JP4309140B2 - Ferritic stainless steel for automotive exhaust system equipment - Google Patents

Ferritic stainless steel for automotive exhaust system equipment Download PDF

Info

Publication number
JP4309140B2
JP4309140B2 JP2003007585A JP2003007585A JP4309140B2 JP 4309140 B2 JP4309140 B2 JP 4309140B2 JP 2003007585 A JP2003007585 A JP 2003007585A JP 2003007585 A JP2003007585 A JP 2003007585A JP 4309140 B2 JP4309140 B2 JP 4309140B2
Authority
JP
Japan
Prior art keywords
content
less
steel
ferritic stainless
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003007585A
Other languages
Japanese (ja)
Other versions
JP2004218013A (en
Inventor
信彦 平出
治彦 梶村
信二 柘植
光雄 宮原
洋介 鷲見
健久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp, Toyota Motor Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2003007585A priority Critical patent/JP4309140B2/en
Publication of JP2004218013A publication Critical patent/JP2004218013A/en
Application granted granted Critical
Publication of JP4309140B2 publication Critical patent/JP4309140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車排気系機器用フェライト系ステンレス鋼に係り、特に、900℃以下の温度で使用されるエキゾーストマニホールド、フロントパイプ、センターパイプ等の自動車排気系機器に好適なフェライト系ステンレス鋼に関する。
【0002】
【従来の技術】
近年、自動車の排ガス規制の強化や軽量化の観点から自動車排気系機器にSUH409L、SUS430J1L、SUS436L等のフェライト系ステンレス鋼の薄板または鋼管が使用されるようになってきており、その量は年々増加している。これらのフェライト系ステンレス鋼は下記の(1)〜(3)の特徴を有する。
(1)熱膨張係数が小さく、熱疲労特性に優れること。
(2)繰り返し酸化をうける環境での耐スケール剥離性が良好であること。
(3)オーステナイト系ステンレスに比べ安価であること。
【0003】
自動車排気系機器のうち、エキゾーストマニホールド用鋼材としては、従来、球状黒鉛鋳鉄に代表される鋳物製が主流であったが、フェライト系ステンレス製の薄板あるいは鋼管への切り替えが進んでいる。エキゾーストマニホールドには、優れた高温強度、熱疲労特性、耐酸化性、加工性等が要求される。最近、軽量化や車内の快適性の観点からエンジンルームがますます狭くなる傾向にあり、複雑な形状に加工されるエキゾーストマニホールドには、さらなる加工性の向上が求められている。また、加工性を向上させることは、部品メーカでの工数削減、部品コストの低減につながる。
【0004】
排ガス規制の強化に伴い触媒を早期に活性化させることが必要となるため、排ガス温度は上昇する傾向にあり、エキゾーストマニホールドの材料温度は900〜950℃程度まで上昇するといわれている。
【0005】
特許文献1〜4等では、こうした材料温度に対応可能なステンレス鋼が提案されている。これらは、SUS444系に分類される鋼種で、17%以上のCrおよび多量のNb、Moが含まれており、優れた高温強度、熱疲労特性および耐酸化性を有するものの、加工性に劣るため、加工コストが高くなる。
【0006】
特許文献5〜7等には、Crが13〜15%で、Nbを含む、SUS429系に分類されるフェライト系ステンレス鋼が提案されているが、加工性、コスト面では適用性があるものの、高温強度、熱疲労特性が不足する。
【0007】
特許文献8には、Siを0.10%以下、SiとMoの積が0.15以下であることを特徴とする1000℃での耐酸化スケール剥離性に優れたMo含有フェライト系ステンレス鋼が開示されている。しかし、この発明の目的は1000℃という高温での耐スケール剥離性の改善であり、高温強度および加工性については考慮されていない。
【0008】
【特許文献1】
特許第2696584号公報
【特許文献2】
特許第2801779号公報
【特許文献3】
特許第2880839号公報
【特許文献4】
特許第2923825号公報
【特許文献5】
特許第2562740号公報
【特許文献6】
特許第3004784号公報
【特許文献7】
特許第2803538号公報
【特許文献8】
特許第3242007号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記の問題を解決するためになされたものであり、SUS429系鋼と同等の加工性を有し、材料温度900℃においてSUS444系鋼と同等の高温強度および熱疲労特性を有するとともに、耐スケール剥離性にも優れた自動車排気系機器に好適なフェライト系ステンレス鋼を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、下記の自動車排気系機器用フェライト系ステンレス鋼を要旨とする。
【0011】
質量%で、C:0.02%以下、N:0.02%以下、Si:0.3%以下、Mn:0.5%以下、S:0.002%以下、Cu:0.2〜0.8%、Cr:15〜18%、Nb:0.2〜0.5%、Ti:0.03〜0.3%、Al:0.003〜0.2%、Ni:0〜1%およびB:0〜0.005%を含有し、CおよびNの合計含有量が0.03%以下であり、MoおよびWの1種以上を下記の(1)式を満足する範囲で含み、残部がFeおよび不可避的不純物からなることを特徴とする自動車排気系機器用フェライト系ステンレス鋼。
【0012】
2.81≦1.4Mo+W≦4.5 …(1)
但し、(1)式中のMoおよびWは、それぞれの含有量(質量%)である。
【0013】
本発明の自動車排気系機器用フェライト系ステンレス鋼は、Feの一部に代えて、Ca:0.0002〜0.005%、REM:0.0001〜0.01%およびY:0.0001〜0.01%のうちの一種以上を含有するのが望ましい。
【0014】
【発明の実施の形態】
MoおよびNbは高温強度の向上に有効な元素であり、CrおよびSiは、耐酸化性を向上させるのに有効な元素であるが、いずれの元素も加工性を劣化させ易い元素である。従って、必要となる高温強度、耐酸化性を維持しつつ、加工性を向上させるには、これら元素の含有量を最適化する必要があるとともに、他の元素と組み合わせて使用することが重要となる。そこで、本発明者らは、高温強度、加工性および耐酸化性に対する各種元素の効果を検討した結果、下記の知見を得た。なお、以下の説明において「質量%」を単に「%」と表記する。
【0015】
図1は、Cu含有量と鋼の機械的性能との関係を示す図であり、(a)はCu含有量と常温伸びおよびランクフォード値(以下、「r値」という)との関係を示し、(b)はCu含有量と900℃でのYS(降伏強さ)およびTS(引張強さ)との関係を示す。なお、供試材は16Cr-1.5Mo-0.35NbをベースとしてCu含有量を変化させた鋼である。図1に示すように、高温強度を保持または向上させつつ、加工性の重要な指標である常温伸びおよびr値を向上させるのに有効なCu含有量の範囲が存在する。
【0016】
図2は、Ti含有量と鋼の機械的性能との関係を示す図であり、(a)はTi含有量と常温伸びおよびr値との関係を示し、(b)はTi含有量と900℃でのYSおよびTSとの関係を示す。なお、供試材は16Cr-1.5Mo-0.35NbをベースとしてTi含有量を変化させた鋼である。Tiの添加は、固溶Nbの確保に有効であり、図2に示すように高温強度を向上させるとともに、常温での伸びおよびr値を改善させる効果を有する。
【0017】
図3は、Si含有量と酸化増量およびスケール剥離量との関係を示す図である。なお、供試材は16Cr-2Mo-0.35Nb-0.18Ti-0.05AlをベースとしてSi含有量を変化させた鋼である。図3に示すように、耐スケール剥離性を改善しつつ、常温伸びおよびr値を確保することができる適正なSi含有量が存在する。
