JP2017128759A - Non-oriented magnetic steel sheet and production method therefor - Google Patents

Non-oriented magnetic steel sheet and production method therefor Download PDF

Info

Publication number
JP2017128759A
JP2017128759A JP2016008299A JP2016008299A JP2017128759A JP 2017128759 A JP2017128759 A JP 2017128759A JP 2016008299 A JP2016008299 A JP 2016008299A JP 2016008299 A JP2016008299 A JP 2016008299A JP 2017128759 A JP2017128759 A JP 2017128759A
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
rolled steel
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016008299A
Other languages
Japanese (ja)
Other versions
JP6679948B2 (en
Inventor
藤倉 昌浩
Masahiro Fujikura
昌浩 藤倉
毅郎 荒牧
Takero Aramaki
毅郎 荒牧
伸一 松井
Shinichi Matsui
伸一 松井
村上 健一
Kenichi Murakami
健一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016008299A priority Critical patent/JP6679948B2/en
Publication of JP2017128759A publication Critical patent/JP2017128759A/en
Application granted granted Critical
Publication of JP6679948B2 publication Critical patent/JP6679948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-oriented magnetic steel sheet capable of providing low iron loss even when it is relatively thin and a production method therefor.SOLUTION: The non-oriented magnetic steel sheet has a single phase steel structure consisting of ferritic particles with an average crystal particle diameter of 120 μm or more. The number density of a precipitate with an average particle diameter of 5 nm or more and less than 100 nm is 1×10/mmor less. Hysteresis loss Wrepresented by "W=5×{W×(60/50)-W×(50/60)}" is 0.70 W/kg or less, eddy current loss W/trepresented by "W/t=250×(W/60-W/50)/t" is 1.5 W/kg mm. Wis iron loss [W/kg] at magnetic flux density of 1.0 T and frequency of 50 Hz, Wis iron loss [W/kg] at magnetic flux density of 1.0 T and frequency of 60 Hz and t is sheet thickness of the non-oriented magnetic steel sheet [mm].SELECTED DRAWING: Figure 1

Description

本発明は、鉄損の小さい無方向性電磁鋼板に関する。本発明で得られる無方向性電磁鋼板は、大型回転機や発電機の鉄心に好適である。   The present invention relates to a non-oriented electrical steel sheet having a small iron loss. The non-oriented electrical steel sheet obtained by the present invention is suitable for a large rotating machine or an iron core of a generator.

各種電気機器の効率向上の要求に従い、鉄心に用いられる無方向性電磁鋼板に対しては、ますます低い鉄損が求められている。大型回転機や発電機用途では、特に、比較的厚い板厚と低い鉄損への要求が強い。   In accordance with demands for improving the efficiency of various electrical equipment, non-oriented electrical steel sheets used for iron cores are required to have an even lower iron loss. There is a strong demand for relatively thick plate thickness and low iron loss, especially for large rotating machines and generators.

鉄損低減のために、結晶粒径を大きくしたり、鋼の不純物の量を低減したりしてヒステリシス損失を低減させることはよく行われる。たとえば、特許文献1では、鋼中不純物S、O、Nを低減し、平均結晶粒径を所定の範囲とすることで、ヒステリシス損を改善し、非常に小さい鉄損を実現した。また、介在物を制御し粒成長性を改善することで、大きな粒径を得、ヒステリシス損を低減し、小さな鉄損を得やすくする方法が、特許文献2〜特許文献4に示されている。   In order to reduce iron loss, it is common to reduce the hysteresis loss by increasing the crystal grain size or reducing the amount of impurities in the steel. For example, in Patent Document 1, the impurities S, O, and N in steel are reduced, and the average crystal grain size is set within a predetermined range, thereby improving the hysteresis loss and realizing a very small iron loss. Further, Patent Documents 2 to 4 disclose a method of obtaining a large particle size, reducing hysteresis loss, and easily obtaining small iron loss by controlling inclusions and improving grain growth. .

しかしながら、従来の無方向性電磁鋼板では、比較的厚い板厚と低い鉄損との両立が困難である。また、例えば数10トン単位の実機で安定的に製造することも困難である。   However, in the conventional non-oriented electrical steel sheet, it is difficult to achieve both a relatively thick plate thickness and a low iron loss. In addition, it is difficult to stably manufacture with an actual machine of, for example, several tens of tons.

特開昭59−74258号公報JP 59-74258 特開2001−271147号公報JP 2001-271147 A 特開平8−333658号公報JP-A-8-333658 特開2005−336503号公報JP 2005-336503 A

L. J. Dijkstra and C. Wert "Effect of inclusions on coercive force of iron," Phys. Rev., vol. 79, pp. 979-985, Sep. 1950.L. J. Dijkstra and C. Wert "Effect of inclusions on coercive force of iron," Phys. Rev., vol. 79, pp. 979-985, Sep. 1950. 近角「強磁性体の物理」Near angle "physics of ferromagnetic materials" 大田「磁気工学の基礎」Daejeon "Basics of Magnetic Engineering" R.A.McCurrie,“Ferromagnetic Materials"R.A.McCurrie, “Ferromagnetic Materials” 黒沢文夫、田口 勇、松本龍太郎:日本金属学会誌、43(1979),p.1068Fumio Kurosawa, Isamu Taguchi, Ryutaro Matsumoto: Journal of the Japan Institute of Metals, 43 (1979), p. 1068

本発明は、比較的厚い場合でも低い鉄損を得ることができる無方向性電磁鋼板及びその製造方法を提供することを目的とする。   An object of this invention is to provide the non-oriented electrical steel plate which can obtain a low iron loss even when it is comparatively thick, and its manufacturing method.

本発明は、ヒステリシス損失と渦電流損失を低減した無方向性電磁鋼板であり、それを製造する方法である。ヒステリシス損失の低減のためには、化学組成、フェライトの平均結晶粒径、微細析出物の個数密度を適切に制御する。また、渦電流損失の低減のためには、無方向性電磁鋼板に残留する歪みを低減することが重要である。   The present invention is a non-oriented electrical steel sheet with reduced hysteresis loss and eddy current loss, and a method for producing the same. In order to reduce hysteresis loss, the chemical composition, the average crystal grain size of ferrite, and the number density of fine precipitates are appropriately controlled. Further, in order to reduce eddy current loss, it is important to reduce strain remaining in the non-oriented electrical steel sheet.

本発明の概要は以下の通りである。   The outline of the present invention is as follows.

(1) 質量%で、
C:0.005%以下、
Si:2.0%〜3.5%、
Mn:0.1%〜1.5%、
Al:0.3%〜1.5%、
S:0.004%以下、
N:0.004%以下、
Ti:0.004%以下、
P:0.0%〜0.2%、
Sn:0.00%〜0.15%、
Sb:0.00%〜0.15%、
REM:0.00%〜0.03%、
Ca:0.00%〜0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
平均結晶粒径が120μm以上のフェライト粒からなる単相の鋼組織を有し、
平均粒径が5nm以上100nm未満の析出物の個数密度が1×1010個/mm3以下であり、
式1で表されるヒステリシス損失Wh:0.70W/kg以下、かつ
式2で表される渦電流損失We/t2:1.5W/kg・mm2以下、
で表される磁気特性を有することを特徴とする無方向性電磁鋼板。
h=5×{W10/50×(60/50)−W10/60×(50/60)} ・・・式1
e/t2=250×(W10/60/60−W10/50/50)/t2 ・・・式2
(W10/50は磁束密度が1.0T、周波数が50Hzのときの鉄損[W/kg]であり、W10/60は磁束密度が1.0T、周波数が60Hzのときの鉄損[W/kg]であり、tは前記無方向性電磁鋼板の板厚[mm]である。)
(1) In mass%,
C: 0.005% or less,
Si: 2.0% to 3.5%,
Mn: 0.1% to 1.5%,
Al: 0.3% to 1.5%
S: 0.004% or less,
N: 0.004% or less,
Ti: 0.004% or less,
P: 0.0% to 0.2%,
Sn: 0.00% to 0.15%,
Sb: 0.00% to 0.15%,
REM: 0.00% to 0.03%,
Ca: 0.00% to 0.01%, and the balance: Fe and impurities,
Having a chemical composition represented by
It has a single-phase steel structure consisting of ferrite grains having an average crystal grain size of 120 μm or more,
The number density of precipitates having an average particle size of 5 nm or more and less than 100 nm is 1 × 10 10 pieces / mm 3 or less,
Hysteresis loss W h represented by Formula 1: 0.70 W / kg or less, and Eddy current loss W e / t 2 represented by Formula 2 : 1.5 W / kg · mm 2 or less,
A non-oriented electrical steel sheet characterized by having a magnetic property represented by:
W h = 5 × {W 10/50 × (60/50) −W 10/60 × (50/60)} Equation 1
W e / t 2 = 250 × (W 10/60 / 60−W 10/50 / 50) / t 2 Formula 2
(W 10/50 is the iron loss [W / kg] when the magnetic flux density is 1.0 T and the frequency is 50 Hz, and W 10/60 is the iron loss when the magnetic flux density is 1.0 T and the frequency is 60 Hz [ W / kg], and t is the thickness [mm] of the non-oriented electrical steel sheet.)

(2) 前記化学成分において、
P:0.01%〜0.2%、
Sn:0.01%〜0.15%、
Sb:0.01%〜0.15%、
REM:0.001%〜0.03%、若しくは
Ca:0.0003%〜0.01%、
又はこれらの任意の組み合わせが満たされることを特徴とする(1)に記載の無方向性電磁鋼板。
(2) In the chemical component,
P: 0.01% to 0.2%
Sn: 0.01% to 0.15%,
Sb: 0.01% to 0.15%,
REM: 0.001% to 0.03%, or Ca: 0.0003% to 0.01%,
Or any combination of these is satisfy | filled, The non-oriented electrical steel sheet as described in (1) characterized by the above-mentioned.

(3) 板厚が0.49mm以上で、最大磁束密度が1.0T、励磁周波数が50Hzの鉄損W10/50が1.00W/kg以下であることを特徴とする(1)又は(2)に記載の無方向性電磁鋼板。 (3) The sheet thickness is 0.49 mm or more, the maximum magnetic flux density is 1.0 T, the excitation loss is 50 Hz, and the iron loss W 10/50 is 1.00 W / kg or less (1) or ( The non-oriented electrical steel sheet according to 2).

