for magnet reinforcement. (A) In this case, giving the compressive stress and improving the bending rigidity are important, and the improvement in the torsional rigidity does not have to be considered so much. (B) Further, as the axial length and the plate width increase, the improvement of bending rigidity becomes more important.
【0034】[0034]
【発明の効果】以上述べたように、本発明によれば、以
下のような効果を奏する。 (1)磁石表面において、高弾性率高強度繊維を所定の
方向に一定張力のもとで単繊維巻上げすることにより磁
石本体に圧縮応力を付与し、かつ、曲げやねじりの剛性
も併せ付与したので、永久磁石式回転機のロータとして
の遠心力強度、曲げねじり剛性の改善に寄与する。 (2)多層に形成した単繊維巻上げ層はその後、樹脂マ
トリックスの複合材料に仕上げることにより、単繊維が
ばらばらにさばけないようにしっかりと固着されると共
に、マトリックス樹脂にも強度を負担させる。 (3)軸長さの増大、遠心力増大(回転数、ロータ
径)、トルク増大にそれぞれ対応でき、繊維強化の中
実,中空丸棒磁石の回転機・ロータへの適用できる。 (4)軸長さや板幅の増大,遠心力増大(回転数,ロー
タ径)にそれぞれ対応でき、繊維強化の矩形,カマボコ
形断面棒磁石の回転機・ロータへの適用できる。 (5)金属材料(たとえば非磁性オーステナイト系ステ
ンレス鋼)に比べ、比強度の大きい繊維強化複合材(樹
脂マトリックス)で磁石本体を補強できたことにより、
従来の金属円筒のみで回転子を外周側より補強する方法
よりもロータ重量を軽くでき、ロータの遠心力及び慣性
モーメントの低減に寄与する。 (6)ロータへの磁石の組込みでは、磁石と金属材料
(鉄心や非磁性金属円筒)が直接接触しない構造となる
ため、磁石が局所的な応力集中を受けにくくなり(複合
材料部で応力緩和がなされる)、磁石の割れや欠けを防
止できる。As described above, according to the present invention, the following effects can be obtained. (1) On the surface of the magnet, a high elastic modulus and high strength fiber is wound in a predetermined direction under a constant tension to give a compressive stress to the magnet body, as well as bending and torsional rigidity. Therefore, it contributes to improvement of centrifugal force strength and bending and torsional rigidity as a rotor of a permanent magnet type rotating machine. (2) The monofilament winding layer formed in multiple layers is then finished into a composite material of a resin matrix, whereby the monofilaments are firmly fixed so as not to be separated and the matrix resin also bears strength. (3) Capable of responding to an increase in shaft length, an increase in centrifugal force (rotation speed, rotor diameter), and an increase in torque, respectively, and can be applied to a fiber-reinforced solid or hollow round bar magnet for a rotating machine / rotor. (4) Capable of responding to increases in axial length and plate width, and centrifugal force (rotation speed, rotor diameter), and can be applied to rotary machines and rotors with fiber-reinforced rectangular and chamfered section magnets. (5) Compared to metallic materials (for example, non-magnetic austenitic stainless steel), the magnet body can be reinforced with a fiber-reinforced composite material (resin matrix) having a large specific strength.
The rotor weight can be made lighter than the conventional method in which the rotor is reinforced from the outer peripheral side with only the metal cylinder, and it contributes to the reduction of the centrifugal force and the moment of inertia of the rotor. (6) When the magnet is incorporated into the rotor, the magnet and the metal material (iron core or non-magnetic metal cylinder) do not come into direct contact with each other, so that the magnet is less susceptible to local stress concentration (stress relaxation at the composite material part). It is possible to prevent the magnet from cracking or chipping.
【図1】本実施例に係る丸棒磁石の表面に単繊維を巻き
上げる工程図を示す。FIG. 1 shows a process drawing of winding a single fiber around the surface of a round bar magnet according to this example.
【図2】本実施例に係る丸棒磁石の表面に単繊維を巻き
上げる工程図を示す。FIG. 2 shows a process drawing of winding a single fiber around the surface of a round bar magnet according to this example.
【図3】本実施例に係る丸棒磁石の表面に単繊維を巻き
上げる工程図を示す。FIG. 3 shows a process drawing of winding a single fiber around the surface of a round bar magnet according to the present embodiment.
【図4】繊維強化の対象となる種々の磁石の形状図を示
す。FIG. 4 shows shape diagrams of various magnets to be fiber-reinforced.
