JPH03274245A - Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance - Google Patents

Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance

Info

Publication number
JPH03274245A
JPH03274245A JP2074785A JP7478590A JPH03274245A JP H03274245 A JPH03274245 A JP H03274245A JP 2074785 A JP2074785 A JP 2074785A JP 7478590 A JP7478590 A JP 7478590A JP H03274245 A JPH03274245 A JP H03274245A
Authority
JP
Japan
Prior art keywords
less
stainless steel
weldability
toughness
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2074785A
Other languages
Japanese (ja)
Other versions
JP2696584B2 (en
Inventor
Yoshihiro Uematsu
植松 美博
Naoto Hiramatsu
直人 平松
Sadayuki Nakamura
定幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2074785A priority Critical patent/JP2696584B2/en
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to DE69110816T priority patent/DE69110816T2/en
Priority to KR1019910701642A priority patent/KR0180206B1/en
Priority to EP91906263A priority patent/EP0478790B1/en
Priority to PCT/JP1991/000344 priority patent/WO1991014796A1/en
Priority to CA002056362A priority patent/CA2056362C/en
Publication of JPH03274245A publication Critical patent/JPH03274245A/en
Priority to US07/976,840 priority patent/US5302214A/en
Application granted granted Critical
Publication of JP2696584B2 publication Critical patent/JP2696584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Abstract

PURPOSE:To improve the low temp. toughness of a stainless steel and to prevent the weld high temp. cracks in a weld zone by compositely adding Mo and Cu to a steel and specifying the Mn/S ratio, Nb content or the like therein. CONSTITUTION:The compsn. of a ferritic heat-resistance stainless steel is formed of, by weight, <=0.03% C, 0.1 to 0.8% Si, 0.6 to 2.0% Mn, <=0.006% S, <=4% Ni, 17.0 to 25.0% Cr, 0.2 to 0.8% Nb, 1.0 to 4.5% Mo, 0.1 to 2.5% Cu, <=0.003% N and the balance Fe with inevitable impurites. In this compositional range, the Mn%/S% ratio is regulated to >=200, the content of Nb in accordance with a formula [Nb]=Nb%-8(C%+N%) is regulated to >=0.2 and the relationship of <=4 Ni%+Cu% is satisfied. If required, optimum amounts of one or more kinds among Al, Ti, V, Zr, W, B and rare earth elements are incorporated therein. This steel can be used for an exhaust gas purifying material in an internal combustion engine, a burning appliance or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種内燃機関の排気ガス浄イし用材料あるい
は各種燃焼機器などに用む)られるフェライト系耐熱用
ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ferritic heat-resistant stainless steel used for exhaust gas cleaning materials of various internal combustion engines or various combustion equipment.

〔発明の背景および従来技術〕[Background of the invention and prior art]

近年、自動車あるいは工場から排出されるガスによる大
気汚染が大きな問題となっている0例えば自動車の排気
ガスは公害防止の観点からN08HC,Goなどの量が
規制されてきたが、最近では酸性雨などの点から規制が
より厳しくなる傾向にあり、排気ガス浄化効率の向上が
必要となってきた。
In recent years, air pollution from gases emitted from automobiles and factories has become a major problem.For example, the amount of N08HC, Go, etc. in automobile exhaust gas has been regulated from the perspective of pollution prevention, but recently, acid rain, etc. As regulations tend to become more stringent in this regard, it has become necessary to improve exhaust gas purification efficiency.

他方、自動車では浄化効率の向上に加え、エンジンの高
出力化あるいは性能アップの要求が高まり排ガス温度は
上昇する傾向にある。このような背景から排気ガス系統
の部材は運転中にきわめて高温になり、また5機械の振
動や外部からの振動による機械的な応力変動、あるいは
運転パターンに依存した冷熱サイクル、さらには寒冷地
では冬期の温度低下による温度変動を受けるなど、きわ
めて過酷な状況下にさらされることになる。
On the other hand, in automobiles, in addition to improving purification efficiency, demands for higher engine output or improved performance are increasing, and exhaust gas temperatures tend to rise. Due to this background, exhaust gas system members become extremely hot during operation, and are also subject to mechanical stress fluctuations due to machine vibrations and external vibrations, cooling/heating cycles depending on the operating pattern, and even in cold regions. They will be exposed to extremely harsh conditions, including temperature fluctuations caused by the drop in winter temperatures.

ステンレス鋼などの耐熱鋼をこれらの用途で使用する場
合、耐熱性に優れることは熱論であるが板材あるいはバ
イブのいずれを用いても溶接施工を要するので溶接性に
優れることが必要となりまたそれらを加工する際の加工
性に優れることが必要となる。したがって、これらの用
途では耐熱性、低温靭性、溶接性および加工性を同時に
¥L(iIすることが重要な課題となる。
When heat-resistant steel such as stainless steel is used for these purposes, it is a thermal theory that it has excellent heat resistance, but since welding is required regardless of whether plate material or vibrator is used, it is necessary to have excellent weldability. It is necessary to have excellent workability during processing. Therefore, in these applications, it is important to simultaneously improve heat resistance, low-temperature toughness, weldability, and workability.

Sυ5304に代表されるオーステナイト系ステンレス
鋼は加工性に優れ且つ溶接性も良好であるために上記の
ような用途に対して有望な材料であると考えられている
。しかしオーステナイト系ステンレス鋼は熱膨脹係数が
大きいことから、加熱−冷却を受けるような用途では使
用中に発生する熱応力による熱疲労破壊が懸念されてい
る。また、オーステナイト系ステンレス鋼は表面酸化物
との熱膨脹差が大きいため、加熱−冷却によって表面酸
化物が剥離しやすい、このようなことから1一部の用途
ではIncone+ 600に代表されるNi基の合金
が使用されている。この合金材料は熱WM17!に係数
が低く、また表面酸化物の密着性など耐高温酸化特性に
優れ、かつ優れた高温強度を有しているので有望な材料
であるが、きわめて高価な材料であるため広く一般に使
用されるには至っていない。
Austenitic stainless steel, represented by Sυ5304, has excellent workability and good weldability, and is therefore considered to be a promising material for the above uses. However, since austenitic stainless steel has a large coefficient of thermal expansion, there is a concern about thermal fatigue failure due to thermal stress generated during use in applications where it is subjected to heating and cooling. In addition, since austenitic stainless steel has a large difference in thermal expansion from the surface oxide, the surface oxide tends to peel off when heated and cooled. alloy is used. This alloy material is heat WM17! It is a promising material because it has a low coefficient of oxidation, excellent high-temperature oxidation resistance such as surface oxide adhesion, and excellent high-temperature strength, but it is an extremely expensive material so it is not widely used. This has not yet been achieved.