(4) 鋼の鋳造を行ってスラブを得る工程と、
前記スラブを150℃〜400℃の温度まで冷却する工程と、
前記スラブを加熱炉に挿入して1030℃〜1130℃の温度まで加熱する工程と、
前記スラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に焼鈍を施して熱間圧延焼鈍鋼板を得る工程と、
前記熱間圧延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程と、
を有し、
前記鋼は、質量%で、
C:0.005%以下、
Si:2.0%〜3.5%、
Mn:0.1%〜1.5%、
Al:0.3%〜1.5%、
S:0.004%以下、
N:0.004%以下、
Ti:0.004%以下、
P:0.0%〜0.2%、
Sn:0.00%〜0.15%、
Sb:0.00%〜0.15%、
REM:0.00%〜0.03%、
Ca:0.00%〜0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
前記冷間圧延鋼板は式3を満足することを特徴とする無方向性電磁鋼板の製造方法。
0.005mm ≦ tc−(tw1+tw2)/2 ≦ 0.015mm ・・・式3
(tcは前記冷間圧延鋼板の板幅方向中央の平均板厚[mm]であり、tw1は前記冷間圧延鋼板の板幅方向の一方の端部から15mm位置の平均板厚[mm]であり、tw2は前記冷間圧延鋼板の板幅方向の他方の端部から15mm位置の平均板厚[mm]である。)
(4) A step of obtaining a slab by casting steel;
Cooling the slab to a temperature of 150 ° C. to 400 ° C .;
Inserting the slab into a heating furnace and heating to a temperature of 1030 ° C. to 1130 ° C .;
Subjecting the slab to hot rolling to obtain a hot rolled steel sheet;
Annealing the hot-rolled steel sheet to obtain a hot-rolled annealed steel sheet,
Cold-rolling the hot-rolled annealed steel sheet to obtain a cold-rolled steel sheet;
Applying a final annealing to the cold-rolled steel sheet;
Have
The steel is in mass%
C: 0.005% or less,
Si: 2.0% to 3.5%,
Mn: 0.1% to 1.5%,
Al: 0.3% to 1.5%
S: 0.004% or less,
N: 0.004% or less,
Ti: 0.004% or less,
P: 0.0% to 0.2%,
Sn: 0.00% to 0.15%,
Sb: 0.00% to 0.15%,
REM: 0.00% to 0.03%,
Ca: 0.00% to 0.01%, and the balance: Fe and impurities,
Having a chemical composition represented by
The said cold-rolled steel plate satisfies Formula 3, The manufacturing method of the non-oriented electrical steel plate characterized by the above-mentioned.
0.005 mm ≦ t c − (t w1 + t w2 ) /2≦0.015 mm (formula 3)
(T c is the average sheet thickness [mm] in the center of the cold rolled steel sheet in the sheet width direction, and t w1 is the average sheet thickness [mm at a position 15 mm from one end in the sheet width direction of the cold rolled steel sheet. And t w2 is an average plate thickness [mm] at a position of 15 mm from the other end in the plate width direction of the cold-rolled steel plate.)

(5) 鋼の鋳造を行ってスラブを得る工程と、
前記スラブを150℃〜400℃の温度まで冷却する工程と、
前記スラブを加熱炉に挿入して1030℃〜1250℃の温度まで加熱する工程と、
前記スラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に焼鈍を施して熱間圧延焼鈍鋼板を得る工程と、
前記熱間圧延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程と、
を有し、
前記鋼は、質量%で、
C:0.005%以下、
Si:2.0%〜3.5%、
Mn:0.1%〜1.5%、
Al:0.3%〜1.5%、
S:0.004%以下、
N:0.004%以下、
Ti:0.004%以下、
P:0.0%〜0.2%、
Sn:0.00%〜0.15%、
Sb:0.00%〜0.15%、
REM:0.00%〜0.03%、
Ca:0.00%〜0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
前記化学成分において、
REM:0.001%〜0.03%、若しくは
Ca:0.0003%〜0.01%、
又はこれらの任意の組み合わせが満たされ、
前記冷間圧延鋼板は式3を満足することを特徴とする無方向性電磁鋼板の製造方法。
0.005mm ≦ tc−(tw1+tw2)/2 ≦ 0.015mm ・・・式3
(tcは前記冷間圧延鋼板の板幅方向中央の平均板厚[mm]であり、tw1は前記冷間圧延鋼板の板幅方向の一方の端部から15mm位置の平均板厚[mm]であり、tw2は前記冷間圧延鋼板の板幅方向の他方の端部から15mm位置の平均板厚[mm]である。)
(5) A step of obtaining a slab by casting steel;
Cooling the slab to a temperature of 150 ° C. to 400 ° C .;
Inserting the slab into a heating furnace and heating to a temperature of 1030 ° C. to 1250 ° C .;
Subjecting the slab to hot rolling to obtain a hot rolled steel sheet;
Annealing the hot-rolled steel sheet to obtain a hot-rolled annealed steel sheet,
Cold-rolling the hot-rolled annealed steel sheet to obtain a cold-rolled steel sheet;
Applying a final annealing to the cold-rolled steel sheet;
Have
The steel is in mass%
C: 0.005% or less,
Si: 2.0% to 3.5%,
Mn: 0.1% to 1.5%,
Al: 0.3% to 1.5%
S: 0.004% or less,
N: 0.004% or less,
Ti: 0.004% or less,
P: 0.0% to 0.2%,
Sn: 0.00% to 0.15%,
Sb: 0.00% to 0.15%,
REM: 0.00% to 0.03%,
Ca: 0.00% to 0.01%, and the balance: Fe and impurities,
Having a chemical composition represented by
In the chemical component,
REM: 0.001% to 0.03%, or Ca: 0.0003% to 0.01%,
Or any combination of these is satisfied,
The said cold-rolled steel plate satisfies Formula 3, The manufacturing method of the non-oriented electrical steel plate characterized by the above-mentioned.
0.005 mm ≦ t c − (t w1 + t w2 ) /2≦0.015 mm (formula 3)
(T c is the average sheet thickness [mm] in the center of the cold rolled steel sheet in the sheet width direction, and t w1 is the average sheet thickness [mm at a position 15 mm from one end in the sheet width direction of the cold rolled steel sheet. And t w2 is an average plate thickness [mm] at a position of 15 mm from the other end in the plate width direction of the cold-rolled steel plate.)

本発明によれば、化学組成、鋼組織、所定のサイズの析出物の個数密度等が適切であるため、比較的厚い場合でも低い鉄損を得ることができる。   According to the present invention, since the chemical composition, the steel structure, the number density of precipitates of a predetermined size, and the like are appropriate, a low iron loss can be obtained even when the deposit is relatively thick.

ヒステリシス損失Wh、渦電流損失We/t2、鉄損W10/50の関係を示す図である。Hysteresis loss W h, eddy current loss W e / t 2, is a diagram showing the relationship between iron loss W 10/50. フェライトの平均結晶粒径とヒステリシス損失Whとの関係を示す図である。Is a graph showing the relationship between the average crystal grain size and the hysteresis loss W h ferrite. 個数密度Nと到達したヒステリシス損失Whとの関係を示す図である。Is a diagram showing the relationship between the number density N and the hysteresis loss W h has been reached. 焼鈍前後のヒステリシス損失Whの変化を示す図である。Is a graph showing changes in the hysteresis loss W h before and after annealing. 焼鈍前後の渦電流損失We/t2の変化を示す図である。Is a graph showing changes in eddy current loss W e / t 2 before and after annealing. 冷間圧延鋼板の減厚量と渦電流損失We/t2との関係を示す図である。It is a diagram showing the relationship between the thickness reduction amount and the eddy current loss W e / t 2 of the cold-rolled steel plate.

先ず、本発明の実施形態に係る無方向性電磁鋼板の磁気特性について、本発明者らが行った実験に基づいて説明する。本実施形態に係る無方向性電磁鋼板は、式1で表されるヒステリシス損失Wh:0.70W/kg以下、かつ式2で表される渦電流損失We/t2:1.5W/kg・mm2以下で表される磁気特性を有する。
h=5×{W10/50×(60/50)−W10/60×(50/60)} ・・・式1
e/t2=250×(W10/60/60−W10/50/50)/t2 ・・・式2
(ここで、W10/50は磁束密度が1.0T、周波数が50Hzのときの鉄損[W/kg]であり、W10/60は磁束密度が1.0T、周波数が60Hzのときの鉄損[W/kg]であり、tは無方向性電磁鋼板の板厚[mm]である。)
First, the magnetic properties of the non-oriented electrical steel sheet according to the embodiment of the present invention will be described based on experiments conducted by the present inventors. Non-oriented electrical steel sheet according to the present embodiment, hysteresis loss W h formula 1: 0.70 W / kg or less, and the eddy currents represented by the formula 2 loss W e / t 2: 1.5W / It has a magnetic characteristic represented by kg · mm 2 or less.
W h = 5 × {W 10/50 × (60/50) −W 10/60 × (50/60)} Equation 1
W e / t 2 = 250 × (W 10/60 / 60−W 10/50 / 50) / t 2 Formula 2
(W 10/50 is the iron loss [W / kg] when the magnetic flux density is 1.0T and the frequency is 50 Hz, and W 10/60 is the magnetic flux density when the magnetic flux density is 1.0T and the frequency is 60 Hz. Iron loss [W / kg], t is the thickness [mm] of the non-oriented electrical steel sheet.)