【図5】本実施例に係る高速発電機・電動機ロータへの
適用図を示す。FIG. 5 shows an application diagram to a high speed generator / motor rotor according to the present embodiment.
【図6】本実施例に係る高速発電機・電動機ロータへの
適用図を示す。FIG. 6 shows an application diagram to a high speed generator / motor rotor according to the present embodiment.
【図7】本実施例に係る高速発電機・電動機ロータへの
適用図を示す。FIG. 7 shows an application diagram to a high speed generator / motor rotor according to the present embodiment.
【図8】本実施例に係る高速発電機・電動機ロータへの
適用図を示す。FIG. 8 shows an application diagram to a high speed generator / motor rotor according to the present embodiment.
【図9】回転子構造の概略図を示す。FIG. 9 shows a schematic view of a rotor structure.
【図10】他の回転子構造の概略図を示す。FIG. 10 shows a schematic view of another rotor structure.
11 磁石 12 単繊維 21 シャフト 22 希土類磁石 23 非磁性金属円筒 24 非磁性金属円板 25 鉄心 26 矩形形又はカマボコ形の鉄心溝 31 磁石補強用繊維強化複合材 11 magnet 12 monofilament 21 shaft 22 rare earth magnet 23 non-magnetic metal cylinder 24 non-magnetic metal disk 25 iron core 26 rectangular or chamfered core groove 31 fiber-reinforced composite material for magnet reinforcement
【手続補正書】[Procedure amendment]
【提出日】平成7年11月6日[Submission date] November 6, 1995
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項4[Correction target item name] Claim 4
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【手続補正2】[Procedure amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0002[Name of item to be corrected] 0002
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0002】[0002]
【従来の技術】従来の永久磁石式高速発電機または電動
機(容量約20〜300kw)等に用いる回転子の構造の
概略を図9,10に示す。図9中、符号01はシャフ
ト、02は希土類磁石、03は非磁性金属円筒及び04
は非磁性円板を各々図示する。図9に示すように、従来
の回転子においては、希土類磁石の曲げ強度や剛性が低
いため、オーステナイト系ステンレス鋼等の非磁性金属
材料薄肉円筒で外周部からその内側の磁石02を拘束
し、ロータとしての強度、剛性を増す方法が採用されて
いる。2. Description of the Related Art FIGS. 9 and 10 schematically show the structure of a rotor used in a conventional permanent magnet type high speed generator or electric motor (capacity: about 20 to 300 kw). In FIG. 9, reference numeral 01 is a shaft, 02 is a rare earth magnet, 03 is a non-magnetic metal cylinder, and 04.
Each show a non-magnetic disc. As shown in FIG. 9, in the conventional rotor, since the bending strength and rigidity of the rare earth magnet are low, a non-magnetic metal material thin cylinder such as austenitic stainless steel is used to restrain the magnet 02 inside from the outer peripheral portion, A method of increasing the strength and rigidity of the rotor is adopted.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0017[Correction target item name] 0017
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0017】上記回転子の永久磁石において、上記単繊
維が炭素繊維,炭化ケイ素繊維,チラノ繊維(SiTi
C),ケブラー繊維又はガラス繊維のいずれかであるこ
とを特徴とする。In the rotor permanent magnet, the monofilaments are carbon fibers, silicon carbide fibers, and tyranno fibers (SiTi).
C), characterized in that either Ke blanking color fibers or glass fibers.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0027[Correction target item name] 0027
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0027】ここで、本発明で上記層状に巻上げる単繊
維として用いる強化繊維とは、例えば炭素繊維(特に、
ピッチ系高弾性率炭素繊維),炭化ケイ素繊維,チラノ
繊維(SiTiC),ケブラー繊維,ガラス繊維、アル
ミナ繊維、ボロン繊維等を挙げることができる。Here, the reinforcing fibers used as the monofilaments to be wound into the above layer in the present invention are, for example, carbon fibers (particularly,
Pitch-based high modulus carbon fiber), silicon carbide fiber, Tyranno fiber (SiTiC), Quai blanking color fibers can include glass fibers, alumina fibers, boron fibers or the like.
Claims (6)
定張力をかけつつ層状に巻上げてなり、マトリックス樹
脂により複合化してなることを特徴とする回転子の永久
磁石。1. A permanent magnet for a rotor, characterized in that monofilaments are wound on a surface of a magnet in a layered manner while always applying a constant tension in a predetermined direction and compounded by a matrix resin.
