JP4742876B2 - Heat resistant material with excellent oxidation resistance and brazing - Google Patents

Heat resistant material with excellent oxidation resistance and brazing Download PDF

Info

Publication number
JP4742876B2
JP4742876B2 JP2006009359A JP2006009359A JP4742876B2 JP 4742876 B2 JP4742876 B2 JP 4742876B2 JP 2006009359 A JP2006009359 A JP 2006009359A JP 2006009359 A JP2006009359 A JP 2006009359A JP 4742876 B2 JP4742876 B2 JP 4742876B2
Authority
JP
Japan
Prior art keywords
less
oxidation resistance
brazing
resistant material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006009359A
Other languages
Japanese (ja)
Other versions
JP2007191739A (en
Inventor
伸 石川
信介 井手
康 加藤
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006009359A priority Critical patent/JP4742876B2/en
Publication of JP2007191739A publication Critical patent/JP2007191739A/en
Application granted granted Critical
Publication of JP4742876B2 publication Critical patent/JP4742876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、熱交換器、燃料電池改質器など、ろう付けして作製する各種耐熱部品に好適な耐酸化性とろう付け性に優れる耐熱材料に関する。   The present invention relates to a heat-resistant material excellent in oxidation resistance and brazing suitable for various heat-resistant parts produced by brazing, such as heat exchangers and fuel cell reformers.

従来より、熱交換器、燃料電池改質器などに用いられる耐熱材料には、SUS310S、SUS321H、SUS347Hなどのオーステナイト系ステンレス鋼や、SUH409、SUS444などの高Crフェライト鋼やフェライト系ステンレス鋼が用いられてきた。しかし、これらの鋼はいずれも、耐酸化性が不十分である。   Conventionally, austenitic stainless steels such as SUS310S, SUS321H, and SUS347H, high Cr ferritic steels such as SUH409 and SUS444, and ferritic stainless steels are used as heat-resistant materials used in heat exchangers and fuel cell reformers. Has been. However, all these steels have insufficient oxidation resistance.

特許文献1には、加熱と冷却を繰り返す耐熱部品に適した耐酸化性に優れた耐熱材料として、Cu、Tiなどを含むFe-Cr-Ni合金が提案されているが、Niを20〜35質量%と多量に含むために、コストが高いという問題がある。   Patent Document 1 proposes an Fe-Cr-Ni alloy containing Cu, Ti, etc. as a heat-resistant material excellent in oxidation resistance suitable for heat-resistant parts that repeat heating and cooling. There is a problem that the cost is high due to the inclusion of a large amount of mass%.

そこで、Niを含まない安価な耐熱材料として、特許文献2には、大幅なコスト増を招かない程度にNb、Mo、Alを添加して、母材の結晶粒界にNbおよびMoを含む金属間化合物を析出させ、かつ表面にはAl2O3系の酸化物層を形成させて、耐酸化性を飛躍的に向上させたFe-Cr合金が開示されている。
特開2000-192205号公報 特開2004-285393号公報
Therefore, as an inexpensive heat-resistant material that does not contain Ni, Patent Document 2 adds Nb, Mo, and Al to an extent that does not cause a significant increase in cost, and a metal that contains Nb and Mo in the crystal grain boundary of the base material. An Fe—Cr alloy is disclosed in which an intermetallic compound is precipitated and an Al 2 O 3 -based oxide layer is formed on the surface to greatly improve oxidation resistance.
JP 2000-192205 A JP 2004-285393 A

しかしながら、特許文献2に記載の耐熱材料では、Al添加により表面にAl2O3系の酸化物層を形成させているため水蒸気を含むような過酷な環境での長時間使用には有効であるが、一方ではAl2O3系の酸化物層のため必ずしも良好なろう付け性が得られないという問題がある。 However, the heat-resistant material described in Patent Document 2 is effective for long-term use in harsh environments containing water vapor because an Al 2 O 3 oxide layer is formed on the surface by adding Al. On the other hand, however, there is a problem that good brazing properties cannot always be obtained due to the Al 2 O 3 type oxide layer.