(実験1)
本発明者らは、表1に示す化学組成を持ち、厚さが0.5mmの冷間圧延鋼板を素材として、それに仕上げ焼鈍を施し、無方向性電磁鋼板を製造した。表1に示す化学組成の残部はFe及び不純物である。仕上げ焼鈍は連続炉で行い、均熱温度を1050℃〜1075℃の範囲で変化させ、均熱時間を30秒間の一定とし、また炉内で冷間圧延鋼板に付与される張力を2.0N/mm2〜4.0N/mm2の範囲で変化させた。無方向性電磁鋼板の断面組織はフェライト単相で、フェライトの平均結晶粒径は100μm〜200μmの範囲であった。得られた無方向性電磁鋼板から磁気測定用試料を切り出し、磁気測定に供した。そして、鉄損W10/50、鉄損W10/60を測定し、式1及び式2からヒステリシス損失Wh及び鋼板板厚で規格化した渦電流損失We/t2を求めた。
(Experiment 1)
The inventors of the present invention produced a non-oriented electrical steel sheet by using a cold rolled steel sheet having a chemical composition shown in Table 1 and a thickness of 0.5 mm as a raw material, followed by finish annealing. The balance of the chemical composition shown in Table 1 is Fe and impurities. Finish annealing is performed in a continuous furnace, the soaking temperature is changed in the range of 1050 ° C. to 1075 ° C., the soaking time is kept constant for 30 seconds, and the tension applied to the cold rolled steel sheet in the furnace is 2.0 N. / Mm 2 to 4.0 N / mm 2 . The cross-sectional structure of the non-oriented electrical steel sheet was a ferrite single phase, and the average crystal grain size of ferrite was in the range of 100 μm to 200 μm. A sample for magnetic measurement was cut out from the obtained non-oriented electrical steel sheet and subjected to magnetic measurement. The iron loss W 10/50, the iron loss W 10/60 were measured to determine the eddy current loss W e / t 2 normalized by the formulas 1 and 2 in the hysteresis loss W h and steel plate thickness.

Figure 2017128759
Figure 2017128759

ヒステリシス損失Wh、渦電流損失We/t2、鉄損W10/50の関係を図1に示す。図1に示すように、ヒステリシス損失Wh及び渦電流損失We/t2のいずれもが、上記仕上げ焼鈍条件を変化させることで変化した。化学組成すなわち固有抵抗が一定、板厚が一定であっても、渦電流損失We/t2は変化した。 FIG. 1 shows the relationship between hysteresis loss W h , eddy current loss W e / t 2 , and iron loss W 10/50 . As shown in FIG. 1, both the hysteresis loss W h and the eddy current loss W e / t 2 were changed by changing the finish annealing conditions. Even if the chemical composition, that is, the specific resistance was constant and the plate thickness was constant, the eddy current loss W e / t 2 changed.

図1から、渦電流損失We/t2が同じであれば、ヒステリシス損失Whが0.70W/kg以下になると鉄損W10/50は急激に小さくなり、また、渦電流損失We/t2が1.5W/kg・mm2以下で、鉄損W10/50は効果的に小さくなることが分かる。そこで、本発明の実施形態では、低い鉄損W10/50を得るため、ヒステリシス損失Whを0.70W/kg以下、かつ、渦電流損失We/t2を1.5W/kg・mm2以下とする。 From FIG. 1, if the eddy current loss W e / t 2 is the same, the iron loss W 10/50 decreases rapidly when the hysteresis loss W h becomes 0.70 W / kg or less, and the eddy current loss W e It can be seen that the iron loss W 10/50 is effectively reduced when / t 2 is 1.5 W / kg · mm 2 or less. Therefore, in the embodiment of the present invention, in order to obtain a low iron loss W 10/50 , the hysteresis loss W h is 0.70 W / kg or less, and the eddy current loss W e / t 2 is 1.5 W / kg · mm. 2 or less.

<ヒステリシス損失低減>
次に、0.70W/kg以下のヒステリシス損失Whを実現する条件について説明する。
<Reduced hysteresis loss>
Next, conditions for realizing a hysteresis loss W h of 0.70 W / kg or less will be described.

(実験2)
本発明者らは、実験室の真空溶解炉で、表2に示す化学組成の鋼を溶製し、これを鋳造してスラブとし、このスラブの熱間圧延を表3に示す条件で実施し、複数の熱間圧延鋼板を得た。表2に示す化学組成の残部はFe及び不純物である。そして、各熱間圧延鋼板における平均粒径が5nm以上100nm未満の析出物の個数密度Nを、後述の方法で求めた。この結果も表3に示す。
(Experiment 2)
The inventors melted steel having the chemical composition shown in Table 2 in a laboratory vacuum melting furnace, cast this into a slab, and performed hot rolling of the slab under the conditions shown in Table 3. A plurality of hot-rolled steel sheets were obtained. The balance of the chemical composition shown in Table 2 is Fe and impurities. And the number density N of the precipitate whose average particle diameter in each hot-rolled steel plate is 5 nm or more and less than 100 nm was determined by the method described later. The results are also shown in Table 3.

Figure 2017128759
Figure 2017128759

Figure 2017128759
Figure 2017128759

また、熱間圧延鋼板を酸洗後に冷間圧延し、0.5mm厚の冷間圧延鋼板とし、均熱温度が950℃、1000℃又は1050℃、均熱時間が30秒間の仕上げ焼鈍を実施して、無方向性電磁鋼板を製造した。得られた無方向性電磁鋼板の磁気測定を行い、先に述べた方法でヒステリシス損失Whを算出した。また、断面金属組織から、JIS G0551に基づき単位面積当たりの結晶粒の平均数を測定することでフェライトの平均結晶粒径を求めた。 Also, hot-rolled steel sheets are pickled and cold-rolled to form 0.5 mm-thick cold-rolled steel sheets, and finish annealing is performed at a soaking temperature of 950 ° C, 1000 ° C or 1050 ° C, and a soaking time of 30 seconds. And the non-oriented electrical steel sheet was manufactured. The obtained non-oriented electrical steel sheet was subjected to magnetic measurement, and the hysteresis loss W h was calculated by the method described above. Further, the average crystal grain size of ferrite was determined by measuring the average number of crystal grains per unit area from the cross-sectional metal structure based on JIS G0551.

図2に、個数密度Nが0.65×1010個/mm3の熱間圧延鋼板C1と、1.2×1010個/mm3の熱間圧延鋼板C3を素材にしたときの、フェライトの平均結晶粒径とヒステリシス損失Whとの関係を示す。熱間圧延鋼板C1及びC3のいずれにおいても、フェライトの平均結晶粒径が大きくなると共に、ヒステリシス損失Whは小さくなり、120μm以上の大きさで概ね一定の値に近づいた。個数密度Nが低い熱間圧延鋼板C1の方が、到達するヒステリシス損失Whは小さかった。 FIG. 2 shows the ferrite when the number density N is 0.65 × 10 10 pieces / mm 3 of hot-rolled steel plate C1 and 1.2 × 10 10 pieces / mm 3 of hot-rolled steel plate C3. The relationship between the average crystal grain size and the hysteresis loss W h is shown. In both hot-rolled steel plates C1 and C3, the average crystal grain size of ferrite increased, and the hysteresis loss W h decreased, approaching a substantially constant value with a size of 120 μm or more. The hysteresis loss W h reached by the hot-rolled steel sheet C1 having a lower number density N was smaller.

熱間圧延鋼板C2及びC4についても、フェライトの平均結晶粒径とヒステリシス損失Whとの関係を調査し、ヒステリシス損失Whが概ね一定となるフェライトの平均結晶粒径を求めたところ、熱間圧延鋼板C1及びC3と同様に、120μm以上の大きさで概ね一定の値に近づいた。そこで、フェライトの平均結晶粒径が180μmであれば、ヒステリシス損失Whは一定の値に到達しているものと推定し、平均結晶粒径が180μmのときの個数密度Nと到達したヒステリシス損失Whとの関係を調査した。この結果を図3に示す。図3から、個数密度Nが1.0×1010個/mm3以下になると、優位にヒステリシス損失Whが低下することが分かる。 Regarding the hot-rolled steel sheets C2 and C4, the relationship between the average crystal grain size of ferrite and the hysteresis loss W h was investigated, and the average crystal grain size of ferrite at which the hysteresis loss W h was substantially constant was determined. Similar to the rolled steel plates C1 and C3, the size of 120 μm or more approached a substantially constant value. Therefore, if the average crystal grain size of ferrite is 180 μm, it is presumed that the hysteresis loss W h has reached a certain value, and the number loss N when the average crystal grain size is 180 μm and the hysteresis loss W reached. The relationship with h was investigated. The result is shown in FIG. From FIG. 3, it can be seen that when the number density N is 1.0 × 10 10 pieces / mm 3 or less, the hysteresis loss W h is significantly reduced.

以上の結果から、本発明の実施形態では、フェライトの平均結晶粒径、及び平均粒径が5nm以上100nm未満の析出物の個数密度Nを下記のように限定する。   From the above results, in the embodiment of the present invention, the average crystal grain size of ferrite and the number density N of precipitates having an average grain size of 5 nm or more and less than 100 nm are limited as follows.

図2から分かるように、フェライトの平均結晶粒径が120μm以上でヒステリシス損失Whは一定の値になるので、鋼組織がフェライト単相からなり、フェライトの平均結晶粒径は120μm以上とし、好ましくは150μm以上とする。上限は規定しないが、平均結晶粒径が大きすぎると渦電流損失が増加してしまうので、200μm以下が好ましい。応用先の駆動周波数によって、最適な大きさに調整することも有効である。フェライトの平均結晶粒径は、JIS G0551に基づき断面金属組織の単位面積当たりの結晶粒の平均数を測定し求める。 As can be seen from FIG. 2, since the average crystal grain size of ferrite is 120 μm or more and the hysteresis loss W h is a constant value, the steel structure is composed of a single phase of ferrite, and the average crystal grain size of ferrite is preferably 120 μm or more. Is 150 μm or more. An upper limit is not specified, but if the average crystal grain size is too large, eddy current loss increases, so 200 μm or less is preferable. It is also effective to adjust to the optimum size according to the drive frequency of the application destination. The average crystal grain size of ferrite is obtained by measuring the average number of crystal grains per unit area of the cross-sectional metal structure based on JIS G0551.

平均粒径が5nm以上100nm未満の析出物の個数密度Nは1.0×1010個/mm3以下とする。ヒステリシス損失Whが析出物の影響を受けるのは、磁壁移動が析出物によって妨げられることによる。非特許文献1は、ヒステリシス損失Whが最も大きくなるのは、析出物のサイズが磁壁厚と同等のときであるとしている。Feの磁壁厚は、40nm〜100nm(非特許文献2、非特許文献3、非特許文献4)であることから、平均粒径が5nm以上100nm未満の析出物の個数密度Nが、ヒステリシス損失Whに大きな影響を与えたと考えられる。析出物の個数密度Nは、例えば、非特許文献5に記載された方法により、供試材にエッチングを施した後にレプリカを採取し、透過型電子顕微鏡を用いて析出物を観察し、計測する。 The number density N of precipitates having an average particle diameter of 5 nm or more and less than 100 nm is 1.0 × 10 10 pieces / mm 3 or less. The hysteresis loss W h is influenced by the precipitate because the domain wall movement is hindered by the precipitate. Non-Patent Document 1 states that the hysteresis loss W h is maximized when the size of the precipitate is equal to the domain wall thickness. Since the domain wall thickness of Fe is 40 nm to 100 nm (Non-Patent Document 2, Non-Patent Document 3, and Non-Patent Document 4), the number density N of precipitates having an average particle diameter of 5 nm or more and less than 100 nm is the hysteresis loss W It is thought that it had a big influence on h . The number density N of the precipitates is measured by, for example, collecting a replica after etching the test material by the method described in Non-Patent Document 5, observing the precipitates using a transmission electron microscope, and measuring the precipitates. .