【0018】
MoおよびWは高温強度の向上に寄与し、MoはWの1.4倍の効果を有する。また、MoはNbに比べて常温伸びを劣化させる傾向よりも高温強度を向上させる傾向が大きい。更に、MoおよびWは高温環境下での高温強度の低下を抑制するのに有効である。
【0019】
本発明は、このような知見に基づいてなされたものである。以下、本発明で規定される化学組成について更に詳しく説明する。
【0020】
C:0.02%以下、N:0.02%以下
CおよびNは、いずれも鋼の硬質にして加工性を低下させるので、これらの含有量はできるだけ少ない方がよい。従って、Cの含有量を0.02%以下とし、Nの含有量を0.02%以下とした。また、これらの元素の含有量がそれぞれ規定される範囲内であっても、その合計含有量が多い場合には、加工性を低下させる場合がある。従って、CおよびNの合計含有量を0.03%以下とした。
【0021】
Si:0.3%以下
Siは、酸化増量を抑え耐酸化性を向上させる効果を有する元素であるとともに、脱酸元素として有効な元素である。Siは積極的に添加しなくてもよく、含有量の下限は不純物レベルであってもよい。但し、上記の効果を確実に得るためには、0.1%以上含有させるのが望ましい。しかし、Siは鋼を硬質にするので常温伸びおよびr値を低下させる。酸化スケールが排ガス中に混入すると触媒性能等に悪影響を及ぼす可能性があり、酸化スケールの増量を抑制することは重要であるが、Siを過剰に添加すると、図3に示すように酸化スケールの剥離が多くなる。このため、Siの含有量を0.3%以下とした。
【0022】
Mn:0.5%以下
Mnは、Siとともに脱酸元素として有効な元素である。Mnも積極に添加しなくてもよい。従って、含有量の下限は不純物レベルでもよい。但し、上記の効果を確実に得るためには0.05%以上含有させるのが望ましい。しかし、Mnは、Sと結合してMnSを生成するので、過剰に添加すると耐酸化性を劣化させる。従って、Mnの含有量を0.5%以下とした。
【0023】
S:0.002%以下
Sは、製造上、不可避に鋼中に混入する不純物の一つであるが、MnSを形成し耐酸化性に悪影響をあたえるため、その含有量はできるだけ少ないことが望ましい。従って、Sの含有量を0.002%以下に制限した。
【0024】
Cu:0.2〜0.8%
Cuは、フェライト系ステンレス鋼の高温強度を損なうことなく、加工性を向上させる上で重要な元素である。図1に示すように、適量の添加は常温伸びおよびr値を向上させて加工性の向上に寄与するとともに、高温強度を維持または向上させる。その効果を発現させるにはCuを0.2%以上含有させることが必要である。しかし、過剰の添加はかえって常温伸びおよびr値を低下させるとともに、スケール剥離を助長する。従って、Cuの含有量を0.2〜0.8%とした。好ましいのは0.3〜0.6%である。
【0025】
Cr:15〜18%
Crは、耐食性および耐酸化性を維持するために有効な元素である。900℃での耐酸化性を向上させるにはその含有量を15%以上とする必要がある。しかし、過剰の添加は加工性を低下させるとともに、コストの上昇を招く。従って、Crの含有量を15〜18%とした。より好ましいのは16〜18%である。
【0026】
Nb:0.2〜0.5%
Nbは、高温強度を向上させる上で重要な元素であり、この効果は、特に固溶状態で発揮される。また、Nbは、CおよびNを固定し、加工性および耐食性を改善する効果も有する元素である。これら効果を得るためには、Nbを0.2%以上含有させることが必要である。しかし、過剰の添加は常温伸びおよびr値を低下させる。さらに、本発明で対象とする鋼材の主たる使用温度域である800〜900℃に加熱されると、短時間でラーベス相(Fe2Nb)を生成し、強化に有効な固溶Nbが減少して高温強度が低下する。
【0027】
図4は、Nb含有量と常温伸びおよび900℃でのYSとの関係を示す図である。なお、供試材は16Cr-1.5MoをベースとしてNb含有量を変化させた鋼である。図4に示すように、Nb含有量が0.5%を超えても、高温強度が向上せず、常温伸びは急速に減少する。従って、Nb含有量を0.2〜0.5%とした。
【0028】
MoおよびWの1種以上:「2.0≦1.4Mo+W≦4.5」を満足する範囲
MoおよびWは、いずれも高温強度を向上させ、かつ高い温度域で加熱保持した後の高温強度の低下を抑制する元素であり、本発明において重要な元素である。MoおよびWは、いずれも固溶状態で強化に寄与し、概ねその含有量に比例して強度が向上する。しかし、MoとWとは、それぞれの含有量あたりの強度の増加量が異なり、Moと同等の高温強度の増加量を得るのに必要なWの含有量は、Moの1.4倍である。本発明で必要な強度を得るには、1.4Mo+Wで2.0%以上必要である。含有量を増加させればさせるほと高温強度が増加するが、過剰の添加は加工性に悪影響をあたえる。従って、MoおよびWの1種以上を「1.4Mo+W」が2.0〜4.5%の範囲となるように含有させることとした。好ましい「1.4Mo+W」の範囲は、2.5〜4%である。
【0029】
Ti:0.03〜0.3%
Tiは、本発明において重要な元素であり、加工性および高温強度の向上のために含有させる。TiはNbと同様、CおよびNと結合する作用を有するが、Nbに比べNと結びつきやすい。NbとTiを同時に含有させると、Tiは主としてNと結合して窒化物を形成し、残りのTiはNbとともにCと結合し、TiおよびNbの複合炭化物を形成する。この複合炭化物は、Nbの炭化物よりも高温で析出し、TiNを核として析出しやすい。
【0030】
このため、その周辺には、固溶したCおよびNの存在しない領域が存在し、加工性向上に寄与する。TiがNまたはCと結合することにより固溶Nbも確保されるため、高温強度の向上にも有効である。これらの効果を得るには、Tiは少なくとも0.03%含有させることが必要であるが、その含有量が過剰な場合、加工性および高温強度の向上効果が飽和するとともに、耐酸化性および靱性に悪影響を及ぼす。従って、Tiの含有量を0.03〜0.3%とした。好ましい含有量は0.05〜0.25%である。
【0031】
Al:0.003〜0.2%
Alは、脱酸元素であるとともに、Nと結合し加工性および靱性を改善する効果を有する元素である。また、Alは、密着性の良好な酸化スケールを生成させて耐スケール剥離性を改善する上でも有用な元素である。Siは耐酸化性に有用である反面、加工性を低下させる作用があるが、Alを含有させることで耐酸化性に必要なSi量を軽減でき、加工性を確保できる。これらの効果を得るには0.003%以上の含有が必要であるが、過剰の添加は、造管溶接性、靱性の低下を招くため0.2%以下とした。より望ましいのは0.005〜0.1%である。
【0032】
Ni:0〜1%
Niは、添加しなくてもよい元素であるが、添加すると靱性を向上させるため、必要に応じて含有させてもよい。この効果が顕著となるのは、Ni含有量が0.3%以上の場合である。しかし、Ni含有量が過剰な場合には、コストが上昇する。従って、Niの含有量を0〜1%とした。
【0033】
B:0〜0.005%
Bは、添加しなくてもよいが、添加すると2次加工性(鋼板から鋼管への成形等の一次的な加工の後、この鋼管から部品を得るための曲げ加工等の2次的な加工における性能)を改善するため、必要に応じて含有させてもよい。この効果を得るには、Bを0.0002%以上含有させるのが望ましい。しかし、Bの含有量が0.005%を超えると靱性を低下させる。従って、Bを0〜0.005%とした。
【0034】
本発明の自動車排気系機器用フェライト系ステンレス鋼は、上記の化学組成を有し、残部はFeおよび不純物からなるが、Feの一部に代えて、Ca:0.0002〜0.005%、REM:0.0001〜0.01%およびY:0.0001〜0.01%のうちの一種以上を含有するのが望ましい。
【0035】
Ca、REMおよびYは、スケールの密着性を含めた耐酸化性を向上させる元素であり、必要に応じて含有させてもよい。この効果を得るには、Caでは0.0002%以上、REMおよびYはそれぞれ0.0001%以上含有させることが望ましい。しかし、過剰に添加しても耐酸化性の改善効果が飽和するとともに、熱間加工性等が劣化し、コストが上昇する。従って、Ca、REMおよびYのうちの一種以上を含有させる場合のそれぞれの元素の含有量は、Ca:0.0002〜0.005%、REM:0.0001〜0.01%およびY:0.0001〜0.01%とするのが望ましい。
【0036】
【実施例】
(実施例1)
表1に示す化学組成を有する鋼を溶製し、加熱温度1200℃で熱間圧延を施して厚さ4.5mmの熱延鋼板を製造した。この熱延鋼板を焼鈍し、厚さ1.5mmまで冷間圧延し、1000℃での仕上焼鈍を施して供試材を作製した。この供試材の常温延性、高温強度および耐酸化性を下記の試験方法により評価した。
【0037】
【表1】

