JP7102988B2 - Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet - Google Patents

Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet Download PDF

Info

Publication number
JP7102988B2
JP7102988B2 JP2018128597A JP2018128597A JP7102988B2 JP 7102988 B2 JP7102988 B2 JP 7102988B2 JP 2018128597 A JP2018128597 A JP 2018128597A JP 2018128597 A JP2018128597 A JP 2018128597A JP 7102988 B2 JP7102988 B2 JP 7102988B2
Authority
JP
Japan
Prior art keywords
stainless steel
less
steel sheet
heat treatment
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128597A
Other languages
Japanese (ja)
Other versions
JP2020007599A (en
Inventor
正美 澤田
善久 米満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018128597A priority Critical patent/JP7102988B2/en
Publication of JP2020007599A publication Critical patent/JP2020007599A/en
Application granted granted Critical
Publication of JP7102988B2 publication Critical patent/JP7102988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、フェライト系ステンレス鋼板、クラッド材及びフェライト系ステンレス鋼板の製造方法に関する。 The present invention relates to a ferritic stainless steel sheet, a clad material, and a method for producing a ferritic stainless steel sheet.

鍋、フライパン、炊飯器の内釜などのIH(インダクション ヒーティング:高周波誘導加熱)調理に対応した機器には、ステンレス鋼板や、ステンレス鋼板を素材としたクラッド材が使用される。これらの用途では、強度や成型性などの特性に加え、消費者にアピールするため、優れた意匠性が要求される場合がある。意匠性は、時代や消費者ニーズによるところがあるが、例えば、金属の結晶粒を目視でも観察できるほどに粗大化させることで、その結晶粒組織模様とする従来にない意匠性を付与することが考えられる。また、結晶粒組織模様が表面に現れることで、ステンレス鋼板の表面にできた疵が目立ちにくくなるという効果も期待される。 Stainless steel plates and clad materials made of stainless steel plates are used for equipment that supports IH (induction heating: high-frequency induction heating) cooking, such as pots, frying pans, and inner pots of rice cookers. In these applications, in addition to properties such as strength and moldability, excellent designability may be required in order to appeal to consumers. The designability depends on the times and consumer needs. For example, by coarsening the metal crystal grains so that they can be visually observed, it is possible to impart an unprecedented design property as the crystal grain structure pattern. Conceivable. Further, it is expected that the appearance of the crystal grain structure pattern on the surface makes the flaws formed on the surface of the stainless steel sheet less noticeable.

しかしながら、例えばフェライト系ステンレス鋼板において、目視でも確認できるレベルにフェライトの結晶粒を粗大化させるには、高温かつ長時間の熱処理が必要とされている。一般に、量産熱処理に使用される大気炉を用いてフェライト系ステンレス鋼板に対して高温かつ長時間の熱処理を行うと、素材表面に厚いスケールが生成する。ステンレス鋼板表面に生成したスケールは、酸洗で落とすのが難しく、また、厚いスケールの生成によって大きな板厚減少につながるという問題がある。 However, for example, in a ferritic stainless steel sheet, a high temperature and long time heat treatment is required to coarsen the ferrite crystal grains to a level that can be visually confirmed. Generally, when a ferrite stainless steel sheet is heat-treated at a high temperature for a long time using an atmospheric furnace used for mass production heat treatment, a thick scale is generated on the surface of the material. The scale formed on the surface of the stainless steel sheet is difficult to remove by pickling, and there is a problem that the formation of thick scale leads to a large reduction in plate thickness.

また、IH調理に対応した機器として使用される金属素材には、鍋などに成型可能な成型性や耐食性に加え、電磁誘導による加熱効率を上げるため、素材の比透磁率が高いことが求められる。 In addition, metal materials used as equipment compatible with IH cooking are required to have high relative magnetic permeability in order to improve heating efficiency by electromagnetic induction in addition to moldability and corrosion resistance that can be molded into pots and the like. ..

さらに、金属の結晶粒を目視でも確認できるようにしたステンレス鋼は、IH調理に対応した機器以外にも、建物の内装材または外装材、電子機器の筐体、食器、美術品など、意匠性が要求される用途への需要がある。 Furthermore, stainless steel, which enables visual confirmation of metal crystal grains, has design properties such as building interior or exterior materials, electronic device housings, tableware, and fine arts, in addition to equipment that supports IH cooking. There is a demand for applications that require.

特許文献1(特開2002-129292号公報)には、mass%で、C+N:0.02%以下、Si:0.3%以下、Mn:0.5%以下、Cr:11~35%、P:0.05%以下、S:0.010%以下、Al:0.02%以下を含有し、残部Feおよび不可避的不純物からなる鋼組成を有し、表面粗さがRyで0.5μm以下である耐食性および耐水垢付着性に優れたジャーポット容器用フェライト系ステンレス冷延鋼板が記載されている。 In Patent Document 1 (Japanese Unexamined Patent Publication No. 2002-129292), in mass%, C + N: 0.02% or less, Si: 0.3% or less, Mn: 0.5% or less, Cr: 11 to 35%, It contains P: 0.05% or less, S: 0.010% or less, Al: 0.02% or less, has a steel composition consisting of the balance Fe and unavoidable impurities, and has a surface roughness of 0.5 μm in Ry. The following ferritic stainless cold-rolled steel sheets for jar pot containers, which are excellent in corrosion resistance and water stain resistance, are described.

特許文献2(特開2013-249519号公報)には、質量%で、C:0.06%以下、N:0.06%以下、Si+Al:0.6%以上2%以下、Cr:13%以上20%以下、Mn:2.0%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有するIH調理器で使用される調理器具用フェライト系ステンレス鋼が記載されている。 Patent Document 2 (Japanese Unexamined Patent Publication No. 2013-249519) describes, in terms of mass%, C: 0.06% or less, N: 0.06% or less, Si + Al: 0.6% or more and 2% or less, Cr: 13%. Described are ferritic stainless steels for cooking utensils used in IH cookers, which contain 20% or less, Mn: 2.0% or less, and have a component composition in which the balance is Fe and unavoidable impurities.

特開2002-129292号公報Japanese Unexamined Patent Publication No. 2002-129292 特開2013-249519号公報Japanese Unexamined Patent Publication No. 2013-249519

しかし、特許文献1または2に記載されたフェライト系ステンレス鋼はいずれも、結晶粒を粗大化させたものではなく、また、特許文献1、2には、結晶粒の粗大化させるための製造方法は記載されていない。 However, none of the ferritic stainless steels described in Patent Documents 1 or 2 has coarsened crystal grains, and Patent Documents 1 and 2 describe a production method for coarsening crystal grains. Is not listed.

本発明は上記事情に鑑みてなされたものであり、目視でも確認できる大きさの結晶粒を備え、意匠性に優れ、かつ、IH調理器等にも適用可能なフェライト系ステンレス鋼板およびクラッド材を提供することを課題とする。また、本発明は、高温かつ長時間の熱処理を施すことなく目視でも確認できる大きさの結晶粒を形成可能なフェライト系ステンレス鋼板の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and a ferritic stainless steel plate and a clad material which are provided with crystal grains having a size that can be visually confirmed, have excellent design, and can be applied to an IH cooker or the like. The challenge is to provide. Another object of the present invention is to provide a method for producing a ferritic stainless steel sheet capable of forming crystal grains having a size that can be visually confirmed without performing heat treatment at a high temperature for a long time.