一方1 フェライト系ステンレス鋼はオーステナイト系
ステンレス鋼に比べ安価であり、また、熱膨脹係数が小
さいので熱疲労特性に優れている。
On the other hand, 1 ferritic stainless steel is cheaper than austenitic stainless steel, and has a small coefficient of thermal expansion, so it has excellent thermal fatigue properties.

したがって、加熱−冷却の温度サイクルを受けるような
用途では優れた特徴を有しているものと考えられる。そ
のため、一部の用途に対して、 Type409や5I
IS430で代表されるフェライト系ステンレス鋼が使
用され始めている。しかし、これらの材料は900°C
以上になると強度が著しく低下するため3強度下足によ
る高温疲労破壊を起こすことや耐酸化限界を越えると異
常酸化を起こすなどの問題がある。これらの問題に対し
、高温強度を改善する各種合金元素を添加しまた耐酸化
性の改善をCr量の増量によって行うことも可能である
がかような合金元素の添加およびCr量の増量は一般に
鋼の衝撃靭性を著しく劣化させ、また溶接性および加工
性も著しく劣るようになる。
Therefore, it is considered to have excellent characteristics in applications that undergo heating-cooling temperature cycles. Therefore, for some applications, Type 409 and 5I
Ferritic stainless steel, typified by IS430, is beginning to be used. However, these materials are
If the temperature exceeds the oxidation resistance limit, the strength will drop significantly, causing problems such as high-temperature fatigue failure due to the lower level of 3-strength strength, and abnormal oxidation occurring if the oxidation resistance limit is exceeded. To address these problems, it is possible to add various alloying elements that improve high-temperature strength and to improve oxidation resistance by increasing the amount of Cr, but the addition of such alloying elements and increasing the amount of Cr are generally The impact toughness of the steel is significantly deteriorated, and the weldability and workability are also significantly deteriorated.

以上のように、現状では高温強度、耐酸化性。As mentioned above, currently it has high temperature strength and oxidation resistance.

耐熱性、靭性、溶接性、加工性といった多柱質を同時に
満足できるような材料は出現しておらず。
No material has yet appeared that can simultaneously satisfy multiple properties such as heat resistance, toughness, weldability, and workability.

今後の排気ガス浄化効率の向上、内燃機関の高出力化お
よび高性能化などの進展とともにますます厳しくなる使
用条件および環境に対応するため。
In order to respond to usage conditions and environments that will become increasingly severe as the efficiency of exhaust gas purification increases and the output and performance of internal combustion engines increases.

高温強度や熱疲労特性および高温酸化などの耐熱性を具
有したうえ、製造性、加工性、溶接性および低温靭性に
優れた材料が要望されている。もしフェライト系ステン
レス鋼において優れた耐熱性を有しかつ製造性、加工性
、溶接性および低温靭性に優れた鋼が得られれば、上記
のような特殊用途に対してきわめて有望な材料を得るこ
とができるものと考えられる。
There is a demand for materials that have high-temperature strength, thermal fatigue properties, and high-temperature oxidation resistance, as well as excellent manufacturability, workability, weldability, and low-temperature toughness. If a ferritic stainless steel with excellent heat resistance and excellent manufacturability, workability, weldability, and low-temperature toughness could be obtained, it would be possible to obtain a material that is extremely promising for the special uses mentioned above. It is thought that this can be done.

〔発明の目的〕[Purpose of the invention]

本発明は、優れた高温強度および耐高温酸化特性を有し
、かつフェライト系ステンレス鋼の欠点である低温靭性
を改善し、また製造上および施工上問題となる溶接部の
溶接高温割れをも防止したフェライト系耐熱用ステンレ
ス鋼の開発を目的としたものである。
The present invention has excellent high-temperature strength and high-temperature oxidation resistance, improves low-temperature toughness, which is a drawback of ferritic stainless steel, and also prevents weld hot cracking in welded parts, which is a problem in manufacturing and construction. The aim is to develop a heat-resistant ferritic stainless steel.

〔発明の構成) 本発明は2重量%において。[Structure of the invention] The invention is at 2% by weight.

C:0.03%以下。C: 0.03% or less.

Sl:0.1〜0.8%。Sl: 0.1-0.8%.

M n : 0.6〜2.0% S : 0.006%以下。Mn: 0.6-2.0% S: 0.006% or less.

Ni+4%以下。Ni+4% or less.

Cr:17.0〜25.0%。Cr: 17.0-25.0%.

Nb:0.2〜0.8%。Nb: 0.2-0.8%.

Mo : 1.0〜4.5%。Mo: 1.0-4.5%.

Cu : 0.1〜2.5%。Cu: 0.1-2.5%.

N:0.03%以下。N: 0.03% or less.

ただし、前記の範囲において。However, within the above range.

Mn%/S%の比が200以上。The ratio of Mn%/S% is 200 or more.

〔Nb〕−Nb%−8(C%十N%) の式に従う〔Nb〕が0.2以上、およびNi%+Cu
%が4以下 の関係を満足するようにこれらの元素を含有し。
[Nb] is 0.2 or more according to the formula [Nb] - Nb% - 8 (C% - N%), and Ni% + Cu
These elements are contained so that % satisfies the relationship of 4 or less.

残部がFeおよび製造上の不可避的不純物からなる低温
靭性、溶接性および耐熱性に優れたフェライト系耐熱用
ステンレス鋼を提供する。
Provided is a ferritic heat-resistant stainless steel having excellent low-temperature toughness, weldability, and heat resistance, the balance of which is Fe and impurities unavoidable during manufacturing.