Figure 0004309140
【0038】
(常温延性)
常温延性は、上記の供試材から厚さ1.5mmのJIS13B号引張試験片を採取して常温引張試験を行い、常温伸びおよび平均r値を求めて評価した。常温伸びは、圧延方向の常温伸びで評価し、平均r値は、下記の(2)式から計算した。
【0039】
平均r値=(r0+r90+2r45)/4 …(2)
但し、(2)式中のr0は圧延方向のr値、r90は圧延直角方向のr値、r45は圧延45度方向のr値をそれぞれ意味する。
【0040】
(高温強度)
高温強度は、上記の供試材から厚さ1.5mmの板状の引張試験片を圧延方向と平行に採取した後、JISG0567に準拠して、900℃での引張試験を行い、0.2%耐力を求め、評価した。
【0041】
(耐酸化性)
耐酸化性は、上記の供試材から厚さ1.5mm、幅20mm、長さ25mmの試験片を採取した後、各試験片の表面をエメリー紙で#600まで研磨し、大気中で900℃×200hrの連続酸化試験を行い、酸化増量およびスケール剥離量を測定し、評価した。
【0042】
これらの試験結果を表2に示す。
【0043】
【表2】
Figure 0004309140
【0044】
表2に示すように、本発明鋼であるNo.1〜11は、いずれも圧延方向の常温伸びが34%以上、平均r値が1.3以上、900℃の0.2%耐力が20MPa以上であり、SUS429系と同等の常温延性を示すとともに、SUS444系と同等の高温強度を示した。また、これらの試験片は、900℃×200hrの連続酸化試験においても異常酸化が発生せず、スケール剥離量1.0g/m2以下と耐酸化性も良好であった。なかでも、No.8〜10は、Ca、REMまたはYを含有する鋼であるが、これらの鋼では、酸化増量および耐スケール剥離性のいずれもが改善されていた。
【0045】
比較鋼であるNo.12および14は、「1.4Mo+W」が2%未満であるため、900℃の0.2%耐力が低くなった。No.13は、「1.4Mo+W」が4.5%を超えており、常温伸びが小さかった。No.15は、Cuが0.2%未満であり、No.16は、Cuが0.8%を超えており、常温伸びおよび平均r値が小さい値となった。No.17は、Siが0.3%を超えており、常温伸びおよび平均r値が小さいとともに、耐スケール剥離性にも劣っていた。No.18は、SUS429系の鋼であるが、Si、Cu、Cr、Ti、MoおよびWの含有量が本発明で規定される範囲を外れている。この鋼では、900℃における0.2%耐力が劣っていた。No.19は、SUS444系の鋼であるが、CrおよびTiの含有量が本発明で規定される範囲を外れている。この鋼では、常温伸びおよび平均r値が小さい値となった。
【0046】
(実施例2)
表1のNo.1、18および19に示す化学組成を有する鋼を溶解し、加熱温度1200℃で熱間圧延を施して厚さ6mmの熱延鋼板を製造した。この熱延鋼板に焼鈍、および厚さ2.0mmまでの冷間圧延を施した後、1000℃の仕上焼鈍を実施した。この冷延鋼板を電縫溶接にて外径38.1mmに製管した後、図5に示す試験片に加工した。
【0047】
図5は、熱疲労試験片の形状を示す図である。図5において、1が試験材の鋼管であり、この鋼管の2ヶ所に径8mmの穴をあけ、冷却用エアーの供給口2および出口3とした。また、鋼管内面からの保持具4と試験材1は、固定用ピン(φ12mmの孔に挿入される)および端部の溶接部5によって固定される。なお、図中に示す数値の単位はmmである。
【0048】
熱疲労試験は、コンピュータ制御の電気的油圧サーボ式高温熱疲労試験機により、図6に示す温度サイクル、機械的歪み波形履歴をとる条件で、最高温度900℃、最低温度200℃および拘束率50%での試験を行った。
【0049】
その結果、No.18(SUS429)の鋼、No.19(SUS444)の鋼の熱疲労寿命は、それぞれ879サイクル、866サイクルであったのに対し、本発明鋼であるNo.1の鋼の熱疲労寿命は984サイクルであった。前記のとおり、本発明鋼は、SUS429系に比べ高強度であり、SUS444系より常温延性が優れるため、長寿命となったと考えられる。
【0050】
【発明の効果】
本発明によれば、使用温度900℃でも優れた高温強度、熱疲労特性、耐酸化性を有し、かつ加工性に優れた自動車排気系機器用フェライト系ステンレス鋼が得られる。特に、本発明の鋼は、高温で用いられ高い加工性が要求されるエキゾーストマニホールド用材料として好適である。また、本発明の鋼は、優れた加工性を有することから、排気系機器製造時の歩留向上や作業効率向上にも有益であり、部品コスト低減が期待できる。さらに、溶接鋼管用の鋼板としても好適である。
【図面の簡単な説明】
【図1】Cu含有量と鋼の機械的性能との関係を示す図である。
【図2】Ti含有量と鋼の機械的性能との関係を示す図である。
【図3】Si含有量と酸化増量及びスケール剥離量との関係を示す図である。
【図4】Nb含有量と常温伸び及び900℃でのYSとの関係を示す図である。
【図5】熱疲労試験片の形状を示す図である。
【図6】温度サイクル、機械的歪み波形履歴を示す図である。
【符号の説明】
1.試験材、2エアー供給口、3.エアー出口、4.保持具、5.溶接部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel for automobile exhaust system equipment, and more particularly, to a ferritic stainless steel suitable for automobile exhaust system equipment such as an exhaust manifold, a front pipe, and a center pipe used at a temperature of 900 ° C. or lower.
[0002]
[Prior art]
Recently, ferritic stainless steel sheets or steel pipes such as SUH409L, SUS430J1L, and SUS436L have been used for automobile exhaust systems from the viewpoint of stricter exhaust gas regulations and weight reduction of automobiles, and the amount has been increasing year by year. is doing. These ferritic stainless steels have the following features (1) to (3).
(1) Small thermal expansion coefficient and excellent thermal fatigue characteristics.
(2) Good resistance to scale peeling in an environment subject to repeated oxidation.
(3) It is less expensive than austenitic stainless steel.
[0003]
Among automotive exhaust system equipment, as a steel material for exhaust manifolds, conventionally, castings typified by spheroidal graphite cast iron have been mainstream, but switching to ferritic stainless steel sheets or steel pipes is progressing. The exhaust manifold is required to have excellent high temperature strength, thermal fatigue characteristics, oxidation resistance, workability, and the like. Recently, from the viewpoint of weight reduction and in-vehicle comfort, the engine room tends to become narrower, and the exhaust manifold that is processed into a complicated shape is required to further improve the workability. In addition, improving the workability leads to a reduction in man-hours and cost of parts at the parts manufacturer.
[0004]
Since it is necessary to activate the catalyst at an early stage as the exhaust gas regulations are strengthened, the exhaust gas temperature tends to rise, and the material temperature of the exhaust manifold is said to rise to about 900 to 950 ° C.
[0005]
In Patent Documents 1 to 4 and the like, stainless steel that can cope with such a material temperature is proposed. These are steel types classified as SUS444 and contain 17% or more of Cr and a large amount of Nb and Mo. They have excellent high-temperature strength, thermal fatigue properties and oxidation resistance, but are inferior in workability. , Processing costs are high.
[0006]
In Patent Documents 5 to 7 and the like, ferritic stainless steels classified into SUS429 series containing 13 to 15% Cr and Nb are proposed, but there is applicability in terms of workability and cost. High temperature strength and thermal fatigue properties are insufficient.
[0007]
Patent Document 8 discloses a Mo-containing ferritic stainless steel excellent in oxidation scale peeling resistance at 1000 ° C., characterized in that Si is 0.10% or less and the product of Si and Mo is 0.15 or less. . However, the object of the present invention is to improve the scale peeling resistance at a high temperature of 1000 ° C., and high temperature strength and workability are not considered.
[0008]
[Patent Document 1]
Japanese Patent No. 2696584 [Patent Document 2]
Japanese Patent No. 2801799 [Patent Document 3]
Japanese Patent No. 2880839 [Patent Document 4]
Japanese Patent No. 2923825 [Patent Document 5]
Japanese Patent No. 2562740 [Patent Document 6]
Japanese Patent No. 3004784 [Patent Document 7]
Japanese Patent No. 2803538 [Patent Document 8]
Japanese Patent No. 3242007 [0009]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems, has workability equivalent to that of SUS429 series steel, and has high temperature strength and thermal fatigue characteristics equivalent to those of SUS444 series steel at a material temperature of 900 ° C. An object of the present invention is to provide a ferritic stainless steel suitable for automobile exhaust system equipment having excellent scale peeling resistance.
[0010]
[Means for Solving the Problems]
The gist of the present invention is the following ferritic stainless steel for automobile exhaust system equipment.
[0011]