<渦電流損失低減>
次に、1.5W/kg・mm2以下の渦電流損失We/t2を実現する条件について説明する。
<Reduction of eddy current loss>
Next, conditions for realizing an eddy current loss W e / t 2 of 1.5 W / kg · mm 2 or less will be described.

(実験3)
本発明者らは、実験1で製造した厚さが0.5mmの無方向性電磁鋼板から、エプスタイン試験片を切り出し、結束し、箱型炉を用いて、均熱温度が750℃及び850℃、均熱時間が2時間の歪み取り焼鈍を行った。焼鈍前後のヒステリシス損失Whの変化を図4に示し、焼鈍前後の鋼板板厚で規格化した渦電流損失We/t2の変化を図5に示す。ヒステリシス損失Whには、歪み取り焼鈍を行っても顕著な変化は見られないが、鋼板板厚で規格化した渦電流損失We/t2は、歪み取り焼鈍と共に、最大値が小さくなりばらつきが小さくなった。供試した無方向性電磁鋼板を製造する際には、仕上げ焼鈍を1050℃以上で行っており、850℃以下の歪み取り焼鈍では、結晶粒は成長しない。歪み取り焼鈍では、鋼組織の変化はなく、無方向性電磁鋼板内の残留歪が消失しただけである。従って、製造過程で無方向性電磁鋼板に導入される残留歪を低減させることが、渦電流損失We/t2の低下に有効である。製造過程において残留歪を低減させるためには、仕上げ焼鈍に供する冷間圧延鋼板の形状、冷却速度やその鋼板内でのばらつき、張力、カテナリなど適切な制御をすることが好ましい。製造方法の詳細については後述する。
(Experiment 3)
The inventors cut out Epstein test pieces from the non-oriented electrical steel sheet having a thickness of 0.5 mm manufactured in Experiment 1 and bound them, using a box furnace, soaking temperatures of 750 ° C. and 850 ° C. Then, strain relief annealing was performed with a soaking time of 2 hours. The change in the hysteresis loss W h before and after annealing are shown in FIG. 4 shows the change in the eddy current loss W e / t 2 normalized by the steel sheet thickness before and after annealing in FIG. Hysteresis loss W h does not change significantly even when strain relief annealing is performed, but the maximum value of eddy current loss W e / t 2 normalized by the steel plate thickness decreases with strain relief annealing. The variation was reduced. When the tested non-oriented electrical steel sheet is manufactured, finish annealing is performed at 1050 ° C. or higher, and crystal grains do not grow in strain relief annealing at 850 ° C. or lower. In the strain relief annealing, there is no change in the steel structure and only the residual strain in the non-oriented electrical steel sheet disappears. Therefore, reducing the residual strain introduced into the non-oriented electrical steel sheet in the manufacturing process is effective in reducing the eddy current loss W e / t 2 . In order to reduce the residual strain in the manufacturing process, it is preferable to appropriately control the shape of the cold-rolled steel sheet used for finish annealing, the cooling rate, variations in the steel sheet, tension, catenary, and the like. Details of the manufacturing method will be described later.

次に、本発明の実施形態に係る無方向性電磁鋼板及びその製造に用いる鋼の化学組成について説明する。詳細は後述するが、本発明の実施形態に係る無方向性電磁鋼板は、鋼の鋳造、冷却、加熱、熱間圧延、焼鈍、冷間圧延、仕上げ焼鈍等を経て製造される。従って、無方向性電磁鋼板及び鋼の化学組成は、無方向性電磁鋼板の特性のみならず、これらの処理を考慮したものである。以下の説明において、無方向性電磁鋼板又は鋼に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。本実施形態に係る無方向無方向性電磁鋼板又はその製造に用いる鋼は、質量%で、C:0.005%以下、Si:2.0%〜3.5%、Mn:0.1%〜1.5%、Al:0.3%〜1.5%、S:0.004%以下、N:0.004%以下、Ti:0.004%以下、P:0.0%〜0.2%、Sn:0.00%〜0.15%、Sb:0.00%〜0.15%、希土類金属(rare earth metal:REM):0.00%〜0.03%、Ca:0.00%〜0.01%、かつ残部:Fe及び不純物、で表される化学組成を有する。REMとは、原子番号が57のLaから71のLuまでの15元素に原子番号が21のScと原子番号が39のYを加えた合計17元素の総称である。不純物としては、鉱石やスクラップ等の原材料に含まれるもの、製造工程において含まれるもの、が例示される。   Next, the non-oriented electrical steel sheet according to the embodiment of the present invention and the chemical composition of the steel used for manufacturing the steel sheet will be described. Although details will be described later, the non-oriented electrical steel sheet according to the embodiment of the present invention is manufactured through steel casting, cooling, heating, hot rolling, annealing, cold rolling, finish annealing, and the like. Therefore, the chemical composition of the non-oriented electrical steel sheet and steel takes into account not only the properties of the non-oriented electrical steel sheet but also these treatments. In the following description, “%”, which is a unit of content of each element contained in a non-oriented electrical steel sheet or steel, means “mass%” unless otherwise specified. The non-oriented non-oriented electrical steel sheet according to the present embodiment or the steel used for manufacturing the non-oriented non-oriented electrical steel sheet is mass%, C: 0.005% or less, Si: 2.0% to 3.5%, Mn: 0.1%. -1.5%, Al: 0.3-1.5%, S: 0.004% or less, N: 0.004% or less, Ti: 0.004% or less, P: 0.0% -0 0.2%, Sn: 0.00% to 0.15%, Sb: 0.00% to 0.15%, rare earth metal (REM): 0.00% to 0.03%, Ca: It has a chemical composition represented by 0.00% to 0.01% and the balance: Fe and impurities. REM is a generic name for a total of 17 elements including 15 elements from La with atomic number 57 to Lu with 71 and Sc with atomic number 21 and Y with atomic number 39. Examples of the impurities include those contained in raw materials such as ore and scrap and those contained in the manufacturing process.

<C:0.005%以下>
Cは鉄損を劣化させ、磁気時効の原因にもなる。従って、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.005%超で顕著である。従って、C含有量は0.005%以下とし、好ましくは0.003%以下、更に好ましくは0.002%以下とする。
<C: 0.005% or less>
C deteriorates iron loss and also causes magnetic aging. Therefore, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.005%. Therefore, the C content is 0.005% or less, preferably 0.003% or less, and more preferably 0.002% or less.

<Si:2.0〜3.5%>
Siは鋼の固有抵抗を増加させ、鉄損を低減させる。Si含有量が2.0%未満では、これらの作用効果を十分に得られない。従って、Si含有量は2.0%以上とし、好ましくは2.5%以上、更に好ましくは2.9%以上とする。一方、Si含有量が3.5%超では、鋼が脆化し、圧延性が低下する。従って、Si含有量は3.5%以下とし、好ましくは3.2%以下とする。
<Si: 2.0 to 3.5%>
Si increases the specific resistance of steel and reduces iron loss. If the Si content is less than 2.0%, these effects cannot be obtained sufficiently. Accordingly, the Si content is set to 2.0% or more, preferably 2.5% or more, and more preferably 2.9% or more. On the other hand, if the Si content exceeds 3.5%, the steel becomes brittle and the rollability deteriorates. Therefore, the Si content is 3.5% or less, preferably 3.2% or less.

<Mn:0.1%〜1.5%>
Mnは鋼の固有抵抗を高める作用と共に、MnSの溶体化温度を高めることで熱間圧延中の硫化物の微細析出を防止する作用を持つ。Mn含有量が0.1%未満では、これらの作用効果を十分に得られない。従って、Mn含有量は0.1%以上とし、好ましくは0.2%以上、より好ましくは0.3%以上、更に好ましくは0.4%以上とする。一方、Mn含有量が1.5%超では、徒にコストが上昇する。従って、Mn含有量は1.5%以下とし、好ましくは1.4%以下、より好ましくは1.2%以下、更に好ましくは1.0%以下とする。
<Mn: 0.1% to 1.5%>
Mn has the effect of preventing the fine precipitation of sulfide during hot rolling by increasing the solution temperature of MnS as well as increasing the specific resistance of steel. If the Mn content is less than 0.1%, these effects cannot be obtained sufficiently. Therefore, the Mn content is 0.1% or more, preferably 0.2% or more, more preferably 0.3% or more, and still more preferably 0.4% or more. On the other hand, if the Mn content exceeds 1.5%, the cost increases. Therefore, the Mn content is 1.5% or less, preferably 1.4% or less, more preferably 1.2% or less, and still more preferably 1.0% or less.

<Al:0.3〜1.5%>
Alは脱酸材として有効であり、また、粗大なAlNを形成することで、窒素を固定することができる。更にSiやMnと同様に鋼の固有抵抗を増加させ、鉄損を低減させる。Al含有量が0.3%未満では、これらの作用効果を十分に得られない。従って、Al含有量は0.3%以上とする。一方、Al含有量が1.5%超では、鋼が脆化し、圧延性が低下する。従って、Al含有量は1.5%以下とし、好ましくは1.0%以下とし、更に好ましくは0.7%以下とする。
<Al: 0.3 to 1.5%>
Al is effective as a deoxidizing material, and nitrogen can be fixed by forming coarse AlN. Furthermore, like Si and Mn, the specific resistance of steel is increased and the iron loss is reduced. If the Al content is less than 0.3%, these effects cannot be obtained sufficiently. Therefore, the Al content is 0.3% or more. On the other hand, if the Al content exceeds 1.5%, the steel becomes brittle and the rollability deteriorates. Therefore, the Al content is 1.5% or less, preferably 1.0% or less, and more preferably 0.7% or less.