上記課題を解決するため、本発明は以下の構成を採用する。
[1] 質量%で、
C:0.030%以下、
N:0.030%以下、
Si:0.20%以上0.80%以下、
Cr:15%以上20%以下、
Mn:0.80%以下、
Ni:1.0%以下、
Cu:0.80%以下を含有し、
さらに、Nb、V、Tiのうちいずれか一種または二種以上を合計で0.10%以上0.80%以下含有し、
残部がFeおよび不純物からなる成分組成を有し、
平均結晶粒径が100μm以上であることを特徴とするフェライト系ステンレス鋼板。
[2] 周波数25kHzにおける比透磁率が90以上であることを特徴とする[1]に記載のフェライト系ステンレス鋼板。
[3] 高周波誘導加熱調理に対応した機器の部材に用いられることを特徴とする、[1]または[2]に記載のフェライト系ステンレス鋼板。
[4] [1]乃至[3]の何れか一項に記載のフェライト系ステンレス鋼板と、アルミニウム板と接合させてなることを特徴とするクラッド材。
[5] [1]に記載の成分組成を有するステンレス鋼板素材に900℃以上1100℃以下で1.0分以上の中間熱処理を施す第1の工程と、
板厚減少率5%以上10%以下の仕上冷間圧延を施す第2の工程と、
980℃以上1150℃以下で1.0分以上の仕上熱処理を施す第3の工程と、を順次行うことを特徴とする、[1]乃至[3]の何れか一項に記載のフェライト系ステンレス鋼板の製造方法。
In order to solve the above problems, the present invention adopts the following configuration.
[1] By mass%
C: 0.030% or less,
N: 0.030% or less,
Si: 0.20% or more and 0.80% or less,
Cr: 15% or more and 20% or less,
Mn: 0.80% or less,
Ni: 1.0% or less,
Cu: Contains 0.80% or less,
Further, any one or more of Nb, V, and Ti are contained in a total of 0.10% or more and 0.80% or less.
The balance has a component composition consisting of Fe and impurities,
A ferritic stainless steel sheet having an average crystal grain size of 100 μm or more.
[2] The ferritic stainless steel sheet according to [1], wherein the relative magnetic permeability at a frequency of 25 kHz is 90 or more.
[3] The ferrite-based stainless steel sheet according to [1] or [2], which is used as a member of equipment compatible with high-frequency induction cooking.
[4] A clad material characterized in that the ferrite-based stainless steel plate according to any one of [1] to [3] is joined to an aluminum plate.
[5] The first step of subjecting the stainless steel sheet material having the component composition according to [1] to an intermediate heat treatment at 900 ° C. or higher and 1100 ° C. or lower for 1.0 minute or longer.
The second step of performing cold rolling for finishing with a plate thickness reduction rate of 5% or more and 10% or less, and
The ferrite-based stainless steel according to any one of [1] to [3] , which comprises sequentially performing a third step of performing a finish heat treatment at 980 ° C. or higher and 1150 ° C. or lower for 1.0 minute or longer. Method of manufacturing steel sheet.

本発明によれば、目視でも確認できる大きさの結晶粒を備え、意匠性に優れ、かつ、IH調理器等にも適用可能なフェライト系ステンレス鋼板およびクラッド材を提供できる。また、本発明によれば、高温かつ長時間の熱処理を施すことなく目視でも確認できる大きさの結晶粒を形成可能なフェライト系ステンレス鋼板の製造方法を提供できる。
また、本発明のフェライト系ステンレス鋼板およびクラッド材は、鍋、フライパン、炊飯器の内釜などのIH調理に対応した機器、電子機器の筐体、食器、美術品、建築材料など、意匠性が求められる分野に好適に用いることができる。
According to the present invention, it is possible to provide a ferritic stainless steel sheet and a clad material which are provided with crystal grains having a size that can be visually confirmed, have excellent design, and can be applied to an IH cooker or the like. Further, according to the present invention, it is possible to provide a method for producing a ferritic stainless steel sheet capable of forming crystal grains having a size that can be visually confirmed without performing heat treatment at a high temperature for a long time.
In addition, the ferrite-based stainless steel plate and clad material of the present invention have design characteristics such as pots, frying pans, inner pots of rice cookers and other devices compatible with IH cooking, housings for electronic devices, tableware, fine arts, building materials, etc. It can be suitably used in a required field.

目視でも確認できる大きさの結晶粒を備え、意匠性に優れ、かつ、IH調理器等にも適用可能なフェライト系ステンレス鋼板を得るため、本発明者らが、素材の化学成分や製造方法について詳細に検討したところ、以下の知見を得、本発明を完成させた。 In order to obtain a ferritic stainless steel sheet that has crystal grains of a size that can be visually confirmed, has excellent design, and can be applied to IH cookers, etc., the present inventors have discussed the chemical composition and manufacturing method of the material. As a result of detailed examination, the following findings were obtained, and the present invention was completed.

(A)拡散の早いフェライト相が高温まで安定して存在する化学成分とすることで、熱処理時の結晶粒成長が早く、粗大な結晶粒組織が得られやすくなる。
(B)高温での熱処理前に板厚減少率で5%以上、10%以下の冷間圧延を施すことで、熱処理時の結晶粒成長が著しく促進され、短時間の熱処理でも結晶粒が粗大化する。
(C)結晶粒を粗大化することで、美観が生まれ、疵が目立たなくなる。
(D)結晶粒を粗大化することで比透磁率が向上する。
(A) By using a chemical component in which the ferrite phase, which diffuses quickly, exists stably up to a high temperature, the crystal grain growth during heat treatment is fast, and a coarse crystal grain structure can be easily obtained.
(B) By performing cold rolling with a plate thickness reduction rate of 5% or more and 10% or less before the heat treatment at a high temperature, the crystal grain growth during the heat treatment is remarkably promoted, and the crystal grains are coarse even in a short heat treatment. To become.
(C) By coarsening the crystal grains, an aesthetic appearance is created and the flaws become inconspicuous.
(D) The relative magnetic permeability is improved by coarsening the crystal grains.

以下、本発明の実施形態であるフェライト系ステンレス鋼板、クラッド材及びフェライト系ステンレス鋼板の製造方法について説明する。 Hereinafter, a method for producing a ferrite-based stainless steel sheet, a clad material, and a ferrite-based stainless steel sheet according to an embodiment of the present invention will be described.

本実施形態のフェライト系ステンレス鋼板は、質量%で、C:0.030%以下、N:0.030%以下、Si:0.20%以上0.80%以下、Cr:15%以上20%以下、Mn:0.80%以下、Ni:1.0%以下、Cu:0.80%以下を含有し、さらに、Nb、V、Tiのうちいずれか一種または二種以上を合計で0.10%以上0.80%以下含有し、残部がFeおよび不純物からなる成分組成を有し、平均結晶粒径が100μm以上のフェライト系ステンレス鋼板である。
また、本実施形態のフェライト系ステンレス鋼板は、周波数25kHzにおける比透磁率が90以上であることが好ましい。
更に、本実施形態のフェライト系ステンレス鋼板は、高周波誘導加熱調理に対応した機器の部材に用いられることが好ましい。
更にまた、本実施形態のクラッド材は、本実施形態のフェライト系ステンレス鋼板と、アルミニウム板と接合させてなるクラッド材である。
The ferritic stainless steel plate of the present embodiment has C: 0.030% or less, N: 0.030% or less, Si: 0.20% or more and 0.80% or less, Cr: 15% or more and 20% in mass%. Hereinafter, Mn: 0.80% or less, Ni: 1.0% or less, Cu: 0.80% or less are contained, and any one or more of Nb, V, and Ti are added in total to 0. A ferritic stainless steel sheet containing 10% or more and 0.80% or less, having a component composition in which the balance is composed of Fe and impurities, and having an average crystal grain size of 100 μm or more.
Further, the ferrite-based stainless steel sheet of the present embodiment preferably has a relative magnetic permeability of 90 or more at a frequency of 25 kHz.
Further, the ferrite-based stainless steel sheet of the present embodiment is preferably used as a member of an apparatus compatible with high-frequency induction cooking.
Furthermore, the clad material of the present embodiment is a clad material formed by joining the ferritic stainless steel plate of the present embodiment and an aluminum plate.

以下、本実施形態のフェライト系ステンレス鋼板の成分組成について説明する。成分組成の説明において、「%」は質量%を意味する。本実施形態のフェライト系ステンレス鋼板の成分組成は、拡散の早いフェライト相が高温まで安定して存在する化学成分としている。 Hereinafter, the component composition of the ferritic stainless steel sheet of the present embodiment will be described. In the description of the component composition, "%" means mass%. The component composition of the ferritic stainless steel sheet of the present embodiment is a chemical component in which a fast-diffusing ferrite phase is stably present up to a high temperature.

C:0.030%以下
Cは、母相に固溶されるとオーステナイト相を安定化させる元素であるため、C量が多いと、高温でオーステナイト相が生成し、結晶粒成長が遅くなり、粗大な結晶粒を得ることが困難になる。また、C量が多いと鋼が硬質となり、成形性が低下する。そのため、C量は極力少ないことが好ましく、上限を0.030%以下とする。望ましくは、0.020%以下である。C量は極力少ないことが好ましいが、C量を少なくするとコスト増になるので、下限を0.001%以上にするとよい。
C: 0.030% or less C is an element that stabilizes the austenite phase when it is dissolved in the matrix phase. Therefore, if the amount of C is large, the austenite phase is formed at high temperature and the crystal grain growth is slowed down. It becomes difficult to obtain coarse crystal grains. Further, if the amount of C is large, the steel becomes hard and the formability is lowered. Therefore, the amount of C is preferably as small as possible, and the upper limit is 0.030% or less. Desirably, it is 0.020% or less. The amount of C is preferably as small as possible, but reducing the amount of C increases the cost, so the lower limit should be 0.001% or more.