また1本発明は、前記の鋼に、さらに AIl、5%以下。In addition, one aspect of the present invention further provides the above-mentioned steel. AIl, 5% or less.

Ti:0.6%以下。Ti: 0.6% or less.

V:0.5%以下。V: 0.5% or less.

Zr : 1.0%以下。Zr: 1.0% or less.

W : 1.5%以下。W: 1.5% or less.

B:0.01%以下 REM : 0.1%以下 の一種または二種以上を含有した低温靭性、溶接性およ
び耐熱性に優れたフェライト系耐熱用ステンレス鋼を提
供する。
B: 0.01% or less REM: Provides a ferritic heat-resistant stainless steel containing one or more of 0.1% or less and having excellent low-temperature toughness, weldability, and heat resistance.

(発明の詳細な 説明者らは前記の目的を達成すべく試験研究を重ね、以
下の如き知見を得ることができた。
(The presenters who explained the invention in detail conducted repeated tests and studies to achieve the above-mentioned objective, and were able to obtain the following knowledge.

第1図は、材料に要求される重要特性である高温強度の
観点からFe−18%Cr−0,45%Nbを基本組成
とし、高温引張強さに及ぼすMOおよびCuの影響を調
べた結果を示したものである。同図に見られるように、
Moを1%以上添加することによって高温強度が改善さ
れている。また2M◇−Cuの複合添加によってMo単
独添加よりも高温強度が上昇している。したがって、高
温強度が要求される材料ではMOとCuの複合添加が有
効であるとの知見を得た。
Figure 1 shows the results of investigating the effects of MO and Cu on high-temperature tensile strength using Fe-18%Cr-0.45%Nb as the basic composition from the viewpoint of high-temperature strength, which is an important property required for materials. This is what is shown. As seen in the same figure,
High temperature strength is improved by adding 1% or more of Mo. Furthermore, the combined addition of 2M◇-Cu increases the high-temperature strength compared to the single addition of Mo. Therefore, it has been found that combined addition of MO and Cu is effective for materials requiring high-temperature strength.

第2図は、もう一方の重要特性である高温酸化特性のう
ち、耐スケール剥離性についてMflの影響を調べたも
のである。試験はFe48%Cr−0,45%Nbを基
本組成としてMn量を変化させ、大気中で900”Cお
よび1000°Cにおいて100時間の連続酸化を実施
し、スケール剥離量を調査した。その結果、いずれの試
験温度でもMnを0.6%以上添加することによってス
ケール剥離が抑制された。
FIG. 2 shows an investigation of the influence of Mfl on scale peeling resistance, which is another important property, high temperature oxidation property. In the test, the basic composition was Fe48%Cr-0.45%Nb, the amount of Mn was varied, and continuous oxidation was carried out for 100 hours at 900"C and 1000°C in the air, and the amount of scale peeled off was investigated.Results At all test temperatures, scale peeling was suppressed by adding 0.6% or more of Mn.

したがって、Mnはフェライト系ステンレス鋼の耐酸化
限界を上昇させるとの知見を得た。
Therefore, it was found that Mn increases the oxidation resistance limit of ferritic stainless steel.

第3図は、  Fe−18%Cr−0,45%Nbを基
本&Il戒とし、第1図で効果の認められた適量のMo
とCuを複合添加したうえ、MnとSを変動させ、溶接
高温割れに及ぼすMn/S比の影響を調べたものである
。溶接高温割れ試験は、 1.2s−厚の冷延焼鈍板を
作威し、 40m−X 200m−の試験片に加工後、
試験片の両端を保持して長手方向に引張り応力を付加し
た状態にてTIG溶接を行ない2割れが発生し始める最
小のひずみ量を臨界歪量とし、これを溶接高温割れ感受
性の指標とした。第3図に見られるように、Mo−Cu
複合添加の場合、Mn/Sが200以上になると臨界歪
量が増大し、溶接性が改善される効果が認められた。こ
の結果、溶接高温割れを改善するためにはMn/Sが2
00以上となる適正量のMnを添加することが有効であ
るとの知見を得た。
Figure 3 shows Fe-18%Cr-0,45%Nb as the basic rule and an appropriate amount of Mo, which was found to be effective in Figure 1.
The effect of the Mn/S ratio on weld hot cracking was investigated by adding a combination of Mn and Cu and varying Mn and S. In the welding hot cracking test, a 1.2s-thick cold-rolled annealed plate was processed into a 40m x 200m test piece.
TIG welding was performed with both ends of the specimen held and tensile stress applied in the longitudinal direction, and the minimum strain at which two cracks began to occur was defined as the critical strain, and this was used as an index of weld hot cracking susceptibility. As seen in Figure 3, Mo-Cu
In the case of composite addition, when Mn/S is 200 or more, the critical strain increases and weldability is improved. As a result, in order to improve weld hot cracking, Mn/S must be 2
It has been found that it is effective to add an appropriate amount of Mn that is 0.00 or more.

第4図は、製品としての靭性を把握するためにFe−1
8%Cr−0,45%Nbを基本組成としMoおよびC
uの影響を調べるためにシャルピー衝撃試験を実施した
結果である。Moを添加すると衝撃値が低下することは
従来より知られている結果と同じであるが、さらにCu
を複合添加することにより靭性が改善されるという新し
い知見を得ることができた。中でも4%Mo添加鋼のよ
うに衝撃靭性が著しく低いものでも、CIIを複合添加
することによって十分に衝l!値が改善されることがわ
かった。また、NiおよびMoとの複合添加によって低
温での衝撃靭性を改善できることが後記実施例に示した
ように判明した。このことは重大な知見であり、冬期の
低温環境下にさらされる部材には特に有効と考えられ、
今後予想されるますます厳しい条件においても使用可能
となり、フェライト系ステンレス鋼の新しい用途拡大に
つながるものと考えられる。
Figure 4 shows Fe-1 in order to understand the toughness of the product.
The basic composition is 8%Cr-0,45%Nb, Mo and C
These are the results of a Charpy impact test conducted to investigate the influence of u. It is the same as the previously known result that the impact value decreases when Mo is added, but in addition, the impact value decreases when Mo is added.
We were able to obtain new knowledge that toughness can be improved by adding . Among them, even steels with extremely low impact toughness, such as steel with 4% Mo added, can be sufficiently improved by adding CII in combination! It was found that the value was improved. Furthermore, as shown in the Examples below, it was found that the impact toughness at low temperatures can be improved by adding Ni and Mo in combination. This is an important finding, and is thought to be particularly effective for components exposed to low-temperature environments during the winter.
It will be possible to use it under increasingly harsh conditions expected in the future, and is expected to lead to new and expanded applications for ferritic stainless steel.

