JP6593097B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP6593097B2
JP6593097B2 JP2015210939A JP2015210939A JP6593097B2 JP 6593097 B2 JP6593097 B2 JP 6593097B2 JP 2015210939 A JP2015210939 A JP 2015210939A JP 2015210939 A JP2015210939 A JP 2015210939A JP 6593097 B2 JP6593097 B2 JP 6593097B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
oriented electrical
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015210939A
Other languages
Japanese (ja)
Other versions
JP2017082276A (en
Inventor
浩志 藤村
裕義 屋鋪
克 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58714005&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6593097(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015210939A priority Critical patent/JP6593097B2/en
Publication of JP2017082276A publication Critical patent/JP2017082276A/en
Application granted granted Critical
Publication of JP6593097B2 publication Critical patent/JP6593097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、磁気特性に優れかつ高強度の無方向性電磁鋼板およびその製造方法に関する。より詳しくは、本発明は、エアコンのコンプレッサーモータ、ハイブリッド自動車、電気自動車、燃料電池自動車に搭載される駆動モータなど、高いエネルギー効率と小型・高出力化とを同時に要求される電気機器の鉄心の素材に好適な無方向性電磁鋼板およびその製造方法に関する。   The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties and high strength, and a method for producing the same. More specifically, the present invention relates to an iron core of an electrical device that is required to have high energy efficiency and small size and high output simultaneously, such as a drive motor mounted on a compressor motor of an air conditioner, a hybrid vehicle, an electric vehicle, and a fuel cell vehicle. The present invention relates to a non-oriented electrical steel sheet suitable for a material and a manufacturing method thereof.

近年の地球環境問題の高まりから、電気機器においては小型、高出力、高エネルギー効率が要求され、鉄心材料である無方向性電磁鋼板には低鉄損と高磁束密度の高位両立が強く求められている。   Due to the recent increase in global environmental problems, electrical equipment is required to be small, high power, and high energy efficiency, and non-oriented electrical steel sheets, which are core materials, are strongly required to have both low iron loss and high magnetic flux density. ing.

特にハイブリッド自動車や電気自動車等の駆動モータでは、小型化に伴うトルク低下を補償するために、回転数を増加させる手段が取られている。そして、回転数を増加させると、鋼板に印加される磁場の周波数が増加し鉄損が増加するため、鉄心材料である無方向性電磁鋼板には、高い周波数における鉄損(高周波鉄損)を低減することが求められている。また、回転数を増加させるために、高速回転でも変形や疲労破壊しない強度が求められている。さらに、ハイブリッド自動車や電気自動車等の駆動モータの効率を高めるためには、駆動モータの十分な冷却が必要とされる。   In particular, in a drive motor such as a hybrid vehicle or an electric vehicle, a means for increasing the number of revolutions is taken in order to compensate for a decrease in torque associated with downsizing. And when the number of rotations is increased, the frequency of the magnetic field applied to the steel sheet increases and the iron loss increases. Therefore, the non-oriented electrical steel sheet as the iron core material has a high frequency iron loss (high frequency iron loss). There is a need to reduce it. Further, in order to increase the rotational speed, there is a demand for strength that does not cause deformation or fatigue failure even at high speed rotation. Furthermore, in order to increase the efficiency of a drive motor such as a hybrid vehicle or an electric vehicle, sufficient cooling of the drive motor is required.

高周波鉄損を低減する手段としては、板厚の薄手化、SiやAlなどの合金元素含有量の増加による高比抵抗化、SbやSnなどの添加による集合組織制御、および鋼板の高純度化などが採用されてきた。しかしながら、鉄損を低減するために、SbやSnを母鋼板に添加すると、打ち抜きや加工による歪を除去する目的で歪取焼純を行った後に母鋼板の被膜密着性が低下することがある。この結果、母鋼板表面から絶縁被膜が剥離して駆動モータの冷却に用いる冷媒に混入することによって、冷却性能を劣化させることがある。   As means for reducing high-frequency iron loss, sheet thickness is reduced, specific resistance is increased by increasing the content of alloy elements such as Si and Al, texture control is achieved by adding Sb and Sn, and high purity of steel sheet Etc. have been adopted. However, when Sb or Sn is added to the base steel plate in order to reduce iron loss, the film adhesion of the base steel plate may be lowered after performing strain relief tempering for the purpose of removing strain due to punching or processing. . As a result, the insulating coating may be peeled off from the surface of the mother steel plate and mixed with the refrigerant used for cooling the drive motor, thereby deteriorating the cooling performance.

これに対し、特許文献1では、縁被膜下のサブスケール量が酸素目付量で1.3g/m以下で、かつ絶縁被膜の目付量が、絶縁被膜の種類が無機または有機無機複合被膜の場合は0.1〜4.0g/m、有機被膜の場合は0.1〜12g/mであることが有効であるとしている。また、特許文献2では、母鋼板表面におけるSbおよびSn濃度を規定することによって、母鋼板表面に形成される絶縁被膜が剥離しにくい優れた被膜密着性を有し、かつ磁気特性に優れた無方向性電磁鋼板を提供している。これにより、母鋼板表面から絶縁被膜がはく離して冷媒に混入し、冷却性能を劣化させることを回避している。さらに、特許文献3では、母鋼板表面におけるSb、Sn、およびAlの濃度を規定することによって、歪取焼純時の酸化による耐食性の劣化を抑制でき、歪取焼純後の耐食性および磁気特性の双方に優れた無方向性電磁鋼板を提供している。これにより、母鋼板での錆の発生を回避するとしているが、被膜の密着性については効果が十分でない。 In contrast, in Patent Document 1, at 1.3 g / m 2 or less in the oxygen basis weight subscale of the lower edge coating, and the basis weight of the insulation coating, the type of the insulating coating is an inorganic or organic-inorganic composite coating It is said that 0.1 to 4.0 g / m 2 is effective in the case of 0.1 to 12 g / m 2 in the case of the organic coating. Further, in Patent Document 2, by specifying the Sb and Sn concentrations on the surface of the mother steel plate, the insulating film formed on the surface of the mother steel plate has excellent film adhesion that is difficult to peel off, and has excellent magnetic properties. A grain-oriented electrical steel sheet is provided. Thereby, it is avoided that the insulating coating is peeled off from the surface of the mother steel plate and mixed into the refrigerant to deteriorate the cooling performance. Furthermore, in Patent Document 3, by specifying the concentrations of Sb, Sn, and Al on the surface of the mother steel plate, deterioration of corrosion resistance due to oxidation during strain-relief tempering can be suppressed, and corrosion resistance and magnetic properties after strain-relief refractory purity. The non-oriented electrical steel sheet excellent in both is provided. Thereby, although it is supposed that the generation | occurrence | production of rust in a mother steel plate will be avoided, an effect is not enough about the adhesiveness of a film.

しかしながら、特許文献1および2に記載の無方向性電磁鋼板では、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時において、母鋼板表面から絶縁被膜がはく離することを回避するのに十分な程度には、母鋼板表面に形成される絶縁被膜の被膜密着性が優れたものではなかった。このため、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時には、母鋼板表面から絶縁被膜がはく離して冷媒に混入し、冷却性能を劣化させるといった問題が依然として生じるおそれがある。   However, the non-oriented electrical steel sheets described in Patent Documents 1 and 2 are of a degree sufficient to avoid peeling of the insulating coating from the surface of the mother steel sheet during long-term operation of a drive motor such as a hybrid vehicle or an electric vehicle. However, the coating adhesion of the insulating coating formed on the surface of the mother steel plate was not excellent. For this reason, at the time of long-term operation of a drive motor such as a hybrid vehicle or an electric vehicle, there is still a possibility that a problem arises that the insulating coating is peeled off from the surface of the mother steel plate and mixed into the refrigerant to deteriorate the cooling performance.

特開2001−279400号公報JP 2001-279400 A 特開平8−291375号公報JP-A-8-291375 特開2003−293101号公報JP 2003-293101 A

本発明は、上記問題点に鑑みてなされたものであり、高周波鉄損を低減するためにSbやSnを母鋼板に添加するのに際して、SbおよびSnが母鋼板表面に偏析して母鋼板表面に形成される絶縁被膜の被膜密着性を低下する作用を無害化することによって、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時において、母鋼板表面から絶縁被膜がはく離することを回避するのに十分な程度に、母鋼板表面に形成される絶縁被膜の被膜密着性を優れたものとした無方向性電磁鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and when Sb or Sn is added to a base steel plate in order to reduce high-frequency iron loss, Sb and Sn are segregated on the base steel plate surface, and the base steel plate surface By detoxifying the action of lowering the adhesion of the insulating coating formed on the insulating coating, it is possible to avoid the peeling of the insulating coating from the surface of the mother steel plate during long-term operation of a drive motor such as a hybrid vehicle or an electric vehicle. It is an object of the present invention to provide a non-oriented electrical steel sheet and a method for producing the same, which have excellent coating adhesion of an insulating film formed on the surface of the mother steel sheet.

本発明者らは、上記課題を解決すべく、SbおよびSnと共に他の元素を母鋼板表面に偏析させた場合について、母鋼板表面に形成される絶縁被膜の被膜密着性の変化について鋭意研究を行った。その結果、SbおよびSnと共にCuおよびNiを母鋼板表面に偏析させれば、母鋼板表面に偏析したSbおよびSnによる絶縁被膜の被膜密着性の低下作用を打ち消して、母鋼板表面に形成される絶縁被膜の被膜密着性をより優れたものできることを見出した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research on changes in film adhesion of the insulating coating formed on the surface of the mother steel plate when other elements are segregated on the surface of the mother steel plate together with Sb and Sn. went. As a result, if Cu and Ni are segregated on the surface of the base steel plate together with Sb and Sn, the effect of lowering the film adhesion of the insulating coating due to Sb and Sn segregated on the surface of the base steel plate is counteracted and formed on the surface of the base steel plate. It has been found that the film adhesion of the insulating film can be further improved.