N:0.030%以下
Nは、Cと同じく、母相に固溶されるとオーステナイト相を安定化させる元素である。N量が多いと、高温でオーステナイト相が生成し、結晶粒成長が遅くなり、粗大な結晶粒を得ることが困難になる。そのため、N量は0.030%以下とする。望ましくは、0.020%以下である。N量は極力少ないことが好ましいが、N量を少なくするとコスト増になるので、下限を0.001%以上にするとよい。
N: 0.030% or less N, like C, is an element that stabilizes the austenite phase when dissolved in the parent phase. When the amount of N is large, an austenite phase is formed at a high temperature, the crystal grain growth is slowed down, and it becomes difficult to obtain coarse crystal grains. Therefore, the amount of N is set to 0.030% or less. Desirably, it is 0.020% or less. It is preferable that the amount of N is as small as possible, but since reducing the amount of N increases the cost, the lower limit should be 0.001% or more.

Si:0.20%以上0.80%以下
Siは、酸化皮膜の保護性を向上させるため、0.20%以上を含有させる。一方で、Si量が多すぎると、熱間加工性を顕著に劣化させ、耳割れが発生し、手入れコストが大きくなることから、上限を0.80%以下とする。好ましくは、0.25%以上0.70%以下である。
Si: 0.20% or more and 0.80% or less Si is contained in 0.20% or more in order to improve the protective property of the oxide film. On the other hand, if the amount of Si is too large, the hot workability is remarkably deteriorated, ear cracks occur, and the maintenance cost increases. Therefore, the upper limit is set to 0.80% or less. Preferably, it is 0.25% or more and 0.70% or less.

Cr:15%以上、20%以下
Crは、ステンレス鋼としての耐食性を確保する観点から必須の元素であり、十分な耐食性を確保する観点から15%以上とする。一方で、Cr量が多すぎると、焼鈍時に粗大な脆化相を生成させるため、20%以下とする。好ましくは、16%以上18%以下とする。
Cr: 15% or more, 20% or less Cr is an essential element from the viewpoint of ensuring corrosion resistance as stainless steel, and is 15% or more from the viewpoint of ensuring sufficient corrosion resistance. On the other hand, if the amount of Cr is too large, a coarse embrittled phase is formed during annealing, so the amount is set to 20% or less. Preferably, it is 16% or more and 18% or less.

Mn:0.80%以下
Mnは原料スクラップなどから混入する。Mn量を大きく低減させるにはスクラップの使用を減らす必要があり、これはコストの増大を招く。一方で、Mnが多すぎると、熱間加工性を劣化させるうえ、素材の耐食性を劣化させる。したがって、Mn量は0.80%以下とする。Mn量は極力少ないことが好ましいが、Mnを少なくするとコスト増になるので、Mnの下限は0.20%以上、より好ましくは0.10%以上であれば許容される。
Mn: 0.80% or less Mn is mixed from raw material scrap and the like. In order to significantly reduce the amount of Mn, it is necessary to reduce the use of scrap, which leads to an increase in cost. On the other hand, if the amount of Mn is too large, the hot workability is deteriorated and the corrosion resistance of the material is deteriorated. Therefore, the amount of Mn is set to 0.80% or less. It is preferable that the amount of Mn is as small as possible, but since reducing the amount of Mn increases the cost, the lower limit of Mn is 0.20% or more, more preferably 0.10% or more, which is acceptable.

Ni:1.0%以下
Niは強力なオーステナイト安定化元素であり、高温でフェライト相からオーステナイト相への変態を助長する。その結果、結晶粒成長が遅くなり、粗大な結晶粒を得ることが困難になる。従って、Ni量を1.0%以下とする。望ましくは、0.3%以下とする。Niは少ないほどよく、その下限は0.001%以上とする。
Ni: 1.0% or less Ni is a strong austenite stabilizing element and promotes the transformation from the ferrite phase to the austenite phase at high temperatures. As a result, the crystal grain growth is slowed down, and it becomes difficult to obtain coarse crystal grains. Therefore, the amount of Ni is set to 1.0% or less. Desirably, it is 0.3% or less. The smaller the amount of Ni, the better, and the lower limit thereof is 0.001% or more.

Cu:0.80%以下
Cuは原料スクラップなどから混入する。Cu量を大きく低減させるにはスクラップの使用を減らす必要があり、これはコストの増大を招く。一方で、CuはNiと同じく強力なオーステナイト安定化元素であり、高温でフェライト相からオーステナイト相への変態を助長する。その結果、結晶粒成長が遅くなるため、粗大な結晶粒を得ることが困難になる。従って、Cu量の上限は0.80%以下とする。望ましくは、0.70%以下とする。Cu量は極力少ないことが好ましいが、Cuを少なくするとコスト増になるので、Cuの下限は0.25%以上、0.20%以上、または0.02%以上であれば許容される。
Cu: 0.80% or less Cu is mixed from raw material scrap. In order to significantly reduce the amount of Cu, it is necessary to reduce the use of scrap, which leads to an increase in cost. On the other hand, Cu is a strong austenite stabilizing element like Ni, and promotes the transformation from the ferrite phase to the austenite phase at high temperature. As a result, the growth of crystal grains is slowed down, which makes it difficult to obtain coarse crystal grains. Therefore, the upper limit of the amount of Cu is 0.80% or less. Desirably, it is 0.70% or less. It is preferable that the amount of Cu is as small as possible, but since reducing the amount of Cu increases the cost, the lower limit of Cu is 0.25% or more, 0.20% or more, or 0.02% or more, which is acceptable.

Nb、V、Tiのいずれか一種または二種以上を合計で:0.10%以上0.80%以下
Nb、V、Tiは、いずれもC、Nと化合物を作る元素である。C、Nが化合物になることで固溶C、Nが減り、母相のオーステナイト安定度が低下する結果、高温までフェライト相が維持され、結晶粒成長が促進される。この効果は、Nb、V、Tiのいずれか一種または二種以上を合計で0.10%以上含有することで得られる。一方、Nb、V、Tiの含有量が多すぎると、溶製時に粗大な炭化物や窒化物を形成し、熱延、冷延時の耳割れを助長したり、介在物として製品に残存し、成型性などを劣化させる.従って、Nb、V、Tiの含有量の合計を0.80%以下とする。
One or more of Nb, V, and Ti in total: 0.10% or more and 0.80% or less Nb, V, and Ti are all elements that form a compound with C and N. When C and N become compounds, the solid solution C and N are reduced, and the austenite stability of the matrix is lowered. As a result, the ferrite phase is maintained up to a high temperature and the grain growth is promoted. This effect can be obtained by containing 0.10% or more in total of any one or more of Nb, V, and Ti. On the other hand, if the content of Nb, V, and Ti is too high, coarse carbides and nitrides are formed during melting, which promotes ear cracking during hot rolling and cold rolling, or remains in the product as inclusions and is molded. Deteriorates sex. Therefore, the total content of Nb, V, and Ti is set to 0.80% or less.

上記元素を除く残部は、Feおよび不純物である。不純物は、鋼原料から及び/又は製鋼過程で不可避的に混入する元素であり、本実施形態のフェライト系ステンレス鋼板の特性を阻害しない範囲で許容される元素である。 The rest excluding the above elements are Fe and impurities. Impurities are elements that are inevitably mixed in from the steel raw material and / or in the steelmaking process, and are permissible elements as long as they do not impair the characteristics of the ferritic stainless steel sheet of the present embodiment.

平均結晶粒径が100μm以上
目視でも確認できるレベルの結晶粒模様を現出させるためには、平均結晶粒径が大きいことが望ましい。また、結晶粒の粗大化は比透磁率を高める効果もある。比透磁率を安定して90以上にするには、平均結晶粒径を100μm以上にすることが必要である。従って、平均結晶粒径を100μm以上と規定する。望ましくは150μm以上である。なお、本実施形態のステンレス鋼板はフェライト系ステンレス鋼板であるため、平均結晶粒径は、フェライトの平均結晶粒径を意味する。上限は特に規定しないが、結晶粒のサイズが鋼板や鋼板を用いて製造した製品と同等レベルのサイズになると、結晶粒模様が意味をなさないため、10mm以下とすることが望ましい。
The average crystal grain size is 100 μm or more. In order to produce a crystal grain pattern at a level that can be visually confirmed, it is desirable that the average crystal grain size is large. In addition, the coarsening of crystal grains also has the effect of increasing the relative magnetic permeability. In order to stabilize the relative magnetic permeability to 90 or more, it is necessary to make the average crystal grain size 100 μm or more. Therefore, the average crystal grain size is defined as 100 μm or more. It is preferably 150 μm or more. Since the stainless steel sheet of the present embodiment is a ferrite-based stainless steel sheet, the average crystal grain size means the average crystal grain size of ferrite. The upper limit is not particularly specified, but when the size of the crystal grains is the same level as that of a steel plate or a product manufactured by using a steel plate, the crystal grain pattern is meaningless, so it is desirable that the size is 10 mm or less.

次に、フェライト系ステンレス鋼板の平均結晶粒径の測定方法について説明する。
フェライト系ステンレス鋼板の幅をwとしたとき、幅方向で片端から(1/10)w、(1/4)w、(1/2)w、(3/4)w及び(9/10)wの5箇所において、圧延方向に垂直(C断面)な断面が観察面となるように試料を採取する。全観察面の面積は5mmとし、1箇所の観察面の面積は1mmとする。各観察面の板厚方向の寸法は板厚t(mm)とする。よって、各観察面の板幅方向の長さは1/t(mm)となる。観察面を鏡面研磨した後、10%シュウ酸で電解エッチングし、光学顕微鏡または走査型電子顕微鏡にてフェライトの結晶粒を観察し、結晶粒の個数を数える。観察面の板幅方向及び板厚方向の輪郭線が結晶粒上を横切ることで、一部が観察面からはみ出す結晶粒については、その結晶粒は0.5個とカウントする。5箇所の観察面において計測したフェライトの総数を、全観察面の面積で除して、結晶粒1個あたりの面積を求める。そして、結晶粒1個あたりの面積から、結晶粒の円相当直径を求め、これを平均結晶粒径とする。
Next, a method for measuring the average crystal grain size of the ferritic stainless steel sheet will be described.
When the width of the ferritic stainless steel sheet is w, (1/10) w, (1/4) w, (1/2) w, (3/4) w and (9/10) from one end in the width direction. Samples are collected so that the cross section perpendicular to the rolling direction (C cross section) is the observation surface at the five points w. The area of the entire observation surface is 5 mm 2 , and the area of one observation surface is 1 mm 2 . The dimension of each observation surface in the plate thickness direction is the plate thickness t (mm). Therefore, the length of each observation surface in the plate width direction is 1 / t (mm). After mirror polishing the observation surface, electrolytic etching is performed with 10% oxalic acid, and ferrite crystal grains are observed with an optical microscope or a scanning electron microscope, and the number of crystal grains is counted. For crystal grains that partially protrude from the observation surface when the contour lines in the plate width direction and plate thickness direction of the observation surface cross over the crystal grains, the number of crystal grains is counted as 0.5. The total number of ferrites measured on the five observation surfaces is divided by the area of all observation surfaces to obtain the area per crystal grain. Then, the diameter equivalent to the circle of the crystal grains is obtained from the area per crystal grain, and this is used as the average crystal grain size.

次に、本実施形態のフェライト系ステンレス鋼板の製造方法を説明する。
本実施形態のフェライト系ステンレス鋼板の製造方法は、上記に記載の成分組成を有するステンレス鋼板素材に900℃以上1100℃以下で1.0分以上の中間熱処理を施す第1の工程と、板厚減少率5%以上10%以下の仕上冷間圧延を施す第2の工程と、980℃以上1150℃以下で1.0分以上の仕上熱処理を施す第3の工程と、を順次行う。第1の工程においてステンレス鋼板素材を加熱することで、ステンレス鋼の組織を完全に回復、再結晶させ、第2の工程において圧下することでひずみを与え、第3の工程において加熱することで結晶粒を粒成長させる。第2の工程においてひずみを付与することで、第3の工程において粒成長に必要な熱処理の保持時間を大幅に短縮できるようになる。
Next, a method for manufacturing the ferritic stainless steel sheet of the present embodiment will be described.
The method for producing a ferrite-based stainless steel plate of the present embodiment includes a first step of subjecting a stainless steel plate material having the above-mentioned component composition to an intermediate heat treatment at 900 ° C. or higher and 1100 ° C. or lower for 1.0 minute or longer, and a plate thickness. The second step of performing the finish cold rolling with a reduction rate of 5% or more and 10% or less and the third step of performing the finish heat treatment at 980 ° C. or higher and 1150 ° C. or lower for 1.0 minute or longer are sequentially performed. By heating the stainless steel sheet material in the first step, the structure of the stainless steel is completely restored and recrystallized, in the second step, it is reduced to give strain, and in the third step, it is heated to crystallize. Grow the grain. By applying strain in the second step, the holding time of the heat treatment required for grain growth in the third step can be significantly shortened.

ステンレス鋼板素材は、上記の成分組成を有する熱延鋼板、冷延鋼板、鋳造板のいずれを用いてもよい。熱延鋼板は、鋳片を熱間圧延し冷却した熱延ままの鋼板でもよく、鋳片を熱間圧延し冷却したのち熱延板焼鈍を行った鋼板でもよい。熱延板焼鈍を行う前に酸洗してもよい。冷延鋼板は、熱延板に1回以上の冷間圧延を行ったものでもよく、複数回の冷間圧延と中間焼鈍とを繰り返し行ったものでもよい。冷間圧延前に熱延鋼板を酸洗してもよい。また、鋳造板としては、溶鋼から板状に鋳造したものが挙げられる。 As the stainless steel plate material, any of a hot-rolled steel plate, a cold-rolled steel plate, and a cast plate having the above-mentioned composition can be used. The hot-rolled steel sheet may be a hot-rolled steel sheet obtained by hot-rolling a slab and cooling it, or may be a steel sheet obtained by hot-rolling a slab, cooling it, and then hot-rolling the sheet. Pickling may be performed before annealing the hot-rolled plate. The cold-rolled steel sheet may be a hot-rolled sheet that has been cold-rolled one or more times, or may be a sheet that has been repeatedly cold-rolled and intermediate-annealed a plurality of times. The hot-rolled steel sheet may be pickled before cold rolling. Further, as the cast plate, a plate cast from molten steel into a plate shape can be mentioned.

第1の工程では、ステンレス鋼板素材に900℃以上1100℃以下で1.0分以上の中間熱処理を施す。第1の工程により、ステンレス鋼板素材の組織を完全に回復、再結晶させる。熱処理温度が900℃未満の場合や、保持時間が1.0分未満の場合は、鋼組織の回復および再結晶が不十分になり、結晶粒の粒成長が十分に進まなくなる。また、熱処理温度が1100℃を超えると、鋼板が軟化しすぎて操業が困難になる。従って、熱処理条件は熱処理温度900℃以上1100℃以下とし、保持時間を1.0分以上とする。保持時間の上限は特に制限はないが、保持時間が長いと生産性が低下し、また、スケールが厚く生成するおそれがあることから、好ましくは20分以下がよく、より好ましくは10分以下がよく、更に好ましくは3.0分以下がよい。なお、ステンレス鋼板の製造時には材質制御のため様々な熱処理が行われるところ、本実施形態の第1の工程の中間熱処理は、仕上熱処理よりも前に行う熱処理であることから、中間熱処理と称する。 In the first step, the stainless steel sheet material is subjected to an intermediate heat treatment at 900 ° C. or higher and 1100 ° C. or lower for 1.0 minute or longer. By the first step, the structure of the stainless steel sheet material is completely restored and recrystallized. If the heat treatment temperature is less than 900 ° C. or the holding time is less than 1.0 minute, the recovery and recrystallization of the steel structure will be insufficient, and the grain growth of the crystal grains will not proceed sufficiently. Further, if the heat treatment temperature exceeds 1100 ° C., the steel sheet becomes too soft and the operation becomes difficult. Therefore, the heat treatment conditions are such that the heat treatment temperature is 900 ° C. or higher and 1100 ° C. or lower, and the holding time is 1.0 minute or longer. The upper limit of the holding time is not particularly limited, but if the holding time is long, the productivity is lowered and the scale may be thickened. Therefore, 20 minutes or less is preferable, and 10 minutes or less is more preferable. It is good, more preferably 3.0 minutes or less. When various heat treatments are performed to control the material during the production of the stainless steel sheet, the intermediate heat treatment in the first step of the present embodiment is called an intermediate heat treatment because it is a heat treatment performed before the finishing heat treatment.

本実施形態では、第1の工程と第2の工程の間において酸洗を行い、第1の工程において生成したスケールを除いておくとよい。第1の工程後のステンレス鋼板素材の表面状態が良好の場合は、この酸洗は省略してもよい。 In the present embodiment, it is preferable to perform pickling between the first step and the second step to remove the scale generated in the first step. If the surface condition of the stainless steel sheet material after the first step is good, this pickling may be omitted.

第2の工程では、ステンレス鋼板素材に対して、板厚減少率5%以上10%以下の仕上冷間圧延を施す。第2の工程においてステンレス鋼板素材にひずみを与えることで、次の第3の工程における結晶粒の粒成長を促進させ、第3の工程の熱処理時間を短くする。板厚減少率が5%未満では、ステンレス鋼板素材に十分なひずみを与えられず、結晶粒の粒成長を促進することができない。また、板厚減少率が10%を超えると、ステンレス鋼板素材に過剰なひずみが与えられて新たな結晶粒の核が生成し、第3の工程において新たに結晶粒が生成し、結晶粒の個数密度が増大して平均結晶粒径が減少するので好ましくない。よって、板厚減少率を5~10%とする。なお、板厚減少率は、第2の工程の前後での板厚減少率である。第2の工程において冷間圧延パスを複数回行う場合の板厚減少率は、1回目の冷間圧延前の板厚t1と最後の冷間圧延後の板厚t2としたとき、100×(t1-t2)/t1となる。また、第2の工程におけるステンレス鋼板素材の温度は、室温から300℃以下の範囲までが許容される。鋼板温度が300℃を超えると、粒成長に必要な十分なひずみを与えることが困難になるので好ましくない。 In the second step, the stainless steel sheet material is subjected to finish cold rolling with a plate thickness reduction rate of 5% or more and 10% or less. By giving strain to the stainless steel sheet material in the second step, the grain growth of crystal grains in the next third step is promoted, and the heat treatment time in the third step is shortened. If the plate thickness reduction rate is less than 5%, the stainless steel sheet material cannot be sufficiently strained and the grain growth of crystal grains cannot be promoted. Further, when the plate thickness reduction rate exceeds 10%, excessive strain is applied to the stainless steel plate material to generate new crystal grain nuclei, and in the third step, new crystal grains are generated to form the crystal grains. It is not preferable because the number density increases and the average crystal grain size decreases. Therefore, the plate thickness reduction rate is set to 5 to 10%. The plate thickness reduction rate is the plate thickness reduction rate before and after the second step. The plate thickness reduction rate when the cold rolling pass is performed a plurality of times in the second step is 100 × (when the plate thickness t1 before the first cold rolling and the plate thickness t2 after the last cold rolling are taken. It becomes t1-t2) / t1. The temperature of the stainless steel sheet material in the second step is allowed to be in the range of room temperature to 300 ° C. or lower. If the temperature of the steel sheet exceeds 300 ° C., it becomes difficult to give sufficient strain necessary for grain growth, which is not preferable.

なお、ステンレス鋼板の製造時には板厚調整のため冷間圧延が行われるが、本実施形態の第2の工程の仕上冷間圧延は、本発明における最終の冷間圧延であることから、仕上冷間圧延と称している。ただし、仕上冷間圧延の実施後に、冷間圧延を全く行わないことを意味するのではなく、本実施形態のフェライト系ステンレス鋼板の品質や特性に影響しない範囲で、第3の工程後に、スキンパス等の軽圧下の圧延を行うことは許容される。 When the stainless steel sheet is manufactured, cold rolling is performed to adjust the plate thickness. However, since the finish cold rolling in the second step of the present embodiment is the final cold rolling in the present invention, the finish cold rolling is performed. It is called inter-rolling. However, this does not mean that cold rolling is not performed at all after the finish cold rolling, and the skin pass is performed after the third step as long as the quality and characteristics of the ferritic stainless steel sheet of the present embodiment are not affected. It is permissible to perform rolling under light pressure such as.

第3の工程では、仕上冷間圧延後のステンレス鋼板素材に対して、980℃以上1150℃以下で1.0分以上の仕上熱処理を施す。第3の工程において結晶粒が粒成長し、平均結晶粒が100μm以上の結晶粒が得られる。熱処理温度が980℃未満の場合や、保持時間が1.0分未満の場合は、結晶粒の粒成長が十分に進まなくなる。また、熱処理温度が1150℃を超えると、鋼板が軟化しすぎて操業が困難になる。従って、熱処理条件は熱処理温度980℃以上1150℃以下とし、保持時間を1.0分以上とする。保持時間の上限は特に制限はないが、保持時間が長いと生産性が低下し、また、スケールが厚く生成するおそれがあることから、好ましくは20分以下がよく、より好ましくは10分以下がよく、更に好ましくは3.0分以下がよい。 In the third step, the stainless steel sheet material after cold rolling is subjected to a finish heat treatment at 980 ° C. or higher and 1150 ° C. or lower for 1.0 minute or longer. In the third step, the crystal grains grow, and crystal grains having an average crystal grain of 100 μm or more can be obtained. If the heat treatment temperature is less than 980 ° C. or the holding time is less than 1.0 minute, the grain growth of the crystal grains does not proceed sufficiently. Further, if the heat treatment temperature exceeds 1150 ° C., the steel sheet becomes too soft and the operation becomes difficult. Therefore, the heat treatment conditions are such that the heat treatment temperature is 980 ° C. or higher and 1150 ° C. or lower, and the holding time is 1.0 minute or longer. The upper limit of the holding time is not particularly limited, but if the holding time is long, the productivity is lowered and the scale may be thickened. Therefore, 20 minutes or less is preferable, and 10 minutes or less is more preferable. It is good, more preferably 3.0 minutes or less.

第3の工程後の冷却は、特に制限はなく、第3の工程にて使用した加熱炉内で炉冷してもよく、加熱炉外にて自然放冷または風冷してもよく、水冷してもよい。冷却速度は第3の工程の保持温度から200℃までの平均冷却速度で、0.03℃/秒~100℃/秒の範囲がよいが、この範囲から外れても材質へ影響はない。 The cooling after the third step is not particularly limited, and may be cooled in the heating furnace used in the third step, may be naturally cooled or air-cooled outside the heating furnace, and may be water-cooled. You may. The cooling rate is the average cooling rate from the holding temperature of the third step to 200 ° C., and is preferably in the range of 0.03 ° C./sec to 100 ° C./sec, but even if it deviates from this range, the material is not affected.

なお、第3の工程における仕上熱処理は、本発明における最終の熱処理であることから、仕上熱処理と称している。ただし、仕上熱処理の実施後に、熱処理を全く行わないことを意味するのではなく、本実施形態のフェライト系ステンレス鋼板の品質や特性に影響しない範囲で、第3の工程後に、熱処理を行うことは許容される。 The finish heat treatment in the third step is referred to as a finish heat treatment because it is the final heat treatment in the present invention. However, this does not mean that the heat treatment is not performed at all after the finish heat treatment, and that the heat treatment is performed after the third step within a range that does not affect the quality and characteristics of the ferritic stainless steel sheet of the present embodiment. Permissible.

以上の工程を順次行うことで、本実施形態のフェライト系ステンレス鋼板が得られる。
本実施形態のフェライト系ステンレス鋼板は、目視でも確認できる大きさの結晶粒を備え、意匠性に優れたものとなる。また、周波数25kHzにおける比透磁率が90以上を示すので、IH調理器等にも適用できる。
By sequentially performing the above steps, the ferritic stainless steel sheet of the present embodiment can be obtained.
The ferrite-based stainless steel sheet of the present embodiment has crystal grains having a size that can be visually confirmed, and has excellent designability. Further, since the relative magnetic permeability at a frequency of 25 kHz is 90 or more, it can be applied to an IH cooker or the like.

本実施形態のフェライト系ステンレス鋼板は、アルミニウム板とともにクラッド材としてもよい。アルミニウム板は、純アルミニウム板でもよく、アルミニウム合金板でもよい。クラッドにするための方法は問わず、一般的に実施される方法、例えば、重ね合わせ圧延、爆着、拡散接合などを用いればよい。 The ferritic stainless steel plate of the present embodiment may be used as a clad material together with the aluminum plate. The aluminum plate may be a pure aluminum plate or an aluminum alloy plate. Regardless of the method for forming the clad, a commonly performed method, for example, lap rolling, explosive welding, diffusion welding, or the like may be used.

更に、本実施形態のフェライト系ステンレス鋼板またはクラッド材に成形加工を施し、IH調理に対応した機器に用いられる鍋、フライパン、炊飯器の内釜などに加工してもよい。また、本実施形態のフェライト系ステンレス鋼板の用途はIH調理用に限定されるものではなく、意匠性が求められる用途にも適用でき、例えば、パーソナルコンピュータ等の電子機器の筐体や、家庭電化製品等の筐体や、食器、美術品などに用いてもよい。更に、本実施形態のフェライト系ステンレス鋼板は、建材として使用してもよく、例えば、建物の外装材または内装材に用いることができる。 Further, the ferritic stainless steel plate or clad material of the present embodiment may be molded into a pot, a frying pan, an inner pot of a rice cooker, or the like used for equipment compatible with IH cooking. Further, the use of the ferrite-based stainless steel sheet of the present embodiment is not limited to IH cooking, and can be applied to applications requiring design, for example, housings for electronic devices such as personal computers and home appliances. It may be used for housings of products, tableware, works of art, and the like. Further, the ferrite-based stainless steel sheet of the present embodiment may be used as a building material, and can be used, for example, as an exterior material or an interior material of a building.

比透磁率の測定法について述べる。フェライト系ステンレス鋼板の幅をwとしたとき、幅方向で片端から(1/10)w、(1/4)w、(1/2)w、(3/4)w及び(9/10)wの5箇所において、ステンレス鋼板を放電加工によって幅5mm、長さ50mmの短冊状に切り出し、これを測定試料とする。測定試料の長手方向は板厚方向である。測定試料に対し、インピーダンス法により比透磁率を測定する。測定用ソレノイド長は42mm、巻線数50ターン、コイル径は10.25mm、測定磁場は11.05A/m、測定方向は長辺方向、測定周波数は25kHzとする。クラッド材の比透磁率は、クラッド材からアルミニウム板を剥離した後、ステンレス鋼板のみで測定する。5箇所の平均値を比透磁率とする。 A method for measuring relative magnetic permeability will be described. When the width of the ferritic stainless steel sheet is w, (1/10) w, (1/4) w, (1/2) w, (3/4) w and (9/10) from one end in the width direction. At the five points w, the stainless steel plate is cut into strips having a width of 5 mm and a length of 50 mm by electric discharge processing, and these are used as measurement samples. The longitudinal direction of the measurement sample is the plate thickness direction. The relative magnetic permeability of the measurement sample is measured by the impedance method. The measurement solenoid length is 42 mm, the number of windings is 50 turns, the coil diameter is 10.25 mm, the measurement magnetic field is 11.05 A / m, the measurement direction is the long side direction, and the measurement frequency is 25 kHz. The relative magnetic permeability of the clad material is measured only with a stainless steel plate after the aluminum plate is peeled from the clad material. The average value of the five locations is defined as the relative magnetic permeability.

次に、実施例によって本発明をさらに具体的に説明する。
素材として、表1に示す化学組成を有するステンレス鋼鋳塊を用いた。表1中の鋼A~Dが本発明の規定を満たすステンレス鋼鋳塊であり、鋼E~Lは発明外の比較用ステンレス鋼鋳塊である。なお、鋼Iは、マルテンサイト系ステンレス鋼であり、鋼Jは、オーステナイト系ステンレス鋼である。鋼A~Lの鋳塊を熱間圧延で板厚4mmの熱延板とした。一部の熱延板を除き、さらに、1050℃、3分の中間熱処理、板厚減少率63%の冷間圧延、1000℃、3分の中間熱処理、板厚減少率67%の冷間圧延を施し、板厚0.5mmの冷延板とした。この熱延板、冷延板に表2に示す条件で中間熱処理(第1工程)、仕上冷間圧延(第2工程)、仕上熱処理(第3工程)を施した。熱処理は大気炉で実施し、熱処理で生成したスケールはふっ硝酸への浸漬で除去した。第3工程後の冷却は、保持温度から200℃までの平均冷却速度で、0.03℃/秒~100℃/秒の範囲で冷却した。一部のステンレス鋼板は、さらに純アルミニウム板と接合圧延してクラッド材にした。このようにして、表2に示す試験例1~25のステンレス鋼板を得た。
Next, the present invention will be described in more detail by way of examples.
As a material, a stainless steel ingot having the chemical composition shown in Table 1 was used. Steels A to D in Table 1 are stainless steel ingots satisfying the provisions of the present invention, and steels E to L are comparative stainless steel ingots not invented. Steel I is a martensitic stainless steel, and steel J is an austenitic stainless steel. The ingots of steels A to L were hot-rolled to obtain a hot-rolled plate having a plate thickness of 4 mm. Except for some hot-rolled sheets, further, intermediate heat treatment at 1050 ° C. for 3 minutes, cold rolling with a plate thickness reduction rate of 63%, intermediate heat treatment at 1000 ° C. for 3 minutes, cold rolling with a plate thickness reduction rate of 67%. To obtain a cold-rolled plate having a plate thickness of 0.5 mm. The hot-rolled and cold-rolled plates were subjected to intermediate heat treatment (first step), finish cold rolling (second step), and finish heat treatment (third step) under the conditions shown in Table 2. The heat treatment was carried out in an atmospheric furnace, and the scale generated by the heat treatment was removed by immersion in fluorinated nitric acid. The cooling after the third step was performed in the range of 0.03 ° C./sec to 100 ° C./sec at an average cooling rate from the holding temperature to 200 ° C. Some stainless steel sheets were further joined and rolled with a pure aluminum plate to form a clad material. In this way, the stainless steel plates of Test Examples 1 to 25 shown in Table 2 were obtained.

得られたステンレス鋼板について、平均結晶粒径、意匠性(美観性、疵目立ち性)及び比透磁率の評価を行った、評価方法を以下に説明する。 The evaluation method for evaluating the average crystal grain size, designability (aesthetic appearance, conspicuous flaws), and relative magnetic permeability of the obtained stainless steel sheet will be described below.

平均結晶粒径
ステンレス鋼板の幅をwとしたとき、幅方向で片端から(1/10)w、(1/4)w、(1/2)w、(3/4)w及び(9/10)wの5箇所において、圧延方向に垂直(C断面)な断面が観察面となるように試料を採取した。全観察面の面積は5mmとし、1箇所の観察面の面積は1mmとした。各観察面の板厚方向の寸法は板厚t(mm)とした。各観察面の板幅方向の長さは1/t(mm)とした。観察面を鏡面研磨した後、10%シュウ酸で電解エッチングし、光学顕微鏡または走査型電子顕微鏡にてフェライトの結晶粒を観察し、結晶粒の個数を数えた。観察面の板幅方向及び板厚方向の輪郭線が結晶粒上を横切ることで、一部が観察面からはみ出す結晶粒については、その結晶粒は0.5個とカウントした。5箇所の観察面において計測したフェライトの総数を、全観察面の面積で除して、結晶粒1個あたりの面積を求めた。そして、結晶粒1個あたりの面積から、結晶粒の円相当直径を求め、これを平均結晶粒径とした。
When the width of the average crystal grain size stainless steel sheet is w, (1/10) w, (1/4) w, (1/2) w, (3/4) w and (9 /) from one end in the width direction. 10) Samples were taken at 5 points w so that the cross section perpendicular to the rolling direction (C cross section) was the observation surface. The area of the entire observation surface was 5 mm 2 , and the area of one observation surface was 1 mm 2 . The dimension of each observation surface in the plate thickness direction was the plate thickness t (mm). The length of each observation surface in the plate width direction was 1 / t (mm). After mirror polishing the observation surface, electrolytic etching was performed with 10% oxalic acid, and ferrite crystal grains were observed with an optical microscope or a scanning electron microscope, and the number of crystal grains was counted. The number of crystal grains that partially protruded from the observation surface when the contour lines in the plate width direction and the plate thickness direction of the observation surface crossed over the crystal grains was counted as 0.5. The total number of ferrites measured on the five observation surfaces was divided by the area of all observation surfaces to obtain the area per crystal grain. Then, the diameter equivalent to the circle of the crystal grains was obtained from the area per crystal grain, and this was used as the average crystal grain size.

意匠性(美観性、疵目立ち性)
意匠性は、外観の美観と、疵の目立ちやすさの2つの観点で評価した。美観性は、ふっ酸3%、硝酸7%の混酸中に10分間浸漬させて結晶粒を現出させたステンレス鋼板の外観を20人の評価者が目視で観察し、従来と異なる美観を感じた人の割合が5割未満を×、5割以上8割未満を△、8割以上9割未満の場合に○、9割以上の場合に◎とした。○以上を合格とした。疵の目立ちやすさは、鋼板表面に直径0.5mmの針金の先端で長さ10mmの引っ掻き疵をつけたサンプル(50mm角)を用いて、20人の評価者によってその疵を特定できるかで評価した。10秒以内に疵を特定できた人の割合が5割未満を×、5割以上8割未満を△、8割以上9割未満の場合に○、9割以上の場合に◎とした。○以上を合格とした。
Design (aesthetic, conspicuous flaws)
The design was evaluated from the two viewpoints of the aesthetic appearance and the conspicuousness of the flaws. As for the aesthetics, 20 evaluators visually observed the appearance of the stainless steel sheet, which was immersed in a mixed acid of 3% hydrofluoric acid and 7% nitric acid for 10 minutes to reveal crystal grains, and felt a different aesthetic appearance. The percentage of those who answered was x, 50% or more and less than 80% was Δ, 80% or more and less than 90% was ○, and 90% or more was ⊚. ○ The above was passed. The degree of conspicuousness of the flaw depends on whether the flaw can be identified by 20 evaluators using a sample (50 mm square) in which a scratch flaw with a length of 10 mm is attached to the surface of a steel plate with the tip of a wire having a diameter of 0.5 mm. evaluated. The percentage of people who could identify defects within 10 seconds was marked as x for less than 50%, Δ for 50% or more and less than 80%, ○ for 80% or more and less than 90%, and ⊚ for 90% or more. ○ The above was passed.

比透磁率
ステンレス鋼板の幅をwとしたとき、幅方向で片端から(1/10)w、(1/4)w、(1/2)w、(3/4)w及び(9/10)wの5箇所において、ステンレス鋼板を放電加工によって幅5mm、長さ50mmの短冊状に切り出し、これを測定試料とした。測定試料の長手方向を板厚方向とした。測定試料に対し、インピーダンス法により比透磁率を測定した。測定用ソレノイド長は42mm、巻線数50ターン、コイル径は10.25mm、測定磁場は11.05A/m、測定方向は長辺方向、測定周波数は25kHzとした。クラッド材の比透磁率は、クラッド材からアルミニウム板を剥離した後、ステンレス鋼板のみで測定した。5箇所の平均値を比透磁率とした。比透磁率は90以上を合格とした。
When the width of the specific magnetic permeability stainless steel sheet is w, (1/10) w, (1/4) w, (1/2) w, (3/4) w and (9/10) from one end in the width direction. ) At 5 points w, the stainless steel plate was cut into strips having a width of 5 mm and a length of 50 mm by electric discharge processing, and these were used as measurement samples. The longitudinal direction of the measurement sample was defined as the plate thickness direction. The relative magnetic permeability of the measurement sample was measured by the impedance method. The solenoid length for measurement was 42 mm, the number of windings was 50 turns, the coil diameter was 10.25 mm, the measurement magnetic field was 11.05 A / m, the measurement direction was the long side direction, and the measurement frequency was 25 kHz. The relative magnetic permeability of the clad material was measured only with a stainless steel plate after the aluminum plate was peeled from the clad material. The average value of the five locations was taken as the relative magnetic permeability. A relative magnetic permeability of 90 or more was accepted.

表2の試験例1~9に示すステンレス鋼板は、本発明で規定する鋼板の成分組成及び製造条件を満たす発明例である。また、試験例10は、試験例1のステンレス鋼板を純アルミニウム板とともにクラッド圧延してクラッド材としたものである。一方、試験例11~25に示すステンレス鋼板は、本発明で規定する鋼板の成分組成または製造条件のいずれかを満たさない比較例である。 The stainless steel sheets shown in Test Examples 1 to 9 in Table 2 are examples of inventions that satisfy the composition and production conditions of the steel sheet specified in the present invention. Further, in Test Example 10, the stainless steel plate of Test Example 1 is clad-rolled together with a pure aluminum plate to obtain a clad material. On the other hand, the stainless steel sheets shown in Test Examples 11 to 25 are comparative examples that do not satisfy either the composition of the steel sheet or the production conditions specified in the present invention.

表2に示すように、試験例1~10(発明例)は、平均結晶粒径が100μm以上になり、比透磁率が90以上になることがわかる。また、平均結晶粒径が100μm以上になると、8割以上の人が従来にない美観を認識し、疵が目立ちにくいと判断することがわかる。さらに、平均結晶粒径が150μm以上になると、9割以上の人が美観を認識し、疵が目立ちにくいと判断することがわかる。また、発明例3は、熱延板を素材としたものだが、本発明に規定する工程を経ることで、所定の結晶粒径、美観、疵目立ち性、比透磁率を満足する。 As shown in Table 2, it can be seen that Test Examples 1 to 10 (Invention Examples) have an average crystal grain size of 100 μm or more and a relative magnetic permeability of 90 or more. Further, when the average crystal grain size is 100 μm or more, it can be seen that 80% or more of the people recognize the unprecedented aesthetic appearance and judge that the flaws are inconspicuous. Further, when the average crystal grain size is 150 μm or more, it can be seen that 90% or more of the people recognize the aesthetic appearance and judge that the flaws are inconspicuous. Further, although Invention Example 3 is made of a hot-rolled plate, it satisfies a predetermined crystal grain size, aesthetic appearance, flaw conspicuity, and relative magnetic permeability by going through the steps specified in the present invention.

以下、比較例について説明する。
試験例11は、素材の成分組成は本発明の規定を満たすものの、第1工程での熱処理温度が低く、保持時間も短く、熱処理が不十分であり、最終製品の平均結晶粒径が小さい。
試験例12、13は、素材の成分組成は本発明の規定を満たすものの、平均結晶粒径が小さい。これは、仕上熱処理前の仕上冷間圧延を実施していない、あるいは板厚減少率が本発明の規定より小さいことが原因である。
A comparative example will be described below.
In Test Example 11, although the component composition of the material satisfies the provisions of the present invention, the heat treatment temperature in the first step is low, the holding time is short, the heat treatment is insufficient, and the average crystal grain size of the final product is small.
In Test Examples 12 and 13, the component composition of the material satisfies the provisions of the present invention, but the average crystal grain size is small. This is because the finish cold rolling before the finish heat treatment is not performed, or the plate thickness reduction rate is smaller than the specification of the present invention.

試験例14、15は、素材の成分組成は本発明の規定を満たすものの、平均結晶粒径が小さい。これは、仕上熱処理前の仕上冷間圧延における板厚減少率が本発明の規定より大きいことが原因である。 In Test Examples 14 and 15, the component composition of the material satisfies the provisions of the present invention, but the average crystal grain size is small. This is because the plate thickness reduction rate in the finish cold rolling before the finish heat treatment is larger than the specification of the present invention.

発明例1、6と比較例12~15の結果より、仕上熱処理前に本発明で規定する板厚減少率で仕上冷間圧延を施すことで、粗大な結晶粒が得られることが分かる。 From the results of Invention Examples 1 and 6 and Comparative Examples 12 to 15, it can be seen that coarse crystal grains can be obtained by performing the finish cold rolling at the plate thickness reduction rate specified in the present invention before the finish heat treatment.