本発明は、高価なNiを用いず、安定して優れた耐酸化性とろう付け性の得られる耐熱材料を提供することを目的とする。   An object of the present invention is to provide a heat-resistant material that can stably obtain excellent oxidation resistance and brazing properties without using expensive Ni.

本発明者らは、Niの含有されないFe-Cr合金からなる耐熱材料の耐酸化性とろう付け性について鋭意研究を重ねた結果、NbとMoを所定の組成比範囲内に納まるように添加し、さらにAlを添加することにより耐酸化性を著しく改善でき、かつAlとNbとMoの含有量の関係を制御することにより優れたろう付け性の得られることを見出した。   As a result of intensive studies on oxidation resistance and brazing properties of heat-resistant materials made of Fe-Cr alloys containing no Ni, the present inventors have added Nb and Mo so as to be within a predetermined composition ratio range. Furthermore, it has been found that oxidation resistance can be remarkably improved by adding Al, and excellent brazing properties can be obtained by controlling the relationship among the contents of Al, Nb and Mo.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.20%以下、Si:0.02〜0.86%、Mn:2.0%以下、Cr:10〜40%、Al:1.02〜3.0%、Nb:0.33〜3.0%、Mo:0.03〜5.0%を含み、残部がFeおよび不可避的不純物からなり、かつNbとMoの含有量が下記の式(1)を、CrとAlの含有量が下記の式(2)を、AlとNbとMoの含有量が下記の式(3)を満たすことを特徴とする耐酸化性とろう付け性に優れる耐熱材料を提供する。
0.1≦[Mo]/[Nb]≦30 ・・・(1)
20≦[Cr]+10×[Al]≦50 ・・・(2)
[Al]≦2.0+([Nb]+[Mo])/8 ・・・(3)
ただし、[M]は元素Mの含有量(質量%)を表す。
The present invention was made on the basis of such findings, and in mass%, C: 0.20% or less, Si: 0.02 to 0.86 %, Mn: 2.0% or less, Cr: 10 to 40%, Al: 1.02 to 3.0 %, Nb: 0.33 to 3.0%, Mo: 0.03 to 5.0%, the balance is Fe and inevitable impurities, and the content of Nb and Mo is the following formula (1), the content of Cr and Al Provides a heat-resistant material excellent in oxidation resistance and brazing, characterized in that the following formula (2) and the contents of Al, Nb, and Mo satisfy the following formula (3).
0.1 ≦ [Mo] / [Nb] ≦ 30 (1)
20 ≦ [Cr] + 10 × [Al] ≦ 50 (2)
[Al] ≦ 2.0 + ([Nb] + [Mo]) / 8 (3)
However, [M] represents the content (mass%) of the element M.

本発明の耐熱材料には、さらに、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種を合計で1.0質量%以下含有させることが好ましい。   The heat-resistant material of the present invention preferably further contains 1.0 mass% or less in total of at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf.

本発明により、高価なNiを用いず、従来技術では実現できなかった耐酸化性とろう付け性に優れた耐熱材料を安定して提供できるようになった。また、本発明の耐熱材料を用いることにより、ろう付けされた耐熱部品の高寿命化、高信頼化を計れるとともに、大幅なコスト低減が可能になった。   According to the present invention, it is possible to stably provide a heat-resistant material excellent in oxidation resistance and brazing that could not be realized by the prior art without using expensive Ni. Further, by using the heat-resistant material of the present invention, it is possible to extend the life and reliability of the brazed heat-resistant component and to greatly reduce the cost.