<S:0.004%以下>
Sは、必須元素ではなく、例えば鋼中に不純物として含有される。Sは、Mn、Cu、Mgなどと共に微細な析出物を形成し、磁気特性に悪影響を与える。従って、S含有量は低ければ低いほどよい。このような磁気特性への悪影響は、S含有量が0.004%超で顕著である。従って、S含有量は0.004%以下とする。
<S: 0.004% or less>
S is not an essential element but is contained as an impurity in steel, for example. S forms fine precipitates together with Mn, Cu, Mg, etc., and adversely affects the magnetic properties. Therefore, the lower the S content, the better. Such an adverse effect on the magnetic properties is significant when the S content exceeds 0.004%. Therefore, the S content is 0.004% or less.

<N:0.004%以下>
Nは、必須元素ではなく、例えば鋼中に不純物として含有される。Nは、AlやTiと共に微細な析出物を形成し、磁気特性に悪影響を与える。従って、N含有量は低ければ低いほどよい。このような磁気特性への悪影響は、N含有量が0.004%超で顕著である。従って、N含有量は0.004%以下とする。
<N: 0.004% or less>
N is not an essential element but is contained as an impurity in steel, for example. N forms fine precipitates together with Al and Ti, and adversely affects the magnetic properties. Therefore, the lower the N content, the better. Such an adverse effect on the magnetic properties is significant when the N content exceeds 0.004%. Therefore, the N content is 0.004% or less.

<Ti:0.004%以下>
Tiは、必須元素ではなく、例えば鋼中に不純物として含有される。Tiは窒化物や炭化物を形成し、磁気特性に悪影響を与える。従って、Ti含有量は低ければ低いほどよい。このような磁気特性への悪影響は、Ti含有量が0.004%超で顕著である。従って、Ti含有量は0.004%以下とする。
<Ti: 0.004% or less>
Ti is not an essential element but is contained as an impurity in steel, for example. Ti forms nitrides and carbides and adversely affects magnetic properties. Therefore, the lower the Ti content, the better. Such an adverse effect on the magnetic properties is significant when the Ti content exceeds 0.004%. Therefore, the Ti content is 0.004% or less.

P、Sn、Sb、REM及びCaは、必須元素ではなく、無方向性電磁鋼板に所定量を限度に適宜含有されていてもよい任意元素である。   P, Sn, Sb, REM, and Ca are not essential elements, but are arbitrary elements that may be appropriately contained in a non-oriented electrical steel sheet within a predetermined amount.

<P:0.0%〜0.2%>
Pは鋼の機械強度を高めたり、集合組織を改善したりする効果がある。従って、Pが含有されていてもよい。この作用効果を十分に得るために、好ましくは、P含有量は0.01%以上である。一方、P含有量が0.2%超では、鋼が脆化する。従って、P含有量は0.2%以下とする。
<P: 0.0% to 0.2%>
P has the effect of increasing the mechanical strength of the steel and improving the texture. Therefore, P may be contained. In order to sufficiently obtain this effect, the P content is preferably 0.01% or more. On the other hand, if the P content exceeds 0.2%, the steel becomes brittle. Therefore, the P content is 0.2% or less.

<Sn:0.00%〜0.15%、Sb:0.00%〜0.15%>
Sn及びSbは、集合組織を改善し、磁束密度を上昇させる。従って、Sn若しくはSb又はこれらの両方が含有されていてもよい。この作用効果を十分に得るために、好ましくは、Sn含有量は0.01%以上であり、Sb含有量0.01%以上であり、より好ましくは、Sn含有量は0.03%以上であり、Sb含有量0.03%以上である。一方、Sn含有量が0.15%超では、鋼が脆化したり、絶縁被膜の密着性が劣化したりする。従って、Sn含有量は0.15%以下とする。Sb含有量が0.15%超では、絶縁被膜の密着性が劣化する。従って、Sb含有量は0.15%以下とする。
<Sn: 0.00% to 0.15%, Sb: 0.00% to 0.15%>
Sn and Sb improve the texture and increase the magnetic flux density. Therefore, Sn or Sb or both of them may be contained. In order to sufficiently obtain this action effect, preferably, the Sn content is 0.01% or more, the Sb content is 0.01% or more, and more preferably, the Sn content is 0.03% or more. Yes, the Sb content is 0.03% or more. On the other hand, if the Sn content exceeds 0.15%, the steel becomes brittle or the adhesiveness of the insulating coating deteriorates. Therefore, the Sn content is 0.15% or less. If the Sb content exceeds 0.15%, the adhesiveness of the insulating coating deteriorates. Therefore, the Sb content is 0.15% or less.

<REM:0.00%〜0.03%、Ca:0.00%〜0.01%>
REM及びCaは、粗大な硫酸化物や硫化物を形成することでSを固定し、微細な硫化物の生成を抑制させる。その結果、粒成長性が良好になると共に、磁壁移動に対する障害がなくなりヒステリシス損失が改善される。従って、REM若しくはCa又はこれらの両方が含有されていてもよい。この作用効果を十分に得るために、好ましくは、REM含有量は0.001%以上であり、Ca含有量0.0003%以上であり、より好ましくは、REM含有量は0.003%以上であり、Ca含有量0.001%以上である。一方、REM含有量が0.03%超では、REMを含む介在物の体積率が増加し、粒成長性の劣化やヒステリシス損失の増加が生じる。従って、REM含有量は0.03%以下とし、好ましくは0.01%以下とする。Ca含有量が0.01%超では、Caを含む介在物の体積率が増加し、粒成長性の劣化やヒステリシス損失の増加が生じる。従って、Ca含有量は0.01%以下とし、好ましくは0.005%以下とする。
<REM: 0.00% to 0.03%, Ca: 0.00% to 0.01%>
REM and Ca fix coarse S by forming coarse sulfates and sulfides, and suppress the production of fine sulfides. As a result, the grain growth property is improved, and there is no obstacle to the domain wall movement, and the hysteresis loss is improved. Therefore, REM or Ca or both of these may be contained. In order to obtain this effect sufficiently, the REM content is preferably 0.001% or more, the Ca content is 0.0003% or more, and more preferably, the REM content is 0.003% or more. Yes, the Ca content is 0.001% or more. On the other hand, if the REM content exceeds 0.03%, the volume fraction of inclusions containing REM increases, resulting in deterioration of grain growth and increase in hysteresis loss. Therefore, the REM content is 0.03% or less, preferably 0.01% or less. If the Ca content exceeds 0.01%, the volume fraction of inclusions containing Ca increases, resulting in deterioration of grain growth and increase in hysteresis loss. Therefore, the Ca content is 0.01% or less, preferably 0.005% or less.

従って、P:0.01%〜0.2%、Sn:0.01%〜0.15%、Sb:0.01%〜0.15%、REM:0.001%〜0.03%、若しくはCa:0.0003%〜0.01%、又はこれらの任意の組み合わせが満たされることが好ましい。   Therefore, P: 0.01% to 0.2%, Sn: 0.01% to 0.15%, Sb: 0.01% to 0.15%, REM: 0.001% to 0.03%, Alternatively, it is preferable that Ca: 0.0003% to 0.01% or any combination thereof is satisfied.

本実施形態によれば、安定して低い鉄損を得ることができ、需要家のニーズを満足し、かつ、省エネルギーの要求に答えることができる。例えば、板厚が0.49mm以上で、最大磁束密度が1.0T、励磁周波数が50Hzの鉄損W10/50が1.00W/kg以下の特性を得ることができる。 According to the present embodiment, it is possible to stably obtain a low iron loss, satisfy the needs of consumers, and answer energy saving requirements. For example, it is possible to obtain characteristics in which the plate thickness is 0.49 mm or more, the maximum magnetic flux density is 1.0 T, the excitation frequency is 50 Hz, and the iron loss W 10/50 is 1.00 W / kg or less.

次に、本発明の実施形態に係る無方向性電磁鋼板の製造方法について説明する。本実施形態に係る無方向性電磁鋼板の製造方法では、鋼の鋳造を行ってスラブを得、スラブを150℃以上400℃以下の温度まで冷却し、スラブを加熱炉に挿入して1030℃以上1130℃の温度まで加熱する。その後、スラブに熱間圧延を施して熱間圧延鋼板を得、熱間圧延鋼板に焼鈍を施して熱間圧延焼鈍鋼板を得、熱間圧延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板を得る。そして、冷間圧延鋼板に仕上げ焼鈍を施す。冷間圧延鋼板は式3を満足する。
0.005mm ≦ tc−(tw1+tw2)/2 ≦ 0.015mm ・・・式3
(tcは前記冷間圧延鋼板の板幅方向中央の平均板厚[mm]であり、tw1は前記冷間圧延鋼板の板幅方向の一方の端部から15mm位置の平均板厚[mm]であり、tw2は前記冷間圧延鋼板の板幅方向の他方の端部から15mm位置の平均板厚[mm]である。)
Next, the manufacturing method of the non-oriented electrical steel sheet which concerns on embodiment of this invention is demonstrated. In the method for producing a non-oriented electrical steel sheet according to the present embodiment, steel is cast to obtain a slab, the slab is cooled to a temperature of 150 ° C. or higher and 400 ° C. or lower, and the slab is inserted into a heating furnace to be 1030 ° C. or higher. Heat to a temperature of 1130 ° C. Thereafter, the slab is hot-rolled to obtain a hot-rolled steel plate, the hot-rolled steel plate is annealed to obtain a hot-rolled annealed steel plate, and the hot-rolled annealed steel plate is cold-rolled to cold-rolled steel plate Get. Then, finish annealing is performed on the cold-rolled steel sheet. The cold-rolled steel sheet satisfies Equation 3.
0.005 mm ≦ t c − (t w1 + t w2 ) /2≦0.015 mm (formula 3)
(T c is the average sheet thickness [mm] in the center of the cold rolled steel sheet in the sheet width direction, and t w1 is the average sheet thickness [mm at a position 15 mm from one end in the sheet width direction of the cold rolled steel sheet. And t w2 is an average plate thickness [mm] at a position of 15 mm from the other end in the plate width direction of the cold-rolled steel plate.)

