KR100605678B1 - A heat resistant stainless steel having good heat resistant strength - Google Patents

A heat resistant stainless steel having good heat resistant strength Download PDF

Info

Publication number
KR100605678B1
KR100605678B1 KR1019990049139A KR19990049139A KR100605678B1 KR 100605678 B1 KR100605678 B1 KR 100605678B1 KR 1019990049139 A KR1019990049139 A KR 1019990049139A KR 19990049139 A KR19990049139 A KR 19990049139A KR 100605678 B1 KR100605678 B1 KR 100605678B1
Authority
KR
South Korea
Prior art keywords
steel
less
heat
stainless steel
heat resistant
Prior art date
Application number
KR1019990049139A
Other languages
Korean (ko)
Other versions
KR20010045728A (en
Inventor
이윤용
김동훈
이수찬
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019990049139A priority Critical patent/KR100605678B1/en
Publication of KR20010045728A publication Critical patent/KR20010045728A/en
Application granted granted Critical
Publication of KR100605678B1 publication Critical patent/KR100605678B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 내열 스테인레스 강에 관한 것으로, 적정량의 텅스텐, 니오븀, 질소, 및 사용 한계온도가 1000℃인 경우 세륨을 첨가하고, 합금 성분계의 (Cr/Ni)eq.비를 1.48 이상으로 조절함으로써, 내열강도가 우수한 내열 스테인레스강을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a heat-resistant stainless steel, by adding an appropriate amount of tungsten, niobium, nitrogen, and cerium when the limit temperature is 1000 ℃, by adjusting the (Cr / Ni) eq . Ratio of the alloy component system to 1.48 or more, It is an object of the present invention to provide a heat resistant stainless steel having excellent heat resistance.

본 발명은 중량%로, C: 0.08% 이하, Mn: 2.0% 이하, P: 0.045% 이하, S: 0.045% 이하, Si: 1.0% 이하, Cr: 18~22%, Ni: 8~12%, W: 1.0~2.5%, N: 0.1~0.2%, Nb: 0.2~0.6%, Ti: 0.045% 이하, B: 0.005% 이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 조성을 갖고, (Cr/Ni)eq.비가 1.48 이상인 내열강도가 우수한 내열 스테인레스강을 그 기술적 요지로 한다.In the present invention, C: 0.08% or less, Mn: 2.0% or less, P: 0.045% or less, S: 0.045% or less, Si: 1.0% or less, Cr: 18-22%, Ni: 8-12% , W: 1.0-2.5%, N: 0.1-0.2%, Nb: 0.2-0.6%, Ti: 0.045% or less, B: 0.005% or less, balance Fe and other unavoidable impurities, (Cr / Ni) eq . Heat-resistant stainless steel with excellent heat strength with a ratio of 1.48 or more is the technical gist.

내열강, 텅스텐, 니오븀, 크립, 고온강도Heat resistant steel, tungsten, niobium, creep, high temperature strength

Description

내열강도가 우수한 내열 스테인레스강{A HEAT RESISTANT STAINLESS STEEL HAVING GOOD HEAT RESISTANT STRENGTH}Heat-resistant stainless steel with excellent heat resistance {A HEAT RESISTANT STAINLESS STEEL HAVING GOOD HEAT RESISTANT STRENGTH}

도1은 발명강 및 종래강의 열간가공성을 나타내는 그래프1 is a graph showing the hot workability of the invention steel and conventional steel

도2는 발명강 및 종래강의 열연소둔 조직사진Figure 2 is a hot-annealed tissue photograph of the invention steel and conventional steel

도3은 700℃에서의 크립특성을 나타내는 그래프3 is a graph showing creep characteristics at 700 ° C.

도4는 800℃ 대기분위기에서 2000시간 등온산화에 의한 무게변화를 나타내는 그래프Figure 4 is a graph showing the weight change by isothermal oxidation for 2000 hours at 800 ℃ atmosphere

도5는 1000℃ 대기분위기에서 500시간 등온산화에 의한 무게변화를 나타내는 그래프Figure 5 is a graph showing the weight change by isothermal oxidation for 500 hours at 1000 ℃ atmosphere

도6은 800℃ 대기분위기에서 반복산화에 의한 무게변화를 나타내는 그래프.Figure 6 is a graph showing the change in weight by repeated oxidation in the 800 ℃ air atmosphere.

도7은 1000℃ 대기분위기에서 반복산화에 의한 무게변화를 나타내는 그래프.Figure 7 is a graph showing the change in weight by repeated oxidation in an atmosphere of 1000 ℃.

본 발명은 열교환기, 로체부품, 소각로 등 약 900℃ 이하의 온도에서 사용되는 내열강에 관한 것으로, 보다 상세하게는 텅스텐(W), 질소(N), Nb(니오븀), 및 선택적으로 Ce(세슘)을 적정량 첨가하여 고온 기계적성질 및 크립강도를 현저히 개 선한 내열 스테인레스강에 관한 것이다.The present invention relates to heat-resistant steels used at temperatures of about 900 ° C. or lower, such as heat exchangers, furnace parts, incinerators, and more particularly tungsten (W), nitrogen (N), Nb (niobium), and optionally Ce (cesium). The present invention relates to a heat-resistant stainless steel that has significantly improved high-temperature mechanical properties and creep strength by adding an appropriate amount).