本発明である耐熱材料の特徴は、AlとNbとMoを複合添加し、NbとMoを含む金属間化合物を母材の結晶粒界に多量に析出させることによりSi、Cr、Feなどの元素の拡散を抑制して、表面にCr2O3などを含むAl2O3系の酸化物層を形成させて、耐酸化性を飛躍的に向上させるとともに、AlとNbとMoの含有量を制御することによりAl2O3系の酸化物層の過度の成長を抑制して、良好なろう付け性を付与したことにある。 The feature of the heat-resistant material according to the present invention is that elements such as Si, Cr, and Fe are added by compounding Al, Nb, and Mo, and precipitating a large amount of intermetallic compounds containing Nb and Mo at the crystal grain boundaries of the base material. Suppresses the diffusion of aluminum and forms an Al 2 O 3 oxide layer containing Cr 2 O 3 on the surface, dramatically improving oxidation resistance and increasing the content of Al, Nb, and Mo. By controlling it, excessive growth of the Al 2 O 3 -based oxide layer is suppressed, and good brazing properties are imparted.

NbとMoを含む金属間化合物は、Fe-Si-Cr-Nb-Mo系の複合金属間化合物であり、Fe、Si、Crなどの元素の拡散を抑制するが、Alの拡散には大きく影響しない。その結果、Alが3.0質量%以下でも、高温酸化雰囲気中で表面にAlの拡散を促進でき、耐酸化性にとって好ましいAl2O3系の酸化物層を形成させることができる。なお、この金属間化合物がFe、Si、Crなどの元素の拡散を抑制するには、それが結晶粒界に密に析出することが必要であり、大きさ200nm以上の金属間化合物が、相互に最近接距離が20μm以下となるように析出していることが好ましい。これより大きい間隔で析出すると、十分にFe、Si、Crなどの元素の拡散を抑制できない場合がある。また、この金属間化合物は、本発明の耐熱材料中に予め析出させておいてもよいが、本発明の耐熱材料を高温酸化雰囲気中で使用する時に析出させてもよい。いずれの場合も、高温酸化雰囲気中でAlの拡散を促進でき、耐酸化性にとって好ましいAl2O3系の酸化物層を形成できる。 The intermetallic compound containing Nb and Mo is an Fe-Si-Cr-Nb-Mo based intermetallic compound that suppresses the diffusion of elements such as Fe, Si, and Cr, but has a significant effect on the diffusion of Al. do not do. As a result, even when Al is 3.0% by mass or less, diffusion of Al can be promoted on the surface in a high-temperature oxidizing atmosphere, and an Al 2 O 3 -based oxide layer preferable for oxidation resistance can be formed. In order for this intermetallic compound to suppress the diffusion of elements such as Fe, Si, and Cr, it is necessary that the intermetallic compound precipitate densely at the crystal grain boundary. Further, it is preferable to deposit so that the closest distance is 20 μm or less. If it is deposited at a larger interval, diffusion of elements such as Fe, Si and Cr may not be sufficiently suppressed. The intermetallic compound may be deposited in advance in the heat-resistant material of the present invention, but may be deposited when the heat-resistant material of the present invention is used in a high-temperature oxidizing atmosphere. In any case, Al diffusion can be promoted in a high-temperature oxidizing atmosphere, and an Al 2 O 3 -based oxide layer preferable for oxidation resistance can be formed.

次に、本発明の耐熱材料の成分組成について説明する。なお、以下の「%」は「質量%」を表す。   Next, the component composition of the heat-resistant material of the present invention will be described. The following “%” represents “% by mass”.

C:0.20%以下
Cは、炭化物を形成して高温強度を高める作用を有する。そのため、C量は0.001%以上とすることが好ましい。しかし、その量が0.20%を超えると加工性を劣化させたり、Crと結合することにより耐酸化性に有効なCr量を減少させるため、C量は0.20%以下、好ましくは0.10%以下とする。
C: 0.20% or less
C has the effect of increasing the high temperature strength by forming carbides. Therefore, the C content is preferably 0.001% or more. However, if the amount exceeds 0.20%, the workability deteriorates or the amount of Cr effective for oxidation resistance is reduced by combining with Cr, so the C amount is 0.20% or less, preferably 0.10% or less. .