本実施形態では、先に説明したように、ヒステリシス損失Whを低下させるために、平均粒径が5nm以上100nm未満の析出物の個数密度Nを制御することが重要である。そのために、鋳造後のスラブ内の析出物をなるべく粗大に成長させる目的で、スラブは400℃以下まで、好ましくは300℃以下まで冷却する。一方、150℃以下にまで冷却すると、スラブの置き割れが起こりやすくなる。従って、スラブを冷却する温度を150℃以上とする。そして、温度が150℃〜400℃のスラブを加熱炉に挿入する。 In the present embodiment, as described above, in order to reduce the hysteresis loss W h , it is important to control the number density N of precipitates having an average particle diameter of 5 nm or more and less than 100 nm. Therefore, the slab is cooled to 400 ° C. or lower, preferably 300 ° C. or lower for the purpose of growing the precipitate in the slab after casting as coarse as possible. On the other hand, when it is cooled to 150 ° C. or lower, the slab is easily cracked. Therefore, the temperature which cools a slab shall be 150 degreeC or more. And the slab whose temperature is 150 to 400 degreeC is inserted in a heating furnace.

加熱炉では、スラブを1030℃〜1130℃の温度まで加熱する。スラブ加熱温度が1130℃超では、硫化物などの不純物が再固溶し、その後の温度低下に従い不純物が微細析出し、粒成長性を阻害し、また、ヒステリシス損失Whを上昇させてしまう。従って、スラブ加熱温度は1130℃以下とし、好ましくは1120℃以下、更に好ましくは1100℃以下とする。一方、スラブ加熱温度が1030℃未満では、熱間圧延の能力低下を招く。従って、スラブ加熱温度は1030℃以上とし、好ましくは1050℃以上、更に好ましくは1080℃以上とする。 In the heating furnace, the slab is heated to a temperature of 1030 ° C to 1130 ° C. When the slab heating temperature is higher than 1130 ° C., impurities such as sulfides are re-dissolved, and the impurities are finely precipitated as the temperature lowers thereafter. This impairs grain growth and increases the hysteresis loss W h . Therefore, the slab heating temperature is 1130 ° C. or lower, preferably 1120 ° C. or lower, more preferably 1100 ° C. or lower. On the other hand, when the slab heating temperature is lower than 1030 ° C., the hot rolling ability is reduced. Therefore, the slab heating temperature is set to 1030 ° C or higher, preferably 1050 ° C or higher, more preferably 1080 ° C or higher.

なお、鋼が0.001%〜0.03%のREM若しくは0.0003%〜0.01%のCa又はこれらの両方を含有する場合、不純物を伴う介在物の溶解温度が上昇し、1250℃まで加熱しても再固溶が生じにくい。従って、この場合のスラブ加熱温度は1030℃〜1250℃としてもよい。   When steel contains 0.001% to 0.03% REM, 0.0003% to 0.01% Ca, or both, the melting temperature of inclusions with impurities increases, and 1250 ° C. Even if heated up to, re-dissolving hardly occurs. Therefore, the slab heating temperature in this case is good also as 1030 degreeC-1250 degreeC.

また、先に説明したように、無方向性電磁鋼板の化学組成や厚さが一定であっても渦電流損失は変化し、渦電流損を低下させるためには、製造過程において残留歪を低減させることが重要である。無方向性電磁鋼板の製造工程において、残留歪を低減する方法を検討した結果、本発明者らは、冷間圧延後の仕上げ焼鈍は連続焼鈍炉で行うことが好ましく、仕上げ焼鈍に供する冷間圧延鋼板は、幅方向の両端部の厚さを少し薄くすることが有効であることを見出した。   In addition, as explained earlier, eddy current loss changes even if the chemical composition and thickness of the non-oriented electrical steel sheet are constant, and in order to reduce eddy current loss, residual strain is reduced in the manufacturing process. It is important to let As a result of examining a method for reducing the residual strain in the manufacturing process of the non-oriented electrical steel sheet, the present inventors preferably perform the finish annealing after the cold rolling in a continuous annealing furnace, and perform the cold annealing used for the finish annealing. It has been found that it is effective to slightly reduce the thickness of both end portions in the width direction of the rolled steel sheet.

(実験4)
本発明者らは、厚さ0.5mm、幅950mm〜1150mm、狙い成分3%Si−0.15%Mn−1.15%Alの冷間圧延鋼板を、実機の連続焼鈍炉を使って焼鈍した場合の、両端部の減厚量と鋼板板厚で規格化した渦電流損失We/t2との関係を調査した。この結果を図6に示す。ここで、両端部の減厚量は、冷間圧延鋼板の板幅方向中央の平均板厚をtc[mm]、板幅方向の一方の端部から15mmの位置の平均板厚をtw1[mm]、他方の端部から15mmの位置の平均板厚をtw2[mm]として、tc−(tw1+tw2)/2で表されるものとした。
(Experiment 4)
The present inventors annealed a cold rolled steel sheet having a thickness of 0.5 mm, a width of 950 mm to 1150 mm, and a target component of 3% Si-0.15% Mn-1.15% Al using a continuous annealing furnace of an actual machine. in the case of, to investigate the relationship between the eddy current loss W e / t 2 normalized by the thickness reduction amount and the steel sheet thickness at both ends. The result is shown in FIG. Here, the thickness reduction at both ends is the average plate thickness t c [mm] at the center in the plate width direction of the cold rolled steel plate, and the average plate thickness at a position 15 mm from one end in the plate width direction is t w1. [Mm], where the average plate thickness at a position 15 mm from the other end is t w2 [mm], and is expressed by t c − (t w1 + t w2 ) / 2.

図6から、両端部の減厚量が大きくなるに従い、鋼板板厚で規格化した渦電流損失We/t2が減少し、ばらつきが小さくなることが分かった。そして、この効果は、減厚量が0.005mm以上で認められ、0.015mm超で飽和することが分かった。また、減厚量が大きすぎると、歩留まりが低下してしまう。従って、冷間圧延鋼板の減厚量は0.005mm以上とし、好ましくは0.010mm以上とする。また、冷間圧延鋼板の減厚量は0.015mm以下とする。 FIG. 6 shows that the eddy current loss W e / t 2 normalized by the steel plate thickness decreases as the thickness reduction at both ends increases, and the variation becomes smaller. This effect was observed when the amount of thickness reduction was 0.005 mm or more, and was found to be saturated when it exceeded 0.015 mm. On the other hand, when the thickness reduction amount is too large, the yield decreases. Therefore, the thickness reduction amount of the cold rolled steel sheet is 0.005 mm or more, preferably 0.010 mm or more. Moreover, the thickness reduction amount of a cold rolled steel plate shall be 0.015 mm or less.

このようにして、本実施形態に係る無方向性電磁鋼板を製造することができる。   Thus, the non-oriented electrical steel sheet according to the present embodiment can be manufactured.

なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。   The above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.

次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

<実施例1>
表4に記載の化学組成のスラブを鋳造後冷却し、200℃〜280℃の範囲でスラブ加熱炉に挿入し、加熱温度を1080℃〜1100℃、仕上げ圧延後の板厚を2.0mmとして熱間圧延を行った。その後、970℃、1分間の熱延板焼鈍を施し、酸洗後、冷間圧延で0.35mm、0.49mm、0.5mm、0.55mmの冷間圧延鋼板を得た。冷間圧延鋼板の減厚量は、0.01mm〜0.015mmとした。その後、均熱温度が1000℃、均熱時間が30秒間の仕上げ焼鈍に供し、無方向性電磁鋼板製品を得た。表4に示す化学組成の残部はFe及び不純物である。表4中の下線は、その数値が本発明の範囲から外れていることを示す。なお、一部の試料では、連続鋳造でノズル詰まりが生じて出鋼できず、他の一部の試料では、冷間圧延中に割れが生じた。
<Example 1>
The slab having the chemical composition shown in Table 4 is cooled after casting, inserted into a slab heating furnace in the range of 200 ° C to 280 ° C, the heating temperature is 1080 ° C to 1100 ° C, and the plate thickness after finish rolling is 2.0 mm. Hot rolling was performed. Then, hot-rolled sheet annealing was performed at 970 ° C. for 1 minute, and after pickling, cold-rolled steel sheets of 0.35 mm, 0.49 mm, 0.5 mm, and 0.55 mm were obtained by cold rolling. The amount of thickness reduction of the cold rolled steel sheet was set to 0.01 mm to 0.015 mm. Thereafter, it was subjected to finish annealing with a soaking temperature of 1000 ° C. and a soaking time of 30 seconds to obtain a non-oriented electrical steel sheet product. The balance of the chemical composition shown in Table 4 is Fe and impurities. The underline in Table 4 indicates that the numerical value is out of the scope of the present invention. In some samples, nozzle clogging occurred during continuous casting and steel could not be produced, and in some other samples, cracks occurred during cold rolling.

Figure 2017128759
Figure 2017128759

その後、製品のフェライトの平均結晶粒径、析出物の個数密度N、ヒステリシス損失Wh、鋼板板厚で規格化した渦電流損失We/t2、鉄損W10/50、鉄損W10/60を測定した。この結果を表5に示す。表5中の下線は、その数値が本発明の範囲から外れていることを示す。 Then, the average crystal grain size of the ferrite of the product, the number density N of precipitates, the hysteresis loss W h, eddy current loss is normalized by the steel sheet thickness W e / t 2, the iron loss W 10/50, iron loss W 10 / 60 was measured. The results are shown in Table 5. The underline in Table 5 indicates that the numerical value is out of the scope of the present invention.

Figure 2017128759
Figure 2017128759

表5に示すように、本発明の範囲内にある試料D1〜D16では、板厚が0.49mm以上と比較的厚いにも拘わらず、ヒステリシス損失Whは0.70W/kg以下、渦電流損失We/t2は1.5W/kg・mm2以下が得られ、鉄損W10/50は、1.0W/kg以下の優れた特性が得られた。一方、本発明の範囲外の試料E1〜E12では、十分な磁気特性が得られないか、製造途中にトラブルが生じてしまった。 As shown in Table 5, in the samples D1 to D16 within the scope of the present invention, the hysteresis loss W h is 0.70 W / kg or less, although the plate thickness is relatively thick as 0.49 mm or more, and the eddy current The loss W e / t 2 was 1.5 W / kg · mm 2 or less, and the iron loss W 10/50 was an excellent characteristic of 1.0 W / kg or less. On the other hand, in the samples E1 to E12 outside the scope of the present invention, sufficient magnetic properties were not obtained or trouble occurred during the production.