In mass%, C: 0.02% or less, N: 0.02% or less, Si: 0.3% or less, Mn: 0.5% or less, S: 0.002% or less, Cu: 0.2 to 0.8%, Cr: 15-18%, Nb: 0.2-0.5%, Ti: 0.03-0.3%, Al: 0.003-0.2%, Ni: 0-1 % And B: 0 to 0.005%, the total content of C and N is 0.03% or less, and includes at least one of Mo and W within the range satisfying the following formula (1) A ferritic stainless steel for automobile exhaust system equipment, characterized in that the balance consists of Fe and inevitable impurities.
[0012]
2.81 ≦ 1.4Mo + W ≦ 4.5 (1)
However, Mo and W in (1) Formula are each content (mass%).
[0013]
The ferritic stainless steel for automobile exhaust system of the present invention contains at least one of Ca: 0.0002 to 0.005%, REM: 0.0001 to 0.01%, and Y: 0.0001 to 0.01%, instead of part of Fe. Is desirable.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Mo and Nb are effective elements for improving the high-temperature strength, and Cr and Si are effective elements for improving the oxidation resistance. Both elements are elements that are liable to deteriorate the workability. Therefore, in order to improve workability while maintaining the required high-temperature strength and oxidation resistance, it is necessary to optimize the content of these elements and to use them in combination with other elements. Become. Therefore, as a result of examining the effects of various elements on high temperature strength, workability, and oxidation resistance, the present inventors have obtained the following knowledge. In the following description, “mass%” is simply expressed as “%”.
[0015]
FIG. 1 is a diagram showing the relationship between the Cu content and the mechanical performance of steel. (A) shows the relationship between the Cu content, room temperature elongation and the Rankford value (hereinafter referred to as “r value”). (B) shows the relationship between the Cu content and YS (yield strength) and TS (tensile strength) at 900 ° C. Note that the test material was steel with a Cu content varied based on 16Cr-1.5Mo-0.35Nb. As shown in FIG. 1, there is a range of Cu content that is effective in improving the room temperature elongation and the r value, which are important indexes of workability, while maintaining or improving the high temperature strength.
[0016]
FIG. 2 is a graph showing the relationship between the Ti content and the mechanical performance of the steel. (A) shows the relationship between the Ti content, room temperature elongation and r value, and (b) shows the Ti content and the 900. The relationship between YS and TS at ° C is shown. The test material is steel with a Ti content changed based on 16Cr-1.5Mo-0.35Nb. The addition of Ti is effective for securing solid solution Nb, and has the effect of improving the high temperature strength and improving the elongation at room temperature and the r value as shown in FIG.
[0017]
FIG. 3 is a diagram showing the relationship between the Si content, the oxidation increase amount, and the scale peeling amount. Note that the specimen is steel with a Si content varied based on 16Cr-2Mo-0.35Nb-0.18Ti-0.05Al. As shown in FIG. 3, there is an appropriate Si content capable of ensuring room temperature elongation and r value while improving the scale peel resistance.
[0018]
Mo and W contribute to the improvement of high temperature strength, and Mo has an effect 1.4 times that of W. Also, Mo has a greater tendency to improve high temperature strength than Nb has a tendency to degrade room temperature elongation. Furthermore, Mo and W are effective in suppressing a decrease in high temperature strength in a high temperature environment.
[0019]
The present invention has been made based on such knowledge. Hereinafter, the chemical composition defined in the present invention will be described in more detail.
[0020]
C: 0.02% or less, N: 0.02% or less Since C and N both make the steel hard and lower the workability, it is preferable that the content thereof be as small as possible. Therefore, the C content is set to 0.02% or less, and the N content is set to 0.02% or less. Even if the content of these elements is within the specified range, if the total content is large, the workability may be lowered. Therefore, the total content of C and N is set to 0.03% or less.
[0021]
Si: 0.3% or less
Si is an element having an effect of suppressing oxidation increase and improving oxidation resistance, and is an effective element as a deoxidizing element. Si does not have to be positively added, and the lower limit of the content may be the impurity level. However, in order to reliably obtain the above effect, it is desirable to contain 0.1% or more. However, since Si hardens steel, it reduces room temperature elongation and r value. If the oxide scale is mixed into the exhaust gas, it may adversely affect the catalyst performance, etc., and it is important to suppress the increase in the oxide scale, but if excessive Si is added, as shown in FIG. Exfoliation increases. Therefore, the Si content is set to 0.3% or less.
[0022]
Mn: 0.5% or less
Mn is an effective element as a deoxidizing element together with Si. Mn may not be positively added. Therefore, the lower limit of the content may be an impurity level. However, it is desirable to make it contain 0.05% or more in order to surely obtain the above effect. However, since Mn combines with S to form MnS, if it is added excessively, the oxidation resistance is deteriorated. Therefore, the Mn content is set to 0.5% or less.
[0023]
S: 0.002% or less S is one of impurities inevitably mixed in steel in production, but it is desirable that its content be as small as possible because it forms MnS and adversely affects oxidation resistance. Therefore, the S content is limited to 0.002% or less.
[0024]
Cu: 0.2-0.8%
Cu is an important element in improving workability without impairing the high temperature strength of ferritic stainless steel. As shown in FIG. 1, the addition of an appropriate amount improves the room temperature elongation and the r value, contributes to the improvement of workability, and maintains or improves the high temperature strength. In order to exhibit the effect, it is necessary to contain 0.2% or more of Cu. However, excessive addition, on the contrary, lowers the room temperature elongation and the r value, and promotes scale peeling. Therefore, the Cu content is set to 0.2 to 0.8%. Preferred is 0.3 to 0.6%.
[0025]
Cr: 15-18%
Cr is an element effective for maintaining corrosion resistance and oxidation resistance. In order to improve the oxidation resistance at 900 ° C., the content needs to be 15% or more. However, excessive addition reduces processability and increases costs. Therefore, the Cr content is 15-18%. More preferred is 16 to 18%.