本発明はこれらの知見を元になされたものであり、その要旨は、質量%で、C:0.004%以下、Si:2.0%以上4.0%以下、Al:2.0%以下、Mn:0.05%以上4.0%以下、S:0.005%以下、N:0.004%以下、P:0.20%以下、Sn:0.005%以上0.2%以下、Sb:0.005%以上0.2%以下、Cu:0.02%以上2.0%以下、Ni:0.02%以上1.0%以下を含有し、残部がFeおよび不可避的不純物よりなる化学組成を有する母鋼板を有することを特徴とする無方向性電磁鋼板である。   The present invention has been made based on these findings, and the gist thereof is mass%, C: 0.004% or less, Si: 2.0% or more and 4.0% or less, Al: 2.0%. Hereinafter, Mn: 0.05% to 4.0%, S: 0.005% or less, N: 0.004% or less, P: 0.20% or less, Sn: 0.005% or more, 0.2% Hereinafter, Sb: 0.005% to 0.2%, Cu: 0.02% to 2.0%, Ni: 0.02% to 1.0%, with the balance being Fe and inevitable It is a non-oriented electrical steel sheet characterized by having a mother steel plate having a chemical composition made of impurities.

また、他の要旨は、上述の無方向性電磁鋼板であって、上記Al含有量が質量%で0.010%以下であることを特徴とする無方向性電磁鋼板である。   Another gist is the non-oriented electrical steel sheet described above, wherein the Al content is 0.010% or less by mass.

また、他の要旨は、上述の無方向性電磁鋼板であって、上記母鋼板表面におけるCu、Ni、Sn、およびSbの濃度が、下記式(1)を満足することを特徴とする無方向性電磁鋼板である。
([Cu]+[Ni])/([Sn]+[Sb])>1.0 (1)
(ここで、式中の[X]は質量%で表した母鋼板表面における元素Xの濃度を示す。)
Another aspect is the non-oriented electrical steel sheet described above, wherein the concentrations of Cu, Ni, Sn, and Sb on the surface of the base steel sheet satisfy the following formula (1): It is an electrical steel sheet.
([Cu] + [Ni]) / ([Sn] + [Sb])> 1.0 (1)
(Here, [X] in the formula represents the concentration of element X on the surface of the base steel plate expressed in mass%.)

さらに、他の要旨は、上述の無方向性電磁鋼板の製造方法であって、上述の化学組成を有するスラブを、加熱炉雰囲気中の酸素濃度を2体積%以上とする加熱炉で1000℃以上1250℃以下の温度に加熱するスラブ加熱工程と、上記加熱後のスラブに熱間圧延を施し、最終圧延パス後に水冷して650℃以下の温度でコイル状に巻き取る熱間圧延工程と、上記熱間圧延工程により得られた熱延鋼板に熱延板焼鈍および酸洗を施す熱延板焼鈍・酸洗工程と、上記熱延板焼鈍・酸洗工程により得られた熱延焼鈍板に冷間圧延を施す冷間圧延工程と、上記冷間圧延工程により得られた冷延鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程と、を有することを特徴とする無方向性電磁鋼板の製造方法である。   Furthermore, another gist is a method for producing the above-mentioned non-oriented electrical steel sheet, wherein a slab having the above-described chemical composition is heated to 1000 ° C. or higher in a heating furnace in which the oxygen concentration in the heating furnace atmosphere is 2% by volume or more. A slab heating step for heating to a temperature of 1250 ° C or lower, a hot rolling step for subjecting the heated slab to hot rolling, water cooling after the final rolling pass, and winding it in a coil shape at a temperature of 650 ° C or lower, and the above The hot-rolled steel sheet obtained by the hot-rolling process is subjected to hot-rolled sheet annealing / pickling process, and the hot-rolled annealed sheet obtained by the hot-rolled sheet annealing / pickling process is cooled. It is a manufacturing method of a non-oriented electrical steel sheet characterized by having a cold rolling process which performs hot rolling, and a finish annealing process which performs finish annealing to the cold-rolled steel plate obtained by the cold rolling process.

本発明によれば、ハイブリッド自動車や電気自動車等の駆動モータの長期運転時において、母鋼板表面から絶縁被膜がはく離することを回避するのに十分な程度に、母鋼板表面に形成される絶縁被膜の被膜密着性を優れたものとした無方向性電磁鋼板およびその製造方法を提供することができる。本発明により得られる無方向性電磁鋼板は、電気機器の小型、高出力、高エネルギー効率化に極めて効果的であり、その工業的価値は極めて高い。   According to the present invention, the insulating coating formed on the surface of the mother steel plate is sufficient to avoid the peeling of the insulating coating from the surface of the mother steel plate during long-term operation of a drive motor such as a hybrid vehicle or an electric vehicle. It is possible to provide a non-oriented electrical steel sheet having excellent film adhesion and a method for producing the same. The non-oriented electrical steel sheet obtained by the present invention is extremely effective for miniaturization, high output and high energy efficiency of electrical equipment, and its industrial value is extremely high.

以下、本発明の無方向性電磁鋼板およびその製造方法について詳細に説明する。   Hereinafter, the non-oriented electrical steel sheet and the manufacturing method thereof according to the present invention will be described in detail.

A.無方向性電磁鋼板
以下、本発明の無方向性電磁鋼板における各構成について説明する。
A. Non-oriented electrical steel sheet Hereinafter, each structure in the non-oriented electrical steel sheet of the present invention will be described.

1.化学組成
まず、本発明の無方向性電磁鋼板における母鋼板の化学組成の限定理由について説明する。以下において、各成分の含有量は質量%での値である。
1. Chemical Composition First, the reasons for limiting the chemical composition of the base steel sheet in the non-oriented electrical steel sheet of the present invention will be described. In the following, the content of each component is a value in mass%.

(1)C
Cは、不純物として含有され、含有量が0.004%を超えると微細な炭化物が析出して鉄損の増加が著しくなる。したがって、C含有量は0.004%以下とする。また、この観点から、C含有量は好ましくは0.003%以下、より好ましくは0.002%以下とする。
(1) C
C is contained as an impurity, and if the content exceeds 0.004%, fine carbides are precipitated and the iron loss is remarkably increased. Therefore, the C content is 0.004% or less. From this viewpoint, the C content is preferably 0.003% or less, more preferably 0.002% or less.

(2)Si
Siは、比抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。また、鋼板の強度を向上させるのにも有効である。しかしながら、Siを過剰に含有させると飽和磁束密度を減少させ、鋼の脆化および仕上焼鈍温度の上昇を招き、さらにはコストを増加させる。これらの観点から、Si含有量は2.0%以上4.0%以下とする。また、これらの観点から、Si含有量は好ましくは2.5%以上、より好ましくは3.0%以上とし、Si含有量は好ましくは3.5%以下とする。
(2) Si
Since Si has an action of increasing the specific resistance, it is contained for reducing iron loss. It is also effective for improving the strength of the steel sheet. However, if Si is contained excessively, the saturation magnetic flux density is decreased, resulting in embrittlement of the steel and an increase in the finish annealing temperature, and further increases the cost. From these viewpoints, the Si content is set to 2.0% to 4.0%. From these viewpoints, the Si content is preferably 2.5% or more, more preferably 3.0% or more, and the Si content is preferably 3.5% or less.

(3)Al
Alは、Siと同様に比抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。しかしながら、Alを過剰に含有させると飽和磁束密度を減少させることになり、磁束密度の点から不利となる。これらの観点から、Al含有量は2.0%以下とする。また、母鋼板表面に形成されるAl酸化物被膜は、母鋼板表面に形成される絶縁被膜の被膜密着性を低下させる。このため、母鋼板表面に形成される絶縁被膜の被膜密着性を向上させるために、母鋼板表面においてAl酸化物被膜の形成を抑制してSi酸化物被膜が形成され易くなるように、Al含有量を低減することが好ましい。この観点から、Al含有量は0.010%以下とすることが好ましい。
(3) Al
Al has the effect of increasing the specific resistance similarly to Si, so Al is contained for reducing iron loss. However, if Al is contained excessively, the saturation magnetic flux density is reduced, which is disadvantageous in terms of magnetic flux density. From these viewpoints, the Al content is set to 2.0% or less. Moreover, the Al oxide film formed on the surface of the mother steel sheet reduces the film adhesion of the insulating film formed on the surface of the mother steel sheet. For this reason, in order to improve the film adhesion of the insulating coating formed on the surface of the mother steel plate, Al content is suppressed so that the formation of the Al oxide coating on the surface of the mother steel plate is suppressed and the Si oxide coating is easily formed. It is preferred to reduce the amount. In this respect, the Al content is preferably 0.010% or less.

(4)Mn
Mnは、Si、Alと同様に比抵抗を増加させる作用を有しているので、鉄損低減のために含有させる。しかしながら、Mnを過剰に含有させると飽和磁束密度を減少させることになり、磁束密度の点から不利となる。これらの観点から、Mn含有量は0.05%以上4.0%以下とする。また、これらの観点から、Mn含有量は好ましくは3.0%以下、より好ましくは2.0%以下とする。
(4) Mn
Since Mn has the effect of increasing the specific resistance similarly to Si and Al, it is contained for reducing iron loss. However, if Mn is contained excessively, the saturation magnetic flux density is reduced, which is disadvantageous in terms of magnetic flux density. From these viewpoints, the Mn content is 0.05% to 4.0%. From these viewpoints, the Mn content is preferably 3.0% or less, more preferably 2.0% or less.