대표적인 내열 스테인레스강으로는 기본조성이 22%Cr-12%Ni인 309S강과 기본조성이 25%Cr-20%Ni인 310S강이 있다. 이들 강은 내산화성은 우수하나, 고온강도는 종래 304강과 유사한 수준으로, 고온에서 응력을 받는 구조물 등에 적용할 경우 크립파단과 같은 변형이 일어나기 쉽고 가격이 매우 비싸기 때문에, 범용 내열강으로 사용하기에는 적합하지 않다. 따라서, 열교환기, 소형 소각로 등에는 종래의 304 또는 316강을 사용하는 것이 일반적이나, 사용중 소재열화로 인한 잦은 교체가 불가피한 단점이 있다. Representative heat-resistant stainless steels include 309S steel having a basic composition of 22% Cr-12% Ni and 310S steel having a basic composition of 25% Cr-20% Ni. These steels are excellent in oxidation resistance, but the high temperature strength is similar to that of conventional 304 steels. When applied to structures that are stressed at high temperatures, they are not suitable for use as general purpose heat resistant steels because they are easily deformed like creep fracture and are very expensive. not. Therefore, it is common to use conventional 304 or 316 steel for heat exchangers, small incinerators, etc., but there is a disadvantage that frequent replacement due to material deterioration during use is inevitable.

이를 해결하기 위해, 선진 스테인레스 제조사에서는 내열성이 우수한 내열강 개발에 주력하고는 있지만, 대부분의 내열강들에 있어서 우수한 내산화성은 얻었으나, 고온강도에서는 큰 진전을 이루지 못하고 있다. In order to solve this problem, advanced stainless steel manufacturers are focusing on developing heat resistant steel having excellent heat resistance, but excellent oxidation resistance has been obtained in most heat resistant steels, but high progress has not been made in high temperature strength.

이에 본 발명은, 적정량의 텅스텐, 니오븀, 질소, 및 필요에 따라 세륨을 첨가하고, 합금 성분계의 (Cr/Ni)eq.비를 1.48 이상으로 조절함으로써, 내열강도가 우수한 내열 스테인레스강을 제공하고자 하는데, 그 목적이 있다. Accordingly, the present invention is to provide a heat-resistant stainless steel excellent in heat resistance by adding a suitable amount of tungsten, niobium, nitrogen, and cerium, if necessary, and adjusting the (Cr / Ni) eq . Ratio of the alloy component system to 1.48 or more. There is a purpose.

본 발명은 중량%로, C: 0.08% 이하, Mn: 2.0% 이하, P: 0.045% 이하, S: 0.045% 이하, Si: 1.0% 이하, Cr: 18~22%, Ni: 8~12%, W: 1.0~2.5%, N: 0.1~0.2%, Nb: 0.2~0.6%, Ti: 0.045% 이하, B: 0.005% 이하, 잔부 Fe 및 기타 불가피한 불순물, 그리고 필요에 따라 첨가되는 Ce으로 이루어진 조성을 갖고, (Cr/Ni)eq.비가 1.48 이상인 내열강도가 우수한 내열 스테인레스강에 관한 것이다.In the present invention, C: 0.08% or less, Mn: 2.0% or less, P: 0.045% or less, S: 0.045% or less, Si: 1.0% or less, Cr: 18-22%, Ni: 8-12% , W: 1.0-2.5%, N: 0.1-0.2%, Nb: 0.2-0.6%, Ti: 0.045% or less, B: 0.005% or less, balance Fe and other unavoidable impurities, and Ce added as needed It relates to a heat-resistant stainless steel having a composition and excellent in heat resistance with a (Cr / Ni) eq . Ratio of 1.48 or more.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 내열 스테인레스강의 조성중 상기 C는 과량첨가시 크롬탄화물을 형성하여 내식성을 저하시키므로, 오스테나이트계 스테인레스강의 규격범위인 0.08% 이하로 하는 것이 바람직하다.In the composition of the heat-resistant stainless steel of the present invention, the C forms a chromium carbide when excessively added, thereby lowering the corrosion resistance.

상기 Mn은 오스테나이트계 스테인레스강의 통상 규격범위인 2.0% 이하로 첨하는 것이 바람직한데, 그 이유는 2.0% 보다 과량 첨가될 경우, 고온에서 내산화성을 현저히 저하시키고 MnS 형성에 의한 내식성 저하도 수반하기 때문이다.The Mn is preferably added at 2.0% or less, which is the usual standard range of austenitic stainless steel, because when added in excess of 2.0%, oxidation resistance is significantly decreased at high temperature and corrosion resistance is reduced by MnS formation. Because.