[0026]
Nb: 0.2-0.5%
Nb is an important element for improving the high-temperature strength, and this effect is exhibited particularly in a solid solution state. Nb is an element that fixes C and N and has an effect of improving workability and corrosion resistance. In order to obtain these effects, it is necessary to contain 0.2% or more of Nb. However, excessive addition reduces room temperature elongation and r value. Furthermore, when heated to 800-900 ° C, which is the main operating temperature range of the steel materials targeted by the present invention, Laves phase (Fe 2 Nb) is generated in a short time, and solid solution Nb effective for strengthening decreases. As a result, the high temperature strength decreases.
[0027]
FIG. 4 is a diagram showing the relationship between the Nb content, room temperature elongation, and YS at 900 ° C. Note that the specimen is steel with Nb content varied based on 16Cr-1.5Mo. As shown in FIG. 4, even when the Nb content exceeds 0.5%, the high temperature strength is not improved and the room temperature elongation decreases rapidly. Therefore, the Nb content is set to 0.2 to 0.5%.
[0028]
One or more of Mo and W: Range satisfying “2.0 ≦ 1.4Mo + W ≦ 4.5”
Mo and W are both elements that improve the high-temperature strength and suppress the decrease in high-temperature strength after being heated and held in a high temperature range, and are important elements in the present invention. Both Mo and W contribute to strengthening in a solid solution state, and the strength is improved in proportion to the content thereof. However, the amount of increase in strength per content differs between Mo and W, and the content of W necessary to obtain an increase in high-temperature strength equivalent to Mo is 1.4 times that of Mo. In order to obtain the strength necessary for the present invention, 1.4 Mo + W is required to be 2.0% or more. Increasing the content increases the high-temperature strength, but excessive addition adversely affects workability. Accordingly, one or more of Mo and W are included so that “1.4Mo + W” is in the range of 2.0 to 4.5%. A preferable range of “1.4Mo + W” is 2.5 to 4%.
[0029]
Ti: 0.03-0.3%
Ti is an important element in the present invention, and is contained for improving workability and high-temperature strength. Ti, like Nb, has the action of binding to C and N, but is more likely to be associated with N than Nb. When Nb and Ti are simultaneously contained, Ti mainly bonds with N to form a nitride, and the remaining Ti combines with Nb with C to form a composite carbide of Ti and Nb. This composite carbide precipitates at a higher temperature than Nb carbide, and is likely to precipitate using TiN as a nucleus.
[0030]
For this reason, the area | region in which the solid solution C and N do not exist exists in the periphery, and it contributes to workability improvement. Since Ti is bonded to N or C, solid solution Nb is also secured, which is effective in improving high temperature strength. In order to obtain these effects, it is necessary to contain Ti at least 0.03%, but if its content is excessive, the effect of improving workability and high-temperature strength is saturated, and the oxidation resistance and toughness are adversely affected. Effect. Therefore, the Ti content is set to 0.03 to 0.3%. A preferable content is 0.05 to 0.25%.
[0031]
Al: 0.003-0.2%
Al is an element having a deoxidizing element and an effect of combining with N to improve workability and toughness. Al is also an element useful for improving the scale peel resistance by generating an oxide scale with good adhesion. Si is useful for oxidation resistance, but has the effect of lowering workability. However, by containing Al, the amount of Si necessary for oxidation resistance can be reduced and workability can be ensured. In order to obtain these effects, a content of 0.003% or more is necessary, but excessive addition causes a decrease in pipe weldability and toughness, so the content was made 0.2% or less. More desirable is 0.005 to 0.1%.
[0032]
Ni: 0 to 1%
Ni is an element that does not need to be added, but if added, the toughness is improved, so it may be contained as necessary. This effect becomes remarkable when the Ni content is 0.3% or more. However, when the Ni content is excessive, the cost increases. Therefore, the content of Ni is set to 0 to 1%.
[0033]
B: 0 to 0.005%
B does not need to be added, but if added, secondary workability (secondary processing such as bending to obtain parts from this steel pipe after primary processing such as forming from steel plate to steel pipe) In order to improve the performance in (2), it may be contained if necessary. In order to acquire this effect, it is desirable to contain B 0.0002% or more. However, if the B content exceeds 0.005%, the toughness is lowered. Therefore, B is set to 0 to 0.005%.
[0034]
The ferritic stainless steel for automobile exhaust system equipment of the present invention has the above chemical composition, and the balance consists of Fe and impurities, but instead of part of Fe, Ca: 0.0002 to 0.005%, REM: 0.0001 to It is desirable to contain at least one of 0.01% and Y: 0.0001 to 0.01%.
[0035]
Ca, REM and Y are elements that improve the oxidation resistance including the adhesion of the scale, and may be contained if necessary. In order to obtain this effect, it is desirable to contain 0.0002% or more of Ca and 0.0001% or more of REM and Y, respectively. However, even if added excessively, the effect of improving the oxidation resistance is saturated, hot workability and the like are deteriorated, and the cost is increased. Therefore, the content of each element in the case of containing one or more of Ca, REM, and Y is preferably Ca: 0.0002 to 0.005%, REM: 0.0001 to 0.01%, and Y: 0.0001 to 0.01%. .
[0036]
【Example】
Example 1
Steel having the chemical composition shown in Table 1 was melted and hot rolled at a heating temperature of 1200 ° C. to produce a hot rolled steel sheet having a thickness of 4.5 mm. This hot-rolled steel sheet was annealed, cold-rolled to a thickness of 1.5 mm, and subjected to finish annealing at 1000 ° C. to prepare a test material. The specimens were evaluated for normal temperature ductility, high temperature strength and oxidation resistance by the following test methods.