(5)S
Sは、含有量が0.005%を超えるとMnSなどの硫化物が多数析出して鉄損の増加が著しくなる。したがって、S含有量は0.005%以下とする。また、これらの観点から、S含有量は好ましくは0.003%以下、より好ましくは0.002%以下とする。
(5) S
When the content of S exceeds 0.005%, a large number of sulfides such as MnS are precipitated and the iron loss is remarkably increased. Therefore, the S content is 0.005% or less. From these viewpoints, the S content is preferably 0.003% or less, more preferably 0.002% or less.

(6)N
Nは、含有量が0.004%を超えると窒化物の増加により鉄損の増加が著しくなる。したがって、N含有量は0.004%以下とする。
(6) N
When the content of N exceeds 0.004%, an increase in iron loss becomes significant due to an increase in nitride. Therefore, the N content is 0.004% or less.

(7)P
Pは、Siと同様に鋼板の強度を向上させるのに有効な元素である。ただし、過剰に含有させると鋼の脆化を招く。この観点から、P含有量は0.20%以下とする。Pは、母鋼板表面に偏析する時に偏析サイトがSnおよびSbと競合するため、Pを母鋼板表面に偏析させることにより、SnおよびSbの母鋼板表面への偏析を抑制して、母鋼板表面に形成される絶縁被膜の被膜密着性の低下を抑制する効果が得られる。このため、母鋼板表面に形成される絶縁被膜の被膜密着性を向上させるために、Pが母鋼板表面に偏析するようにPを含有させることが好ましい。この観点から、P含有量は0.05%以上0.20%以下とすることが好ましい。さらに、この観点から、P含有量は0.10%以上0.20%以下とすることがより好ましい。
(7) P
P is an element effective for improving the strength of the steel sheet in the same manner as Si. However, if excessively contained, the steel will become brittle. From this viewpoint, the P content is 0.20% or less. When P is segregated on the surface of the base steel plate, the segregation site competes with Sn and Sb. Therefore, by segregating P on the surface of the base steel plate, the segregation of Sn and Sb to the surface of the base steel plate is suppressed, and the surface of the base steel plate The effect which suppresses the fall of the film adhesiveness of the insulating film formed in this is acquired. For this reason, in order to improve the film adhesion of the insulating coating formed on the surface of the base steel plate, it is preferable to contain P so that P is segregated on the surface of the base steel plate. In this respect, the P content is preferably 0.05% or more and 0.20% or less. Furthermore, from this viewpoint, the P content is more preferably 0.10% or more and 0.20% or less.

(8)Sn
Snは、電磁鋼板の集合組織を改善し鉄損を低減する効果があるので含有させる。また、水素を含む窒素雰囲気中で高温に加熱されるとき、鋼の表面からの窒素の侵入を防止し、AlNが形成されるのを抑止することによる鉄損低減効果もある。また、Snを含有させると、母鋼板表面に偏析して濃化することにより、母鋼板表面に形成される絶縁被膜の被膜密着性を低下させるものの、後述のCuおよびNiによる被膜密着性低下を打ち消す作用によって、被膜密着性の低下が抑制される効果が得られる。しかしながら、Snを過剰に含有させると、後述のCuおよびNiによる被膜密着性低下を打ち消す作用にもかかわらず、被膜密着性の低下を免れることはできない。また、Snを過剰に含有させると結晶粒成長を阻害することになる。これらの観点から、Sn含有量は0.005%以上0.2%以下とする。また、これらの観点から、Sn含有量は好ましくは0.03%以上とし、Sn含有量は好ましくは0.10%以下とする。
(8) Sn
Sn is contained because it has the effect of improving the texture of the electrical steel sheet and reducing iron loss. In addition, when heated to a high temperature in a nitrogen atmosphere containing hydrogen, there is also an effect of reducing iron loss by preventing intrusion of nitrogen from the steel surface and suppressing the formation of AlN. In addition, when Sn is contained, it segregates and concentrates on the surface of the mother steel sheet, thereby reducing the film adhesion of the insulating film formed on the surface of the mother steel sheet. By the action of canceling out, the effect of suppressing the decrease in the film adhesion can be obtained. However, when Sn is excessively contained, a decrease in film adhesion cannot be avoided in spite of the effect of counteracting the decrease in film adhesion due to Cu and Ni described later. Further, when Sn is excessively contained, crystal grain growth is inhibited. From these viewpoints, the Sn content is set to 0.005% or more and 0.2% or less. From these viewpoints, the Sn content is preferably 0.03% or more, and the Sn content is preferably 0.10% or less.

(9)Sb
Sbは、鉄損の改善の効果があるので含有させる。この効果は、水素を含む窒素雰囲気中で高温に加熱されるとき、鋼の表面からの窒素の侵入を防止し、AlNが形成されるのを抑止することによると考えられる。また、Sbを含有させると、母鋼板表面に偏析して濃化することにより、母鋼板表面に形成される絶縁被膜の被膜密着性を低下させるものの、後述のCuおよびNiによる被膜密着性低下を打ち消す作用によって、被膜密着性の低下が抑制される効果が得られる。しかしながら、Sbを過剰に含有させると、後述のCuおよびNiによる被膜密着性低下を打ち消す作用にもかかわらず、被膜密着性の低下を免れることはできない。また、Sbを過剰に含有させると結晶粒成長を阻害することになる。これらの観点から、Sb含有量は0.005%以上0.2%以下とする。また、これらの観点から、Sb含有量は好ましくは0.01%以上とし、Sb含有量は好ましくは0.10%以下とする。
(9) Sb
Sb is included because it has an effect of improving iron loss. This effect is thought to be due to preventing nitrogen from entering from the surface of the steel and inhibiting the formation of AlN when heated to a high temperature in a nitrogen atmosphere containing hydrogen. Further, when Sb is contained, the film adhesion of the insulating film formed on the surface of the mother steel sheet is lowered by segregating and concentrating on the surface of the mother steel sheet, but the film adhesion deterioration due to Cu and Ni described later is reduced. By the action of canceling out, the effect of suppressing the decrease in the film adhesion can be obtained. However, when Sb is contained excessively, the decrease in the film adhesion cannot be avoided despite the effect of counteracting the decrease in the film adhesion due to Cu and Ni described later. Moreover, when Sb is contained excessively, crystal grain growth will be inhibited. From these viewpoints, the Sb content is set to 0.005% or more and 0.2% or less. From these viewpoints, the Sb content is preferably 0.01% or more, and the Sb content is preferably 0.10% or less.

(10)Cu
Cuは、SnおよびSbと共に母鋼板表面に偏析して濃化することにより、表面に偏析したSnおよびSbによる被膜密着性低下を打ち消す作用がある。また、Cuは、鋼板の強度を向上させる効果もある。このため、Cuを含有させる。しかしながら、Cuを過剰に含有させると熱間圧延後の母鋼板表面で疵が発生し、製品の歩留まり低下を招く。これらの観点から、Cu含有量は0.02%以上2.0%以下とする。また、これらの観点から、Cu含有量は好ましくは0.05%以上1.0%以下とする。
(10) Cu
Cu segregates and concentrates on the surface of the mother steel plate together with Sn and Sb, thereby counteracting the decrease in film adhesion due to Sn and Sb segregated on the surface. Cu also has the effect of improving the strength of the steel sheet. For this reason, Cu is contained. However, when Cu is excessively contained, wrinkles are generated on the surface of the base steel sheet after hot rolling, resulting in a decrease in product yield. From these viewpoints, the Cu content is set to 0.02% or more and 2.0% or less. From these viewpoints, the Cu content is preferably 0.05% or more and 1.0% or less.

(11)Ni
Niは、SnおよびSbと共に母鋼板表面に偏析して濃化することにより、表面に偏析したSnおよびSbによる被膜密着性低下を打ち消す作用がある。また、鉄損の改善の効果がある。このため、Niを含有させる。しかしながら、Niを過剰に含有させても、これらの作用および効果は飽和してコスト的に不利になるばかりか、鋼の脆化を招く。これらの観点から、Ni含有量は0.02%以上1.0%以下とする。また、これらの観点から、Ni含有量は好ましくは0.05%以上、より好ましくは0.1%以上とし、Ni含有量は好ましくは0.5%以下とする。
(11) Ni
Ni segregates and concentrates on the surface of the mother steel plate together with Sn and Sb, thereby counteracting the decrease in film adhesion due to Sn and Sb segregated on the surface. It also has the effect of improving iron loss. For this reason, Ni is contained. However, even if Ni is contained excessively, these actions and effects are saturated and disadvantageous in terms of cost, and also causes embrittlement of the steel. From these viewpoints, the Ni content is set to 0.02% or more and 1.0% or less. From these viewpoints, the Ni content is preferably 0.05% or more, more preferably 0.1% or more, and the Ni content is preferably 0.5% or less.