상기 P과 S은 과량첨가될 경우, 편석에 의해 열간가공성을 현저히 저하시킬 뿐 아니라, 특히 S은 MnS을 형성하여 내식성을 저하시키기 때문에, 오스테나이트계 스테인레스강의 통상 규격범위인 0.045% 이하로 첨가하는 것이 바람직하다. When P and S are excessively added, not only the hot workability is significantly lowered due to segregation, but especially S forms MnS, which lowers the corrosion resistance. It is preferable.

상기 Si은 다량첨가될 경우 내산화성을 개선하는 이점이 있지만, 제강조업시 SiO2개재물을 쉽게 형성시켜 청정도, 열간가공성 및 기계적 성질을 저하시킬 수 있다. 따라서, 그 함량은 오스테나이트계 스테인레스강의 통상 규격범위인 1.0% 이하로 하는 것이 바람직하다.The Si has an advantage of improving the oxidation resistance when added in a large amount, but can easily form SiO 2 inclusions in the steelmaking industry can reduce the cleanliness, hot workability and mechanical properties. Therefore, the content is preferably 1.0% or less, which is the normal specification range of austenitic stainless steel.

상기 Cr은 1000℃에서 Cr단독으로 보호피막을 형성할 수 있도록 하기 위해서, 18% 이상 첨가하는 것이 바람직하다. 그러나, 그 함량이 너무 높으면, (Cr/Ni)eq.비 조절을 위해 Ni를 과량 첨가하여야 하므로, 경제성을 고려하여 22% 이하로 하는 것이 바람직하다.The Cr is preferably added at least 18% in order to form a protective film by Cr alone at 1000 ℃. However, if the content is too high, (Cr / Ni) eq. Since excessive Ni must be added for the non-adjustment, the economical efficiency is preferably 22% or less.

상기 Ni은 오스테나이트조직을 안정화시키는 역할을 하지만, 고가이므로 (Cr/Ni)eq.비 조절에 주의하여 첨가량을 최소화해야 한다. 18%Cr강 및 22%Cr강에 있어서 오스테나이트조직을 보유하기 위해서는 Ni이 각각 최소 8%, 12% 이상 함유되어야 한다. 그러나, 그 함량이 12% 이상, 특히 14~19%이면, 내산화성을 향상시키는 Ni의 역할이 저하하므로, 첨가량은 8~12%로 하는 것이 바람직하다.Ni serves to stabilize the austenite structure, but because it is expensive (Cr / Ni) eq. Care should be taken to control the ratio and minimize the addition. In 18% Cr steel and 22% Cr steel, Ni must contain at least 8% and 12%, respectively, in order to retain the austenite structure. However, since the role of Ni which improves oxidation resistance will fall when the content is 12% or more, especially 14 to 19%, it is preferable to make addition amount into 8 to 12%.

상기 W은 고온강도를 향상시키는 원소이나, 과량첨가될 경우, 고온에서 WO3화합물의 기화로 인해 내산화성을 저하시키고, 700℃에서 장시간 유지시 σ상 형성을 촉진하여 기계적성질을 저하시킨다. 따라서, W첨가량은 고용강화효과를 극대화하며 동시에 기타 부정적영향을 최소화하기 위해, 1~2.5%로 하는 것이 바람직하다.W is an element that improves high temperature strength, but when excessively added, W is deteriorated in oxidation resistance due to vaporization of the WO 3 compound at a high temperature, and promotes the formation of σ phase when maintained at 700 ° C. for a long time, thereby degrading mechanical properties. Therefore, in order to maximize the effect of strengthening employment and at the same time minimize other negative effects, the amount of W added is preferably 1 to 2.5%.

상기 N는 강도와 내식성을 동시에 향상시키는 원소이나, 그 함량이 0.1% 이하이면 큰 효과를 기대하기 어렵다. 반면, 0.2%이상 첨가되면 연주과정에서 핀홀(pin hole)결함을 다량 발생시켜 표면품질을 저해하므로, 그 함량은 0.1~0.2%로 하는 것이 바람직하다.N is an element that improves strength and corrosion resistance at the same time, but if the content is 0.1% or less, it is difficult to expect a great effect. On the other hand, when 0.2% or more is added, a large amount of pinhole defects are generated during the playing process, thereby inhibiting the surface quality. Therefore, the content is preferably 0.1 to 0.2%.

상기 Nb은 Nb(C,N)화합물을 형성하여 고온강도 및 크립강도를 향상시키는데 매우 효과적인 원소로, 그 함량은 강중 C 및 N의 함량에 의해 결정된다. 본 발명강에서 N함량이 0.1~0.2%인 것을 고려하여 Nb의 첨가량은 0.2~0.6%로 하는 것이 바람직하다.The Nb is a very effective element to form a Nb (C, N) compound to improve the high temperature strength and creep strength, the content is determined by the content of C and N in the steel. In consideration of the N content of 0.1 to 0.2% in the inventive steel, the amount of Nb added is preferably 0.2 to 0.6%.