この結果から、本発明によれば、比較的厚い板厚の0.49mm以上の無方向性電磁鋼板についても、ヒステリシス損失Whは0.70W/kg以下、鋼板板厚で規格化した渦電流損失We/t2は1.5W/kg・mm2以下が得られ、鉄損W10/50が1.0W/kg以下の優れた特性が得られることが分かる。 From this result, according to the present invention, the hysteresis loss W h is 0.70 W / kg or less and the eddy current normalized by the steel plate thickness even for the non-oriented electrical steel plate having a relatively thick plate thickness of 0.49 mm or more. It can be seen that a loss W e / t 2 of 1.5 W / kg · mm 2 or less is obtained and an excellent characteristic that an iron loss W 10/50 of 1.0 W / kg or less is obtained.

<実施例2>
表6に示す化学組成のスラブを鋳造し、表7に記載の条件で熱間圧延を行い、970℃、1分間の熱延板焼鈍を施し、酸洗後、冷間圧延で0.5mmの冷間圧延鋼板を得た。冷間圧延鋼板の減厚量も表7に示す。その後、均熱温度が1000℃、均熱時間が30秒間の仕上げ焼鈍に供し、無方向性電磁鋼板製品を得た。表6に示す化学組成の残部はFe及び不純物である。表7中の下線は、その数値が本発明の範囲から外れていることを示す。なお、一部の試料では、置き割れが発生し、他の一部の試料では、コイル巻不良が生じた。
<Example 2>
A slab having a chemical composition shown in Table 6 was cast, hot-rolled under the conditions shown in Table 7, subjected to hot-rolled sheet annealing at 970 ° C. for 1 minute, pickled, and then cold-rolled to 0.5 mm. A cold rolled steel sheet was obtained. Table 7 also shows the thickness reduction of the cold rolled steel sheet. Thereafter, it was subjected to finish annealing with a soaking temperature of 1000 ° C. and a soaking time of 30 seconds to obtain a non-oriented electrical steel sheet product. The balance of the chemical composition shown in Table 6 is Fe and impurities. The underline in Table 7 indicates that the numerical value is out of the scope of the present invention. In some samples, cracks occurred, and in some other samples, coil winding defects occurred.

Figure 2017128759
Figure 2017128759

Figure 2017128759
Figure 2017128759

その後、製品のフェライトの平均結晶粒径、析出物の個数密度N、ヒステリシス損失Wh、鋼板板厚で規格化した渦電流損失We/t2、鉄損W10/50、鉄損W10/60を測定した。この結果を表8に示す。表8中の下線は、その数値が本発明の範囲から外れていることを示す。 Then, the average crystal grain size of the ferrite of the product, the number density N of precipitates, the hysteresis loss W h, eddy current loss is normalized by the steel sheet thickness W e / t 2, the iron loss W 10/50, iron loss W 10 / 60 was measured. The results are shown in Table 8. The underline in Table 8 indicates that the numerical value is out of the scope of the present invention.

Figure 2017128759
Figure 2017128759

表8に示すように、本発明の範囲内にある試料F1〜F7では、ヒステリシス損失Whは0.70W/kg以下、渦電流損失We/t2は1.5W/kg・mm2以下が得られ、鉄損W10/50は、1.0W/kg以下の優れた特性が得られた。一方、本発明の範囲外の試料G1〜G6では、十分な磁気特性が得られないか、製造途中にトラブルが生じてしまった。 As shown in Table 8, the samples F1~F7 are within the scope of the present invention, the hysteresis loss W h is 0.70 W / kg or less, eddy current loss W e / t 2 is 1.5W / kg · mm 2 or less The iron loss W 10/50 was as excellent as 1.0 W / kg or less. On the other hand, in samples G1 to G6 outside the scope of the present invention, sufficient magnetic properties could not be obtained, or trouble occurred during production.

この結果から、本発明によれば、鉄損W10/50が1.0W/kg以下の優れた特性が得られることが分かる。 From this result, it can be seen that according to the present invention, excellent characteristics with an iron loss W 10/50 of 1.0 W / kg or less can be obtained.

<実施例3>
表9に示す化学組成のスラブを鋳造し、表10に記載の条件で熱間圧延を行い、実施例2と同様の評価を行った。この結果を表11に示す。表10、表11中の下線は、その数値が本発明の範囲から外れていることを示す。
<Example 3>
A slab having a chemical composition shown in Table 9 was cast, hot-rolled under the conditions shown in Table 10, and the same evaluation as in Example 2 was performed. The results are shown in Table 11. Underlines in Tables 10 and 11 indicate that the numerical values are out of the scope of the present invention.

Figure 2017128759
Figure 2017128759

Figure 2017128759
Figure 2017128759

Figure 2017128759
Figure 2017128759

表11に示すように、本発明の範囲内にある試料H1〜H2では、ヒステリシス損失Whは0.70W/kg以下、渦電流損失We/t2は1.5W/kg・mm2以下が得られ、鉄損W10/50は、1.0W/kg以下の優れた特性が得られた。一方、本発明の範囲外の試料J1では、十分な磁気特性が得られなかった。 As shown in Table 11, in the samples H1 to H2 within the scope of the present invention, the hysteresis loss W h is 0.70 W / kg or less, and the eddy current loss W e / t 2 is 1.5 W / kg · mm 2 or less. The iron loss W 10/50 was as excellent as 1.0 W / kg or less. On the other hand, sample J1 outside the range of the present invention could not obtain sufficient magnetic properties.

この結果から、本発明によれば、鉄損W10/50が1.0W/kg以下の優れた特性が得られることが分かる。 From this result, it can be seen that according to the present invention, excellent characteristics with an iron loss W 10/50 of 1.0 W / kg or less can be obtained.

Claims (5)