このような知見事実に基づき1本発明は高温強度、熱疲
労特性および耐酸化性に優れ、かつ、溶接性および低温
靭性に優れたトータルバランスの良好なオーステナイト
系ステンレス鋼を提供するものである。
Based on these findings, the present invention provides an austenitic stainless steel with a good total balance, which has excellent high-temperature strength, thermal fatigue properties, and oxidation resistance, as well as excellent weldability and low-temperature toughness.

以下に本発明鋼における各化学成分値の含有量の限定理
由を述べる。
The reason for limiting the content of each chemical component value in the steel of the present invention will be described below.

CおよびN:CとNは一般的には高温強度を高めるため
に重要な元素であるが1反面含有量が多くなると耐酸化
性、加工性ならびに靭性の低下を来す、またCとNはN
bとの化合物をつくり、フェライト相中の有効Nb量を
減少せしめる。したがって、  C(!:Nは低いこと
が望ましく、それぞれ0.03%以下とする。
C and N: C and N are generally important elements for increasing high-temperature strength, but on the other hand, when their content increases, oxidation resistance, workability, and toughness decrease. N
It forms a compound with b and reduces the effective amount of Nb in the ferrite phase. Therefore, it is desirable that C(!:N) be low, and each should be 0.03% or less.

Si:Siは耐酸化性の向上には有効な元素である。し
かし、!!剰に添加すると硬さが上昇し加工性、@性の
低下が予想されるので0.1〜0.8%の範囲とする。
Si: Si is an effective element for improving oxidation resistance. but,! ! If added in excess, hardness increases and workability and @ properties are expected to decrease, so the content is set in the range of 0.1 to 0.8%.

Mn:Mnは前述の試験結果に示したように溶接高温割
れに有害なSをMnSの形で固定し、溶接金属中のSを
除去、減少せしめる。S自身の低減も有効であるがMn
/S≧200の関係を満足すれば良好であることが判明
した。一方、Meは前述のように耐スケール剥離性の面
で0.6%以上添加することによって耐スケール剥離性
が改善される。
Mn: As shown in the above test results, Mn fixes S, which is harmful to weld hot cracking, in the form of MnS, thereby removing and reducing S in the weld metal. Reducing S itself is also effective, but Mn
It was found that the condition is good if the relationship of /S≧200 is satisfied. On the other hand, as mentioned above, the scale peeling resistance is improved by adding 0.6% or more of Me.

したがって、Mnは0.6〜2.0%の範囲とし、且つ
Mn/S≧200の関係を満足することが必要である。
Therefore, it is necessary that Mn be in the range of 0.6 to 2.0% and satisfy the relationship of Mn/S≧200.

SO3は上述のごとく溶接高温割れに対して有害である
ので可能な限り低いほうが望ましいが、低く押さえるほ
ど製造コストの上昇を招く。本発明鋼においてはSは0
.006%まで許容しても前述のようにMnの作用によ
って十分な耐溶接高温割れを有するのでSの上限を0.
006%とする。
As mentioned above, SO3 is harmful to weld hot cracking, so it is desirable to keep it as low as possible, but the lower it is, the higher the manufacturing cost will be. In the steel of the present invention, S is 0
.. Even if it is allowed up to 0.006%, as mentioned above, the action of Mn will provide sufficient resistance to welding hot cracking, so the upper limit of S should be set at 0.006%.
006%.

Ni:Niは実施例かられかるように、Cuと同様な靭
性改善効果をもたらす、しかし、過剰に添加すると高温
においてオーステナイト相の析出などが起こり、熱膨張
係数の増大などによる熱疲労特性の低下などが!Q念さ
れる。このためオーステナイト生成元素であるCuとの
複合添加においてNi+Cuが4%以内の関係を満足す
る必要があることがわかった。この結果から上限を4%
とした。
Ni: As can be seen from the examples, Ni has the same toughness improvement effect as Cu, but when added in excess, austenite phase precipitation occurs at high temperatures, leading to a decrease in thermal fatigue properties due to an increase in the coefficient of thermal expansion, etc. etc! Q: I am reminded of this. For this reason, it has been found that in the composite addition with Cu, which is an austenite forming element, it is necessary to satisfy the relationship of Ni+Cu within 4%. Based on this result, the upper limit is 4%
And so.

Cr:Crは耐食性、耐酸化性の改善に不可欠の元素で
ある。下限を17%としたのは900℃以上の耐酸化性
を維持するためには17%以上の添加を必要とする。耐
酸化性の面からCrは高いほど好ましいが5過剰に添加
すると鋼の脆化を招き、また硬さの上昇によって加工性
も劣化するので上限は25%とする。
Cr: Cr is an essential element for improving corrosion resistance and oxidation resistance. The lower limit was set at 17% because it is necessary to add 17% or more in order to maintain oxidation resistance at temperatures of 900° C. or higher. From the viewpoint of oxidation resistance, the higher the Cr content, the more preferable it is, but adding too much Cr causes embrittlement of the steel and also deteriorates workability due to increased hardness, so the upper limit is set at 25%.