硬化してなることを特徴とする永久磁石。2. The permanent magnet for a rotor according to claim 1, wherein the single fiber is a resin-impregnated semi-cure fiber, and is obtained by heating and hardening after winding.
いて、 単繊維を巻上げ後、オートクレーブ中で樹脂含浸、加圧
加熱硬化してなることを特徴とする永久磁石。3. The permanent magnet for a rotor according to claim 1, wherein the single fiber is wound up, and then impregnated with a resin in an autoclave and cured by heating under pressure.
て、 上記単繊維が炭素繊維,炭化ケイ素繊維,チラノ繊維
(SiTiC),ケプラー繊維又はガラス繊維のいずれ
かであることを特徴とする永久磁石。4. The rotor permanent magnet according to claim 1, wherein the single fiber is any one of carbon fiber, silicon carbide fiber, Tyranno fiber (SiTiC), Kepler fiber, and glass fiber. permanent magnet.
繊維あることを特徴とする永久磁石。5. The permanent magnet for a rotor according to claim 4, wherein the carbon fiber as the single fiber is a pitch-based high elastic modulus carbon fiber.
て、 上記マトリックス樹脂が、エポキシ樹脂,PEEK(ポ
リエーテルエーテルケトン)樹脂又はポリイミド樹脂の
いずれかであることを特徴とする永久磁石。6. The permanent magnet for a rotor according to claim 1, wherein the matrix resin is an epoxy resin, a PEEK (polyether ether ketone) resin, or a polyimide resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16167195A JP3509304B2 (en) | 1995-06-28 | 1995-06-28 | Rotor permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16167195A JP3509304B2 (en) | 1995-06-28 | 1995-06-28 | Rotor permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0919093A true JPH0919093A (en) | 1997-01-17 |
JP3509304B2 JP3509304B2 (en) | 2004-03-22 |
Family
ID=15739635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16167195A Expired - Fee Related JP3509304B2 (en) | 1995-06-28 | 1995-06-28 | Rotor permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3509304B2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2768271A1 (en) * | 1997-09-10 | 1999-03-12 | Hitachi Ltd | Permanent magnet electrical machine rotor, and construction method |
WO2010001776A1 (en) * | 2008-06-30 | 2010-01-07 | 株式会社 明電舎 | Rotor structure of permanent magnet type rotary machine |
WO2010014640A2 (en) | 2008-07-28 | 2010-02-04 | Direct Drive Systems, Inc. | Electric machine |
JP2011529679A (en) * | 2008-07-28 | 2011-12-08 | ダイレクト、ドライヴ、システィムズ、インク | Electric machine |
WO2012176963A1 (en) * | 2011-06-24 | 2012-12-27 | Lee Seong Goun | Electric motor and generator in which a concentric winding is applied |
GB2502621A (en) * | 2012-06-01 | 2013-12-04 | Crompton Technology Group Ltd | Rotor magnet securing arrangement |
WO2015049967A1 (en) * | 2013-10-02 | 2015-04-09 | 富士電機株式会社 | Permanent magnet embedded rotating electric machine and method for manufacturing same |
JP2017112826A (en) * | 2012-04-03 | 2017-06-22 | ザ・ボーイング・カンパニーThe Boeing Company | Directional stiffening method of flexible magnets |
JP2017163752A (en) * | 2016-03-10 | 2017-09-14 | 株式会社明電舎 | Rotor of permanent magnet dynamo-electric machine |
DE102018006818A1 (en) | 2017-09-12 | 2019-03-14 | Fanuc Corporation | ROTOR |
CN109638996A (en) * | 2017-10-05 | 2019-04-16 | 发那科株式会社 | Rotor, rotating electric machine and the manufacturing method for covering cylinder |
JP2019161758A (en) * | 2018-03-08 | 2019-09-19 | 三菱重工業株式会社 | motor |
JP2020005449A (en) * | 2018-06-29 | 2020-01-09 | 株式会社豊田自動織機 | Rotor and manufacturing method of the same |
JP2020511922A (en) * | 2017-03-22 | 2020-04-16 | ホワイロット エスアエス | Rotor for radial flux electromagnetic motor or generator with mesh housing of unit magnets |
JP2022518327A (en) * | 2018-11-21 | 2022-03-15 | ゼネラル・エレクトリック・カンパニイ | Superconducting generator driven by a wind turbine |
JP2022044777A (en) * | 2016-04-25 | 2022-03-17 | ゼネラル・エレクトリック・カンパニイ | Sleeve rotor synchronous reluctance electric machine |