상기 Ti은 응고중 적정량 첨가할 경우, 열간가공성을 개선하고 SiO2화합물을 제어하는 효과가 있다. 그러나, 과량첨가될 경우, TiO2산화물 촉진에 의해 내산화성을 저하시키기 때문에, 그 함량은 0.045% 이하로 하는 것이 바람직하다.When Ti is added in an appropriate amount during solidification, Ti has an effect of improving hot workability and controlling SiO 2 compounds. However, when excessively added, since oxidation resistance is reduced by promotion of TiO 2 oxide, the content thereof is preferably 0.045% or less.

상기 B은 고온에서 열간가공성을 향상시키는 원소이나, 합금비가 높아질수록 B의 고용도는 저하된다. 1100℃에서 304강 및 310S강에 있어서, B의 고용도는 각각 100ppm전후, 50ppm전후인데, 본 발명강은 그 합금비가 304와 310S사이에 있으로 B의 첨가량은 50ppm 이하로 하는 것이 바람직하다.B is an element that improves hot workability at high temperature, but the solubility of B decreases as the alloy ratio increases. In 304 steel and 310S steel at 1100 ° C, the solid solubility of B is about 100 ppm and about 50 ppm, respectively. In the present invention, the alloy ratio is between 304 and 310S, and the amount of B added is preferably 50 ppm or less.

상기 Ce은 내산화성을 현저히 개선시키기 위해 첨가할 수 있는 원소로 그 함량이 많을수록 내산화성에는 효과적이지만, 고가이기 때문에 경제성을 고려하여 0.1% 이하로 첨가하는 것이 바람직하다. The Ce is an element that can be added to significantly improve the oxidation resistance, the more the content thereof, the more effective the oxidation resistance, but because it is expensive, it is preferable to add 0.1% or less in consideration of economical efficiency.

다음, 강 제조의 경제성을 고려하여 상기 (Cr/Ni)eq.비는 1.48 이상으로 하는 것이 바람직한데, 그 이유는 (Cr/Ni)eq.비가 너무 낮으면, 연주시 초정 오스테나이트의 응고로 P,S편석을 유발하고, 용접시 응고균열을 수반하기 때문이다. 즉, 강을 경제적으로 제조하기 위해서는 연속주조성과 열간압연성이 우수해야 하는데, 일반적으로, 강의 연속주조성은 응고기구가 L→L+δ→L+δ+γ→γ+δ일 때, 가장 우수하다. 이러한 응고기구를 갖기 위해서는 관계식1 및 관계식2에 기초한 합금성분계의 (Cr/Ni)eq.비가 1.48 이상이 되어야 하는 것이다. Next, in consideration of the economics of steel production, the (Cr / Ni) eq . Ratio is preferably 1.48 or more, because the (Cr / Ni) eq . Ratio is too low, due to solidification of primary austenite during playing It causes P and S segregation and entails coagulation cracking during welding. That is, in order to manufacture steel economically, continuous casting and hot rolling are required. Generally, continuous casting of steel is most effective when the solidification mechanism is L → L + δ → L + δ + γ → γ + δ. great. In order to have such a solidification mechanism, the ratio of (Cr / Ni) eq . Of the alloy component system based on the relations 1 and 2 should be 1.48 or more.

[관계식1][Relationship 1]

Creq. = (%Cr)+1.37(%Mo)+1.5(%Si)+2(%Nb)+3(%Ti)Cr eq. = (% Cr) +1.37 (% Mo) +1.5 (% Si) +2 (% Nb) +3 (% Ti)

[관계식2][Relationship 2]

Nieq. = (%Ni)+0.31(%Mn)+22(%C)+14.2(%N)+(%Cu)Ni eq . = (% Ni) + 0.31 (% Mn) + 22 (% C) + 14.2 (% N) + (% Cu)

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

본 발명의 발명강 및 304, 309S, 310S강의 종래강을, 진공 유도용해로에서 30㎏ 주괴형태로 제조하였다. 제조된 주괴를 1250℃ 전기로에서 150분 가열한 후 14m 및 6mm 두께로 열간압연하였다. 하기 표1은 용해강중의 합금성분계를 나타낸 것으로, 여기서 종래강(1)은 304강, 종래강(2)는 309S강, 종래강(3)은 310S강이며, 발명강(1) 및 발명강(2)는 본 발명의 조건을 만족하는 강으로, 발명강(1)은 2009W강이라고도 하고, 발명강(2)는 2009WR강이라고도 한다.The inventive steels of the present invention and conventional steels of 304, 309S and 310S were manufactured in the form of 30 kg ingot in a vacuum induction melting furnace. The prepared ingot was heated in a 1250 ℃ electric furnace for 150 minutes and then hot rolled to a thickness of 14m and 6mm. Table 1 shows the alloy component system in the molten steel, where conventional steel (1) is 304 steel, conventional steel (2) is 309S steel, conventional steel (3) is 310S steel, invention steel (1) and invention steel (2) is a steel that satisfies the conditions of the present invention, the invention steel (1) is also referred to as 2009W steel, and the invention steel (2) is also referred to as 2009WR steel.

구분division CrCr NiNi MnMn SiSi CC NN BB TiTi NbNb WW CeCe 당량equivalent weight 종래강1Conventional Steel 1 17.817.8 7.697.69 0.840.84 0.610.61 0.0460.046 0.040.04 1.881.88 종래강2Conventional Steel 2 22.5622.56 13.113.1 1.551.55 0.340.34 0.0660.066 0.0450.045 0.00230.0023 0.0120.012 1.471.47 종래강3Conventional Steel 3 25.2725.27 19.0119.01 1.491.49 0.540.54 0.0470.047 0.0510.051 0.00340.0034 0.0110.011 1.231.23 발명강1Inventive Steel 1 1919 8.618.61 0.970.97 0.440.44 0.0670.067 0.1700.170 0.00180.0018 0.0140.014 0.370.37 1.921.92 1.701.70 발명강2Inventive Steel 2 19.2419.24 8.68.6 0.980.98 0.40.4 0.0610.061 0.1700.170 0.00180.0018 0.0120.012 0.340.34 1.921.92 0.0220.022 1.731.73

상기 표1에서 알 수 있듯이, 본 발명강의 (Cr/Ni)eq.비는 각각 1.70,1.73으로 모두 본 발명의 범위를 만족하기 때문에, 연속주조성은 매우 우수한 것으로 평가된다.As can be seen in Table 1, since the (Cr / Ni) eq . Ratio of the present invention steel is 1.70, 1.73, respectively, satisfies the scope of the present invention, the continuous castability is evaluated to be very excellent.

도1에는 발명강과 종래강의 열간가공성을 나타내었다. 열간가공성은 고온인장에 의한 단면감소율(RA. Reduction of Area)변화로 평가하였다. 도1에 나타낸 바 와 같이, 발명강(1)은 종래강과 유사한 열간가공성을 보유하고, 발명강(2)는 종래강(2) 및 종래강(3)에 비하여 현저히 우수한 열간가공성을 보유한다. 그 이유는 도2의 미세조직에 나타난 바와 같이, 발명강(2)인 2009WR강이 적정량의 δ-페라이트를 함유하기 때문인 것으로 판단된다. 즉, δ/γ 계면이 가공중 재결정 핵생성 촉진역할을 할 뿐 아니라, 입도성장억제로 가공성을 크게 개선하는 것이다. 이와 같이, 열간가공성이 우수한 경우 열간압연과정에서 표면결함 또는 에지크랙(edge crack)발생을 억제할 수 있어, 표면연마 또는 에지 슬리팅과 같은 후공정처리의 생략이 가능하므로 매우 경제적이다. Figure 1 shows the hot workability of the invention steel and conventional steel. The hot workability was evaluated by the change in RA.Reduction of Area due to high temperature tensile. As shown in Fig. 1, the invention steel 1 has a hot workability similar to that of the conventional steel, and the invention steel 2 has a significantly better hot workability than the conventional steel 2 and the conventional steel 3. The reason for this is that, as shown in the microstructure of Fig. 2, the 2009WR steel, the inventive steel 2, contains an appropriate amount of δ-ferrite. In other words, the δ / γ interface not only promotes recrystallization nucleation during processing, but also greatly improves workability by suppressing grain growth. As such, when the hot workability is excellent, surface defects or edge cracks can be suppressed during hot rolling, and post-processing such as surface polishing or edge slitting can be omitted, which is very economical.

(실시예 2)(Example 2)

상기 실시예 1에서 제조된 강들에 대하여 25~600℃영역에서의 강의 상온 및 고온 기계적성질을 측정하고 그 결과를 하기 표2에 나타내었다.For the steels produced in Example 1, the room temperature and high temperature mechanical properties of the steel at 25 to 600 ° C. were measured and the results are shown in Table 2 below.

강종Steel grade 항목Item 25℃25 300℃300 400℃400 500℃500 600℃600 종래강1Conventional Steel 1 YS(㎏/㎟)YS (kg / mm2) 23.323.3 13.713.7 12.812.8 11.511.5 9.79.7 TS(㎏/㎟)TS (kg / mm2) 65.665.6 41.541.5 41.541.5 39.039.0 34.934.9 EI(%)EI (%) 69.869.8 49.749.7 51.351.3 49.949.9 50.850.8 종래강2Conventional Steel 2 YS(㎏/㎟)YS (kg / mm2) 27.027.0 18.318.3 17.717.7 16.216.2 13.313.3 TS(㎏/㎟)TS (kg / mm2) 60.060.0 48.148.1 47.947.9 44.744.7 38.738.7 EI(%)EI (%) 59.659.6 45.545.5 47.247.2 47.447.4 45.545.5 종래강3Conventional Steel 3 YS(㎏/㎟)YS (kg / mm2) 25.325.3 17.617.6 17.017.0 14.914.9 12.312.3 TS(㎏/㎟)TS (kg / mm2) 59.459.4 48.348.3 47.747.7 45.445.4 41.041.0 EI(%)EI (%) 61.761.7 49.649.6 51.051.0 50.550.5 52.752.7 발명강1Inventive Steel 1 YS(㎏/㎟)YS (kg / mm2) 44.644.6 28.428.4 27.427.4 24.524.5 22.622.6 TS(㎏/㎟)TS (kg / mm2) 76.876.8 59.159.1 58.058.0 54.154.1 50.350.3 EI(%)EI (%) 52.352.3 43.643.6 43.743.7 40.740.7 40.440.4 발명강2Inventive Steel 2 YS(㎏/㎟)YS (kg / mm2) 45.345.3 29.729.7 27.827.8 25.925.9 23.423.4 TS(㎏/㎟)TS (kg / mm2) 77.377.3 59.459.4 58.058.0 54.754.7 50.250.2 EI(%)EI (%) 50.050.0 42.942.9 46.346.3 43.343.3 42.142.1

상기 표2에서 알 수 있는 바와 같이, 종래강(1)~(3)은 상온 항복강도가 23~27kg/㎟인 반면, 발명강은 약 45kg/㎟로 약 2배에 이르며, 상온 인장강도는 종래강이 60~65kg/㎟, 발명강이 약 77kg/㎟로, 본 발명의 발명강이 매우 우수함을 알 수 있다. 연신율의 경우, 종래강에 비하여 약한 저하되나, 50~52%를 나타내고 있어, 매우 우수하다. 또한, 600℃에서 종래강의 항복강도는 10kg/㎟ 전후인 반면, 발명강의 항복강도는 23kg/㎟ 전후이며, 인장강도도 월등히 우수함을 알 수 있다. As can be seen in Table 2, the conventional steel (1) ~ (3) has a room temperature yield strength of 23 ~ 27kg / mm2, while the invention steel is about 45kg / mm2, about two times, the room temperature tensile strength is It can be seen that the conventional steel is 60 to 65 kg / mm 2, and the invention steel is about 77 kg / mm 2, and the invention steel of the present invention is very excellent. In the case of an elongation, although it is weak compared with the conventional steel, it shows 50 to 52% and is very excellent. In addition, the yield strength of conventional steel at 600 ℃ is about 10kg / mm2, while the yield strength of the invention steel is about 23kg / mm2, it can be seen that the tensile strength is also excellent.

이와 같이, 본 발명강은 고온 기계적성질이 우수하기 때문에, 사용중 하중에 의한 내변형력이 우수하여 소재수명을 연장할 수 있다.As described above, the steel of the present invention is excellent in high temperature mechanical properties, and is excellent in deformation resistance by load during use, thereby extending the life of the material.

한편, 소재수명에 관계하는 고온 내응력 변형성은 통상 크립특성으로 평가하는데, 도3에는 종래강(2)와 발명강(1),(2)의 700℃에서의 크립특성을 나타내었다. 도3에서 알 수 있는 바와 같이, 12kg/㎟의 하중하에서 종래강(2)은 141시간만에 크립파단이 일어난 반면, 발명강(1)은 크립파단까지 2,692시간, 발명강(2)의 경우에는 2,785시간이 소요되었다. 즉, 발명강의 크립수명은 종래강(2)에 비하여 약 15배 이상 우수하였다. 이는, 텅스텐과 니오븀 첨가에 의한 석출강화와 질소첨가에 의한 고용강화에 기인한 것으로 판단된다.On the other hand, the high temperature stress strain related to the life of the material is usually evaluated by creep characteristics. As can be seen in Figure 3, under the load of 12kg / ㎜ the conventional steel (2) creep rupture occurred in 141 hours, while the invention steel (1) 2,692 hours to creep rupture, in the case of invention steel (2) It took 2,785 hours. That is, the creep life of the inventive steel was about 15 times or more superior to that of the conventional steel (2). This may be due to precipitation strengthening by adding tungsten and niobium and solid solution strengthening by adding nitrogen.

도4는 800℃ 대기분위기에서 2000시간 등온산화 실험한 결과를 나타낸 것으로, 발명강은 산화에 의해 무게중량이 종래강(2),(3)과 유사하거나 우수한 것을 알 수 있다. Figure 4 shows the results of an isothermal oxidation experiment for 2000 hours in an atmosphere of 800 ℃, it can be seen that the invention steel is similar to or superior to the conventional steel (2), (3) by weight by oxidation.

또한, 1000℃ 대기분위기에서 500시간 등온산화 실험한 결과를 나타낸 도5에서는, 발명강(2)의 무게중량이 종래강(2),(3)과는 유사수준이나 종래강(1)에 비하여 현저히 우수한 내산화성을 보유하고 있음을 알 수 있다. 발명강(1)과 발명강(2)의 내산화성 차이는 발명강(1)에 함유된 희토류 원소 세륨(Ce)에 기인한다. 즉, Ce은 산화 스케일과 기지금속 사이에 위치하여 스케일의 박리를 막아주고, 스케일에 균열이 발생했을 때, 균열부위에 산화물을 형성하여 산소의 침투를 막아준다. 도4, 5로부터 발명강(2)는 1000℃에서도 우수한 내산화성을 보유지만, 발명강(1)은 1000℃에서 안전한 보호피막을 형성하지 못하기 때문에, 발명강(1)의 사용한계온도는 900℃로 제한하는 것이 바람직하다.In addition, in FIG. 5 showing the results of isothermal oxidation experiments for 500 hours in an atmosphere of 1000 ° C., the weight of invention steel 2 is similar to that of conventional steels 2 and 3, but is similar to that of conventional steels 1. It can be seen that it has a remarkably excellent oxidation resistance. The difference in oxidation resistance between the inventive steel (1) and the inventive steel (2) is due to the rare earth element cerium (Ce) contained in the inventive steel (1). That is, Ce is located between the oxidized scale and the base metal to prevent peeling of the scale, and when a crack occurs in the scale, an oxide is formed at the cracked portion to prevent oxygen from penetrating. 4 and 5, although the invention steel 2 has excellent oxidation resistance even at 1000 degreeC, since the invention steel 1 does not form a safe protective film at 1000 degreeC, the service temperature of invention steel 1 is It is preferable to limit to 900 ° C.