Nb:Nbは高温強度を維持せしめるのに必要な元素で
ある。また加工性および耐酸化性の改善や高周波溶接に
よる造管性にも好影響を及ぼす、後述の第2表の高温引
張試験結果からも判るように高温強度を改善するために
は少なくとも0.2%添加する必要がある。しかしNb
はCとNによる化合物をつくるのでただ単に下限を0.
2%としてもCとNの量によって固lNbは減少し、高
温強度に及ぼすNbの効果は減少する。したがって〔N
b〕−Nb%−8(C%十N%) の式に従う〔Nb〕が0.2%以上となる関係を満足す
ることが必要である。一方、Nbを過剰に添加すると溶
接高温割れ感受性が高くなる。十分な高温強度を維持し
、なおかつ溶接高温割れ感受性にあまり影響を及ぼさな
いようにNbの上限を0.8%とする。
Nb: Nb is an element necessary to maintain high temperature strength. It also has a positive effect on the improvement of workability and oxidation resistance, as well as on the pipe formability by high-frequency welding.As can be seen from the high temperature tensile test results in Table 2 below, in order to improve high temperature strength % needs to be added. However, Nb
creates a compound with C and N, so simply set the lower limit to 0.
Even at 2%, solid Nb decreases depending on the amount of C and N, and the effect of Nb on high temperature strength decreases. Therefore [N
It is necessary to satisfy the relationship that [Nb] is 0.2% or more according to the formula: b]-Nb%-8 (C%-N%). On the other hand, excessive addition of Nb increases the weld hot cracking susceptibility. The upper limit of Nb is set to 0.8% in order to maintain sufficient high-temperature strength and not to significantly affect weld hot cracking susceptibility.

Mo:Moは前述の試験結果でも述べたように添加する
ほど高温強度を上昇させる。また耐高温酸化および耐食
性の改善にも有効である。一方、過剰に添加すると低温
での靭性を著しく低下させ、また製造性、加工性の低下
をきたすため、1.0〜4.5%とした。
Mo: As mentioned in the above test results, the more Mo is added, the higher the high temperature strength is. It is also effective in improving high temperature oxidation resistance and corrosion resistance. On the other hand, if added in excess, the toughness at low temperatures will be significantly lowered, and the manufacturability and workability will also be lowered, so the content was set at 1.0 to 4.5%.

Cu:Cuも前述の試験結果で述べたように靭性面で非
常に有効な元素で本発明鋼の重要な元素である。靭性改
善効果を得るには第4図に見られるように0.1%以上
必要であるため、下限値を0.1%とした。一方、過剰
に添加すると硬質となり加工性を害する。また、熱間加
工性にも著しく悪影響を及ぼすので上限を2.5%とす
る。
Cu: As mentioned in the above test results, Cu is also a very effective element in terms of toughness and is an important element in the steel of the present invention. Since 0.1% or more is required to obtain the effect of improving toughness as shown in FIG. 4, the lower limit was set at 0.1%. On the other hand, if added in excess, it becomes hard and impairs workability. Furthermore, since it has a significant negative effect on hot workability, the upper limit is set at 2.5%.

AI!AIは耐高温酸化特性を改善する。しかし過剰に
添加すると製造性、溶接性で問題になるため上限を0.
5%とする。
AI! AI improves high temperature oxidation resistance. However, adding too much will cause problems in manufacturability and weldability, so the upper limit should be set at 0.
5%.

Ti:Tiは高温強度を上昇させ、加工性も改善する。Ti: Ti increases high temperature strength and also improves workability.

しかしAI同様過剰に添加すると製造性溶接性で問題に
なるため、上限を0.5%とする。
However, like AI, adding too much causes problems in manufacturability and weldability, so the upper limit is set at 0.5%.

■:vもTiと同線に高温強度を上昇させ、加工性を改
善する。しかし、過剰に添加すると逆に強度の低下を招
く、よって上限を0.5%とする。
■: V also increases high-temperature strength on the same level as Ti and improves workability. However, adding too much leads to a decrease in strength, so the upper limit is set at 0.5%.

Zr:Zrは高温強度を上昇させ、高温酸化特性を改善
する。しかし、過剰に添加すると強度の低下を招くので
上限を1.0%とする。
Zr: Zr increases high temperature strength and improves high temperature oxidation properties. However, adding too much leads to a decrease in strength, so the upper limit is set at 1.0%.

WOWもTiやV同様、高温強度を上昇させ5加工性を
改善する。しかし過剰に添加すると強度の低下を招くの
で上限を1.5%とする。
Like Ti and V, WOW also increases high temperature strength and improves workability. However, adding too much leads to a decrease in strength, so the upper limit is set at 1.5%.

BIBは熱間加工性を改善し高温強度も上昇させ、加工
性をも改善する。しかし、過剰に添加するとかえって熱
間加工性の低下を招くため、上限を0.01%とする。
BIB improves hot workability, increases high temperature strength, and also improves workability. However, since adding too much leads to a decrease in hot workability, the upper limit is set at 0.01%.

REM :希土類元素は微量添加によって熱間加工性を
改善し、耐酸化性特にスケールの密着性を改善する。し
かし、過剰に添加すると逆に熱間加工性の低下を招くた
め、上限を0.1%とする。
REM: Rare earth elements improve hot workability and improve oxidation resistance, especially scale adhesion, by adding a small amount of rare earth elements. However, since adding too much leads to a decrease in hot workability, the upper limit is set at 0.1%.

〔実施例] 第1表に供試材の化学成分値を示した。Ml〜M21は
本発明鋼で1M22〜M30は比較鋼である。
[Example] Table 1 shows the chemical composition values of the test materials. M1 to M21 are steels of the present invention, and 1M22 to M30 are comparative steels.

これらの鋼は、実験室にて30kg1i塊を作威し、2
5■φの丸棒と251厚の板に鍛造した。丸棒は950
℃〜1700°Cで焼鈍後、 JIS標準の高温引張試
験片に加工した。12造板は切削後1200°C抽出に
よる熱間圧延を施し、  5mm’の熱延板とし、95
0℃〜1700°Cで焼鈍後、一部はそのままでシャル
ピー衝撃試験片に加工した。残部は冷延、焼鈍を繰り返
し。
These steels were made into 30 kg 1i blocks in the laboratory, and 2
Forged into a 5 φ round bar and a 251 thick plate. Round bar is 950
After annealing at 1700°C to 1700°C, it was processed into JIS standard high temperature tensile test pieces. 12 After cutting, the plate was hot-rolled by extraction at 1200°C to make a 5mm' hot-rolled plate.95
After annealing at 0°C to 1700°C, some of the specimens were processed into Charpy impact test pieces as they were. The remaining part was repeatedly cold rolled and annealed.