WO2022138727A1 (en) * | 2020-12-24 | 2022-06-30 | シチズン千葉精密株式会社 | Rotor, brushless motor, and method for manufacturing rotor |
JP2022101121A (en) * | 2020-12-24 | 2022-07-06 | シチズン千葉精密株式会社 | Rotor, brushless motor, rotor manufacturing method |
EP4050770A1 (en) * | 2021-02-24 | 2022-08-31 | Rolls-Royce Electrical Norway AS | Electric machine rotor sleeve |
US11863026B2 (en) | 2021-02-24 | 2024-01-02 | Rolls-Royce Electrical Norway AS | Electric machine rotor sleeve |
CN118629809A (en) * | 2024-08-08 | 2024-09-10 | 亨斯迈(杭州)电力技术有限公司 | Switch gear interlocking module and switch board |
US12126238B2 (en) | 2021-02-24 | 2024-10-22 | Rolls-Royce Electrical Norway AS | Electric machine rotor sleeve |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108418325B (en) * | 2018-03-09 | 2023-10-27 | 沈阳工业大学 | Novel high-speed motor with integral permanent magnet rotor structure |
-
1995
- 1995-06-28 JP JP16167195A patent/JP3509304B2/en not_active Expired - Fee Related
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1106065C (en) * | 1997-09-10 | 2003-04-16 | 株式会社日立制作所 | Rotor for permanent magnet excited, high-speed electric rotary machine, manufacturing method of the same and electric rotary machine including the same |
FR2768271A1 (en) * | 1997-09-10 | 1999-03-12 | Hitachi Ltd | Permanent magnet electrical machine rotor, and construction method |
WO2010001776A1 (en) * | 2008-06-30 | 2010-01-07 | 株式会社 明電舎 | Rotor structure of permanent magnet type rotary machine |
JP2010011681A (en) * | 2008-06-30 | 2010-01-14 | Meidensha Corp | Rotor structure of permanent magnet rotating machine |
WO2010014640A2 (en) | 2008-07-28 | 2010-02-04 | Direct Drive Systems, Inc. | Electric machine |
JP2011529679A (en) * | 2008-07-28 | 2011-12-08 | ダイレクト、ドライヴ、システィムズ、インク | Electric machine |
EP2378636A3 (en) * | 2008-07-28 | 2012-12-12 | Direct Drive Systems, Inc. | Electric Machine |
EP2324557B1 (en) * | 2008-07-28 | 2021-11-10 | Direct Drive Systems, Inc. | Electric machine |
WO2012176963A1 (en) * | 2011-06-24 | 2012-12-27 | Lee Seong Goun | Electric motor and generator in which a concentric winding is applied |
JP2017112826A (en) * | 2012-04-03 | 2017-06-22 | ザ・ボーイング・カンパニーThe Boeing Company | Directional stiffening method of flexible magnets |
WO2013179059A3 (en) * | 2012-06-01 | 2014-12-24 | Crompton Technology Group Limited | Rotor |
US20150171685A1 (en) * | 2012-06-01 | 2015-06-18 | Crompton Technology Group Limited | Rotor |
WO2013179059A2 (en) * | 2012-06-01 | 2013-12-05 | Crompton Technology Group Limited | Rotor |
EP3460956A1 (en) * | 2012-06-01 | 2019-03-27 | Crompton Technology Group Ltd. | Rotor |
GB2502621A (en) * | 2012-06-01 | 2013-12-04 | Crompton Technology Group Ltd | Rotor magnet securing arrangement |
WO2015049967A1 (en) * | 2013-10-02 | 2015-04-09 | 富士電機株式会社 | Permanent magnet embedded rotating electric machine and method for manufacturing same |
CN105210268A (en) * | 2013-10-02 | 2015-12-30 | 富士电机株式会社 | Permanent magnet embedded rotating electric machine and method for manufacturing same |
US20160072348A1 (en) * | 2013-10-02 | 2016-03-10 | Fuji Electric Co., Ltd. | Permanent magnet embedded-type rotating electric machine and manufacturing method thereof |
JPWO2015049967A1 (en) * | 2013-10-02 | 2017-03-09 | 富士電機株式会社 | Permanent magnet embedded rotary electric machine and method for manufacturing the same |
US10263482B2 (en) | 2013-10-02 | 2019-04-16 | Fuji Electric Co., Ltd. | Permanent magnet embedded-type rotating electric machine and manufacturing method thereof |
JP2017163752A (en) * | 2016-03-10 | 2017-09-14 | 株式会社明電舎 | Rotor of permanent magnet dynamo-electric machine |