[0037]
[Table 1]
Figure 0004309140
[0038]
(Normal temperature ductility)
The room temperature ductility was evaluated by taking a JIS13B tensile test piece having a thickness of 1.5 mm from the above test material and conducting a room temperature tensile test to obtain a room temperature elongation and an average r value. The room temperature elongation was evaluated by the room temperature elongation in the rolling direction, and the average r value was calculated from the following equation (2).
[0039]
Average r value = (r 0 + r 90 + 2r 45 ) / 4 (2)
In the equation (2), r 0 represents the r value in the rolling direction, r 90 represents the r value in the direction perpendicular to the rolling, and r 45 represents the r value in the rolling 45 degree direction.
[0040]
(High temperature strength)
For high-temperature strength, a plate-shaped tensile test piece with a thickness of 1.5 mm was taken from the above specimen in parallel with the rolling direction, and then subjected to a tensile test at 900 ° C. in accordance with JISG0567. Sought and evaluated.
[0041]
(Oxidation resistance)
Oxidation resistance was obtained by collecting test pieces with a thickness of 1.5 mm, width 20 mm, and length 25 mm from the above test materials, then polishing the surface of each test piece to # 600 with emery paper and 900 ° C in the atmosphere. A continuous oxidation test of × 200 hr was performed, and the amount of increase in oxidation and the amount of scale peeling were measured and evaluated.
[0042]
These test results are shown in Table 2.
[0043]
[Table 2]
Figure 0004309140
[0044]
As shown in Table 2, the steels of the present invention Nos. 1 to 11 all have a normal temperature elongation in the rolling direction of 34% or higher, an average r value of 1.3 or higher, and a 0.2% proof stress at 900 ° C. of 20 MPa or higher. It exhibited room temperature ductility equivalent to SUS429 and high temperature strength equivalent to SUS444. Further, these test pieces did not cause abnormal oxidation even in a continuous oxidation test at 900 ° C. × 200 hr, and had good oxidation resistance with a scale peeling amount of 1.0 g / m 2 or less. Among them, Nos. 8 to 10 are steels containing Ca, REM or Y, but these steels were improved in both oxidation increase and scale peel resistance.
[0045]
Comparative steels No. 12 and No. 14 had “1.4Mo + W” of less than 2%, so the 0.2% proof stress at 900 ° C. was low. In No. 13, “1.4Mo + W” exceeded 4.5%, and the room temperature elongation was small. In No. 15, Cu was less than 0.2%, and in No. 16, Cu was over 0.8%, and the room temperature elongation and the average r value were small. In No. 17, Si exceeded 0.3%, the room temperature elongation and the average r value were small, and the scale peel resistance was also inferior. No. 18 is a SUS429-based steel, but the contents of Si, Cu, Cr, Ti, Mo and W are outside the range defined in the present invention. This steel had inferior 0.2% yield strength at 900 ° C. No. 19 is a SUS444 steel, but the Cr and Ti contents are outside the range defined in the present invention. In this steel, the room temperature elongation and the average r value were small.
[0046]
(Example 2)
Steels having chemical compositions shown in Nos. 1, 18 and 19 in Table 1 were melted and hot rolled at a heating temperature of 1200 ° C. to produce hot rolled steel sheets having a thickness of 6 mm. The hot-rolled steel sheet was annealed and cold-rolled to a thickness of 2.0 mm, and then subjected to finish annealing at 1000 ° C. This cold-rolled steel sheet was piped to an outer diameter of 38.1 mm by electric resistance welding, and then processed into a test piece shown in FIG.
[0047]
FIG. 5 is a diagram showing the shape of a thermal fatigue test piece. In FIG. 5, reference numeral 1 denotes a steel pipe as a test material. Holes having a diameter of 8 mm were formed in two places of the steel pipes, which were used as a cooling air supply port 2 and an outlet 3. Further, the holder 4 and the test material 1 from the inner surface of the steel pipe are fixed by a fixing pin (inserted into a hole of φ12 mm) and a welded portion 5 at the end. The unit of the numerical values shown in the figure is mm.
[0048]
The thermal fatigue test is performed under the conditions of taking a temperature cycle and mechanical strain waveform history as shown in FIG. 6 using a computer-controlled electro-hydraulic servo high temperature thermal fatigue tester. % Was tested.
[0049]
As a result, the thermal fatigue life of No.18 (SUS429) steel and No.19 (SUS444) steel was 879 cycles and 866 cycles, respectively, whereas that of the No.1 steel of the present invention steel The thermal fatigue life was 984 cycles. As described above, the steel of the present invention is considered to have a longer life because it has higher strength than the SUS429 series and is superior to the SUS444 series in normal temperature ductility.
[0050]
【The invention's effect】
According to the present invention, a ferritic stainless steel for automobile exhaust system equipment having excellent high temperature strength, thermal fatigue characteristics, oxidation resistance and excellent workability even at a use temperature of 900 ° C. can be obtained. In particular, the steel of the present invention is suitable as an exhaust manifold material that is used at high temperatures and requires high workability. In addition, since the steel of the present invention has excellent workability, it is useful for improving the yield and working efficiency when manufacturing exhaust system equipment, and it can be expected to reduce the cost of parts. Furthermore, it is also suitable as a steel plate for welded steel pipes.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Cu content and mechanical performance of steel.
FIG. 2 is a graph showing the relationship between Ti content and steel mechanical performance.
FIG. 3 is a diagram showing the relationship between the Si content, the amount of oxidation increase, and the amount of scale peeling.
FIG. 4 is a graph showing the relationship between Nb content, room temperature elongation, and YS at 900 ° C.
FIG. 5 is a diagram showing the shape of a thermal fatigue test piece.
FIG. 6 is a diagram showing a temperature cycle and a mechanical strain waveform history.
[Explanation of symbols]
1. 2. Test material, 2 air supply port, 3. Air outlet, 4. holder, welded part