2−一の板厚にて高温酸化試験を実施し、 1.:2m
s+’の板厚において溶接高温割れ試験を実施した。
A high-temperature oxidation test was conducted with the plate thickness of 2-1. :2m
A welding hot cracking test was conducted with a plate thickness of s+'.

第2表に、 JIS標準で実施した高温引張試験による
高温引張強さ、900”Cおよび1000°Cでの10
0時間の連続酸化試験によるスケール剥離量9本文に記
載した溶接高温割れ試験による溶接時の咋界歪量、およ
び4.5m−の板厚でVノツチシャルピー1ji撃試験
片で実施したシャルピーtli撃試験結果を示した。
Table 2 shows the high temperature tensile strength, 10
Amount of scale peeling due to continuous oxidation test for 0 hours 9 Amount of cracking field strain during welding according to the weld hot cracking test described in the main text, and Charpy tli impact conducted on a V-notch Charpy 1ji impact test piece with a plate thickness of 4.5 m The test results were shown.

第2表の結果から、Nb、MoおよびNiを添加するこ
とによって高温強度が上昇していることがわかる。また
MoおよびCuの複合添加鋼はさらに高温強度の上昇が
見られる。連続高温酸化試験結果では900’Cおよび
1000℃ともMn量が0.6%を越えると耐スケール
剥翻性が著しく改善されることがわかる。また、fa接
高温割れ試験におけるは界歪量はMn/Sが200を越
えると著しく改善されることがわかる。一方、シャルピ
ー衝撃試験結果では、Moを添加するにしたがって衝撃
靭性は低下するものの、Cuを添加することによって靭
性が改善され、またNi添加によっても同様な効果があ
ることがわかる。
From the results in Table 2, it can be seen that the high temperature strength is increased by adding Nb, Mo and Ni. In addition, steels with composite additions of Mo and Cu show a further increase in high-temperature strength. The continuous high temperature oxidation test results show that the scale flaking resistance is significantly improved at both 900'C and 1000C when the Mn content exceeds 0.6%. Furthermore, it can be seen that the amount of field strain in the fa weld hot cracking test is significantly improved when Mn/S exceeds 200. On the other hand, the results of the Charpy impact test show that although the impact toughness decreases as Mo is added, the toughness is improved by adding Cu, and the same effect is obtained by adding Ni.

〔効果〕〔effect〕

以上のように本発明によれば、高温強度および耐高温酸
化特性に優れたうえ、耐溶接高温割れに優れ、しかもフ
ェライト系ステンレス鋼の欠点である低温靭性も改善さ
れたフェライト系耐熱用ステンレス鋼が得られたもので
あり、特に今後の内燃機関の高出力化および高性能化に
応えうる排ガス系統用材料として多大の貢献ができる。
As described above, according to the present invention, a ferritic heat-resistant stainless steel has excellent high-temperature strength and high-temperature oxidation resistance, and has excellent welding hot cracking resistance, as well as improved low-temperature toughness, which is a drawback of ferritic stainless steel. The obtained material can make a great contribution as an exhaust gas system material that can respond to future increases in output and performance of internal combustion engines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をなすに至った高温引張試験結果の例を
示すMo量と高温引張強度との関係図第2図は高温酸化
試験結果の例を示すMn量とスケール剥動量の関係図、
第3図は熔接高温割れ試験結果の例を示すMn’/Sと
直昇歪量との関係図第4図はシャルピー衝撃試験結果の
例を示すCu量とシャルピー衝撃試験値の関係図である
。 出廟人 日新製鋼株式会社 第1図 ごlc量 第2図 第4図 こU (%) 第 図 手続補正書(自発) 平成3年4月 8 日
Figure 1 is a relationship diagram between the amount of Mo and high temperature tensile strength, showing an example of the high temperature tensile test results that led to the present invention. Figure 2 is a relationship diagram between the amount of Mn and the amount of scale exfoliation, showing an example of the results of a high temperature oxidation test. ,
Figure 3 is a diagram showing the relationship between Mn'/S and the amount of direct rise strain, showing an example of the results of a welding hot cracking test. Figure 4 is a diagram showing the relationship between Cu content and Charpy impact test value, showing an example of the results of the Charpy impact test. . Person in charge Nissin Steel Co., Ltd. Figure 1 Figure 2 Figure 4 Figure 4 (%) Figure procedure amendment (voluntary) April 8, 1991

Claims (2)