(12)Ca、Mg、およびREM
Ca、Mg、およびREMは、介在物の形態制御に有効な元素であり、結晶粒の成長を促進する作用を通じて鉄損低減に有効に作用する。したがって、Ca、Mg、およびREMが、Feの一部に代えて含有されていてもよい。しかしながら、いずれの元素もその含有量を0.01%超としても、上記作用による効果は飽和してコスト的に不利になる。したがって、Ca含有量は0.01%以下、Mg含有量は0.01%以下、REM含有量は0.01%以下とすることが好ましい。より好ましくは、Ca含有量は0.005%以下、Mg含有量は0.005%以下、REM含有量は0.005%以下である。上記作用による効果をより確実に得るには、いずれかの元素の含有量を0.001%以上とすることが好ましい。
(12) Ca, Mg, and REM
Ca, Mg, and REM are effective elements for controlling the morphology of inclusions, and effectively act to reduce iron loss through the action of promoting the growth of crystal grains. Therefore, Ca, Mg, and REM may be contained instead of part of Fe. However, even if the content of any element exceeds 0.01%, the effect of the above action is saturated and disadvantageous in cost. Therefore, it is preferable that the Ca content is 0.01% or less, the Mg content is 0.01% or less, and the REM content is 0.01% or less. More preferably, the Ca content is 0.005% or less, the Mg content is 0.005% or less, and the REM content is 0.005% or less. In order to more reliably obtain the effect of the above action, the content of any element is preferably set to 0.001% or more.

(13)残部
残部はFeおよび不可避的不純物である。
不可避的不純物のうち粒成長性に悪影響を及ぼすTi、V、Nb、Zr、Seは極力低減することが望ましく、それぞれ0.008%以下とすることが好ましい。
(13) Remainder The remainder is Fe and inevitable impurities.
Of unavoidable impurities, Ti, V, Nb, Zr, and Se, which adversely affect the grain growth, are desirably reduced as much as possible, and preferably 0.008% or less, respectively.

2.母鋼板表面におけるCu、Ni、Sn、およびSbの濃度の関係
次に、本発明の母鋼板表面におけるCu、Ni、Sn、およびSbの濃度の関係について説明する。
2. Next, the relationship between the concentrations of Cu, Ni, Sn, and Sb on the surface of the mother steel plate will be described.

上述の通り、SnおよびSbは母鋼板表面に偏析しやすく、母鋼板表面に偏析して濃化することにより、母鋼板表面に形成される絶縁被膜の被膜密着性を低下させる。しかしながら、上述の通り、CuおよびNiは、SnおよびSbと共に母鋼板表面に偏析して濃化することにより、その被膜密着性低下を打ち消す作用がある。
その作用を発揮させるには、母鋼板表面におけるSnおよびSbの合計濃度に対するCuおよびNiの合計濃度の比率を高めることが好ましいが、具体的には、母鋼板表面におけるCu、Ni、Sn、およびSbの濃度が、下記式(1)を満足することが好ましく、下記式(1−2)を満足することがより好ましい。
([Cu]+[Ni])/([Sn]+[Sb])>1.0 (1)
(ここで、式中の[X]は質量%で表した母鋼板表面における元素Xの濃度を示す。)
([Cu]+[Ni])/([Sn]+[Sb])>1.5 (1−2)
(ここで、式中の[X]は質量%で表した母鋼板表面における元素Xの濃度を示す。)
As described above, Sn and Sb are easily segregated on the surface of the base steel plate, and segregate and concentrate on the surface of the base steel plate, thereby reducing the adhesion of the insulating coating formed on the surface of the base steel plate. However, as described above, Cu and Ni segregate and concentrate on the surface of the mother steel plate together with Sn and Sb, thereby counteracting the decrease in coating adhesion.
In order to exert the effect, it is preferable to increase the ratio of the total concentration of Cu and Ni to the total concentration of Sn and Sb on the surface of the base steel plate. Specifically, Cu, Ni, Sn, and The Sb concentration preferably satisfies the following formula (1), and more preferably satisfies the following formula (1-2).
([Cu] + [Ni]) / ([Sn] + [Sb])> 1.0 (1)
(Here, [X] in the formula represents the concentration of element X on the surface of the base steel plate expressed in mass%.)
([Cu] + [Ni]) / ([Sn] + [Sb])> 1.5 (1-2)
(Here, [X] in the formula represents the concentration of element X on the surface of the base steel plate expressed in mass%.)

ここで、本発明において、質量%で表した母鋼板表面における元素X(X=Cu、Ni、Sn、Sb)の濃度[X]とは、グロー放電発光分光分析(GDS)を行うことによって測定される元素Xの発光強度SxおよびBxを用いて求められる濃度を意味する。具体的には、発光強度SxおよびBxは、GDSによって母鋼板最表面から板厚深さ方向に元素Xの定量分析を行ったときの元素Xの発光強度から求められ、発光強度Sxは母鋼板最表面から1μm深さ位置までの分析における元素Xの最大発光強度を意味し、発光強度Bxは母鋼板最表面から10μmの深さ位置での元素Xの発光強度を意味する。そして、質量%で表した母鋼板表面における元素Xの濃度[X]は、SxおよびBxを用いて下記式(2)により求められる。ただし、発光強度SxをGDSによって求めるときに、GDS分析開始後鋼板最表面から0.1μmの深さ位置までに得られる発光強度情報は定量分析精度が低いので考慮しない。
[X]=Sx/Bx×(母鋼板中の元素Xの含有量) (2)
Here, in the present invention, the concentration [X] of the element X (X = Cu, Ni, Sn, Sb) on the surface of the mother steel plate expressed by mass% is measured by performing glow discharge optical emission spectrometry (GDS). This means the concentration obtained using the emission intensity Sx and Bx of the element X to be obtained. Specifically, the emission intensities Sx and Bx are obtained from the emission intensity of the element X when the elemental X is quantitatively analyzed from the outermost surface of the mother steel sheet by the GDS in the plate thickness depth direction. The maximum emission intensity of the element X in the analysis from the outermost surface to the 1 μm depth position is meant, and the emission intensity Bx means the emission intensity of the element X at the depth position of 10 μm from the outermost surface of the mother steel plate. And the density | concentration [X] of the element X in the mother steel plate surface represented by the mass% is calculated | required by following formula (2) using Sx and Bx. However, when the emission intensity Sx is obtained by GDS, the emission intensity information obtained from the outermost surface of the steel sheet after the start of GDS analysis to the depth position of 0.1 μm is not considered because the quantitative analysis accuracy is low.
[X] = Sx / Bx × (content of element X in mother steel plate) (2)

3.母鋼板の板厚
本発明は、本質的に高周波の低鉄損を達成することを前提としている。そのため母鋼板の板厚は0.30mm以下とする。一方、過度の薄手化は平坦度劣化による極端な占積率低下や鉄心の生産性低下を招く場合があるので、母鋼板の板厚は0.10mm以上とする。
3. The thickness of the base steel plate The present invention is based on the premise that essentially low frequency iron loss is achieved. Therefore, the thickness of the mother steel plate is set to 0.30 mm or less. On the other hand, since excessive thinning may lead to an extreme decrease in space factor due to deterioration in flatness and a decrease in productivity of the iron core, the thickness of the base steel plate is set to 0.10 mm or more.

4.絶縁被膜
本発明の無方向性電磁鋼板は、鉄心における鋼板積層間での絶縁を図るために母鋼板表面に形成される絶縁被膜をさらに有するものでもよい。
母鋼板表面に形成される絶縁被膜は、鉄心における鋼板積層間での絶縁を図るために膜厚を確保する必要があるが、厚過ぎると被膜密着性が低下し剥がれ易くなる。これらの観点から、絶縁被膜の膜厚は0.1μm以上0.5μm以下とする。絶縁被膜の膜厚が0.5μmを超えると被膜密着性が低下するのは、絶縁被膜の膜厚が0.5μmを超える場合には、電磁鋼板をモータ鉄心に打ち抜き加工後に歪取り焼鈍する際、絶縁被膜に含まれる酸素が母鋼板表面と反応して新たな酸化被膜を形成することが原因であると推定される。
4). Insulating coating The non-oriented electrical steel sheet of the present invention may further have an insulating coating formed on the surface of the base steel plate in order to insulate between the steel plate laminations in the iron core.
The insulating film formed on the surface of the mother steel sheet needs to secure a film thickness in order to achieve insulation between the steel sheet laminations in the iron core, but if it is too thick, the film adhesion is lowered and the film is easily peeled off. From these viewpoints, the thickness of the insulating coating is 0.1 μm or more and 0.5 μm or less. When the thickness of the insulating coating exceeds 0.5 μm, the adhesion of the coating decreases. When the thickness of the insulating coating exceeds 0.5 μm, the magnetic steel sheet is punched into the motor core and subjected to strain relief annealing. It is presumed that the oxygen contained in the insulating coating reacts with the surface of the mother steel plate to form a new oxide coating.

5.製造方法
本発明の無方向性電磁鋼板は、後述する無方向性電磁鋼板の製造方法により製造することが好適である。
5). Manufacturing method It is suitable to manufacture the non-oriented electrical steel sheet of the present invention by a manufacturing method of the non-oriented electrical steel sheet described later.

B.無方向性電磁鋼板の製造方法
以下、本発明の無方向性電磁鋼板の製造方法における各工程について説明する。本発明を特定するために必要な工程の条件は、スラブ加熱工程および熱間圧延工程に関するものである。これら以外の工程の条件についての以下の説明は、一般的な条件を参考までに示したものであり、その条件を充足しなかったとしても、本発明の効果を得ることは可能である。
B. Hereinafter, each process in the manufacturing method of the non-oriented electrical steel sheet of the present invention will be described. The process conditions necessary for specifying the present invention relate to the slab heating process and the hot rolling process. The following description of the process conditions other than these shows general conditions for reference, and even if the conditions are not satisfied, the effects of the present invention can be obtained.