質量%で、
C:0.005%以下、
Si:2.0%〜3.5%、
Mn:0.1%〜1.5%、
Al:0.3%〜1.5%、
S:0.004%以下、
N:0.004%以下、
Ti:0.004%以下、
P:0.0%〜0.2%、
Sn:0.00%〜0.15%、
Sb:0.00%〜0.15%、
REM:0.00%〜0.03%、
Ca:0.00%〜0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
平均結晶粒径が120μm以上のフェライト粒からなる単相の鋼組織を有し、
平均粒径が5nm以上100nm未満の析出物の個数密度が1×1010個/mm3以下であり、
式1で表されるヒステリシス損失Wh:0.70W/kg以下、かつ
式2で表される渦電流損失We/t2:1.5W/kg・mm2以下、
で表される磁気特性を有することを特徴とする無方向性電磁鋼板。
h=5×{W10/50×(60/50)−W10/60×(50/60)} ・・・式1
e/t2=250×(W10/60/60−W10/50/50)/t2 ・・・式2
(W10/50は磁束密度が1.0T、周波数が50Hzのときの鉄損[W/kg]であり、W10/60は磁束密度が1.0T、周波数が60Hzのときの鉄損[W/kg]であり、tは前記無方向性電磁鋼板の板厚[mm]である。)
% By mass
C: 0.005% or less,
Si: 2.0% to 3.5%,
Mn: 0.1% to 1.5%,
Al: 0.3% to 1.5%
S: 0.004% or less,
N: 0.004% or less,
Ti: 0.004% or less,
P: 0.0% to 0.2%,
Sn: 0.00% to 0.15%,
Sb: 0.00% to 0.15%,
REM: 0.00% to 0.03%,
Ca: 0.00% to 0.01%, and the balance: Fe and impurities,
Having a chemical composition represented by
It has a single-phase steel structure consisting of ferrite grains having an average crystal grain size of 120 μm or more,
The number density of precipitates having an average particle size of 5 nm or more and less than 100 nm is 1 × 10 10 pieces / mm 3 or less,
Hysteresis loss W h represented by Formula 1: 0.70 W / kg or less, and Eddy current loss W e / t 2 represented by Formula 2 : 1.5 W / kg · mm 2 or less,
A non-oriented electrical steel sheet characterized by having a magnetic property represented by:
W h = 5 × {W 10/50 × (60/50) −W 10/60 × (50/60)} Equation 1
W e / t 2 = 250 × (W 10/60 / 60−W 10/50 / 50) / t 2 Formula 2
(W 10/50 is the iron loss [W / kg] when the magnetic flux density is 1.0 T and the frequency is 50 Hz, and W 10/60 is the iron loss when the magnetic flux density is 1.0 T and the frequency is 60 Hz [ W / kg], and t is the thickness [mm] of the non-oriented electrical steel sheet.)
前記化学成分において、
P:0.01%〜0.2%、
Sn:0.01%〜0.15%、
Sb:0.01%〜0.15%、
REM:0.001%〜0.03%、若しくは
Ca:0.0003%〜0.01%、
又はこれらの任意の組み合わせが満たされることを特徴とする請求項1に記載の無方向性電磁鋼板。
In the chemical component,
P: 0.01% to 0.2%
Sn: 0.01% to 0.15%,
Sb: 0.01% to 0.15%,
REM: 0.001% to 0.03%, or Ca: 0.0003% to 0.01%,
Or the arbitrary combination of these is satisfy | filled, The non-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned.
板厚が0.49mm以上で、最大磁束密度が1.0T、励磁周波数が50Hzの鉄損W10/50が1.00W/kg以下であることを特徴とする請求項1又は2に記載の無方向性電磁鋼板。 3. The iron loss W 10/50 having a plate thickness of 0.49 mm or more, a maximum magnetic flux density of 1.0 T, and an excitation frequency of 50 Hz is 1.00 W / kg or less. Non-oriented electrical steel sheet. 鋼の鋳造を行ってスラブを得る工程と、
前記スラブを150℃〜400℃の温度まで冷却する工程と、
前記スラブを加熱炉に挿入して1030℃〜1130℃の温度まで加熱する工程と、
前記スラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に焼鈍を施して熱間圧延焼鈍鋼板を得る工程と、
前記熱間圧延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程と、
を有し、
前記鋼は、質量%で、
C:0.005%以下、
Si:2.0%〜3.5%、
Mn:0.1%〜1.5%、
Al:0.3%〜1.5%、
S:0.004%以下、
N:0.004%以下、
Ti:0.004%以下、
P:0.0%〜0.2%、
Sn:0.00%〜0.15%、
Sb:0.00%〜0.15%、
REM:0.00%〜0.03%、
Ca:0.00%〜0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
前記冷間圧延鋼板は式3を満足することを特徴とする無方向性電磁鋼板の製造方法。
0.005mm ≦ tc−(tw1+tw2)/2 ≦ 0.015mm ・・・式3
(tcは前記冷間圧延鋼板の板幅方向中央の平均板厚[mm]であり、tw1は前記冷間圧延鋼板の板幅方向の一方の端部から15mm位置の平均板厚[mm]であり、tw2は前記冷間圧延鋼板の板幅方向の他方の端部から15mm位置の平均板厚[mm]である。)
A process of casting steel to obtain a slab;
Cooling the slab to a temperature of 150 ° C. to 400 ° C .;
Inserting the slab into a heating furnace and heating to a temperature of 1030 ° C. to 1130 ° C .;
Subjecting the slab to hot rolling to obtain a hot rolled steel sheet;
Annealing the hot-rolled steel sheet to obtain a hot-rolled annealed steel sheet,
Cold-rolling the hot-rolled annealed steel sheet to obtain a cold-rolled steel sheet;
Applying a final annealing to the cold-rolled steel sheet;
Have
The steel is in mass%
C: 0.005% or less,
Si: 2.0% to 3.5%,
Mn: 0.1% to 1.5%,
Al: 0.3% to 1.5%
S: 0.004% or less,
N: 0.004% or less,
Ti: 0.004% or less,
P: 0.0% to 0.2%,
Sn: 0.00% to 0.15%,
Sb: 0.00% to 0.15%,
REM: 0.00% to 0.03%,
Ca: 0.00% to 0.01%, and the balance: Fe and impurities,
Having a chemical composition represented by
The said cold-rolled steel plate satisfies Formula 3, The manufacturing method of the non-oriented electrical steel plate characterized by the above-mentioned.
0.005 mm ≦ t c − (t w1 + t w2 ) /2≦0.015 mm (formula 3)
(T c is the average sheet thickness [mm] in the center of the cold rolled steel sheet in the sheet width direction, and t w1 is the average sheet thickness [mm at a position 15 mm from one end in the sheet width direction of the cold rolled steel sheet. And t w2 is an average plate thickness [mm] at a position of 15 mm from the other end in the plate width direction of the cold-rolled steel plate.)
鋼の鋳造を行ってスラブを得る工程と、
前記スラブを150℃〜400℃の温度まで冷却する工程と、
前記スラブを加熱炉に挿入して1030℃〜1250℃の温度まで加熱する工程と、
前記スラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に焼鈍を施して熱間圧延焼鈍鋼板を得る工程と、
前記熱間圧延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程と、
を有し、
前記鋼は、質量%で、
C:0.005%以下、
Si:2.0%〜3.5%、
Mn:0.1%〜1.5%、
Al:0.3%〜1.5%、
S:0.004%以下、
N:0.004%以下、
Ti:0.004%以下、
P:0.0%〜0.2%、
Sn:0.00%〜0.15%、
Sb:0.00%〜0.15%、
REM:0.00%〜0.03%、
Ca:0.00%〜0.01%、かつ
残部:Fe及び不純物、
で表される化学組成を有し、
前記化学成分において、
REM:0.001%〜0.03%、若しくは
Ca:0.0003%〜0.01%、
又はこれらの任意の組み合わせが満たされ、
前記冷間圧延鋼板は式3を満足することを特徴とする無方向性電磁鋼板の製造方法。
0.005mm ≦ tc−(tw1+tw2)/2 ≦ 0.015mm ・・・式3
(tcは前記冷間圧延鋼板の板幅方向中央の平均板厚[mm]であり、tw1は前記冷間圧延鋼板の板幅方向の一方の端部から15mm位置の平均板厚[mm]であり、tw2は前記冷間圧延鋼板の板幅方向の他方の端部から15mm位置の平均板厚[mm]である。)
A process of casting steel to obtain a slab;
Cooling the slab to a temperature of 150 ° C. to 400 ° C .;
Inserting the slab into a heating furnace and heating to a temperature of 1030 ° C. to 1250 ° C .;
Subjecting the slab to hot rolling to obtain a hot rolled steel sheet;
Annealing the hot-rolled steel sheet to obtain a hot-rolled annealed steel sheet,
Cold-rolling the hot-rolled annealed steel sheet to obtain a cold-rolled steel sheet;
Applying a final annealing to the cold-rolled steel sheet;
Have
The steel is in mass%
C: 0.005% or less,
Si: 2.0% to 3.5%,
Mn: 0.1% to 1.5%,
Al: 0.3% to 1.5%
S: 0.004% or less,
N: 0.004% or less,
Ti: 0.004% or less,
P: 0.0% to 0.2%,
Sn: 0.00% to 0.15%,
Sb: 0.00% to 0.15%,
REM: 0.00% to 0.03%,
Ca: 0.00% to 0.01%, and the balance: Fe and impurities,
Having a chemical composition represented by
In the chemical component,
REM: 0.001% to 0.03%, or Ca: 0.0003% to 0.01%,
Or any combination of these is satisfied,
The said cold-rolled steel plate satisfies Formula 3, The manufacturing method of the non-oriented electrical steel plate characterized by the above-mentioned.
0.005 mm ≦ t c − (t w1 + t w2 ) /2≦0.015 mm (formula 3)
(T c is the average sheet thickness [mm] in the center of the cold rolled steel sheet in the sheet width direction, and t w1 is the average sheet thickness [mm at a position 15 mm from one end in the sheet width direction of the cold rolled steel sheet. And t w2 is an average plate thickness [mm] at a position of 15 mm from the other end in the plate width direction of the cold-rolled steel plate.)
JP2016008299A 2016-01-19 2016-01-19 Non-oriented electrical steel sheet and method for manufacturing the same Active JP6679948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008299A JP6679948B2 (en) 2016-01-19 2016-01-19 Non-oriented electrical steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008299A JP6679948B2 (en) 2016-01-19 2016-01-19 Non-oriented electrical steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017128759A true JP2017128759A (en) 2017-07-27
JP6679948B2 JP6679948B2 (en) 2020-04-15

Family

ID=59395422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008299A Active JP6679948B2 (en) 2016-01-19 2016-01-19 Non-oriented electrical steel sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6679948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132426A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Non-oriented and thin electrical steel sheet having excellent magnetic and shape properties and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273919A (en) * 1988-09-10 1990-03-13 Nippon Steel Corp Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
JPH02163322A (en) * 1988-03-11 1990-06-22 Nkk Corp Manufacture of nonoriented silicon steel sheet
JPH0361324A (en) * 1989-07-31 1991-03-18 Nkk Corp Production of silicon steel sheet
JPH1161258A (en) * 1997-08-08 1999-03-05 Nkk Corp Manufacture of non-oriented silicon steel sheet low in iron loss
JP2001271147A (en) * 2000-03-27 2001-10-02 Kawasaki Steel Corp Non-oriented silicon steel sheet excellent in magnetic property
JP2005336503A (en) * 2003-05-06 2005-12-08 Nippon Steel Corp Non-oriented silicon steel sheet having excellent core loss and its production method
JP2008260980A (en) * 2007-04-10 2008-10-30 Nippon Steel Corp Method for producing high-grade non-oriented electrical steel sheet
WO2013024899A1 (en) * 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163322A (en) * 1988-03-11 1990-06-22 Nkk Corp Manufacture of nonoriented silicon steel sheet
JPH0273919A (en) * 1988-09-10 1990-03-13 Nippon Steel Corp Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
JPH0361324A (en) * 1989-07-31 1991-03-18 Nkk Corp Production of silicon steel sheet
JPH1161258A (en) * 1997-08-08 1999-03-05 Nkk Corp Manufacture of non-oriented silicon steel sheet low in iron loss
JP2001271147A (en) * 2000-03-27 2001-10-02 Kawasaki Steel Corp Non-oriented silicon steel sheet excellent in magnetic property
JP2005336503A (en) * 2003-05-06 2005-12-08 Nippon Steel Corp Non-oriented silicon steel sheet having excellent core loss and its production method
JP2008260980A (en) * 2007-04-10 2008-10-30 Nippon Steel Corp Method for producing high-grade non-oriented electrical steel sheet
WO2013024899A1 (en) * 2011-08-18 2013-02-21 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132426A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Non-oriented and thin electrical steel sheet having excellent magnetic and shape properties and method for manufacturing same

Also Published As

Publication number Publication date
JP6679948B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6855684B2 (en) Electromagnetic steel sheet and its manufacturing method
KR101598312B1 (en) Anisotropic electromagnetic steel sheet and method for producing same
JP6043808B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN110651058B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP2020117808A (en) Production method of grain-oriented silicon steel sheet, grain-oriented electrical steel sheet and use thereof
JP2017145462A (en) Electromagnetic steel sheet, and method for producing the same
JP6500980B2 (en) Non-oriented electrical steel sheet
JP2015040309A (en) Non-oriented magnetic steel sheet with high magnetic flux density and motor
JP2012149337A (en) High strength electromagnetic steel sheet, and manufacturing method therefor
US10991494B2 (en) Non-oriented electrical steel sheet
JP2021509154A (en) Non-oriented electrical steel sheet and its manufacturing method
US20140083573A1 (en) Non-Grain-Oriented Electrical Steel Strip or Sheet, Component Manufactured from it and Method for Producing a Non-Grain-Oriented Electrical Steel Strip or Sheet
JP2007031793A (en) Method for manufacturing electromagnetic steel sheet
JP2020509184A (en) Non-oriented electrical steel sheet and manufacturing method thereof
US10968503B2 (en) Non-oriented electrical steel sheet
JP2016156044A (en) Nonoriented silicon steel sheet and method for producing the same
WO2014024222A1 (en) High-strength electromagnetic steel sheet and method for producing same
KR20180113556A (en) Method for manufacturing directional electromagnetic steel sheet
US10995393B2 (en) Non-oriented electrical steel sheet
KR101877198B1 (en) Non-oriented electrical steels and method for manufacturing the same
JP6801464B2 (en) Non-oriented electrical steel sheet
JP6638359B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6816516B2 (en) Non-oriented electrical steel sheet
JP6679948B2 (en) Non-oriented electrical steel sheet and method for manufacturing the same
US20240038423A1 (en) Non-oriented electrical steel sheet, and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R151 Written notification of patent or utility model registration

Ref document number: 6679948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151