Si:0.02〜1.0%
Siは、金属間化合物の析出を促進する作用を有する。そのため、Si量は0.02%以上、好ましくは0.05%以上とする。しかし、その量が1.0%を超えると加工性の劣化を招くので、Si量は1.0%以下とする。
Si: 0.02 to 1.0%
Si has an action of promoting precipitation of intermetallic compounds. Therefore, the Si content is 0.02% or more, preferably 0.05% or more. However, if the amount exceeds 1.0%, workability is deteriorated, so the Si amount is 1.0% or less.

Mn:2.0%以下
Mnは、酸化物層の密着性を向上させるのに効果的である。そのため、Mn量は0.001%以上とすることが好ましい。しかし、その量が2.0%を超えると過度の酸化物層の成長を招くため、Mn量は2.0%以下、好ましくは1.5%以下とする。
Mn: 2.0% or less
Mn is effective in improving the adhesion of the oxide layer. Therefore, the Mn content is preferably 0.001% or more. However, if the amount exceeds 2.0%, excessive growth of the oxide layer is caused. Therefore, the Mn amount is set to 2.0% or less, preferably 1.5% or less.

Cr:10〜40%
Crは、Cr2O3となってAl2O3系の酸化物層に含まれ、耐酸化性を向上させる。その量が10%未満では、その効果が得られないので、Cr量は10%以上とする。一方、その量が40%を超えると加工性の劣化を招くので、Cr量は40%以下、好ましくは30%以下とする。
Cr: 10-40%
Cr becomes Cr 2 O 3 and is contained in the Al 2 O 3 -based oxide layer to improve the oxidation resistance. If the amount is less than 10%, the effect cannot be obtained, so the Cr amount is 10% or more. On the other hand, if the amount exceeds 40%, workability is deteriorated, so the Cr amount is 40% or less, preferably 30% or less.

Al:0.55〜3.0%
Alは、Crと同様、耐酸化性を向上させる重要な元素である。例えば、水蒸気を含む800℃以上の過酷な環境で長時間使用する場合には、Al量を0.55%以上とする必要がある。一方、その量が3.0%を超えると製造性が悪化し、コスト増を招いたり、ろう付け性を劣化させるので、Al量は3.0%以下、好ましくは2.0%以下とする。
Al: 0.55-3.0%
Al, like Cr, is an important element that improves oxidation resistance. For example, when used for a long time in a harsh environment of 800 ° C. or higher containing water vapor, the Al content needs to be 0.55% or higher. On the other hand, if the amount exceeds 3.0%, the manufacturability deteriorates, resulting in an increase in cost and the deterioration of brazing, so the Al amount is 3.0% or less, preferably 2.0% or less.

なお、CrとAlの含有量は、それぞれ単独では上記の範囲を満たした上で、かつ上記式(2)、すなわち20≦[Cr]+10×[Al]≦50を満足する必要がある。これは、([Cr]+10×[Al])が20未満では耐酸化性が不十分であり、50を超えると製造性を著しく悪化させるためである。   In addition, the contents of Cr and Al need to satisfy the above-mentioned range independently and satisfy the above formula (2), that is, 20 ≦ [Cr] + 10 × [Al] ≦ 50. This is because if ([Cr] + 10 × [Al]) is less than 20, the oxidation resistance is insufficient, and if it exceeds 50, the productivity is remarkably deteriorated.