JP2022044777A (en) * | 2016-04-25 | 2022-03-17 | ゼネラル・エレクトリック・カンパニイ | Sleeve rotor synchronous reluctance electric machine |
JP2020511922A (en) * | 2017-03-22 | 2020-04-16 | ホワイロット エスアエス | Rotor for radial flux electromagnetic motor or generator with mesh housing of unit magnets |
DE102018006818A1 (en) | 2017-09-12 | 2019-03-14 | Fanuc Corporation | ROTOR |
US10622854B2 (en) | 2017-09-12 | 2020-04-14 | Fanuc Corporation | Rotor |
CN109638996A (en) * | 2017-10-05 | 2019-04-16 | 发那科株式会社 | Rotor, rotating electric machine and the manufacturing method for covering cylinder |
CN109638996B (en) * | 2017-10-05 | 2023-03-07 | 发那科株式会社 | Rotor, rotating electrical machine, and method for manufacturing covering tube |
JP2019161758A (en) * | 2018-03-08 | 2019-09-19 | 三菱重工業株式会社 | motor |
JP2020005449A (en) * | 2018-06-29 | 2020-01-09 | 株式会社豊田自動織機 | Rotor and manufacturing method of the same |
JP2022518327A (en) * | 2018-11-21 | 2022-03-15 | ゼネラル・エレクトリック・カンパニイ | Superconducting generator driven by a wind turbine |
JP2022101121A (en) * | 2020-12-24 | 2022-07-06 | シチズン千葉精密株式会社 | Rotor, brushless motor, rotor manufacturing method |
WO2022138727A1 (en) * | 2020-12-24 | 2022-06-30 | シチズン千葉精密株式会社 | Rotor, brushless motor, and method for manufacturing rotor |
EP4050770A1 (en) * | 2021-02-24 | 2022-08-31 | Rolls-Royce Electrical Norway AS | Electric machine rotor sleeve |
US11863026B2 (en) | 2021-02-24 | 2024-01-02 | Rolls-Royce Electrical Norway AS | Electric machine rotor sleeve |
US11909293B2 (en) | 2021-02-24 | 2024-02-20 | Rolls-Royce Electrical Norway AS | Electric machine rotor sleeve |
US12126238B2 (en) | 2021-02-24 | 2024-10-22 | Rolls-Royce Electrical Norway AS | Electric machine rotor sleeve |
CN118629809A (en) * | 2024-08-08 | 2024-09-10 | 亨斯迈(杭州)电力技术有限公司 | Switch gear interlocking module and switch board |
Also Published As
Publication number | Publication date |
---|---|
JP3509304B2 (en) | 2004-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3509304B2 (en) | Rotor permanent magnet | |
US6154352A (en) | Method of magnetizing a cylindrical body | |
US6047461A (en) | Rotor for permanent magnet excited, high-speed electric rotary machine, manufacturing method of the same and electric rotary machine including the same | |
DK2786468T3 (en) | ELECTRICAL MACHINES AND ROTORS FOR ELECTRIC MACHINES | |
US10312758B2 (en) | Holding member, rotor of a rotating electrical machine comprising the same, and a rotating electrical machine comprising the rotor | |
US10634188B2 (en) | Rotors for rotating machines with hollow fiber-reinforced composite shaft | |
JPH1132455A (en) | Composite motor shaft | |
CN113557650A (en) | Improved method for manufacturing a rotor | |
JP5895015B2 (en) | Reinforced magnet | |
JP6135770B2 (en) | Permanent magnet embedded rotary electric machine and method for manufacturing the same | |
EP4327436A1 (en) | Rotor | |
CN211209403U (en) | Rotor of synchronous motor | |
JPH08107641A (en) | Dc brushless motor | |
JP6639761B1 (en) | Rotor and motor | |
JP7120503B1 (en) | Motor rotor and motor using this rotor | |
SU1039003A1 (en) | High-speed electrical machine rotor | |
JPH07103226A (en) | High speed rotating body | |
JPS63124741A (en) | Cylindrical rotor | |
EP2856611B1 (en) | Rotor | |
CN114977574A (en) | Motor rotor sleeve | |
JPH0814249A (en) | High speed rotor and its manufacture | |
Sun et al. | A novel bandage ring for high speed generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031209 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080109 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |