JP2009174040A - Ferritic stainless steel for egr cooler, and egr cooler - Google Patents

Ferritic stainless steel for egr cooler, and egr cooler Download PDF

Info

Publication number
JP2009174040A
JP2009174040A JP2008016946A JP2008016946A JP2009174040A JP 2009174040 A JP2009174040 A JP 2009174040A JP 2008016946 A JP2008016946 A JP 2008016946A JP 2008016946 A JP2008016946 A JP 2008016946A JP 2009174040 A JP2009174040 A JP 2009174040A
Authority
JP
Japan
Prior art keywords
brazing
egr cooler
stainless steel
ferritic stainless
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008016946A
Other languages
Japanese (ja)
Other versions
JP5264199B2 (en
Inventor
Manabu Oku
学 奥
Sadayuki Nakamura
定幸 中村
Yoshiaki Hori
芳明 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008016946A priority Critical patent/JP5264199B2/en
Publication of JP2009174040A publication Critical patent/JP2009174040A/en
Application granted granted Critical
Publication of JP5264199B2 publication Critical patent/JP5264199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel suitable as an EGR (Exhaust Gas Recirculation) cooler member to be subjected to Ni brazing. <P>SOLUTION: Disclosed is a ferritic stainless steel for an EGR cooler member having a composition comprising, by mass, ≤0.03% C, >0.1 to 3% Si, 0.1 to 2% Mn, 10 to 25% Cr, 0.3 to 0.8% Nb and ≤0.03% N, and, if required, further selectively comprising (a) one or more selected from Mo, Cu, V and W in the range of ≤4% in total, (b) one or more selected from Ti, Al and Zr in the range of ≤0.3% in total, (c) one or more selected from Ni and Co in the range of ≤5% in total and (d) one or more selected from REM (rare earth elements) and Ca in the range of ≤0.2% in total, respectively, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、EGRクーラーを構成ずる部材として用いるフェライト系ステンレス鋼および、その部材を用いて構成されるEGRクーラーに関する。   The present invention relates to a ferritic stainless steel used as a member constituting an EGR cooler, and an EGR cooler configured using the member.

自動車をはじめとする内燃機関搭載車両では、排ガス中のNOX低減や燃費向上を目的として、EGR(Exhaust Gas Recirculation;排気ガス再循環)の手法が採用されることがある。これは、内燃機関から排出された排ガスの一部を取り出し、内燃機関の吸気側から再度吸気させる技術であり、主としてディーゼル機関で普及してきたが、近年ではガソリン機関にも適用されるようになってきた。 In an internal combustion engine mounted vehicle such as an automobile, for the purpose of NO X reduction and fuel efficiency in exhaust gas, EGR; sometimes approach (Exhaust Gas Recirculation exhaust gas recirculation) is employed. This is a technique for extracting a part of the exhaust gas discharged from the internal combustion engine and sucking it again from the intake side of the internal combustion engine, which has been mainly used in diesel engines, but in recent years it has also been applied to gasoline engines. I came.

EGRシステムにおいては、排ガスを循環可能な温度まで冷却する装置が必要となる。これがEGRクーラーである。   In the EGR system, a device for cooling the exhaust gas to a temperature at which the exhaust gas can be circulated is required. This is the EGR cooler.

図1、図2に、一般的なEGRクーラーの構造を模式的に例示する。外筒で構成される排ガス流路の一部に2枚の仕切り板で仕切られたセクションが設けられ、そのセクションでは冷却水に熱を逃がす熱交換器が構成されている。仕切り板で仕切られたこのセクションをここでは「熱交換セクション」と呼ぶ。仕切り板には穴を設けた箇所に通気管が接合されており、熱交換セクションでは通気管の中を排ガスが流れる。通気管の周囲には冷却水が流れるようになっている。通気管は金属製の単なるパイプで構成されるタイプ(図1)や、管の内部にフィンを設けたタイプ(図2)などがある。   1 and 2 schematically illustrate the structure of a general EGR cooler. A section partitioned by two partition plates is provided in a part of the exhaust gas flow path formed by the outer cylinder, and a heat exchanger that releases heat to the cooling water is configured in the section. This section partitioned by the partition plate is referred to herein as a “heat exchange section”. A vent pipe is joined to the partition plate at a location where a hole is provided, and exhaust gas flows through the vent pipe in the heat exchange section. Cooling water flows around the vent pipe. There are two types of vent pipes: a type composed of a simple pipe made of metal (FIG. 1) and a type provided with fins inside the pipe (FIG. 2).

EGRクーラーは、外筒、仕切り板、通気管、あるいはさらに通気管内のフィンといった金属部材で構成され、それらの部材はろう付けによって接合される。ただし、熱交換セクション入り側の排ガス温度は最高800℃程度、出側の温度は最高200℃程度に達することがあるので、一般的な熱交換器の組み立てに使用されるCuろうでは耐久性が不足する。そこで、EGRクーラーには耐高温酸化性および高温強度に優れるNiろう(JIS Z3265のBNi−5、BNi−6など)が適用される。   The EGR cooler is composed of a metal member such as an outer cylinder, a partition plate, a vent pipe, or a fin in the vent pipe, and these members are joined by brazing. However, the exhaust gas temperature on the side where the heat exchange section is entered may reach a maximum of about 800 ° C., and the temperature on the outlet side may reach a maximum of about 200 ° C. Therefore, Cu brazing used for assembling a general heat exchanger has durability. Run short. Therefore, Ni brazing (BNi-5, BNi-6, etc. of JIS Z3265) excellent in high temperature oxidation resistance and high temperature strength is applied to the EGR cooler.

EGRクーラーを構成する金属部材には、以下のような特性が要求される。
(1)Niろう付け性が良好であること。
(2)融雪塩に対する耐食性が良好であること。EGRクーラーはエンジンルーム内に設置され、路面にまかれた融雪塩が付着しやすい環境にあるからである。
(3)LLC(ロングライフクーラント;例えばエチレングリコール)に対する耐食性が良好であること。EGRの冷却水には通常LLCが添加されるからである。
(4)高温強度と耐高温酸化性が良好であること。EGRクーラーは高温の排ガスに曝されるからである。
(5)凝結水の結露に対する耐食性が良好であること。EGRクーラーにおいては、運転中は排ガス出側付近に結露が生じやすく、また運転後は排ガス接触箇所に結露が生じやすいからである。
The metal member constituting the EGR cooler is required to have the following characteristics.
(1) Ni brazing property is good.
(2) Good corrosion resistance against snow melting salt. This is because the EGR cooler is installed in the engine room and is in an environment where snow melting salt spread on the road surface is likely to adhere.
(3) Corrosion resistance to LLC (long life coolant; for example, ethylene glycol) is good. This is because LLC is usually added to the cooling water of EGR.
(4) High temperature strength and high temperature oxidation resistance are good. This is because the EGR cooler is exposed to high-temperature exhaust gas.
(5) Good corrosion resistance against condensation of condensed water. This is because in the EGR cooler, condensation is likely to occur near the exhaust gas outlet side during operation, and condensation is likely to occur at the exhaust gas contact location after operation.

特開平7−292446号公報JP 7-292446 A 特開2003−193205号公報JP 2003-193205 A

上記の要求特性から、現在、EGRクーラーを構成する金属部材にはSUS304、SUS316に代表されるオーステナイト系ステンレス鋼が主として使用されている。しかし、オーステナイト系ステンレス鋼は熱膨張係数が大きいため、高温で生成した酸化スケールが冷却時に剥離してエンジン内に流入したり、加熱・冷却の繰り返しによる熱疲労破壊が生じたりしやすい。高温強度についても更なる改善が望まれる。また、高価なNiを多量に含有するため材料コストも高い。   From the above required characteristics, at present, austenitic stainless steel represented by SUS304 and SUS316 is mainly used as the metal member constituting the EGR cooler. However, since austenitic stainless steel has a large coefficient of thermal expansion, the oxide scale generated at high temperature is liable to peel off during cooling and flow into the engine, or thermal fatigue failure due to repeated heating and cooling is likely to occur. Further improvement in high temperature strength is also desired. In addition, the material cost is high because a large amount of expensive Ni is contained.

一方、フェライト系ステンレス鋼は熱膨張係数がオーステナイト系鋼種よりも小さく、また、材料コストも一般にオーステナイト系鋼種より安価である。排ガス経路を構成するエキゾーストマニホールドやマフラーなどにはフェライト系ステンレス鋼が多用されている。しかし、Niろう付けを施す場合には材料を例えば1100℃以上といった高温に曝す必要がある。このような高温では、通常、フェライト系ステンレス鋼は結晶粒の粗大化を起こし、靭性の低下を招きややすい。   On the other hand, ferritic stainless steel has a thermal expansion coefficient smaller than that of austenitic steel, and the material cost is generally lower than that of austenitic steel. Ferritic stainless steel is frequently used for exhaust manifolds and mufflers that constitute the exhaust gas path. However, when performing Ni brazing, it is necessary to expose the material to a high temperature such as 1100 ° C. or higher. At such high temperatures, ferritic stainless steel usually causes coarsening of crystal grains and tends to cause a decrease in toughness.

上記特許文献1には、ろう付け性の良い熱交換器用フェライト系ステンレス鋼が開示されている。しかし、ろう付け性については、Cuろう付けを想定しており、Niろう付け性の改善や、その際の結晶粒粗大化の抑制については意図されていない。   Patent Document 1 discloses a ferritic stainless steel for heat exchangers with good brazing properties. However, as for brazing, Cu brazing is assumed, and improvement of Ni brazing and suppression of crystal grain coarsening at that time are not intended.

本発明は、Niろう付けに供されるEGRクーラー部材として好適なフェライト系ステンレス鋼、およびそれを用いたEGRクーラーを提供しようというものである。   The present invention is to provide a ferritic stainless steel suitable as an EGR cooler member used for Ni brazing, and an EGR cooler using the same.

上記目的は、質量%で、C:0.03%以下、Si:0.1超え〜3%、Mn:0.1〜2%、Cr:10〜25%、Nb:0.3〜0.8%、N:0.03%以下を含み、好ましくはCとNの合計含有量が0.01%以上であり、その他必要に応じて、
(a)Mo、Cu、VおよびWの1種以上を合計4%以下の範囲、
(b)Ti、AlおよびZrの1種以上を合計0.3%以下の範囲、
(c)NiおよびCoの1種以上を合計5%以下の範囲、
(d)REM(希土類元素)およびCaの1種以上を合計0.2%以下の範囲、
でそれぞれ選択的に含有し、残部Feおよび不可避的不純物からなるEGRクーラー部材用フェライト系ステンレス鋼によって達成される。
The purpose is mass%, C: 0.03% or less, Si: more than 0.1 to 3%, Mn: 0.1 to 2%, Cr: 10 to 25%, Nb: 0.3 to 0.3. 8%, N: 0.03% or less, preferably the total content of C and N is 0.01% or more, and other if necessary,
(A) A range of 4% or less in total of at least one of Mo, Cu, V and W;
(B) a range of one or more of Ti, Al and Zr in a total range of 0.3% or less,
(C) at least one of Ni and Co in a total range of 5% or less,
(D) a range in which at least one of REM (rare earth element) and Ca is 0.2% or less in total;
And is achieved by a ferritic stainless steel for an EGR cooler member, which is selectively contained in each of the remaining Fe and unavoidable impurities.

また本発明では、上記の鋼からなる鋼材を、構成部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラーが提供される。当該部材としては、例えば外筒、仕切り板、通気管、通気管の中に取り付けられるフィンなどが挙げられる。   Moreover, in this invention, the EGR cooler which has the structure which hold | maintained the steel material which consists of said steel to a structural member, and joined at least the member to the other member by Ni brazing is provided. Examples of the member include an outer cylinder, a partition plate, a vent pipe, and a fin attached to the vent pipe.

さらに、上記の鋼からなる鋼材を、自動車排ガスおよび冷却水の両方に接触する部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラーが提供される。自動車排ガスおよび冷却水の両方に接触する部材としては、例えば外筒、仕切り板、通気管などが挙げられる。   Furthermore, the EGR cooler which has the structure which has the steel material which consists of said steel in the member which contacts both a motor vehicle exhaust gas and cooling water, and joined at least the member to other members by Ni brazing is provided. Examples of the member that contacts both the automobile exhaust gas and the cooling water include an outer cylinder, a partition plate, and a vent pipe.

本発明によれば、Niろう付け性および靭性の良好なフェライト系ステンレス鋼が提供された。この鋼を用いることにより、オーステナイト系ステンレス鋼を部材に用いた従来のEGRクーラーに比べ、より高温強度が高く、酸化スケールの剥離が少なく、かつ材料コストの低いEGRクーラーが実現される。   According to the present invention, a ferritic stainless steel with good Ni brazing and toughness has been provided. By using this steel, an EGR cooler having higher high-temperature strength, less oxide scale peeling, and lower material cost than a conventional EGR cooler using austenitic stainless steel as a member is realized.

上述のように、EGRクーラーの耐久性を向上させるためには熱膨張係数のより小さいフェライト系鋼種の採用が有利となる。しかし、EGRクーラーの使用環境では、その構成部材が700℃以上、最高800℃程度の高温に曝されることがある。この場合、特にフェライト系鋼種では高温強度の低下を防止する対策が重要となる。また、Niろう付けに際しては1050〜1150℃程度の高温に保持されることから、結晶粒の粗大化を抑制するための成分設計が重要である。   As described above, in order to improve the durability of the EGR cooler, it is advantageous to employ a ferritic steel type having a smaller thermal expansion coefficient. However, in the environment where the EGR cooler is used, the components may be exposed to a high temperature of 700 ° C. or higher and a maximum of about 800 ° C. In this case, especially for ferritic steel types, a measure for preventing a decrease in high-temperature strength is important. Further, since the Ni brazing is held at a high temperature of about 1050 to 1150 ° C., the component design for suppressing the coarsening of the crystal grains is important.

一般にフェライト系ステンレス鋼は、常温から600℃程度までの中温域においてはオーステナイト系ステンレス鋼よりも高い強度レベルを呈する。しかし、700℃以上といった高温域では強度レベルの低下が大きくなる。このような高温強度の低下を防止するための手法として、Nb添加が有効であることが知られている。すなわち、フェライト系ステンレス鋼にNbを0.2質量%程度添加することにより高温強度は著しく改善される。Nbによる高温強度の向上は、主として「固溶Nb」によるものである。したがって、高温用途に使用するフェライト系ステンレス鋼では、固溶Nb量を十分に確保するために、通常C、Nの含有量をできるだけ低減するような成分設計がなされている。   In general, ferritic stainless steel exhibits a higher strength level than austenitic stainless steel in an intermediate temperature range from room temperature to about 600 ° C. However, the strength level decreases greatly at high temperatures such as 700 ° C. or higher. It is known that Nb addition is effective as a technique for preventing such a decrease in high-temperature strength. That is, the high temperature strength is remarkably improved by adding about 0.2% by mass of Nb to ferritic stainless steel. The improvement of the high temperature strength by Nb is mainly due to “solid solution Nb”. Therefore, in ferritic stainless steel used for high temperature applications, in order to ensure a sufficient amount of solute Nb, component design is usually made to reduce the C and N contents as much as possible.

一方、フェライト系ステンレス鋼の結晶粒粗大化を抑制するためにも、固溶Nbは有効に作用すると考えられる。ところが、発明者らの研究によれば、Niろう付け温度での結晶粒粗大化を抑止するためには、0.2質量%程度のNb添加では不十分なことが分かってきた。種々のNiろう材を用いた詳細な検討の結果、0.3質量%以上のNb含有量を確保することが重要であることが明らかになった。   On the other hand, solute Nb is considered to act effectively in order to suppress the grain coarsening of ferritic stainless steel. However, according to studies by the inventors, it has been found that adding Nb of about 0.2% by mass is insufficient to suppress the grain coarsening at the Ni brazing temperature. As a result of detailed studies using various Ni brazing filler metals, it has become clear that it is important to secure an Nb content of 0.3% by mass or more.

Nb添加による結晶粒粗大化の抑制は、固溶Nbによる粗大化抑制作用の他に、Nb炭化物、Nb窒化物またはNb炭窒化物(これらをまとめて「Nb炭化物・窒化物」と呼ぶ)によるピン止め効果も大きく寄与するものと考えられる。したがって本発明の鋼における成分設計では、C、N含有量をある程度確保する方がむしろ有利になる。具体的にはCとNの合計含有量を0.01質量%以上とすることがより効果的である。また、Nb含有量を十分に確保することにより、Fe2Nb(Laves)や、Fe3NbC(M6X)などの析出物によるピン止め効果も結晶粒粗大化の抑制に有効に作用すると考えられる。
結晶粒の粗大化が抑制されることによって特に低温靭性の低下防止に効果がある。
Suppression of grain coarsening due to the addition of Nb is due to Nb carbide, Nb nitride, or Nb carbonitride (collectively referred to as “Nb carbide / nitride”) in addition to the action of suppressing coarsening due to solid solution Nb. The pinning effect is also considered to contribute greatly. Therefore, in the component design in the steel of the present invention, it is rather advantageous to secure the C and N contents to some extent. Specifically, it is more effective to set the total content of C and N to 0.01% by mass or more. In addition, by securing a sufficient Nb content, the pinning effect by precipitates such as Fe 2 Nb (Laves) and Fe 3 NbC (M6X) is also considered to act effectively on suppressing the grain coarsening.
Suppressing the coarsening of crystal grains is particularly effective in preventing a decrease in low temperature toughness.

Nb以外の合金成分については、Mo、Cu、V、Wの各元素も固溶量が増大するに従って高温強度の向上に寄与することがわかった。またNi、Coは、結晶粒が若干粗大化した場合における靱性低下の抑制に極めて有効であることがわかった。一方、Ti、Al、Zr、REM、Caは、Niろう付けを行う際に、鋼材表面におけるNiろう材の流れ(濡れ性)を悪くする要因を有していることが明らかになった。これは、Niろう付けの加熱時に、鋼材表面にこれらの元素の酸化物が形成されやすいことが原因ではないかと考えられる。ただし、後述のようにこれらの元素の含有量を適正範囲に規制すれば問題はない。   As for alloy components other than Nb, it has been found that each element of Mo, Cu, V, and W also contributes to the improvement of high-temperature strength as the amount of solid solution increases. Ni and Co were also found to be extremely effective in suppressing toughness degradation when the crystal grains were slightly coarsened. On the other hand, it has been clarified that Ti, Al, Zr, REM, and Ca have a factor that deteriorates the flow (wetting property) of the Ni brazing material on the surface of the steel material when Ni brazing is performed. This is thought to be due to the fact that oxides of these elements are likely to be formed on the steel surface during heating of the Ni brazing. However, there is no problem if the content of these elements is regulated to an appropriate range as described later.

本発明はこのような知見に基づいて完成したものである。以下に、各合金成分について説明する。   The present invention has been completed based on such findings. Below, each alloy component is demonstrated.

C、Nは、Nbとの複合添加において、Nb炭化物・窒化物を形成する元素である。これらの析出物によってNbが消費され固溶Nbが減少すると、固溶Nbによる高温強度の向上効果および結晶粒粗大化の抑制効果が阻害される。したがって、本発明ではC含有量は0.03質量%以下に制限する必要があり、0.025質量%以下であることが好ましい。また、N含有量も0.03質量%以下に制限する必要があり、0.025質量%以下であることが好ましい。   C and N are elements that form Nb carbide / nitride when combined with Nb. When Nb is consumed by these precipitates and the solid solution Nb is reduced, the effect of improving the high temperature strength and the effect of suppressing the coarsening of the crystal grains due to the solid solution Nb are hindered. Therefore, in the present invention, the C content needs to be limited to 0.03% by mass or less, and is preferably 0.025% by mass or less. Moreover, it is necessary to restrict N content to 0.03 mass% or less, and it is preferable that it is 0.025 mass% or less.

ただし、Niろう付け時の結晶粒粗大化の抑制については、前述のようにNb炭化物・窒化物によるピン止め効果も寄与しうる。したがって、ある程度のC、N含有量を確保することが有利である。種々検討の結果、CとNの合計含有量を0.01質量%以上とすることが望ましい。個々の元素については、C:0.005質量%以上、N:0.005質量%以上を確保することがより好ましい。   However, as described above, the pinning effect by Nb carbide / nitride can also contribute to the suppression of grain coarsening during Ni brazing. Therefore, it is advantageous to secure a certain amount of C and N. As a result of various studies, it is desirable that the total content of C and N is 0.01% by mass or more. About each element, it is more preferable to ensure C: 0.005 mass% or more and N: 0.005 mass% or more.

Siは、高温酸化特性を改善させる元素である。しかし、過剰のSi含有はフェライト相を硬質化させ、加工性劣化の要因となる。また、Niろう付け性(Niろう材との濡れ性)を劣化させる。種々検討の結果、Si含有量は0.1超え〜3質量%の範囲に制限され、0.3〜2.5質量%の範囲とすることがより好ましい。上限は1.5質量%に規制することもできる。   Si is an element that improves high-temperature oxidation characteristics. However, excessive Si content hardens the ferrite phase and causes deterioration of workability. Moreover, Ni brazing property (wetting property with Ni brazing material) is deteriorated. As a result of various studies, the Si content is limited to the range of more than 0.1 to 3% by mass, and more preferably in the range of 0.3 to 2.5% by mass. The upper limit can be regulated to 1.5% by mass.

Mnは、高温酸化特性、特に耐スケール剥離性を改善させる元素である。しかし、過剰に添加すると高温でのオーステナイト相の生成を助長させる。本発明ではNiろう付け温度でオーステナイト相が生成しないフェライト単相系の成分組成とすることが望ましい。種々検討の結果、Mn含有量は0.1〜2質量%の範囲に規定する。   Mn is an element that improves high-temperature oxidation characteristics, particularly scale peel resistance. However, excessive addition promotes the formation of an austenite phase at high temperatures. In the present invention, it is desirable to have a ferrite single-phase component composition that does not generate an austenite phase at the Ni brazing temperature. As a result of various studies, the Mn content is specified in the range of 0.1 to 2% by mass.

Crは、高温における耐酸化特性を安定させる作用を有する。そのためには10質量%以上のCr含有量を確保する必要がある。しかし、過剰のCr含有は製造性および鋼材の加工性を阻害する。したがって、Cr含有量は25質量%以下の範囲に制限される。   Cr has the effect of stabilizing the oxidation resistance at high temperatures. For this purpose, it is necessary to secure a Cr content of 10% by mass or more. However, excessive Cr content impairs manufacturability and workability of the steel material. Therefore, the Cr content is limited to a range of 25% by mass or less.

Nbは、本発明において重要な元素であり、上述のように、高温強度の上昇とNiろう付け時の結晶粒粗大化の抑制に有効に作用する。高温強度の向上に関しては、主としてNbの固溶強化が大きく寄与するが、フェライトマトリクス中に微細に分散したNb炭化物・窒化物による析出強化も高温強度の向上に有効である。結晶粒粗大化の抑制に関しては、Nbの固溶強化とともに、Nb炭化物・窒化物によるピン止め効果が有効に作用する。これらの作用を十分に発揮させるためには、C、N含有量を前記の範囲に規制した上で、Nb含有量を0.3質量%以上確保することが重要である。特にNiろう付け時の結晶粒粗大化を抑制するためにはNb含有量を高めることが効果的であり、0.4%以上あるいはさらに0.5%以上のNb含有量とすることが好ましい。ただし、Nb含有量が多くなると、熱間加工性や鋼材の表面品質特性に悪影響を及ぼすようになる。したがって、Nb含有量は0.8質量%以下の範囲に制限される。   Nb is an important element in the present invention and, as described above, effectively acts to increase the high-temperature strength and suppress the grain coarsening during Ni brazing. Regarding the improvement of the high temperature strength, the solid solution strengthening of Nb largely contributes, but the precipitation strengthening by Nb carbide / nitride finely dispersed in the ferrite matrix is also effective for improving the high temperature strength. Regarding the suppression of the coarsening of crystal grains, the pinning effect by Nb carbide / nitride works effectively together with the solid solution strengthening of Nb. In order to fully exhibit these actions, it is important to secure the Nb content at 0.3 mass% or more after restricting the C and N contents to the above ranges. In particular, in order to suppress the coarsening of crystal grains during Ni brazing, it is effective to increase the Nb content, and it is preferable to set the Nb content to 0.4% or more or even 0.5% or more. However, when the Nb content is increased, the hot workability and the surface quality characteristics of the steel material are adversely affected. Therefore, the Nb content is limited to a range of 0.8% by mass or less.

Mo、Cu、V、Wも、主として固溶強化により高温強度の向上に寄与する。したがって、必要に応じてこれらの元素の1種以上を含有させることができる。特に、これらの元素の合計含有量を0.05質量%以上確保することがより効果的である。しかし、これらの元素を過剰に添加すると熱間加工性に悪影響を及ぼすようになる。また、低温靭性を阻害する要因にもなる。種々検討の結果、Mo、Cu、V、Wの1種以上を添加する場合は、その合計含有量を4質量%以下に抑える必要がある。   Mo, Cu, V, and W also contribute to the improvement of high temperature strength mainly by solid solution strengthening. Therefore, one or more of these elements can be contained as necessary. In particular, it is more effective to secure a total content of these elements of 0.05% by mass or more. However, when these elements are added excessively, the hot workability is adversely affected. Moreover, it becomes a factor which inhibits low temperature toughness. As a result of various studies, when adding one or more of Mo, Cu, V, and W, the total content needs to be suppressed to 4% by mass or less.

Ti、Al、Zrのうち、Ti、ZrはCやNと結合して微細析出物を形成し、これが鋼中に分散することにより高温強度を向上させる作用を呈する。Alは高温酸化特性を改善する作用を呈する。したがって、必要に応じてこれらの元素の1種以上を含有させることができる。しかし、これらの元素はいずれも、多量に含有させると熱間加工性や表面品質特性の低下を招く要因となる。また、鋼材表面に強固な酸化皮膜を形成する元素であるから、その酸化皮膜によりNiろうの流れが悪くなることがある。検討の結果、Ti、Al、Zrの1種以上を添加する場合は、その合計含有量を0.3質量%以下に抑える必要がある。特に、その合計含有量を0.03〜0.3質量%の範囲とすることが効果的であり、0.03〜0.25質量%とすることがより好ましい。   Of Ti, Al, and Zr, Ti and Zr combine with C and N to form fine precipitates, which are dispersed in the steel, thereby exhibiting an effect of improving high temperature strength. Al exhibits the effect of improving the high temperature oxidation characteristics. Therefore, one or more of these elements can be contained as necessary. However, if any of these elements is contained in a large amount, it causes a decrease in hot workability and surface quality characteristics. Moreover, since it is an element which forms a strong oxide film on the steel material surface, the flow of Ni brazing may be deteriorated by the oxide film. As a result of investigation, when adding one or more of Ti, Al, and Zr, it is necessary to suppress the total content to 0.3% by mass or less. In particular, it is effective to set the total content in the range of 0.03 to 0.3% by mass, and more preferably 0.03 to 0.25% by mass.

Ni、Coは、Niろう付けによって結晶粒が若干粗大化した場合において、靭性低下の抑制に著しく効果がある。また、これらの元素は高温強度の向上にも有利である。したがって、必要に応じてこれらの元素の1種以上を含有させることができ、特にNi、Coの合計含有量を0.5質量%以上確保することがより効果的である。しかし、Ni、Coの過剰添加は、高温域でのオーステナイト相の生成を招くので好ましくない。Ni、Coの1種以上を添加する場合は、NiとCoの合計含有量を5質量%以下の範囲に抑える必要がある。   Ni and Co are remarkably effective in suppressing a decrease in toughness when crystal grains are slightly coarsened by Ni brazing. These elements are also advantageous for improving the high temperature strength. Therefore, it is possible to contain one or more of these elements as required, and it is more effective to secure a total content of Ni and Co of 0.5% by mass or more. However, excessive addition of Ni and Co is not preferable because it causes formation of an austenite phase in a high temperature range. When adding 1 or more types of Ni and Co, it is necessary to suppress the total content of Ni and Co to the range of 5 mass% or less.

REM(希土類元素)、Caは、Alと同様に高温酸化特性を向上させる元素であり、本発明では必要に応じてこれらの1種以上を添加することができる。特にREM、Caの合計含有量を0.01質量%以上確保することがより効果的である。しかし、多量に添加すると靱性低下等により製造性が低下する。したがって、REM、Caの1種以上を添加する場合は、その合計含有量を0.2質量%以下の範囲に抑える必要がある。   REM (rare earth element) and Ca are elements that improve high-temperature oxidation characteristics like Al, and in the present invention, one or more of them can be added as necessary. In particular, it is more effective to secure a total content of REM and Ca of 0.01% by mass or more. However, if it is added in a large amount, the manufacturability is lowered due to a decrease in toughness. Therefore, when adding 1 or more types of REM and Ca, it is necessary to suppress the total content to the range of 0.2 mass% or less.

以上の組成を有するフェライト系ステンレス鋼は、融雪塩に対する耐食性、LLCに対する耐食性、および凝結水に対する耐食性については、従来のEGRクーラーに使用されているオーステナイト系鋼種と比べ、問題のないレベルであることが確認された。排ガス環境における高温強度(0.2%耐力)および耐スケール剥離性については、オーステナイト系鋼種よりも改善されている。   The ferritic stainless steel having the above composition has no problem with respect to the corrosion resistance against snow melting salt, the corrosion resistance against LLC, and the corrosion resistance against condensed water compared to the austenitic steel types used in conventional EGR coolers. Was confirmed. The high temperature strength (0.2% proof stress) and scale peel resistance in the exhaust gas environment are improved over the austenitic steel grade.

上記組成のフェライト系ステンレス鋼は、通常の方法により鋼板とされ、EGRクーラーを構成する外筒、仕切り板、通気管、通気管の中に取り付けられるフィンなどの部材に加工される。これら部材は、Niろう付けにより接合され、EGRクーラーが構築される。EGRクーラーの構成部材の必ずしも全てを本発明の鋼で構成する必要はない。ただし、本発明の鋼からなる部材は、LLCに対する耐食性が十分に確保されているとともに、排ガス環境における高温酸化特性と、Niろう付け時の結晶粒粗大化に対する抵抗力および濡れ性が同時に改善されたものである。このため、特に自動車排ガスおよび冷却水の両方に接触し、かつNiろう付けが施される部材に本発明の鋼を使用することが効果的である。
そのような部材としては、例えば外筒、仕切り板、通気管が挙げられる。
Ferritic stainless steel having the above composition is made into a steel plate by a normal method, and is processed into members such as an outer cylinder, a partition plate, a vent pipe, and a fin attached to the vent pipe constituting the EGR cooler. These members are joined by Ni brazing, and an EGR cooler is constructed. It is not necessary that all the constituent members of the EGR cooler are made of the steel of the present invention. However, the steel member of the present invention has sufficiently secured corrosion resistance to LLC, and at the same time, improved high temperature oxidation characteristics in exhaust gas environment, resistance to crystal grain coarsening during Ni brazing, and wettability. It is a thing. For this reason, it is particularly effective to use the steel of the present invention for a member that contacts both automobile exhaust gas and cooling water and is subjected to Ni brazing.
Examples of such a member include an outer cylinder, a partition plate, and a vent pipe.

表1に示す化学組成の鋼を溶製し、得られた鋼塊を丸棒および板に熱間鍛造することにより、直径15mmの丸棒と、板厚30mmの板に加工した。丸棒には保持温度を1000〜1100℃の範囲内に設定して溶体化処理を施した。板は熱間圧延にて板厚4mmの熱延板とし、これに焼鈍を施したのち、冷間圧延にて板厚1.5mmとし、次いで保持温度を1000〜1100℃の範囲内に設定して最終焼鈍を施した。なお、B4、B5はオーステナイト系ステンレス鋼である。   Steel having the chemical composition shown in Table 1 was melted, and the obtained steel ingot was hot-forged into a round bar and a plate to process a round bar having a diameter of 15 mm and a plate having a thickness of 30 mm. The round bar was subjected to a solution treatment at a holding temperature set within a range of 1000 to 1100 ° C. The sheet is hot rolled into a hot rolled sheet having a thickness of 4 mm, annealed, and then cold rolled to a sheet thickness of 1.5 mm, and then the holding temperature is set within a range of 1000 to 1100 ° C. The final annealing was performed. B4 and B5 are austenitic stainless steels.

Figure 2009174040
Figure 2009174040

得られた鋼材を用いて以下の特性を調べた。
〔熱膨張係数〕
溶体化処理後の丸棒から5mm角×50mm長さの試験片を作製し、熱膨張測定装置にセットして昇温速度2℃/分にて常温(25℃)から700℃までの平均熱膨張係数を求めた。
The following characteristics were investigated using the obtained steel materials.
[Coefficient of thermal expansion]
A test piece of 5 mm square × 50 mm length is prepared from the round bar after solution treatment, set in a thermal expansion measuring device, and the average heat from room temperature (25 ° C.) to 700 ° C. at a temperature rising rate of 2 ° C./min. The expansion coefficient was determined.

〔700℃における0.2%耐力〕
溶体化処理後の丸棒から平行部の直径が10mmの高温引張試験片を作製し、JIS G056に準拠して700℃の高温引張試験を実施し、0.2%耐力を測定した。700℃における0.2%耐力が100N/mm2以上であるものはEGRクーラーとして従来のオーステナイト系鋼種を上回る特性を呈することから、ここではそのような特性を具備するものを合格と判定した。
[0.2% yield strength at 700 ° C]
A high-temperature tensile test piece having a parallel part diameter of 10 mm was prepared from the round bar after solution treatment, a high-temperature tensile test at 700 ° C. was performed in accordance with JIS G056, and a 0.2% yield strength was measured. Since those having a 0.2% proof stress at 700 ° C. of 100 N / mm 2 or more exhibit characteristics superior to those of conventional austenitic steel types as EGR coolers, those having such characteristics were determined to be acceptable.

〔繰り返しサイクルでの高温酸化特性〕
冷延焼鈍板から25mm×35mm×1.5mmの試料を切り出し、全面を#400湿式研磨仕上とした高温酸化試験片を作製した。この試験片について、EGRクーラー部材としての繰り返し使用を模擬して、大気+60℃飽和水蒸気の雰囲気において「900℃×25分加熱→常温で10分間放冷」のサイクルを1000サイクル実施し、試験片の試験前と試験後の質量変化(プラスは増加、マイナスは減少)を試験前の試験片の表面積で除することにより、単位面積あたりの質量変化を求めた。この質量変化の絶対値が10mg/m2以下であれば、EGRクーラー部材として優れた高温酸化特性を有していると評価され、5mg/m2以下であるものは特に優れている。
[High-temperature oxidation characteristics in repeated cycles]
A 25 mm × 35 mm × 1.5 mm sample was cut out from the cold-rolled annealed plate, and a high-temperature oxidation test piece with the entire surface # 400 wet polished was produced. For this test piece, 1000 cycles of a cycle of “900 ° C. × 25 minutes heating → cooling at room temperature for 10 minutes” were performed in an atmosphere of atmosphere + 60 ° C. saturated steam, simulating repeated use as an EGR cooler member. The mass change per unit area was determined by dividing the mass change before and after the test (plus is increase, minus is decrease) by the surface area of the test piece before the test. If the absolute value of this mass change is 10 mg / m 2 or less, it is evaluated as having excellent high-temperature oxidation characteristics as an EGR cooler member, and those having a mass change of 5 mg / m 2 or less are particularly excellent.

〔Niろう付け性(濡れ性)〕
冷延焼鈍板から10mm×20mm×1.5mmのろう付け試験片を各鋼種2枚ずつ切り出した。うち1枚の試験片を水平に置いた状態で、その表面の全面にペースト状のNiろうを0.5mm厚で塗布した。その上にもう1枚の試験片を重ね、試験片/Niろう/試験片の3層からなる積層体を構成し、これを水平に保ったまま真空炉に入れ、真空引き後に1150℃で30分加熱した。冷却後に積層体を取り出し、上面に重ねた方(Niろうを塗布しなかった方)の試験片表面を観察し、表面のうちNiろうで濡れた面積を試験片表面の全面積で除することによりNiろう被覆率を求めた。Niろう被覆率が50%以上のものをA、20%以上50%未満のものをB、20%未満のものをCと評価し、B評価以上を合格とした。なお、Niろうは19質量%Cr−10質量%Si−71質量%Ni組成のもの(JIS Z3265のBNi−5相当品)を使用した。
[Ni brazing (wetting)]
Two 10 mm × 20 mm × 1.5 mm brazing specimens were cut out from each cold rolled annealed plate. One of the test pieces was placed horizontally, and a paste-like Ni solder was applied to the entire surface of the test piece with a thickness of 0.5 mm. A test piece / Ni brazing / test piece three-layered laminate was formed by stacking another test piece thereon, and placed in a vacuum furnace while keeping it horizontal. Heated for minutes. Take out the laminate after cooling, observe the surface of the test piece that was superposed on the upper surface (the one that was not coated with Ni brazing), and divide the area wetted with Ni brazing by the total area of the test piece surface Thus, the Ni brazing coverage was determined. A Ni brazing rate of 50% or more was evaluated as A, 20% or more and less than 50% was evaluated as B, and less than 20% was evaluated as C. In addition, the Ni brazing filler used was a 19 mass% Cr-10 mass% Si-71 mass% Ni composition (equivalent to BNi-5 in JIS Z3265).

〔結晶粒粗大化に対する抵抗〕
上記のNiろう付け性を評価した試験片について、その断面(圧延方向および板厚方向に平行な断面;L断面)の金属組織を光学顕微鏡で観察した。エッチングは弗酸+硝酸の混酸で行った。平均結晶粒径が200μm以下のものをA、200μm超え500μm以下のものをB、500μm超えのものをCと評価し、B評価以上を合格と判定した。
[Resistance to grain coarsening]
About the test piece which evaluated said Ni brazing property, the metal structure of the cross section (cross section parallel to a rolling direction and a plate | board thickness direction; L cross section) was observed with the optical microscope. Etching was performed with a mixed acid of hydrofluoric acid and nitric acid. An average crystal grain size of 200 μm or less was evaluated as A, 200 μm or more and 500 μm or less as B, 500 μm or more as C, and B evaluation or more as a pass.

〔低温靭性〕
1.5mm厚の冷延焼鈍板を上記Niろう付け性評価と同等のヒートパターンで熱処理したのち、その鋼板からVノッチシャルピー衝撃試験片を作製し、JIS Z2242に準拠して0℃でのシャルピー衝撃試験を実施した。試験片はハンマーのぶつかる方向が圧延方向に対して直角方向(C方向)となるように採取した。0℃でのシャルピー衝撃値が100J/cm2以上のものをA、50J/cm2以上100J/cm2未満のものをB、50J/cm2未満のものをCと評価し、B評価以上を合格と判定した。
これらの結果を表2に示す。
(Low temperature toughness)
After heat-treating a 1.5 mm thick cold-rolled annealed plate with a heat pattern equivalent to the Ni brazeability evaluation, a V-notch Charpy impact test piece was produced from the steel plate, and Charpy at 0 ° C. in accordance with JIS Z2242. An impact test was performed. The test specimens were collected so that the direction in which the hammer hits was perpendicular to the rolling direction (C direction). 0 ℃ in the Charpy impact value 100 J / cm 2 or more of the A, 50J / cm 2 or more 100 J / cm 2 less than that of B, and evaluate those less than 50 J / cm 2 and C, and B or more evaluation It was determined to pass.
These results are shown in Table 2.

Figure 2009174040
Figure 2009174040

表2からわかるように、本発明例のフェライト系ステンレス鋼は、比較例B4、B5のオーステナイト系ステンレス鋼に比べ、熱膨張係数が格段に小さく、700℃での0.2%耐力および繰り返しサイクルでの高温酸化特性においても勝っていた。また、Niろう付け性(濡れ性)、結晶粒粗大化に対する抵抗、および低温靭性に関してもEGRクーラー部材として十分満足できる特性を具備していることが確認された。   As can be seen from Table 2, the ferritic stainless steel of the present invention has a much smaller coefficient of thermal expansion than the austenitic stainless steels of Comparative Examples B4 and B5, 0.2% proof stress at 700 ° C. and repeated cycles. It was also superior in high-temperature oxidation characteristics. Further, it was confirmed that the Ni-brazing property (wetting property), the resistance against coarsening of crystal grains, and the low temperature toughness were sufficiently satisfactory as an EGR cooler member.

これに対し、比較例B1はC含有量が高く、かつNb含有量が低いために固溶Nb量が不足し、高温強度(700℃の0.2%耐力)および結晶粒粗大化に対する抵抗性能に劣った。また、Mn含有量が高いために高温でオーステナイト相が生成し、これが一部マルテンサイト相に変態したことが考えられ、低温靭性にも劣った。B2はNb含有量が低かったが、C、N含有量も比較的低いことから固溶Nb量は適度に確保され高温強度(700℃の0.2%耐力)は良好であった。しかし、Nb炭化物・窒化物の微細分散が少なく、結晶粒粗大化に対する抵抗性能は不十分であった。B3はTi含有量が過剰であったためNiろう付け時に表面に酸化膜が生じやすくなり、Niろう付け性に劣った。また、Mo、Cu、V、Wの合計含有量が高すぎたことにより低温靭性に劣った。B4、B5はオーステナイト系ステンレス鋼であり、熱膨張係数が高い。高温強度(700℃の0.2%耐力)も他のフェライト系鋼種より低レベルであった。また、熱膨張係数が高いことも影響して、繰り返しサイクルではスケールが剥離しやすく、質量変化がマイナスの大きな値となった。B6はTi、Al、Zrの合計含有量が高すぎたためNiろう付け時に表面に酸化膜が生じやすくなり、Niろう付け性に劣った。   In contrast, Comparative Example B1 has a high C content and a low Nb content, so that the amount of dissolved Nb is insufficient, high temperature strength (0.2% proof stress at 700 ° C.), and resistance to coarsening of crystal grains. Inferior to Moreover, since the Mn content was high, an austenite phase was generated at a high temperature, and it was considered that this was partly transformed into a martensite phase, and the low temperature toughness was inferior. Although B2 had a low Nb content, since the C and N contents were also relatively low, the solid solution Nb content was adequately secured and the high-temperature strength (0.2% yield strength at 700 ° C.) was good. However, the fine dispersion of Nb carbide / nitride is small, and the resistance performance against crystal grain coarsening is insufficient. Since B3 had an excessive Ti content, an oxide film was likely to be formed on the surface during Ni brazing, and the Ni brazing property was inferior. Moreover, it was inferior to low-temperature toughness because the total content of Mo, Cu, V, and W was too high. B4 and B5 are austenitic stainless steels and have a high coefficient of thermal expansion. High temperature strength (0.2% proof stress at 700 ° C.) was also lower than other ferritic steel types. In addition, due to the high coefficient of thermal expansion, the scale easily peeled off in repeated cycles, and the mass change became a large negative value. B6 had an excessively high total content of Ti, Al, and Zr, so that an oxide film was liable to be formed on the surface during Ni brazing, resulting in poor Ni brazing.

EGRクーラーの構造を模式的に例示した図。The figure which illustrated the structure of the EGR cooler typically. 通気管内にフィンを有するタイプのEGRクーラーの構造を模式的に例示した図。The figure which illustrated typically the structure of the type of EGR cooler which has a fin in a vent pipe.

Claims (8)

質量%で、C:0.03%以下、Si:0.1超え〜3%、Mn:0.1〜2%、Cr:10〜25%、Nb:0.3〜0.8%、N:0.03%以下、残部Feおよび不可避的不純物からなるEGRクーラー部材用フェライト系ステンレス鋼。   In mass%, C: 0.03% or less, Si: more than 0.1 to 3%, Mn: 0.1 to 2%, Cr: 10 to 25%, Nb: 0.3 to 0.8%, N : Ferritic stainless steel for EGR cooler member consisting of 0.03% or less, balance Fe and inevitable impurities. さらに、Mo、Cu、VおよびWの1種以上を合計4%以下の範囲で含有する請求項1に記載のフェライト系ステンレス鋼。   Furthermore, the ferritic stainless steel of Claim 1 which contains 1 or more types of Mo, Cu, V, and W in the range of a total of 4% or less. さらに、Ti、AlおよびZrの1種以上を合計0.3%以下の範囲で含有する請求項1または2に記載のフェライト系ステンレス鋼。   Furthermore, the ferritic stainless steel of Claim 1 or 2 which contains 1 or more types of Ti, Al, and Zr in the range of a total of 0.3% or less. さらに、NiおよびCoの1種以上を合計5%以下の範囲で含有する請求項1〜3のいずれかに記載のフェライト系ステンレス鋼。   Furthermore, the ferritic stainless steel in any one of Claims 1-3 which contains 1 or more types of Ni and Co in the range of 5% or less in total. さらに、REM(希土類元素)およびCaの1種以上を合計0.2%以下の範囲で含有する請求項1〜4のいずれかに記載のフェライト系ステンレス鋼。   Furthermore, the ferritic stainless steel in any one of Claims 1-4 which contains 1 or more types of REM (rare earth element) and Ca in the range of 0.2% or less in total. CおよびNの合計含有量が0.01質量%以上である請求項1〜5に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to claim 1, wherein the total content of C and N is 0.01% by mass or more. 請求項1〜6のいずれかに記載の鋼からなる鋼材を、構成部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラー。   The EGR cooler which has the structure which has the steel material which consists of steel in any one of Claims 1-6 in a structural member, and joined the member at least to the other member by Ni brazing. 請求項1〜6のいずれかに記載の鋼からなる鋼材を、自動車排ガスおよび冷却水の両方に接触する部材に持ち、少なくともその部材を他の部材にNiろう付けにて接合した構造を有するEGRクーラー。   EGR which has the structure which has the steel material which consists of steel in any one of Claims 1-6 in the member which contacts both a motor vehicle exhaust gas and cooling water, and joined at least that member to other members by Ni brazing cooler.
JP2008016946A 2008-01-28 2008-01-28 EGR cooler using ferritic stainless steel Active JP5264199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016946A JP5264199B2 (en) 2008-01-28 2008-01-28 EGR cooler using ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016946A JP5264199B2 (en) 2008-01-28 2008-01-28 EGR cooler using ferritic stainless steel

Publications (2)

Publication Number Publication Date
JP2009174040A true JP2009174040A (en) 2009-08-06
JP5264199B2 JP5264199B2 (en) 2013-08-14

Family

ID=41029427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016946A Active JP5264199B2 (en) 2008-01-28 2008-01-28 EGR cooler using ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP5264199B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053811A (en) * 2008-08-29 2010-03-11 Maruyasu Industries Co Ltd Exhaust gas heat-exchanger
WO2010047131A1 (en) * 2008-10-24 2010-04-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for egr coolers
WO2010147092A1 (en) * 2009-06-15 2010-12-23 日新製鋼株式会社 Ferritic stainless steel material for brazing, and heat exchanger member
JP2013010981A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Ferritic stainless steel for egr cooler
US8470237B2 (en) 2006-05-09 2013-06-25 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion
WO2013179616A1 (en) 2012-05-28 2013-12-05 Jfeスチール株式会社 Ferritic stainless steel
WO2014157576A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2015040716A (en) * 2013-08-20 2015-03-02 日本特殊陶業株式会社 Gas sensor
WO2016152854A1 (en) * 2015-03-26 2016-09-29 新日鐵住金ステンレス株式会社 Stainless steel having excellent brazeability
KR20160122824A (en) 2014-03-20 2016-10-24 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and production method therefor
KR20170031768A (en) 2014-07-31 2017-03-21 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and method for producing same
KR20170088431A (en) 2014-12-24 2017-08-01 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and process for producing same
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
WO2018043309A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Ferritic stainless steel
KR101835021B1 (en) 2016-09-28 2018-03-09 주식회사 포스코 Ferritic stainless steel for exhaust system heat exchanger and method of manufacturing the same
WO2018116792A1 (en) 2016-12-21 2018-06-28 Jfeスチール株式会社 Ferritic stainless steel
EP3428292A1 (en) 2017-07-14 2019-01-16 Daido Steel Co.,Ltd. Ferritic stainless steel and heat-resistant member
JPWO2018043310A1 (en) * 2016-09-02 2019-06-24 Jfeスチール株式会社 Ferritic stainless steel
WO2019159606A1 (en) 2018-02-14 2019-08-22 Jfeスチール株式会社 Ferritic stainless steel
JP2020007599A (en) * 2018-07-05 2020-01-16 日本製鉄株式会社 Ferritic stainless steel sheet, clad material, and manufacturing method of ferritic stainless steel sheet
US10752973B2 (en) 2014-10-31 2020-08-25 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
KR20200105932A (en) 2018-02-14 2020-09-09 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
WO2023276411A1 (en) 2021-06-28 2023-01-05 Jfeスチール株式会社 Ferritic stainless steel
KR20240000556A (en) 2021-06-28 2024-01-02 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760056A (en) * 1980-08-08 1982-04-10 Allegheny Ludlum Ind Inc Stabilized ferrite stainless steel with good weldability
JPH08199235A (en) * 1995-01-19 1996-08-06 Kawasaki Steel Corp Production of niobium-containing ferritic steel sheet
JP2003117685A (en) * 2001-10-10 2003-04-23 Hitachi Cable Ltd Composite brazing filler metal, composite material for brazing, and brazed product
JP2006134662A (en) * 2004-11-04 2006-05-25 Nisshin Steel Co Ltd Heat exchanger for fuel cell system of automobile
JP2009174046A (en) * 2007-12-28 2009-08-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel excellent in brazing property

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760056A (en) * 1980-08-08 1982-04-10 Allegheny Ludlum Ind Inc Stabilized ferrite stainless steel with good weldability
JPH08199235A (en) * 1995-01-19 1996-08-06 Kawasaki Steel Corp Production of niobium-containing ferritic steel sheet
JP2003117685A (en) * 2001-10-10 2003-04-23 Hitachi Cable Ltd Composite brazing filler metal, composite material for brazing, and brazed product
JP2006134662A (en) * 2004-11-04 2006-05-25 Nisshin Steel Co Ltd Heat exchanger for fuel cell system of automobile
JP2009174046A (en) * 2007-12-28 2009-08-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel excellent in brazing property

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470237B2 (en) 2006-05-09 2013-06-25 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion
JP2010053811A (en) * 2008-08-29 2010-03-11 Maruyasu Industries Co Ltd Exhaust gas heat-exchanger
WO2010047131A1 (en) * 2008-10-24 2010-04-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for egr coolers
JP2010121208A (en) * 2008-10-24 2010-06-03 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for egr cooler
US9932650B2 (en) 2009-06-15 2018-04-03 Nisshin Steel Co., Ltd. Ferritic stainless steel material for brazing and heat exchanger member
WO2010147092A1 (en) * 2009-06-15 2010-12-23 日新製鋼株式会社 Ferritic stainless steel material for brazing, and heat exchanger member
JP2010285683A (en) * 2009-06-15 2010-12-24 Nisshin Steel Co Ltd Ferritic stainless steel material for brazing, and heat exchanger member
CN102459676A (en) * 2009-06-15 2012-05-16 日新制钢株式会社 Ferritic stainless steel material for brazing, and heat exchanger member
JP2013010981A (en) * 2011-06-28 2013-01-17 Jfe Steel Corp Ferritic stainless steel for egr cooler
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
KR20150002872A (en) 2012-05-28 2015-01-07 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
WO2013179616A1 (en) 2012-05-28 2013-12-05 Jfeスチール株式会社 Ferritic stainless steel
CN105051234A (en) * 2013-03-27 2015-11-11 新日铁住金不锈钢株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
WO2014157576A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2015040716A (en) * 2013-08-20 2015-03-02 日本特殊陶業株式会社 Gas sensor
KR20160122824A (en) 2014-03-20 2016-10-24 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and production method therefor
KR20170031768A (en) 2014-07-31 2017-03-21 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and method for producing same
EP3176280A4 (en) * 2014-07-31 2017-10-04 JFE Steel Corporation Ferritic stainless steel and method for producing same
US10450625B2 (en) 2014-07-31 2019-10-22 Jfe Steel Corporation Ferritic stainless steel and method for producing same
US10752973B2 (en) 2014-10-31 2020-08-25 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
KR20170088431A (en) 2014-12-24 2017-08-01 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel and process for producing same
US10458013B2 (en) 2014-12-24 2019-10-29 Jfe Steel Corporation Ferritic stainless steel and process for producing same
CN107406945B (en) * 2015-03-26 2019-12-03 新日铁住金不锈钢株式会社 The excellent stainless steel of soldering property
KR101990725B1 (en) 2015-03-26 2019-06-18 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Stainless steel with excellent brazing property
WO2016152854A1 (en) * 2015-03-26 2016-09-29 新日鐵住金ステンレス株式会社 Stainless steel having excellent brazeability
EP3276029A4 (en) * 2015-03-26 2018-09-12 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel having excellent brazeability
US10669606B2 (en) 2015-03-26 2020-06-02 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel having excellent brazeability
CN107406945A (en) * 2015-03-26 2017-11-28 新日铁住金不锈钢株式会社 The excellent stainless steel of soldering
KR20170130528A (en) * 2015-03-26 2017-11-28 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Stainless steel with excellent brazing property
JPWO2016152854A1 (en) * 2015-03-26 2017-12-21 新日鐵住金ステンレス株式会社 Stainless steel with excellent brazeability
KR20190030718A (en) 2016-09-02 2019-03-22 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
JPWO2018043310A1 (en) * 2016-09-02 2019-06-24 Jfeスチール株式会社 Ferritic stainless steel
WO2018043309A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Ferritic stainless steel
US11261512B2 (en) 2016-09-02 2022-03-01 Jfe Steel Corporation Ferritic stainless steel
US11230756B2 (en) 2016-09-02 2022-01-25 Jfe Steel Corporation Ferritic stainless steel
KR101835021B1 (en) 2016-09-28 2018-03-09 주식회사 포스코 Ferritic stainless steel for exhaust system heat exchanger and method of manufacturing the same
WO2018116792A1 (en) 2016-12-21 2018-06-28 Jfeスチール株式会社 Ferritic stainless steel
KR20190085029A (en) 2016-12-21 2019-07-17 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
KR20210062721A (en) 2016-12-21 2021-05-31 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
JP2019019366A (en) * 2017-07-14 2019-02-07 大同特殊鋼株式会社 Ferritic stainless steel and heat resistant member
EP3428292A1 (en) 2017-07-14 2019-01-16 Daido Steel Co.,Ltd. Ferritic stainless steel and heat-resistant member
US10689723B2 (en) 2017-07-14 2020-06-23 Daido Steel Co., Ltd. Ferritic stainless steel and heat-resistant member
US20190017132A1 (en) * 2017-07-14 2019-01-17 Daido Steel Co., Ltd. Ferritic stainless steel and heat-resistant member
CN109252088B (en) * 2017-07-14 2021-09-14 大同特殊钢株式会社 Ferritic stainless steel and heat-resistant member
CN109252088A (en) * 2017-07-14 2019-01-22 大同特殊钢株式会社 Ferritic stainless steel and heat-resistant part
KR20200105932A (en) 2018-02-14 2020-09-09 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
WO2019159606A1 (en) 2018-02-14 2019-08-22 Jfeスチール株式会社 Ferritic stainless steel
JP2020007599A (en) * 2018-07-05 2020-01-16 日本製鉄株式会社 Ferritic stainless steel sheet, clad material, and manufacturing method of ferritic stainless steel sheet
JP7102988B2 (en) 2018-07-05 2022-07-20 日本製鉄株式会社 Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet
WO2023276411A1 (en) 2021-06-28 2023-01-05 Jfeスチール株式会社 Ferritic stainless steel
KR20240000556A (en) 2021-06-28 2024-01-02 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel

Also Published As

Publication number Publication date
JP5264199B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5264199B2 (en) EGR cooler using ferritic stainless steel
JP5349153B2 (en) Ferritic stainless steel for brazing and heat exchanger members
WO2011013193A1 (en) Ferritic stainless steel for egr cooler and egr cooler
JP6270821B2 (en) Ferritic stainless steel plate with excellent brazing, heat exchanger, ferritic stainless steel plate for heat exchanger, ferritic stainless steel, ferritic stainless steel for fuel supply system members, and fuel supply system parts
JP5390175B2 (en) Ferritic stainless steel with excellent brazeability
JP5420292B2 (en) Ferritic stainless steel
JP6607268B2 (en) Ferritic stainless steel
JP5462583B2 (en) Ferritic stainless steel sheet for EGR cooler
JP6379283B2 (en) Stainless steel with excellent brazeability
JP5856878B2 (en) Ferritic stainless steel for exhaust heat recovery and exhaust heat recovery
JP5786491B2 (en) Ferritic stainless steel for EGR cooler
JP5788946B2 (en) Ferritic stainless steel for parts assembled by brazing with excellent brazing
JP6547927B1 (en) Ferritic stainless steel
JP6871045B2 (en) Ferritic stainless steel and Ni brazed joint members with excellent brazing and corrosion resistance
WO2019159606A1 (en) Ferritic stainless steel
JP2009041102A (en) Ni-BASED ALLOY FOR COMPONENT OF EXHAUST GAS RE-CIRCULATION SYSTEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250