【特許請求の範囲】[Claims] (1)重量%において、 C:0.03%以下、 Si:0.1〜0.8%、 Mn:0.6〜2.0%、 S:0.006%以下、 Ni:4%以下、 Cr:17.0〜25.0%、 Nb:0.2〜0.8%、 Mo:1.0〜4.5%、 Cu:0.1〜2.5%、 N:0.03%以下、 ただし、前記の範囲において、 Mn%/S%の比が200以上、 〔Nb〕=Nb%−8(C%+N%) の式に従う〔Nb〕が0.2以上、および Ni%+Cu%が4以下 の関係を満足するようにこれらの元素を含有し、残部が
Feおよび製造上の不可避的不純物からなる低温靭性、
溶接性および耐熱性に優れたフェライト系耐熱用ステン
レス鋼。
(1) In weight%, C: 0.03% or less, Si: 0.1 to 0.8%, Mn: 0.6 to 2.0%, S: 0.006% or less, Ni: 4% or less , Cr: 17.0-25.0%, Nb: 0.2-0.8%, Mo: 1.0-4.5%, Cu: 0.1-2.5%, N: 0.03 % or less, but within the above range, the ratio of Mn%/S% is 200 or more, [Nb] is 0.2 or more according to the formula [Nb] = Nb% - 8 (C% + N%), and Ni% Low-temperature toughness, containing these elements so that +Cu% satisfies the relationship of 4 or less, with the remainder being Fe and unavoidable impurities during manufacturing;
Ferritic heat-resistant stainless steel with excellent weldability and heat resistance.
(2)重量%において、 C:0.03%以下、 Si:0.1〜0.8%、 Mn:0.6〜2.0%、 S:0.006%以下、 Ni:4%以下、 Cr:17.0〜25.0%、 Nb:0.2〜0.8%、 Mo:1.0〜4.5%、 Cu:0.1〜2.5%、 N:0.03%以下、 を含有し、且つ Al:0.5%以下、 Ti:0.6%以下、 V:0.5%以下、 Zr:1.0%以下、 W:1.5%以下、 B:0.01%以下、 REM:0.1%以下 の一種または二種以上を含有したうえ、 前記の範囲において、 Mn%/S%の比が200以上、 〔Nb〕=Nb%−8(C%+N%) の式に従う〔Nb〕が0.2以上、および Ni%+Cu%が4以下 の関係を満足するようにこれらの元素を含有し、残部が
Feおよび製造上の不可避的不純物からなる低温靭性、
溶接性および耐熱性に優れたフェライト系耐熱用ステン
レス鋼。
(2) In weight%, C: 0.03% or less, Si: 0.1 to 0.8%, Mn: 0.6 to 2.0%, S: 0.006% or less, Ni: 4% or less , Cr: 17.0-25.0%, Nb: 0.2-0.8%, Mo: 1.0-4.5%, Cu: 0.1-2.5%, N: 0.03 % or less, and Al: 0.5% or less, Ti: 0.6% or less, V: 0.5% or less, Zr: 1.0% or less, W: 1.5% or less, B: 0.01% or less, REM: 0.1% or less, and in addition, in the above range, the ratio of Mn%/S% is 200 or more, [Nb] = Nb%-8 (C % + N%) Contains these elements so that [Nb] satisfies the relationship of 0.2 or more and Ni% + Cu% of 4 or less according to the formula, and the remainder consists of Fe and unavoidable impurities during manufacturing. low temperature toughness,
Ferritic heat-resistant stainless steel with excellent weldability and heat resistance.
JP2074785A 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance Expired - Lifetime JP2696584B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2074785A JP2696584B2 (en) 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance
KR1019910701642A KR0180206B1 (en) 1990-03-24 1991-03-13 Heat resistant ferritic stainless steel excellent in low-temperature, weldability & heat resistance
EP91906263A EP0478790B1 (en) 1990-03-24 1991-03-13 Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
PCT/JP1991/000344 WO1991014796A1 (en) 1990-03-24 1991-03-13 Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
DE69110816T DE69110816T2 (en) 1990-03-24 1991-03-13 HEAT-RESISTANT FERRITIC STAINLESS STEEL WITH EXCELLENT PROPERTIES FOR TOUGHNESS AT DEEP TEMPERATURES, WELDABILITY AND HEAT RESISTANCE.
CA002056362A CA2056362C (en) 1990-03-24 1991-03-13 Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance
US07/976,840 US5302214A (en) 1990-03-24 1992-11-16 Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074785A JP2696584B2 (en) 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance

Publications (2)

Publication Number Publication Date
JPH03274245A true JPH03274245A (en) 1991-12-05
JP2696584B2 JP2696584B2 (en) 1998-01-14

Family

ID=13557292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074785A Expired - Lifetime JP2696584B2 (en) 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance

Country Status (6)