1.スラブ加熱工程
スラブ加熱工程においては、上述の化学組成を有するスラブを、加熱炉雰囲気中の酸素濃度を2体積%以上とする加熱炉で1000℃以上1250℃以下の温度に加熱する。
本発明において、ここで規定する温度はスラブの表面温度を意味し、スラブの表面温度とは、接触式の温度計あるいは放射温度計によって測定した温度を意味する。
1. Slab Heating Step In the slab heating step, the slab having the above chemical composition is heated to a temperature of 1000 ° C. or more and 1250 ° C. or less in a heating furnace in which the oxygen concentration in the heating furnace atmosphere is 2% by volume or more.
In this invention, the temperature prescribed | regulated here means the surface temperature of a slab, and the surface temperature of a slab means the temperature measured with the contact-type thermometer or the radiation thermometer.

加熱炉雰囲気は窒素、酸素、水蒸気、一酸化炭素、二酸化炭素を含むものであるが、加熱炉雰囲気中の酸素濃度を2体積%以上とするのは、スラブ表面の酸化スケール生成を促進すると同時にスラブ表面におけるCuおよびNiの濃度を高める効果が得られるために、最終製品の母鋼板表面におけるCuおよびNiの濃度の向上に繋がり、SnおよびSbによる被膜密着性低下を抑制することに有効に作用するからである。また、1000℃以上1250℃以下の温度に加熱するのは、1000℃未満ではスラブ表面のスケール生成が不十分であり鋼板の表面性状が劣化し、冷延工程で破断の原因になる。また1250℃を超えるとスラブ中の硫化物が固溶し熱延中に微細析出して鉄損を劣化させるからである。これらの観点から、好ましくは、加熱温度を1050℃以上1200℃以下とする。   The heating furnace atmosphere contains nitrogen, oxygen, water vapor, carbon monoxide, and carbon dioxide. The oxygen concentration in the heating furnace atmosphere is set to 2% by volume or more, while simultaneously promoting the generation of oxide scale on the slab surface. Since the effect of increasing the concentration of Cu and Ni in the steel is obtained, it leads to an improvement in the concentration of Cu and Ni on the surface of the mother steel plate of the final product, and effectively acts to suppress the decrease in film adhesion due to Sn and Sb. It is. In addition, heating to a temperature of 1000 ° C. or more and 1250 ° C. or less results in insufficient scale generation on the surface of the slab if the temperature is less than 1000 ° C., which deteriorates the surface properties of the steel sheet and causes breakage in the cold rolling process. Further, when the temperature exceeds 1250 ° C., sulfides in the slab are solid-dissolved and finely precipitated during hot rolling to deteriorate iron loss. From these viewpoints, the heating temperature is preferably set to 1050 ° C. or more and 1200 ° C. or less.

2.熱間圧延工程
熱間圧延工程においては、上記加熱後のスラブに熱間圧延を施し、最終圧延パス後に水冷して650℃以下の温度でコイル状に巻き取る。
本発明において、ここで規定する温度は熱間圧延後の鋼板の表面温度を意味し、熱間圧延後の鋼板の表面温度とは、接触式の温度計あるいは放射温度計によって測定した温度を意味する。
2. Hot rolling step In the hot rolling step, the heated slab is hot-rolled, and after the final rolling pass, it is water-cooled and wound into a coil at a temperature of 650 ° C or lower.
In the present invention, the temperature specified here means the surface temperature of the steel sheet after hot rolling, and the surface temperature of the steel sheet after hot rolling means a temperature measured by a contact-type thermometer or a radiation thermometer. To do.

最終圧延パス後に水冷して650℃以下の温度でコイル状に巻き取るのは、コイル状に巻き取る温度が650℃を超えると、母鋼板表面におけるスケール層が厚くなり酸洗でのスケール除去が困難になるからであり、スケール除去のために酸洗を強化すると母鋼板表面におけるCuおよびNiの濃度が低下し、SnおよびSbによる被膜密着性低下を生じ易くなるからである。また、これ以外の熱間圧延工程の条件は、特に限定されるものではない。   Water cooling after the final rolling pass and winding in a coil shape at a temperature of 650 ° C. or less means that if the coil winding temperature exceeds 650 ° C., the scale layer on the surface of the mother steel plate becomes thick and the scale removal by pickling is possible. This is because when pickling is strengthened for scale removal, the concentrations of Cu and Ni on the surface of the mother steel sheet are lowered, and the film adhesion due to Sn and Sb tends to be reduced. Moreover, the conditions of a hot rolling process other than this are not specifically limited.

3.熱延板焼鈍・酸洗工程
熱延板焼鈍・酸洗工程においては、上記熱間圧延工程により得られた熱延鋼板に熱延板焼鈍および酸洗を施す。酸洗および熱延板焼鈍は順不同であり、酸洗後に熱延板焼鈍を施してもよく、熱延板焼鈍後に酸洗を施してもよい。
3. Hot-rolled sheet annealing / pickling process In the hot-rolled sheet annealing / pickling process, hot-rolled sheet annealing and pickling are performed on the hot-rolled steel sheet obtained by the hot rolling process. Pickling and hot-rolled sheet annealing are in no particular order, and hot-rolled sheet annealing may be performed after pickling, or pickling may be performed after hot-rolled sheet annealing.

熱延板焼鈍の条件は、特に限定されるものではないが、熱延板焼鈍を施す際には、上記熱延鋼板を700℃以上1100℃以下の温度域に1分以上24時間以下保持することが好ましい。上記熱延板焼鈍温度が、上記範囲を下回ると熱延鋼板に蓄積された歪みが開放されず後工程の冷間圧延で破断する可能性が高まるからであり、上記熱延板焼鈍時間が、上記範囲を下回ると同様の理由により冷間圧延で破断する可能性が高まるからである。また、上記熱延板焼鈍温度が上記範囲を超えると設備への付加が大きくなり、上記熱延板焼鈍時間が上記範囲を超えると生産性の劣化を招くからである。また、焼鈍雰囲気は母鋼板表面におけるスケール成長を抑制する観点から水素を含むことが好ましく、水素濃度を10体積%以上とすることがより好ましい。さらに、焼鈍雰囲気はコスト面から主要ガスとして窒素を含むことが好ましい。熱延板焼鈍の方式は連続焼鈍式でもバッチ焼鈍式でも問題なく、熱延板焼鈍条件は、必要とされる磁気特性や生産効率に応じて焼鈍後の母鋼板における結晶組織を制御するために調整することが好ましい。例えば、磁束密度を向上させるためには、焼鈍後の母鋼板における結晶粒径が40μm以上となるように焼鈍温度および焼鈍時間を調節することが好ましい。   The conditions for hot-rolled sheet annealing are not particularly limited. When hot-rolled sheet annealing is performed, the hot-rolled steel sheet is held in a temperature range of 700 ° C. to 1100 ° C. for 1 minute to 24 hours. It is preferable. If the hot-rolled sheet annealing temperature is below the above range, the strain accumulated in the hot-rolled steel sheet is not released, and the possibility of breaking in the subsequent cold rolling increases, and the hot-rolled sheet annealing time is This is because if the ratio is below the above range, the possibility of breakage by cold rolling increases for the same reason. Moreover, when the said hot-rolled sheet annealing temperature exceeds the said range, the addition to an installation will become large, and when the said hot-rolled sheet annealing time exceeds the said range, it will cause productivity deterioration. Moreover, it is preferable that an annealing atmosphere contains hydrogen from a viewpoint of suppressing the scale growth in the mother steel plate surface, and it is more preferable that hydrogen concentration shall be 10 volume% or more. Further, the annealing atmosphere preferably contains nitrogen as a main gas from the viewpoint of cost. The hot-rolled sheet annealing method can be either a continuous annealing type or a batch annealing type, and the hot-rolled sheet annealing conditions are for controlling the crystal structure in the base steel sheet after annealing according to the required magnetic properties and production efficiency. It is preferable to adjust. For example, in order to improve the magnetic flux density, it is preferable to adjust the annealing temperature and the annealing time so that the crystal grain size in the base steel plate after annealing is 40 μm or more.

一方、酸洗の条件は、特に限定されるものではないが、例えば、酸洗液の主成分を塩酸、温度を80℃以上とする。   On the other hand, the conditions for pickling are not particularly limited. For example, the main component of the pickling solution is hydrochloric acid, and the temperature is 80 ° C. or higher.

4.冷間圧延工程
冷間圧延工程においては、上記熱延板焼鈍・酸洗工程により得られた熱延焼鈍板に冷間圧延を施す。
4). Cold rolling step In the cold rolling step, the hot rolled annealed plate obtained by the hot rolled plate annealing / pickling step is subjected to cold rolling.

冷延圧下率等の冷間圧延条件は、特に限定されるものではなく、通常の条件でよい。例えば、冷延圧下率は70%以上とする。   Cold rolling conditions such as cold rolling reduction are not particularly limited, and may be normal conditions. For example, the cold rolling reduction is 70% or more.

5.仕上げ焼鈍工程
仕上げ焼鈍工程においては、上記冷間圧延工程により得られた冷延鋼板に仕上げ焼鈍を施す。
5). Finish annealing step In the finish annealing step, the cold rolled steel sheet obtained by the cold rolling step is subjected to finish annealing.

仕上げ焼鈍条件は、特に限定されるものではなく、通常の条件でよい。例えば、目標とする鉄損に到達するように適切な結晶粒径制御の観点から温度、均熱条件を決定すればよい。焼鈍時の炉内張力は、鋼板に歪が入らないように5MPa未満とすることが好ましい。焼鈍雰囲気は、窒素−水素混合ガスを主成分とし酸化を極力抑制することが好ましい。   The finish annealing conditions are not particularly limited, and may be normal conditions. For example, the temperature and soaking conditions may be determined from the viewpoint of appropriate crystal grain size control so as to reach the target iron loss. The in-furnace tension during annealing is preferably less than 5 MPa so that the steel sheet is not distorted. The annealing atmosphere preferably contains a nitrogen-hydrogen mixed gas as a main component and suppresses oxidation as much as possible.

6.その他の工程
本発明の無方向性電磁鋼板の製造方法は、上記仕上げ焼鈍工程後に、上記仕上げ焼鈍工程により得られた鋼板表面にコーティング液を塗布し、焼き付けることによって、絶縁被膜を形成する絶縁被膜形成工程を有していてもよい。絶縁被膜形成条件およびコーティング液は、通常通りでよい。
6). Other Steps The method for producing a non-oriented electrical steel sheet according to the present invention comprises an insulating film that forms an insulating film by applying and baking a coating liquid on the steel sheet surface obtained by the finish annealing process after the finish annealing process. You may have a formation process. The insulating film forming conditions and the coating solution may be as usual.

本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

以下、実施例および比較例を例示して、本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples and comparative examples.

(実施例1)
まず、下記表1に示す試料No.A01〜C11の化学組成を有する鋼を真空溶解し、25kgインゴットに鋳造して1150℃に加熱後、40mm厚の鋼片に鍛造した。次に、鋼片を、加熱炉雰囲気中の酸素濃度を2体積%以上とする加熱炉で表面温度にして1150℃に加熱した。次に、熱間圧延によって2.0mmの板厚に仕上げた。熱間圧延は表面温度にして850℃の熱間圧延終了温度で終了した。次に、熱間圧延後の鋼板を水冷して表面温度にして650℃に1時間保持した後、空冷した。次に、空冷後の鋼板を、窒素雰囲気中において1000℃に30秒間保持して均熱する熱延板焼純を施してから、大気中で放冷した。次に、熱延板焼純後の鋼板を酸洗後に、冷間圧延によって0.20mmの板厚に仕上げた。次に、冷間圧延後の鋼板を脱脂後、窒素−水素混合雰囲気中において1000℃に10秒間保持して均熱する仕上げ焼純を施した。次に、仕上げ焼純後の鋼板表面に有機無機複合系のコーティング液を塗布し、焼き付けることによって、0.3μm厚の絶縁被膜を形成した。
Example 1
First, sample No. shown in Table 1 below. Steel having a chemical composition of A01 to C11 was vacuum melted, cast into a 25 kg ingot, heated to 1150 ° C., and forged into a 40 mm thick steel piece. Next, the steel slab was heated to 1150 ° C. at a surface temperature in a heating furnace in which the oxygen concentration in the heating furnace atmosphere was 2% by volume or more. Next, it was finished to a plate thickness of 2.0 mm by hot rolling. The hot rolling was finished at the hot rolling end temperature of 850 ° C. as the surface temperature. Next, the steel sheet after hot rolling was cooled with water to a surface temperature, held at 650 ° C. for 1 hour, and then air-cooled. Next, the air-cooled steel sheet was subjected to hot-rolled sheet tempering that was held at 1000 ° C. for 30 seconds in a nitrogen atmosphere and soaked, and then allowed to cool in the air. Next, the hot-rolled sheet pure steel sheet was pickled and finished to a thickness of 0.20 mm by cold rolling. Next, after the cold-rolled steel sheet was degreased, it was subjected to finish tempering that was soaked at 1000 ° C. for 10 seconds in a nitrogen-hydrogen mixed atmosphere. Next, an organic-inorganic composite coating liquid was applied to the surface of the steel plate after finish tempering and baked to form an insulating film having a thickness of 0.3 μm.

このように得られた無方向性電磁鋼板について、母鋼板表面におけるSnおよびSbの合計濃度に対するCuおよびNiの合計濃度の比率(([Cu]+[Ni])/([Sn]+[Sb]))を、母鋼板表面における元素X(X=Cu、Ni、Sn、Sb)の濃度[X][質量%]をグロー放電発光分光分析(GDS)によって求め、それらの濃度から計算した。結果を下記表1に示す。   About the non-oriented electrical steel sheet thus obtained, the ratio of the total concentration of Cu and Ni to the total concentration of Sn and Sb on the surface of the base steel plate (([Cu] + [Ni]) / ([Sn] + [Sb ])) Was calculated from the concentration [X] [mass%] of the element X (X = Cu, Ni, Sn, Sb) on the surface of the mother steel plate by glow discharge optical emission spectrometry (GDS). The results are shown in Table 1 below.

また、このように得られた無方向性電磁鋼板における母鋼板表面に形成された絶縁被膜に対して、1回目の剥離試験を行った。1回目の剥離試験では、直径10mmのステンレス棒に巻き付けように180度曲げ、さらに曲げ戻した鋼板表面(曲げ時に内側の面)にセロテープ(登録商標)を貼り剥離した後に、絶縁被膜の剥離の有無を目視で評価し、絶縁被膜が剥離した面積の割合を剥離率[%]として測定した。さらに、1回目の剥離試験の結果、絶縁被膜の剥離が無かった無方向性電磁鋼板に対しては、窒素雰囲気中において600℃に2時間保持する熱処理を行った後に2回目の剥離試験を行った。2回目の剥離試験でも、直径10mmのステンレス棒に巻き付けように180度曲げ、さらに曲げ戻した鋼板表面(曲げ時に内側の面)にセロテープを貼り剥離した後に、絶縁被膜の剥離の有無および剥離率[%]を目視で評価した。これにより、母鋼板表面に形成された絶縁被膜の被膜密着性を評価した。結果を下記表1に示す。母鋼板表面に形成された絶縁被膜の被膜密着性の評価基準は、以下の通りである。
1:1回目の剥離試験では剥離無しで2回目の剥離試験でも剥離無し
0:1回目の剥離試験では剥離無しで2回目の剥離試験では剥離有り
−1:1回目の剥離試験での剥離率10%以下
−2:1回目の剥離試験での剥離率10%〜20%
−3:1回目の剥離試験での剥離率20%〜30%
−4:1回目の剥離試験での剥離率30%〜40%
−5:1回目の剥離試験での剥離率40%以上
Moreover, the 1st peeling test was done with respect to the insulating film formed in the mother steel plate surface in the non-oriented electrical steel plate obtained in this way. In the first peel test, the tape was bent 180 degrees so as to be wound around a stainless steel rod having a diameter of 10 mm, and after the cellotape (registered trademark) was peeled and peeled off on the surface of the bent steel plate (the inner surface when bent), the insulation coating was peeled off. The presence or absence was visually evaluated, and the ratio of the area where the insulating coating was peeled was measured as the peel rate [%]. Further, as a result of the first peeling test, the non-oriented electrical steel sheet having no peeling of the insulating film was subjected to a heat treatment held at 600 ° C. for 2 hours in a nitrogen atmosphere and then subjected to the second peeling test. It was. Also in the second peel test, the insulation film was peeled off and peeled after the cell tape was bent 180 degrees so as to be wound around a stainless steel rod having a diameter of 10 mm, and the cell surface was peeled back (the inner surface when bent). [%] Was evaluated visually. Thereby, the film adhesion of the insulating film formed on the mother steel plate surface was evaluated. The results are shown in Table 1 below. The evaluation criteria for the coating adhesion of the insulating coating formed on the surface of the mother steel plate are as follows.
1: No peel in the first peel test, no peel in the second peel test 0: No peel in the first peel test, no peel in the second peel test -1: Peel rate in the first peel test 10% or less -2: 10% to 20% peel rate in the first peel test
-3: Peeling rate 20% to 30% in the first peel test
-4: peeling rate 30% to 40% in the first peeling test
-5: Peel rate of 40% or more in the first peel test

また、このように得られた無方向性電磁鋼板からJIS5号引張試験片を採取し、引張試験を行って降伏応力(YS)[MPa]を評価した。さらに、このように得られた無方向性電磁鋼板から55mm角の単板試験片を打ち抜き、単板磁気測定器を用いて、鉄損W10/400[W/kg](400Hzにて最大磁束密度1.0Tに交番励磁した場合の圧延方向の鉄損と圧延直角方向の鉄損の平均値)を測定した。結果を下記表1に示す。 Moreover, a JIS No. 5 tensile test piece was collected from the non-oriented electrical steel sheet thus obtained, and a tensile test was performed to evaluate the yield stress (YS) [MPa]. Further, a 55 mm square single plate test piece was punched from the non-oriented electrical steel sheet thus obtained, and the iron loss W 10/400 [W / kg] (maximum magnetic flux at 400 Hz) was measured using a single plate magnetometer. The average value of the iron loss in the rolling direction and the iron loss in the direction perpendicular to the rolling in the case of alternating excitation at a density of 1.0 T was measured. The results are shown in Table 1 below.

上記表1に示されるように、試料No.A01〜A06では、CuおよびNiが実質的に含有されていないために、SnおよびSb含有量が本発明で特定された範囲内となることにより被膜密着性が低下した。これに対して、試料No.A07〜A11では、CuおよびNi含有量が本発明で特定された範囲内となることにより、([Cu]+[Ni])/([Sn]+[Sb])が1.0より大きくなり、被膜密着性の低下が抑制された。また、試料No.A12〜A16では、SnおよびSbの合計含有量が一定量である場合に、CuおよびNiの合計含有量が大きくなっていくと、([Cu]+[Ni])/([Sn]+[Sb])が1.0となるあたりで被膜密着性が「−2」から「0」に向上したものの、CuおよびNiの合計含有量に比例して被膜密着性が向上することはなかった。   As shown in Table 1 above, Sample No. In A01 to A06, since Cu and Ni were not substantially contained, the film adhesion was lowered when the Sn and Sb contents were within the range specified in the present invention. In contrast, sample no. In A07 to A11, when the Cu and Ni contents are within the range specified in the present invention, ([Cu] + [Ni]) / ([Sn] + [Sb]) becomes larger than 1.0. The decrease in film adhesion was suppressed. Sample No. In A12 to A16, when the total content of Sn and Sb is constant, when the total content of Cu and Ni increases, ([Cu] + [Ni]) / ([Sn] + [ Although the film adhesion was improved from “−2” to “0” when Sb]) was 1.0, the film adhesion was not improved in proportion to the total content of Cu and Ni.