도6은 800℃ 대기분위기에서 800회 반복산화 실험한 결과를 보여주고 있다. 반복산화 실험은 50분 산화+10분 냉각을 1주기로 하여 반복적으로 실시하는 것으로 하였다. 반복산화 실험의 경우, 통상 초기에는 약간의 무게증가현상을 수반하다가 스케일의 두께가 두꺼워지면서 열응력에 의한 스케일 박리로 무게감소현상을 수반한다. 그러나, 도6에 나타난 바와 같이, 발명강의 무게증감은 종래강(2),(3)과 유사수준으로 종래강(1)에 비해 현저히 우수함을 알 수 있다.Figure 6 shows the results of 800 repeated oxidation experiments in the atmosphere of 800 ℃. The repeated oxidation experiment was to be repeatedly performed with one cycle of 50 minutes oxidation + 10 minutes cooling. In the case of repeated oxidation experiments, it is usually accompanied by a slight weight increase at the initial stage, followed by weight loss due to scale peeling due to thermal stress as the thickness of the scale becomes thick. However, as shown in Figure 6, it can be seen that the weight increase and decrease of the invention steel is significantly superior to the conventional steel (1) in a similar level to the conventional steel (2), (3).

도7은 1000℃ 대기분위기에서 450회 반복산화 실험한 결과를 나타낸 것으로, 발명강의 경우도 스케일박리에 의한 무게감소현상을 수반하나, 종래강(1)에 비하여 월등히 우수함을 알 수 있다. 특히, 발명강(2)가 발명강(1)에 비하여 우수한 것은 앞에서 설명한 바와 같이, Ce의 첨가에 기인한다.FIG. 7 shows the results of 450 repeated oxidation experiments in an atmosphere of 1000 ° C., and the inventive steels are accompanied by weight loss due to scale peeling, but are superior to those of the conventional steels 1. In particular, the invention steel 2 is superior to the invention steel 1 due to the addition of Ce as described above.

상술한 바와 같이, 본 발명은 내열강도가 우수한 내열 스테인레스 강에 관한 것으로, 그 첨가성분을 제어함으로써 고온 내산화성 및 기계적 특성이 우수한 범용 내열강을 경제적인 제조공정을 통해 얻을 수 있는 효과가 있다. As described above, the present invention relates to a heat-resistant stainless steel having excellent heat resistance, and by controlling the additive component, there is an effect of obtaining a general-purpose heat resistant steel having excellent high temperature oxidation resistance and mechanical properties through an economical manufacturing process.                     

Claims (2)

중량%로, C: 0.08% 이하, Mn: 2.0% 이하, P: 0.045% 이하, S: 0.045% 이하, Si: 1.0% 이하, Cr: 18~22%, Ni: 8~12%, W: 1.0~2.5%, N: 0.1~0.2%, Nb: 0.2~0.6%, Ti: 0.045% 이하, B: 0.005% 이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 조성을 갖고, (Cr/Ni)eq.비가 1.48 이상인 내열강도가 우수한 내열 스테인레스강.By weight%, C: 0.08% or less, Mn: 2.0% or less, P: 0.045% or less, S: 0.045% or less, Si: 1.0% or less, Cr: 18-22%, Ni: 8-12%, W: 1.0-2.5%, N: 0.1-0.2%, Nb: 0.2-0.6%, Ti: 0.045% or less, B: 0.005% or less, having a composition consisting of residual Fe and other unavoidable impurities, and having a (Cr / Ni) eq . Heat-resistant stainless steel with excellent heat resistance of 1.48 or more. (여기서, Creq.=(%Cr)+1.37(%Mo)+1.5(%Si) +2(%Nb)+3(%Ti)이고, (Where Cr eq. = (% Cr) + 1.37 (% Mo) + 1.5 (% Si) + 2 (% Nb) + 3 (% Ti), Nieq.=(%Ni)+ 0.31(%Mn)+22(%C)+14.2(%N)+(%Cu)임.)Ni eq . = (% Ni) + 0.31 (% Mn) +22 (% C) +14.2 (% N) + (% Cu).) 제1항에 있어서, 상기 강에는 0.1% 이하의 Ce이 함유되는 것임을 특징으로 하는 내열강도가 우수한 내열 스테인레스강.The heat resistant stainless steel of claim 1, wherein the steel contains 0.1% or less of Ce.
KR1019990049139A 1999-11-08 1999-11-08 A heat resistant stainless steel having good heat resistant strength KR100605678B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990049139A KR100605678B1 (en) 1999-11-08 1999-11-08 A heat resistant stainless steel having good heat resistant strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990049139A KR100605678B1 (en) 1999-11-08 1999-11-08 A heat resistant stainless steel having good heat resistant strength