Claims (4)

質量%で、C:0.02%以下、N:0.02%以下、Si:0.3%以下、Mn:0.5%以下、S:0.002%以下、Cu:0.2〜0.8%、Cr:15〜18%、Nb:0.2〜0.5%、Ti:0.03〜0.3%、Al:0.003〜0.2%、Ni:0〜1%およびB:0〜0.005%を含有し、CおよびNの合計含有量が0.03%以下であり、MoおよびWの1種以上を下記の(1)式を満足する範囲で含み、残部がFeおよび不可避的不純物からなることを特徴とする自動車排気系機器用フェライト系ステンレス鋼。
2.81≦1.4Mo+W≦4.5 …(1)
但し、(1)式中のMoおよびWは、それぞれの含有量(質量%)である。
In mass%, C: 0.02% or less, N: 0.02% or less, Si: 0.3% or less, Mn: 0.5% or less, S: 0.002% or less, Cu: 0.2 to 0.8%, Cr: 15-18%, Nb: 0.2-0.5%, Ti: 0.03-0.3%, Al: 0.003-0.2%, Ni: 0-1 % And B: 0 to 0.005%, the total content of C and N is 0.03% or less, and includes at least one of Mo and W within the range satisfying the following formula (1) A ferritic stainless steel for automobile exhaust system equipment, characterized in that the balance consists of Fe and inevitable impurities.
2.81 ≦ 1.4Mo + W ≦ 4.5 (1)
However, Mo and W in (1) Formula are each content (mass%).
質量%で、C:0.02%以下、N:0.02%以下、Si:0.3%以下、Mn:0.5%以下、S:0.002%以下、Cu:0.2〜0.8%、Cr:15〜18%、Nb:0.2〜0.5%、Ti:0.03〜0.3%、Al:0.003〜0.2%、Ni:0〜1%およびB:0〜0.005%、ならびにCa:0.0002〜0.005%、REM:0.0001〜0.01%およびY:0.0001〜0.01%のうちの一種以上を含有し、CおよびNの合計含有量が0.03%以下であり、MoおよびWの1種以上を下記の(1)式を満足する範囲で含み、残部がFeおよび不可避的不純物からなることを特徴とする自動車排気系機器用フェライト系ステンレス鋼。
2.81≦1.4Mo+W≦4.5 …(1)
但し、(1)式中のMoおよびWは、それぞれの含有量(質量%)である。
In mass%, C: 0.02% or less, N: 0.02% or less, Si: 0.3% or less, Mn: 0.5% or less, S: 0.002% or less, Cu: 0.2 to 0.8%, Cr: 15-18%, Nb: 0.2-0.5%, Ti: 0.03-0.3%, Al: 0.003-0.2%, Ni: 0-1 % And B: 0 to 0.005%, and Ca: 0.0002 to 0.005%, REM: 0.0001 to 0.01%, and Y: 0.0001 to 0.01%. And the total content of C and N is 0.03% or less, contains at least one of Mo and W within the range satisfying the following formula (1), and the balance is made of Fe and inevitable impurities Ferritic stainless steel for automotive exhaust system equipment.
2.81 ≦ 1.4Mo + W ≦ 4.5 (1)
However, Mo and W in (1) Formula are each content (mass%).
前記自動車排気系機器は、自動車エキゾーストマニホールドであることを特徴とする請求項1又は2に記載の自動車排気系機器用フェライト系ステンレス鋼。The ferritic stainless steel for automobile exhaust system equipment according to claim 1 or 2, wherein the automobile exhaust system equipment is an automobile exhaust manifold. 請求項1又は2に記載の自動車排気系機器用フェライト系ステンレス鋼を用いてなることを特徴とする自動車エキゾーストマニホールド。An automobile exhaust manifold comprising the ferritic stainless steel for automobile exhaust system equipment according to claim 1 or 2.
JP2003007585A 2003-01-15 2003-01-15 Ferritic stainless steel for automotive exhaust system equipment Expired - Lifetime JP4309140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007585A JP4309140B2 (en) 2003-01-15 2003-01-15 Ferritic stainless steel for automotive exhaust system equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007585A JP4309140B2 (en) 2003-01-15 2003-01-15 Ferritic stainless steel for automotive exhaust system equipment