また、試料No.B01〜B06では、Alレスであるが、試料No.A01〜A06と同様に、CuおよびNiが実質的に含有されていないために、SnおよびSb含有量が本発明で特定された範囲内となることにより被膜密着性が低下した。これに対して、試料No.B07〜B10では、試料No.A07〜A11と同様に、CuおよびNi含有量が本発明で特定された範囲内となることにより、([Cu]+[Ni])/([Sn]+[Sb])が1.0より大きくなり、被膜密着性の低下が抑制された。また、試料No.B07〜B10では、Alレスであることにより、Alレスではない試料No.A07〜A11と比較して、被膜密着性の低下が抑制される効果がより顕著になった。さらに、試料No.B15とB16の比較では、鋼板のAl含有量のみが異なる事例であり、AlレスであるB15の方が被膜密着性が優位である事が分かった。また、試料No.B11〜B15では、Alレスであるが、試料No.A12〜A16と同様に、SnおよびSbの合計含有量が一定量である場合に、CuおよびNiの合計含有量が大きくなっていくと、([Cu]+[Ni])/([Sn]+[Sb])が1.0となるあたりで被膜密着性が「−1」から「1」に向上したものの、CuおよびNiの合計含有量に比例して被膜密着性が向上することはなかった。   Sample No. In B01 to B06, although Al-less, sample no. Similar to A01 to A06, since Cu and Ni are not substantially contained, the film adhesion was lowered when the Sn and Sb contents were within the range specified in the present invention. In contrast, sample no. In B07 to B10, sample No. Similarly to A07 to A11, when the Cu and Ni contents are within the range specified in the present invention, ([Cu] + [Ni]) / ([Sn] + [Sb]) is from 1.0. It became large and the fall of film adhesiveness was suppressed. Sample No. In B07-B10, sample No. which is not Al-less is Al-less. Compared with A07 to A11, the effect of suppressing the decrease in the film adhesion became more remarkable. Furthermore, sample no. Comparison between B15 and B16 is an example in which only the Al content of the steel sheet is different, and it was found that B15, which is Al-less, has superior film adhesion. Sample No. In B11 to B15, although Al-less, sample no. Similarly to A12 to A16, when the total content of Sn and Sb is constant, when the total content of Cu and Ni increases, ([Cu] + [Ni]) / ([Sn] Although the film adhesion was improved from “−1” to “1” when + [Sb]) was 1.0, the film adhesion was not improved in proportion to the total content of Cu and Ni. It was.

さらに、試料No.C01〜C11では、試料No.A01〜A16と比較して、P含有量が大きくなっているが、SnおよびSb含有量が本発明で特定された範囲内となることにより被膜密着性が低下する点は変らなかった。また、試料No.C01〜C11では、P含有量が大きくなることにより、試料No.A01〜A16と比較して、CuおよびNi含有量が本発明で特定された範囲内となることにより被膜密着性の低下が抑制される効果がより顕著になった。   Furthermore, sample no. In C01-C11, sample No. Compared to A01 to A16, the P content was increased, but the point that the film adhesion was lowered by the Sn and Sb content being within the range specified in the present invention was not changed. Sample No. In C01 to C11, the sample No. Compared with A01 to A16, the effect of suppressing the decrease in film adhesion was more remarkable when the Cu and Ni contents were within the range specified in the present invention.

(実施例2)
まず、下記表2に示す化学組成を有する試料No.E01〜F05の鋼を真空溶解し、25kgインゴットに鋳造して1150℃に加熱後、40mm厚の鋼片に鍛造した。
(Example 2)
First, sample No. having the chemical composition shown in Table 2 below. E01-F05 steel was melted in vacuum, cast into a 25 kg ingot, heated to 1150 ° C., and forged into a 40 mm thick steel piece.

次に、下記表2に示す種々のスラブ加熱条件(加熱炉における表面温度での加熱温度および加熱炉雰囲気中の酸素濃度)にて、鋼片を加熱した。次に、熱間圧延によって2.0mmの板厚に仕上げた。熱間圧延は表面温度にして850℃の熱間圧延終了温度で終了した。次に、熱間圧延後の鋼板を水冷して表面温度にして650℃に1時間保持した後、空冷した。   Next, the steel slab was heated under various slab heating conditions shown in Table 2 below (heating temperature at the surface temperature in the heating furnace and oxygen concentration in the heating furnace atmosphere). Next, it was finished to a plate thickness of 2.0 mm by hot rolling. The hot rolling was finished at the hot rolling end temperature of 850 ° C. as the surface temperature. Next, the steel sheet after hot rolling was cooled with water to a surface temperature, held at 650 ° C. for 1 hour, and then air-cooled.

次に、空冷後の鋼板を、窒素雰囲気中において1000℃に30秒間保持して均熱する熱延板焼純を施してから、大気中で放冷した。次に、熱延板焼純後の鋼板を酸洗後に、冷間圧延によって0.20mmの板厚に仕上げた。次に、冷間圧延後の鋼板を脱脂後、窒素−水素混合雰囲気中において1000℃に10秒間保持して均熱する仕上げ焼純を施した。次に、仕上げ焼純後の鋼板表面に有機無機複合系のコーティング液を塗布し、焼き付けることによって、0.3μm厚の絶縁被膜を形成した。   Next, the air-cooled steel sheet was subjected to hot-rolled sheet tempering that was held at 1000 ° C. for 30 seconds in a nitrogen atmosphere and soaked, and then allowed to cool in the air. Next, the hot-rolled sheet pure steel sheet was pickled and finished to a thickness of 0.20 mm by cold rolling. Next, after the cold-rolled steel sheet was degreased, it was subjected to finish tempering that was held at 1000 ° C. for 10 seconds in a nitrogen-hydrogen mixed atmosphere and soaked. Next, an organic-inorganic composite coating liquid was applied to the surface of the steel plate after finish tempering and baked to form an insulating film having a thickness of 0.3 μm.

このように得られた無方向性電磁鋼板について、母鋼板表面におけるSnおよびSbの合計濃度に対するCuおよびNiの合計濃度の比率(([Cu]+[Ni])/([Sn]+[Sb]))を、母鋼板表面における元素X(X=Cu、Ni、Sn、Sb)の濃度[X][質量%]をグロー放電発光分光分析(GDS)によって求め、それらの濃度から計算した。結果を下記表2に示す。   About the non-oriented electrical steel sheet thus obtained, the ratio of the total concentration of Cu and Ni to the total concentration of Sn and Sb on the surface of the base steel plate (([Cu] + [Ni]) / ([Sn] + [Sb ])) Was calculated from the concentration [X] [mass%] of the element X (X = Cu, Ni, Sn, Sb) on the surface of the mother steel plate by glow discharge optical emission spectrometry (GDS). The results are shown in Table 2 below.

また、このように得られた無方向性電磁鋼板における母鋼板表面に形成された絶縁被膜に対して、1回目の剥離試験を行った。1回目の剥離試験では、直径10mmのステンレス棒に巻き付けように180度曲げ、さらに曲げ戻した鋼板表面(曲げ時に内側の面)にセロテープを貼り剥離した後に、絶縁被膜の剥離の有無を目視で評価し、絶縁被膜が剥離した面積の割合を剥離率[%]として測定した。さらに、1回目の剥離試験の結果、絶縁被膜の剥離が無かった無方向性電磁鋼板に対しては、窒素雰囲気中において600℃に2時間保持する熱処理を行った後に2回目の剥離試験を行った。2回目の剥離試験でも、直径10mmのステンレス棒に巻き付けように180度曲げ、さらに曲げ戻した鋼板表面(曲げ時に内側の面)にセロテープを貼り剥離した後に、絶縁被膜の剥離の有無および剥離率[%]を目視で評価した。これにより、母鋼板表面に形成された絶縁被膜の被膜密着性を評価した。結果を下記表2に示す。母鋼板表面に形成された絶縁被膜の被膜密着性の評価基準は、上述の通りである。   Moreover, the 1st peeling test was done with respect to the insulating film formed in the mother steel plate surface in the non-oriented electrical steel plate obtained in this way. In the first peel test, after bending 180 degrees so as to be wound around a stainless steel rod with a diameter of 10 mm, and then peeling the cellulosic tape on the surface of the bent steel sheet (the inner surface when bent), the presence or absence of peeling of the insulating coating was visually observed. The ratio of the area from which the insulating coating was peeled was measured as the peel rate [%]. Further, as a result of the first peeling test, the non-oriented electrical steel sheet having no peeling of the insulating film was subjected to a heat treatment held at 600 ° C. for 2 hours in a nitrogen atmosphere and then subjected to the second peeling test. It was. Also in the second peel test, the insulation film was peeled off and peeled after the cell tape was bent 180 degrees so as to be wound around a stainless steel rod having a diameter of 10 mm, and the cell surface was peeled back (the inner surface when bent). [%] Was evaluated visually. Thereby, the film adhesion of the insulating film formed on the mother steel plate surface was evaluated. The results are shown in Table 2 below. The evaluation criteria for the coating adhesion of the insulating coating formed on the surface of the mother steel plate are as described above.