Nb:0.1〜3.0%、Mo:0.03〜5.0%
上述したように、本発明の耐熱材料では、Fe-Cr合金にNbとMoを複合添加することにより、高温長時間の使用環境下で多量の金属間化合物を母材の粒界に存在させて、Fe、Si、Crなどの元素の拡散を抑制し、耐酸化性の向上を図っている。また、これらの元素は高温強度を高める作用も有するが、過剰の添加は加工性の劣化を招く。このような観点から、Nb量は0.1〜3.0%、好ましくは0.1〜2.0%、また、Mo量は0.03〜5.0%、好ましくは0.1〜3.0%とする必要がある。
Nb: 0.1-3.0%, Mo: 0.03-5.0%
As described above, in the heat-resistant material of the present invention, by adding Nb and Mo to the Fe-Cr alloy in combination, a large amount of intermetallic compounds are present at the grain boundaries of the base material in a high temperature and long time use environment. , Fe, Si, Cr and other elements are prevented from diffusing to improve oxidation resistance. These elements also have an effect of increasing the high temperature strength, but excessive addition causes deterioration of workability. From such a viewpoint, the Nb amount is 0.1 to 3.0%, preferably 0.1 to 2.0%, and the Mo amount is 0.03 to 5.0%, preferably 0.1 to 3.0%.

なお、NbとMoの含有量は、それぞれ単独では上記の範囲を満たした上で、かつ上記式(1)、すなわち0.1≦[Mo]/[Nb]≦30、好ましくは0.5≦[Mo]/[Nb]≦30を満足する必要がある。これは、[Mo]/[Nb]はFe-Si-Cr-Nb-Mo系の金属間化合物の生成量の指標であり、この値が0.1未満あるいは30を超えると、NbあるいはMoの単独添加の場合と同様になり、耐酸化性の向上に有効な金属間化合物の生成量が少なくなるためである。   The contents of Nb and Mo each independently satisfy the above range, and the above formula (1), that is, 0.1 ≦ [Mo] / [Nb] ≦ 30, preferably 0.5 ≦ [Mo] / [Nb] ≦ 30 must be satisfied. [Mo] / [Nb] is an index of the amount of Fe-Si-Cr-Nb-Mo-based intermetallic compound produced. When this value is less than 0.1 or exceeds 30, the addition of Nb or Mo alone This is because the production amount of the intermetallic compound effective for improving the oxidation resistance is reduced.

さらに、AlとNbとMoの含有量は、それぞれ単独では上記の範囲を満たした上で、かつ上記(3)、すなわち[Al]≦2.0+([Nb]+[Mo])/8を満足する必要がある。これは、Alを多量に添加すると、ろう付け時にAl2O3系の酸化物層を形成するためろう付け性が劣化するが、NbとMoはAl2O3系の酸化物の成長を抑制する効果があるので、Al量に応じてNbとMoの含有量を制御、すなわち式(3)のように制御すれば、耐酸化性とろう付け性を安定して両立させることができるためである。なお、厳しいガス気密性が求められる場合には、[Al]≦1.5+([Nb]+[Mo])/8を満たすように、AlとNbとMoの含有量を制御することが好ましい。 Furthermore, the contents of Al, Nb, and Mo individually satisfy the above range and satisfy the above (3), that is, [Al] ≦ 2.0 + ([Nb] + [Mo]) / 8. There is a need to. This is because when a large amount of Al is added, the brazeability deteriorates because an Al 2 O 3 oxide layer is formed during brazing, but Nb and Mo suppress the growth of Al 2 O 3 oxide. Therefore, if the Nb and Mo contents are controlled according to the Al content, that is, if the control is performed as shown in Equation (3), both oxidation resistance and brazing can be stably achieved. is there. When strict gas tightness is required, it is preferable to control the contents of Al, Nb, and Mo so as to satisfy [Al] ≦ 1.5 + ([Nb] + [Mo]) / 8.

本発明の耐熱材料の残部は、Feおよび不可避的不純物であるが、さらに、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種を合計で1.0質量%以下、好ましくは0.005〜0.5%含有させると、酸化物層の密着性が向上し、耐酸化性がより改善される。   The balance of the heat-resistant material of the present invention is Fe and inevitable impurities, but at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf in total When the content is 1.0% by mass or less, preferably 0.005 to 0.5%, the adhesion of the oxide layer is improved, and the oxidation resistance is further improved.