Publications (2)

Publication Number Publication Date
JP2004218013A JP2004218013A (en) 2004-08-05
JP4309140B2 true JP4309140B2 (en) 2009-08-05

Family

ID=32897637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007585A Expired - Lifetime JP4309140B2 (en) 2003-01-15 2003-01-15 Ferritic stainless steel for automotive exhaust system equipment

Country Status (1)

Country Link
JP (1) JP4309140B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889938B1 (en) * 2005-06-09 2018-03-07 JFE Steel Corporation Ferrite stainless steel sheet for bellows stock pipe
JP4752571B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube and bellows tube
JP4752573B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube and bellows tube
JP4752572B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube and bellows tube
JP5012243B2 (en) * 2007-06-19 2012-08-29 Jfeスチール株式会社 Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP6037882B2 (en) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6071608B2 (en) * 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5793459B2 (en) 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
WO2013179616A1 (en) 2012-05-28 2013-12-05 Jfeスチール株式会社 Ferritic stainless steel
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
EP2980251B1 (en) 2013-03-27 2017-12-13 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
MX2019007483A (en) 2016-12-21 2019-08-29 Jfe Steel Corp Ferritic stainless steel.
KR20200015265A (en) * 2018-08-03 2020-02-12 주식회사 포스코 FERRITIC STAINLESS STEEL CONTAINING Ti AND Nb HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS OF WELDED JOINT

Also Published As

Publication number Publication date
JP2004218013A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP5297630B2 (en) Ferritic stainless steel plate with excellent heat resistance
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
WO2003004714A1 (en) Ferritic stainless steel for member of exhaust gas flow passage
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP3468156B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP4309140B2 (en) Ferritic stainless steel for automotive exhaust system equipment
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP3397167B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP5208450B2 (en) Cr-containing steel with excellent thermal fatigue properties
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP4173611B2 (en) Austenitic stainless steel for inner pipe of double structure exhaust manifold
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP2942073B2 (en) Ferritic stainless steel for exhaust manifold with excellent high-temperature strength
JP3744403B2 (en) Soft Cr-containing steel
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JPH0741917A (en) Steel for automotive exhaust system
JP2002180207A (en) SOFT Cr-CONTAINING STEEL
JPH05279804A (en) Steel for automobile exhaust manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060919

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4309140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term