また、このように得られた無方向性電磁鋼板からJIS5号引張試験片を採取し、引張試験を行って降伏応力(YS)[MPa]を評価した。さらに、このように得られた無方向性電磁鋼板から55mm角の単板試験片を打ち抜き、単板磁気測定器を用いて、鉄損W10/400[W/kg](400Hzにて最大磁束密度1.0Tに交番励磁した場合の圧延方向の鉄損と圧延直角方向の鉄損の平均値)を測定した。結果を下記表2に示す。 Moreover, a JIS No. 5 tensile test piece was collected from the non-oriented electrical steel sheet thus obtained, and a tensile test was performed to evaluate the yield stress (YS) [MPa]. Further, a 55 mm square single plate test piece was punched from the non-oriented electrical steel sheet thus obtained, and the iron loss W 10/400 [W / kg] (maximum magnetic flux at 400 Hz) was measured using a single plate magnetometer. The average value of the iron loss in the rolling direction and the iron loss in the direction perpendicular to the rolling in the case of alternating excitation at a density of 1.0 T was measured. The results are shown in Table 2 below.

上記表2に示されるように、試料No.E01、E02、およびF01では、スラブ加熱条件における酸素濃度が2体積%未満であることによって、([Cu]+[Ni])/([Sn]+[Sb])が低下して、被膜密着性が低下した。これは、酸素濃度が低いために、スラブ表面におけるCuおよびNiの濃度を高める効果が得られなかったからであると考えられる。   As shown in Table 2 above, Sample No. In E01, E02, and F01, when the oxygen concentration in the slab heating condition is less than 2% by volume, ([Cu] + [Ni]) / ([Sn] + [Sb]) is lowered, and the film adhesion Decreased. This is presumably because the effect of increasing the concentration of Cu and Ni on the slab surface was not obtained due to the low oxygen concentration.

上記表2に示されるように、試料No.E05およびF05では、スラブ加熱条件における加熱温度が1250℃を超えることによって、鉄損W10/400が高くなった。これは、加熱温度が高いために、スラブ中の硫化物が固溶し熱延中に微細析出して鉄損を劣化させたからであると考えられる。 As shown in Table 2 above, Sample No. In E05 and F05, the iron loss W 10/400 increased when the heating temperature in the slab heating condition exceeded 1250 ° C. This is presumably because the heating temperature was high, so that the sulfide in the slab was dissolved and finely precipitated during hot rolling to deteriorate the iron loss.

Claims (3)

質量%で、C:0.004%以下、Si:2.0%以上4.0%以下、Al:2.0%以下、Mn:0.05%以上4.0%以下、S:0.005%以下、N:0.004%以下、P:0.20%以下、Sn:0.005%以上0.2%以下、Sb:0.005%以上0.2%以下、Cu:0.02%以上2.0%以下、Ni:0.02%以上1.0%以下を含有し、残部がFeおよび不可避的不純物よりなる化学組成を有する母鋼板を有し、前記母鋼板表面におけるCu、Ni、Sn、およびSbの濃度が、下記式(1)を満足することを特徴とする無方向性電磁鋼板。
([Cu]+[Ni])/([Sn]+[Sb])>1.0 (1)
(ここで、式中の[X]は質量%で表した母鋼板表面における元素Xの濃度を示す。)
ことを特徴とする無方向性電磁鋼板。
By mass%, C: 0.004% or less, Si: 2.0% or more and 4.0% or less, Al: 2.0% or less, Mn: 0.05% or more and 4.0% or less, S: 0.00. 005% or less, N: 0.004% or less, P: 0.20% or less, Sn: 0.005% or more and 0.2% or less, Sb: 0.005% or more and 0.2% or less, Cu: 0. 2.0% 02% inclusive, Ni: contained 0.02% or more and 1.0% or less, have a base steel having a chemical composition the balance being Fe and unavoidable impurities, Cu in the base steel surface A non-oriented electrical steel sheet, wherein the concentrations of Ni, Sn, and Sb satisfy the following formula (1):
([Cu] + [Ni]) / ([Sn] + [Sb])> 1.0 (1)
(Here, [X] in the formula represents the concentration of element X on the surface of the base steel plate expressed in mass%.)
A non-oriented electrical steel sheet characterized by that.
前記Al含有量が質量%で0.010%以下であることを特徴とする請求項1に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to claim 1, wherein the Al content is 0.010% or less by mass. 請求項1または請求項2に記載の無方向性電磁鋼板を製造する無方向性電磁鋼板の製造方法であって、
前記化学組成を有するスラブを、加熱炉雰囲気中の酸素濃度を2体積%以上とする加熱炉で1000℃以上1250℃以下の温度に加熱するスラブ加熱工程と、
前記加熱後のスラブに熱間圧延を施し、最終圧延パス後に水冷して650℃以下の温度でコイル状に巻き取る熱間圧延工程と、
前記熱間圧延工程により得られた熱延鋼板に熱延板焼鈍および酸洗を施す熱延板焼鈍・酸洗工程と、
前記熱延板焼鈍・酸洗工程により得られた熱延焼鈍板に冷間圧延を施す冷間圧延工程と、
前記冷間圧延工程により得られた冷延鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程と、
を有することを特徴とする無方向性電磁鋼板の製造方法。
A method for producing a non-oriented electrical steel sheet for producing the non-oriented electrical steel sheet according to claim 1 or 2,
The slabs having the chemical composition, the slab heating step of heating to a temperature of 1000 ° C. or higher 1250 ° C. or less in a heating furnace the oxygen concentration to 2% by volume or more in the heating furnace atmosphere,
Hot-rolling the slab after heating, water-cooling after the final rolling pass, and winding in a coil shape at a temperature of 650 ° C. or less; and
Hot-rolled sheet annealing / pickling process for subjecting the hot-rolled steel sheet obtained by the hot rolling process to hot-rolled sheet annealing and pickling,
A cold rolling process for cold rolling the hot rolled annealed sheet obtained by the hot rolled sheet annealing / pickling process;
A finish annealing step of subjecting the cold-rolled steel sheet obtained by the cold rolling step to finish annealing;
A method for producing a non-oriented electrical steel sheet, comprising:
JP2015210939A 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method thereof Active JP6593097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015210939A JP6593097B2 (en) 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015210939A JP6593097B2 (en) 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017082276A JP2017082276A (en) 2017-05-18
JP6593097B2 true JP6593097B2 (en) 2019-10-23

Family

ID=58714005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015210939A Active JP6593097B2 (en) 2015-10-27 2015-10-27 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6593097B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299772A1 (en) * 2022-06-29 2024-01-03 ThyssenKrupp Steel Europe AG High efficiency compressor motors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207158A (en) * 2019-07-31 2022-03-18 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
JP7389323B2 (en) * 2019-08-21 2023-11-30 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
KR20220125316A (en) * 2020-02-20 2022-09-14 닛폰세이테츠 가부시키가이샤 Hot-rolled steel sheet for non-oriented electrical steel sheet, non-oriented electrical steel sheet, and manufacturing method thereof
BR112022025434A2 (en) 2020-06-24 2023-01-24 Nippon Steel Corp METHOD FOR PRODUCING ELECTRIC STEEL SHEET

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63418A (en) * 1986-06-20 1988-01-05 Kawasaki Steel Corp Production of non-oriented electrical steel sheet having decreased surface flaws
JP3474599B2 (en) * 1993-04-07 2003-12-08 新日本製鐵株式会社 Manufacturing method of ultra-high silicon electrical steel sheet
JP4265400B2 (en) * 2003-04-25 2009-05-20 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP2005126748A (en) * 2003-10-22 2005-05-19 Jfe Steel Kk High fatigue strength non-oriented magnetic steel sheet superior in magnetic properties, and manufacturing method therefor
JP5884153B2 (en) * 2010-12-28 2016-03-15 Jfeスチール株式会社 High strength electrical steel sheet and manufacturing method thereof
DE102011053722C5 (en) * 2011-09-16 2020-12-24 Voestalpine Stahl Gmbh Process for the production of higher-strength electrical steel, electrical steel and its use
JP5724824B2 (en) * 2011-10-27 2015-05-27 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299772A1 (en) * 2022-06-29 2024-01-03 ThyssenKrupp Steel Europe AG High efficiency compressor motors

Also Published As

Publication number Publication date
JP2017082276A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US11279985B2 (en) Non-oriented electrical steel sheet
US11114227B2 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP7066782B2 (en) Manufacturing method of tin-containing non-directional silicon steel sheet, obtained steel sheet and use of the steel sheet
US11295881B2 (en) Non-oriented electrical steel sheet, manufacturing method of non-oriented electrical steel sheet, and manufacturing method of motor core
JP6593097B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6913683B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6025864B2 (en) High silicon steel plate excellent in productivity and magnetic properties and method for producing the same
US11021771B2 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
US11962184B2 (en) Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
US11053574B2 (en) Non-oriented electrical steel sheet
JP2015529285A (en) High magnetic flux density directional silicon steel and manufacturing method thereof
TWI398530B (en) Non - directional electromagnetic steel plate
JP2019507243A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7143900B2 (en) Non-oriented electrical steel sheet
JP2017088968A (en) Nonoriented electromagnetic steel sheet for rotor and manufacturing method therefor
CN104328342A (en) Non-oriented silicon steel used for frequency conversion high efficiency compressor and production method thereof
JP6623795B2 (en) Electrical steel sheet and method for manufacturing electrical steel sheet
JP7389323B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7159592B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
US11970750B2 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP4267439B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method
JP7231116B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH10251754A (en) Manufacture of nonoriented silicon steel sheet
JP2004162081A (en) Method for producing non-oriented magnetic steel sheet for spiral core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R151 Written notification of patent or utility model registration

Ref document number: 6593097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151