なお、本発明の耐熱材料には、上記の成分の他に、必要に応じて、P:0.05%以下、S:0.05%以下、N:0.5%以下、Cu:0.20%以下、Ni:1.0%以下、V:1.0%以下、W:3.0%以下、Ta:2.0%以下、Ti:0.5%以下、Mg:0.05%以下、Ca:0.05%以下、Co:5.0%以下などの元素を含有できる。   In addition to the above components, the heat-resistant material of the present invention, if necessary, P: 0.05% or less, S: 0.05% or less, N: 0.5% or less, Cu: 0.20% or less, Ni: 1.0% Hereinafter, elements such as V: 1.0% or less, W: 3.0% or less, Ta: 2.0% or less, Ti: 0.5% or less, Mg: 0.05% or less, Ca: 0.05% or less, Co: 5.0% or less can be contained.

本発明である耐熱材料の溶製方法は、通常の方法がすべて適用できるので、特に限定する必要はないが、例えば、製鋼工程では、転炉、電気炉等で溶製し、強攪拌・真空酸素脱炭処理(SS-VOD)により2次精錬を行うのが好適である。鋳造方法は、生産性、品質の面から連続鋳造が好ましい。鋳造により得られたスラブは、必要により再加熱、熱間圧延、700〜1200℃の焼鈍が施され、酸洗されて熱延板の耐熱材料となる。熱延板を冷間圧延し、あるいはさらに700〜1200℃の焼鈍し、酸洗して冷延板の耐熱材料とすることもできる。   The method for melting the heat-resistant material according to the present invention is not particularly limited since all ordinary methods can be applied. For example, in the steelmaking process, the material is melted in a converter, an electric furnace, etc. It is preferable to perform secondary refining by oxygen decarburization treatment (SS-VOD). The casting method is preferably continuous casting in terms of productivity and quality. The slab obtained by casting is reheated, hot-rolled, and annealed at 700 to 1200 ° C. if necessary, and pickled to become a heat-resistant material for hot-rolled sheets. The hot-rolled sheet can be cold-rolled, or further annealed at 700 to 1200 ° C., pickled, and used as a heat-resistant material for the cold-rolled sheet.

表1、2に示す成分組成を有する鋼No.1〜37を転炉-2次精錬により溶製し、連続鋳造により200mm厚のスラブとした。これらのスラブを1100〜1300℃に加熱した後、熱間圧延して板厚5mmの熱延板とし、700〜1200℃の熱延板焼鈍して酸洗処理を施した。次いで、冷間圧延により板厚1mmの冷延板とし、700〜1200℃の焼鈍を行った。そして、下記の耐酸化性試験およびろう付け性試験を行い、耐酸化性とろう付け性を評価した。
耐酸化性試験:焼鈍後の冷延板から1mm×30mm×30mmの試験片を切り出し、850℃加熱され、30%の水蒸気を混合した大気が流れる炉中に1000時間保持する熱処理を行い、熱処理前後の試験片の重量差を測定し、その重量差を試験片の全表面積で除して酸化増量(g/m2)を算出した。そして、酸化増量が2.0g/m2以下であれば、耐酸化性が良好であるとした。
ろう付け性試験:焼鈍後の冷延板から1mm×50mm×50mmの試験片を2枚切り出し、両試験片のほぼ中央に10mm×10mmのニッケルろうシート(BNi-5、厚さ:70μm、ナイス株式会社製)を挟んで、真空ろう付けを行った。ろう付け条件は、10-3Pa以上の真空度で、1160℃×30分とした。ろう付け後の試験片のろうを挟んだ部分を3ヶ所切断し、その断面をバフ研磨し、王水でエッチング後、光学顕微鏡で観察し、試験片表面がろうで濡れている長さSを測定し、Sとろうが存在する長さS0の比、(S/S0)×100(%)を求めた。そして、この比が80%以上であれば、ろう付け性が良好であるとした。
Steel Nos. 1 to 37 having the component compositions shown in Tables 1 and 2 were melted by converter-secondary refining, and 200 mm thick slabs were formed by continuous casting. These slabs were heated to 1100 to 1300 ° C. and then hot-rolled to form hot-rolled sheets having a thickness of 5 mm, and annealed at 700 to 1200 ° C. and pickled. Subsequently, it cold-rolled into a cold-rolled sheet having a thickness of 1 mm and annealed at 700 to 1200 ° C. Then, the following oxidation resistance test and brazing property test were performed to evaluate the oxidation resistance and brazing property.
Oxidation resistance test: A 1mm x 30mm x 30mm test piece is cut out from the cold-rolled sheet after annealing, heated at 850 ° C, and heat-treated for 1000 hours in a furnace that flows in an atmosphere mixed with 30% water vapor. The weight difference between the front and rear test pieces was measured, and the weight difference was divided by the total surface area of the test piece to calculate the increase in oxidation (g / m 2 ). And if the oxidation increase was 2.0 g / m 2 or less, the oxidation resistance was considered good.
Brazing test: Two 1 mm x 50 mm x 50 mm test pieces were cut out from the cold-rolled sheet after annealing, and a 10 mm x 10 mm nickel brazing sheet (BNi-5, thickness: 70 µm, nice) at the center of both test pieces. Vacuum brazing was performed across the product. Brazing conditions were 1160 ° C. × 30 minutes at a vacuum of 10 −3 Pa or higher. Cut the brazed part of the specimen after brazing at three places, buff the cross section, etch with aqua regia, observe with an optical microscope, and measure the length S where the specimen surface is wet with wax. Measurement was made to determine the ratio of S to the length S 0 where wax exists, (S / S 0 ) × 100 (%). And if this ratio was 80% or more, it was said that the brazing property was good.

結果を表3に示す。本発明例である鋼No.1〜24は、いずれも酸化増量が2.0g/m2以下で、かつ(S/S0)×100が80%以上であり、優れた耐酸化性とろう付け性を有していることがわかる。 The results are shown in Table 3. Steel Nos. 1 to 24, which are examples of the present invention, all have an oxidation increase of 2.0 g / m 2 or less, and (S / S 0 ) × 100 is 80% or more, and have excellent oxidation resistance and brazing. It turns out that it has sex.

Figure 0004742876
Figure 0004742876

Figure 0004742876
Figure 0004742876

Figure 0004742876
Figure 0004742876

Claims (2)

質量%で、C:0.20%以下、Si:0.02〜0.86%、Mn:2.0%以下、Cr:10〜40%、Al:1.02〜3.0%、Nb:0.33〜3.0%、Mo:0.03〜5.0%を含み、残部がFeおよび不可避的不純物からなり、かつNbとMoの含有量が下記の式(1)を、CrとAlの含有量が下記の式(2)を、AlとNbとMoの含有量が下記の式(3)を満たすことを特徴とする耐酸化性とろう付け性に優れる耐熱材料;
0.1≦[Mo]/[Nb]≦30 ・・・(1)
20≦[Cr]+10×[Al]≦50 ・・・(2)
[Al]≦2.0+([Nb]+[Mo])/8 ・・・(3)
ただし、[M]は元素Mの含有量(質量%)を表す。
In mass%, C: 0.20% or less, Si: 0.02 to 0.86 %, Mn: 2.0% or less, Cr: 10 to 40%, Al: 1.02 to 3.0%, Nb: 0.33 to 3.0%, Mo: 0.03 to 5.0% And the balance is Fe and inevitable impurities, and the content of Nb and Mo is the following formula (1), the content of Cr and Al is the following formula (2), the content of Al, Nb and Mo A heat-resistant material excellent in oxidation resistance and brazing, characterized by satisfying the following formula (3):
0.1 ≦ [Mo] / [Nb] ≦ 30 (1)
20 ≦ [Cr] + 10 × [Al] ≦ 50 (2)
[Al] ≦ 2.0 + ([Nb] + [Mo]) / 8 (3)
However, [M] represents the content (mass%) of the element M.
さらに、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種を合計で1.0質量%以下含有することを特徴とする請求項1に記載の耐酸化性とろう付け性に優れる耐熱材料。   The acid-resistant product according to claim 1, further comprising at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf in a total amount of 1.0% by mass or less. Heat resistant material with excellent chemical and brazing properties.
JP2006009359A 2006-01-18 2006-01-18 Heat resistant material with excellent oxidation resistance and brazing Active JP4742876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009359A JP4742876B2 (en) 2006-01-18 2006-01-18 Heat resistant material with excellent oxidation resistance and brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009359A JP4742876B2 (en) 2006-01-18 2006-01-18 Heat resistant material with excellent oxidation resistance and brazing

Publications (2)

Publication Number Publication Date
JP2007191739A JP2007191739A (en) 2007-08-02
JP4742876B2 true JP4742876B2 (en) 2011-08-10

Family

ID=38447676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009359A Active JP4742876B2 (en) 2006-01-18 2006-01-18 Heat resistant material with excellent oxidation resistance and brazing

Country Status (1)

Country Link
JP (1) JP4742876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349153B2 (en) * 2009-06-15 2013-11-20 日新製鋼株式会社 Ferritic stainless steel for brazing and heat exchanger members

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228616A (en) * 1984-04-25 1985-11-13 Sumitomo Metal Ind Ltd Manufacture of hot rolled steel strip of ferrite stainless steel
JPS63118011A (en) * 1986-11-05 1988-05-23 Nisshin Steel Co Ltd Production of ferritic stainless steel materials having excellent corrosion resistance of weld zone
JP2004285393A (en) * 2003-03-20 2004-10-14 Jfe Steel Kk Heat resistant material
JP2005206884A (en) * 2004-01-23 2005-08-04 Jfe Steel Kk Fe-Cr ALLOY FOR FUEL CELL
JP2005220416A (en) * 2004-02-06 2005-08-18 Jfe Steel Kk Metallic material for fuel cell, and solid oxide type fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228616A (en) * 1984-04-25 1985-11-13 Sumitomo Metal Ind Ltd Manufacture of hot rolled steel strip of ferrite stainless steel
JPS63118011A (en) * 1986-11-05 1988-05-23 Nisshin Steel Co Ltd Production of ferritic stainless steel materials having excellent corrosion resistance of weld zone
JP2004285393A (en) * 2003-03-20 2004-10-14 Jfe Steel Kk Heat resistant material
JP2005206884A (en) * 2004-01-23 2005-08-04 Jfe Steel Kk Fe-Cr ALLOY FOR FUEL CELL
JP2005220416A (en) * 2004-02-06 2005-08-18 Jfe Steel Kk Metallic material for fuel cell, and solid oxide type fuel cell

Also Published As

Publication number Publication date
JP2007191739A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP5600012B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products
WO2012018074A1 (en) Ferritic stainless steel
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5119605B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP6037882B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
KR101699646B1 (en) Stainless steel sheet and stainless steel foil
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
CN111989417A (en) Duplex stainless steel clad steel sheet and method for manufacturing same
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JPH10140296A (en) Al-containing austenitic stainless steel excellent in hot workability
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
JP5311942B2 (en) Stainless steel for brazing
EP3187609B1 (en) Ferritic stainless steel foil and production method for same
KR20190012216A (en) Ferritic stainless steel plate
JP2021161470A (en) Ferritic stainless steel sheet and welded structure
JP2021055141A (en) Ferritic stainless steel
JP4742876B2 (en) Heat resistant material with excellent oxidation resistance and brazing
JP3915717B2 (en) Thin stainless steel sheet
WO1994021836A1 (en) Ferritic stainless steel excellent in oxidation resistance
JP4259151B2 (en) Heat resistant material
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP2007191740A (en) Heat resistant material having excellent oxidation resistance and creep property
JP5343446B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP2017066431A (en) Ferritic stainless linear steel material for fastening component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4742876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250