Publications (2)

Publication Number Publication Date
KR20010045728A KR20010045728A (en) 2001-06-05
KR100605678B1 true KR100605678B1 (en) 2006-07-31

Family

ID=19618969

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990049139A KR100605678B1 (en) 1999-11-08 1999-11-08 A heat resistant stainless steel having good heat resistant strength

Country Status (1)

Country Link
KR (1) KR100605678B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428572B1 (en) * 1999-12-09 2004-04-28 주식회사 포스코 A heat resistant stainless steel having superior oxidizing resistant and heat resistant strength
KR100766251B1 (en) * 2006-06-09 2007-10-12 주식회사 포스코 Ni saving heat resistant austenitic stainless steel with excellent high temperature properties
KR101038834B1 (en) * 2008-06-20 2011-06-03 주식회사 포스코 Materials Welding Apparatus
CN105420621A (en) * 2015-12-25 2016-03-23 振石集团东方特钢有限公司 Austenitic stainless steel used for anti-high-temperature furnace pipe and manufacturing process for plate blank thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920702434A (en) * 1990-03-24 1992-09-04 가히 미끼 Ferritic series heat resistant stainless steel with excellent low temperature toughness, weldability and heat resistance
KR950000910A (en) * 1993-06-24 1995-01-03 천성순 High-performance stainless steels with minimum molybdenum content and high tungsten content
KR970073762A (en) * 1996-05-21 1997-12-10 김종진 Method of manufacturing slab of two phase stainless steel
JPH10146691A (en) * 1996-11-18 1998-06-02 Nippon Steel Corp Method for welding high chromium steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920702434A (en) * 1990-03-24 1992-09-04 가히 미끼 Ferritic series heat resistant stainless steel with excellent low temperature toughness, weldability and heat resistance
KR950000910A (en) * 1993-06-24 1995-01-03 천성순 High-performance stainless steels with minimum molybdenum content and high tungsten content
KR970073762A (en) * 1996-05-21 1997-12-10 김종진 Method of manufacturing slab of two phase stainless steel
KR100286643B1 (en) * 1996-05-21 2001-04-16 이구택 Method for manufacturing dual phase stainless steel slab
JPH10146691A (en) * 1996-11-18 1998-06-02 Nippon Steel Corp Method for welding high chromium steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1019970073762 *

Also Published As

Publication number Publication date
KR20010045728A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US5733387A (en) Duplex stainless steel, and its manufacturing method
KR100613943B1 (en) AGE-HARDENABLE, CORROSION RESISTANT Ni-Cr-Mo ALLOYS
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
JP4516924B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
KR100605678B1 (en) A heat resistant stainless steel having good heat resistant strength
KR101987665B1 (en) Utility ferritic stainless steel excellent in hot workability and method of manufacturing the same
KR100428572B1 (en) A heat resistant stainless steel having superior oxidizing resistant and heat resistant strength
JPH06316736A (en) Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
KR101844573B1 (en) Duplex stainless steel having excellent hot workability and method of manufacturing the same
KR102326046B1 (en) LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
KR102168829B1 (en) LOW-Cr FERRITIC STAINLESS STEEL WITH EXCELLENT FORMABILITY AND HIGH TEMPERATURE PROPERTIES AND MANUFACTURING METHOD THEREOF
KR20180074322A (en) Austenite stainless steel excellent in corrosion resistance and hot workability
KR100832695B1 (en) Heat resistant austenitic stainless steel with excellent high temperature oxidation resistance and sag resistance
JP2022069229A (en) Austenite stainless steel and method for manufacturing the same
JPH0428849A (en) Nozzle for zinc die casting
KR102259806B1 (en) Ferritic stainless steel with improved creep resistance at high temperature and method for manufacturing the ferritic stainless steel
KR102497433B1 (en) Austenitic stainless steel with imporoved strength and corrosion resistance, and method for manufacturing the same
KR102463015B1 (en) High-strength austenitic stainless steel with excellent hot workability
JPH07188817A (en) Ni-fe magnetic alloy excellent in magnetic property and workability and its production
KR101726075B1 (en) Low-chromium ferritic stainless steel having excellent corrosion resistant and method for manufacturing the same
KR100545091B1 (en) High strength structural stainless steel
KR20240032467A (en) Two-phase stainless steel with improved low-temperature impact toughness and manufacturing method thereof
KR20230072329A (en) Austenitic stainless steel with improved surface quality and the method for manufacturing the same
KR101560920B1 (en) Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120523

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140721

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150707

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160720

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170721

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180720

Year of fee payment: 13