Country Link
EP (1) EP0478790B1 (en)
JP (1) JP2696584B2 (en)
KR (1) KR0180206B1 (en)
CA (1) CA2056362C (en)
DE (1) DE69110816T2 (en)
WO (1) WO1991014796A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427634A (en) * 1992-04-09 1995-06-27 Nippon Steel Corporation Ferrite system stainless steel having excellent nacl-induced hot corrosion resistance and high temperature strength
US5489345A (en) * 1991-12-19 1996-02-06 Sumitomo Metal Industries, Ltd. Steel for use in exhaust manifolds of automobiles
JP2009120894A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Ferritic stainless steel material for automotive member of exhaust gas path
JP2009235570A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and weldability
WO2011013193A1 (en) * 2009-07-27 2011-02-03 日新製鋼株式会社 Ferritic stainless steel for egr cooler and egr cooler
JP2012193435A (en) * 2011-03-17 2012-10-11 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-based stainless steel plate excellent in heat resistance
WO2014157576A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
CN104160054A (en) * 2012-03-09 2014-11-19 新日铁住金不锈钢株式会社 Ferritic stainless steel sheet
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY118759A (en) * 1995-12-15 2005-01-31 Nisshin Steel Co Ltd Use of a stainless steel as an anti-microbial member in a sanitary environment
FR2746114B1 (en) * 1996-03-15 1998-04-24 PROCESS FOR PRODUCING FERRITIC STAINLESS STEEL HAVING IMPROVED CORROSION RESISTANCE, IN PARTICULAR INTERGRANULAR AND PITCH CORROSION RESISTANCE
KR20000034395A (en) * 1998-11-30 2000-06-26 이구택 Ferrite type stainless steel excellent in toughness in welding unit
KR100605678B1 (en) * 1999-11-08 2006-07-31 주식회사 포스코 A heat resistant stainless steel having good heat resistant strength
DE60100880T2 (en) * 2000-07-25 2004-09-02 Kawasaki Steel Corp., Kobe Ferritic stainless steel with good ductility at room temperature and with good mechanical properties at higher temperatures, and methods of manufacturing the same
EP1413640B1 (en) * 2001-07-05 2005-05-25 Nisshin Steel Co., Ltd. Ferritic stainless steel for member of exhaust gas flow passage
CN1308477C (en) * 2003-10-31 2007-04-04 烨联钢铁股份有限公司 Rich granule iron series stainless steel with good hot work ability and antibacterial effect
EP1818421A1 (en) * 2006-02-08 2007-08-15 UGINE &amp; ALZ FRANCE Ferritic, niobium-stabilised 19% chromium stainless steel
JP4948998B2 (en) * 2006-12-07 2012-06-06 日新製鋼株式会社 Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
CN100485077C (en) * 2007-06-13 2009-05-06 陈卫东 Ultrathin alloy material hose and producing method thereof
KR20110018455A (en) * 2008-07-23 2011-02-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel for use in producing urea water tank
JP5462583B2 (en) * 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for EGR cooler
EP2546378A4 (en) 2010-03-11 2017-08-16 Nippon Steel & Sumikin Stainless Steel Corporation Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5609571B2 (en) * 2010-11-11 2014-10-22 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
KR20140117476A (en) * 2012-01-30 2014-10-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel foil
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
WO2018043310A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Ferritic stainless steel
WO2018216236A1 (en) * 2017-05-26 2018-11-29 Jfeスチール株式会社 Ferritic stainless steel
ES2927078T3 (en) 2018-12-21 2022-11-02 Outokumpu Oy ferritic stainless steel
CN112458379A (en) * 2020-10-30 2021-03-09 萍乡德博科技股份有限公司 Material suitable for variable-section nozzle ring disc parts of gasoline engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118218A (en) * 1977-03-25 1978-10-16 Nippon Steel Corp Stainless steel use in apparatus for purifying automotive exhaust gas
JPS5623258A (en) * 1979-08-01 1981-03-05 Allegheny Ludlum Ind Inc Ferrite stainless steel and its manufacture
JPS62112757A (en) * 1985-11-05 1987-05-23 ユジンヌ・グ−ニヨン・エス・ア− Strip or sheet of ferrite stainless steel
JPS648254A (en) * 1987-06-27 1989-01-12 Nisshin Steel Co Ltd Manifold steel for automobile engine
JPS6468448A (en) * 1987-09-08 1989-03-14 Allegheny Int Inc Ferrite stainless steel and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2701329C2 (en) * 1977-01-14 1983-03-24 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Corrosion-resistant ferritic chrome-molybdenum-nickel steel
CA1184402A (en) * 1980-04-11 1985-03-26 Sumitomo Metal Industries, Ltd. Ferritic stainless steel having good corrosion resistance
US4391635A (en) * 1980-09-22 1983-07-05 Kubota, Ltd. High Cr low Ni two-phased cast stainless steel
US4331474A (en) * 1980-09-24 1982-05-25 Armco Inc. Ferritic stainless steel having toughness and weldability
JPH02145752A (en) * 1988-11-28 1990-06-05 Toshiba Corp Ferritic stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118218A (en) * 1977-03-25 1978-10-16 Nippon Steel Corp Stainless steel use in apparatus for purifying automotive exhaust gas
JPS5623258A (en) * 1979-08-01 1981-03-05 Allegheny Ludlum Ind Inc Ferrite stainless steel and its manufacture
JPH0222441A (en) * 1979-08-01 1990-01-25 Allegheny Internatl Inc Ferrite stainless steel and production thereof
JPS62112757A (en) * 1985-11-05 1987-05-23 ユジンヌ・グ−ニヨン・エス・ア− Strip or sheet of ferrite stainless steel
JPS648254A (en) * 1987-06-27 1989-01-12 Nisshin Steel Co Ltd Manifold steel for automobile engine
JPS6468448A (en) * 1987-09-08 1989-03-14 Allegheny Int Inc Ferrite stainless steel and its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489345A (en) * 1991-12-19 1996-02-06 Sumitomo Metal Industries, Ltd. Steel for use in exhaust manifolds of automobiles
US5427634A (en) * 1992-04-09 1995-06-27 Nippon Steel Corporation Ferrite system stainless steel having excellent nacl-induced hot corrosion resistance and high temperature strength
JP2009120894A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Ferritic stainless steel material for automotive member of exhaust gas path
JP2009235570A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and weldability
WO2011013193A1 (en) * 2009-07-27 2011-02-03 日新製鋼株式会社 Ferritic stainless steel for egr cooler and egr cooler
CN102471840A (en) * 2009-07-27 2012-05-23 日新制钢株式会社 Ferritic stainless steel for EGR cooler and EGR cooler
JP2012193435A (en) * 2011-03-17 2012-10-11 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-based stainless steel plate excellent in heat resistance
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
CN104160054A (en) * 2012-03-09 2014-11-19 新日铁住金不锈钢株式会社 Ferritic stainless steel sheet
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
WO2014157576A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP5885884B2 (en) * 2013-03-27 2016-03-16 新日鐵住金ステンレス株式会社 Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip

Also Published As

Publication number Publication date
EP0478790A4 (en) 1992-08-12
WO1991014796A1 (en) 1991-10-03
EP0478790A1 (en) 1992-04-08
KR0180206B1 (en) 1999-02-18
KR920702434A (en) 1992-09-04
DE69110816D1 (en) 1995-08-03
CA2056362A1 (en) 1991-09-25
JP2696584B2 (en) 1998-01-14
EP0478790B1 (en) 1995-06-28
DE69110816T2 (en) 1995-11-30
CA2056362C (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JPH03274245A (en) Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance
JP5138504B2 (en) Ferritic stainless steel for exhaust gas flow path members
JP5178157B2 (en) Ferritic stainless steel material for automobile exhaust gas path members
KR102234326B1 (en) Ferritic stainless steel
JP5178156B2 (en) Ferritic stainless steel material for automobile exhaust gas path members
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP2009235573A (en) Ferritic stainless steel with excellent heat resistance and toughness
KR100308401B1 (en) Ferritic stainless steel with excellent high temperature oxidation resistance and scale adhesion
JP3219099B2 (en) Ferrite heat-resistant stainless steel with excellent heat resistance, low temperature toughness and weldability
JP5428396B2 (en) Ferritic stainless steel with excellent heat resistance and weldability
JP5743975B2 (en) Austenitic stainless steel for diesel engine EGR cooler and EGR cooler for diesel engine
EP0921206A1 (en) Austenitic stainless steel with good oxidation resistance
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP2879630B2 (en) Ferrite heat-resistant stainless steel with excellent high-temperature salt damage properties
JP3004784B2 (en) High toughness ferritic stainless steel for high temperatures
JPH02217438A (en) Heat-resistant steel having high creep strength at high temperature
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JPWO2018135028A1 (en) Ferritic stainless steel, manufacturing method thereof, and ferritic stainless steel for automobile exhaust gas path member
JP2010053421A (en) Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property, oxidation resistance and high temperature salt damage corrosion resistance
JPH0741905A (en) Steel for automotive exhaust system
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength
JPH0372053A (en) Ferritic stainless steel excellent in thermal fatigue resistance
JP2022115553A (en) Weld member made of stainless steel for urea scr system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13