試験例16は、素材の成分組成は本発明の規定を満たすものの、平均結晶粒径が小さい。これは、仕上熱処理時の保持温度が本発明の規定より低いことが原因である。
試験例17は、素材の成分組成は本発明の規定を満たすものの、平均結晶粒径が小さい。これは、仕上熱処理時の保持時間が本発明の規定より短いことが原因である。
In Test Example 16, the composition of the material satisfies the provisions of the present invention, but the average crystal grain size is small. This is because the holding temperature during the finish heat treatment is lower than the specification of the present invention.
In Test Example 17, the composition of the material satisfies the provisions of the present invention, but the average crystal grain size is small. This is because the holding time during the finish heat treatment is shorter than the specification of the present invention.

試験例18は、素材の成分組成のうちTi、Nb、Vの合計量が少なく、本発明の範囲を満たさず、平均結晶粒径が小さい。これは、仕上熱処理時にオーステナイト相が生成し、結晶粒成長速度が遅くなることが原因である。
試験例19は、素材の成分組成のうちC量が過剰であり、本発明の範囲を満たさず、平均結晶粒径が小さい。これは、オーステナイト安定化に寄与するC量が多く、仕上熱処理時にオーステナイト相が生成し、結晶粒成長速度が遅くなることが原因である。
In Test Example 18, the total amount of Ti, Nb, and V in the component composition of the material is small, does not satisfy the range of the present invention, and the average crystal grain size is small. This is because the austenite phase is formed during the finish heat treatment and the crystal grain growth rate is slowed down.
In Test Example 19, the amount of C in the component composition of the material is excessive, does not satisfy the range of the present invention, and the average crystal grain size is small. This is because the amount of C that contributes to the stabilization of austenite is large, the austenite phase is formed during the finish heat treatment, and the crystal grain growth rate is slowed down.

試験例20は、素材の成分組成のうちN量が過剰であり、本発明の範囲を満たさず、平均結晶粒径が小さい。これは、オーステナイト安定化に寄与するN量が多く、仕上熱処理時にオーステナイト相が生成し、結晶粒成長速度が遅いことが原因である。
試験例21は、素材の成分組成のうちTi、Nb、Vの合計量が過剰になり、本発明の範囲を満たさず、熱延時に多数の耳割れが発生し、圧延ができなかった。
In Test Example 20, the amount of N in the component composition of the material is excessive, does not satisfy the range of the present invention, and the average crystal grain size is small. This is because the amount of N that contributes to the stabilization of austenite is large, the austenite phase is formed during the finish heat treatment, and the crystal grain growth rate is slow.
In Test Example 21, the total amount of Ti, Nb, and V in the component composition of the material became excessive, which did not satisfy the scope of the present invention, and a large number of ear cracks occurred during hot rolling, and rolling was not possible.

試験例22は、素材がマルテンサイト系ステンレス鋼であり、化学成分が本発明の範囲を満たさず、平均結晶粒径が小さくなった。
試験例23は、素材がオーステナイト系ステンレス鋼であり、化学成分が本発明の範囲を満たさず、平均結晶粒径が小さい。また、オーステナイト系ステンレス鋼のため比透磁率が非常に小さい。
In Test Example 22, the material was martensitic stainless steel, the chemical composition did not meet the scope of the present invention, and the average crystal grain size was reduced.
In Test Example 23, the material is austenitic stainless steel, the chemical composition does not meet the scope of the present invention, and the average crystal grain size is small. Moreover, since it is an austenitic stainless steel, its relative magnetic permeability is very small.

試験例24は、素材の化学成分のうちNi量が過剰であり、本発明の範囲を満たさず、平均結晶粒径が小さい。これは、オーステナイト安定化に寄与するNi量が多く、仕上熱処理時にオーステナイト相が生成し、結晶粒成長速度が遅くなることが原因である。
試験例25は、素材の化学成分のうちCu量が過剰であり、本発明の範囲を満たさず、平均結晶粒径が小さい。これは、オーステナイト安定化に寄与するCu量が多く、仕上熱処理時にオーステナイト相が生成し、結晶粒成長速度が遅くなることが原因である。
In Test Example 24, the amount of Ni in the chemical components of the material is excessive, does not satisfy the range of the present invention, and the average crystal grain size is small. This is because the amount of Ni that contributes to the stabilization of austenite is large, the austenite phase is formed during the finish heat treatment, and the crystal grain growth rate is slowed down.
In Test Example 25, the amount of Cu among the chemical components of the material is excessive, does not satisfy the range of the present invention, and the average crystal grain size is small. This is because the amount of Cu that contributes to the stabilization of austenite is large, the austenite phase is formed during the finish heat treatment, and the crystal grain growth rate is slowed down.

Figure 0007102988000001
Figure 0007102988000001

Figure 0007102988000002
Figure 0007102988000002

Claims (5)

質量%で、
C:0.030%以下、
N:0.030%以下、
Si:0.20%以上0.80%以下、
Cr:15%以上20%以下、
Mn:0.80%以下、
Ni:1.0%以下、
Cu:0.80%以下を含有し、
さらに、Nb、V、Tiのうちいずれか一種または二種以上を合計で0.10%以上0.80%以下含有し、
残部がFeおよび不純物からなる成分組成を有し、
平均結晶粒径が100μm以上であることを特徴とするフェライト系ステンレス鋼板。
By mass%
C: 0.030% or less,
N: 0.030% or less,
Si: 0.20% or more and 0.80% or less,
Cr: 15% or more and 20% or less,
Mn: 0.80% or less,
Ni: 1.0% or less,
Cu: Contains 0.80% or less,
Further, any one or more of Nb, V, and Ti are contained in a total of 0.10% or more and 0.80% or less.
The balance has a component composition consisting of Fe and impurities,
A ferritic stainless steel sheet having an average crystal grain size of 100 μm or more.
周波数25kHzにおける比透磁率が90以上であることを特徴とする請求項1に記載のフェライト系ステンレス鋼板。 The ferrite-based stainless steel sheet according to claim 1, wherein the relative magnetic permeability at a frequency of 25 kHz is 90 or more. 高周波誘導加熱調理に対応した機器の部材に用いられることを特徴とする、請求項1または請求項2に記載のフェライト系ステンレス鋼板。 The ferrite-based stainless steel sheet according to claim 1 or 2, wherein it is used as a member of an apparatus compatible with high-frequency induction cooking. 請求項1乃至請求項3の何れか一項に記載のフェライト系ステンレス鋼板と、アルミニウム板と接合させてなることを特徴とするクラッド材。 A clad material obtained by joining the ferritic stainless steel plate according to any one of claims 1 to 3 to an aluminum plate. 請求項1に記載の成分組成を有するステンレス鋼板素材に900℃以上1100℃以下で1.0分以上の中間熱処理を施す第1の工程と、
板厚減少率5%以上10%以下の仕上冷間圧延を施す第2の工程と、
980℃以上1150℃以下で1.0分以上の仕上熱処理を施す第3の工程と、を順次行うことを特徴とする、請求項1乃至請求項3の何れか一項に記載のフェライト系ステンレス鋼板の製造方法。
The first step of subjecting the stainless steel sheet material having the component composition according to claim 1 to an intermediate heat treatment at 900 ° C. or higher and 1100 ° C. or lower for 1.0 minute or longer.
The second step of performing cold rolling for finishing with a plate thickness reduction rate of 5% or more and 10% or less, and
The ferritic stainless steel according to any one of claims 1 to 3, wherein a third step of performing a finish heat treatment at 980 ° C. or higher and 1150 ° C. or lower for 1.0 minute or longer is sequentially performed. Method of manufacturing steel sheet.
JP2018128597A 2018-07-05 2018-07-05 Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet Active JP7102988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128597A JP7102988B2 (en) 2018-07-05 2018-07-05 Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128597A JP7102988B2 (en) 2018-07-05 2018-07-05 Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet

Publications (2)

Publication Number Publication Date
JP2020007599A JP2020007599A (en) 2020-01-16
JP7102988B2 true JP7102988B2 (en) 2022-07-20

Family

ID=69150737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128597A Active JP7102988B2 (en) 2018-07-05 2018-07-05 Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet

Country Status (1)

Country Link
JP (1) JP7102988B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136038A1 (en) * 2022-01-11 2023-07-20 日鉄ステンレス株式会社 Ferritic stainless steel sheet for clad sheet, production method therefor, and clad sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174040A (en) 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Ferritic stainless steel for egr cooler, and egr cooler
JP2010095768A (en) 2008-10-17 2010-04-30 Nisshin Steel Co Ltd Cu-PLATED FERRITIC STAINLESS STEEL SHEET AND MULTIPLY-WOUND STEEL PIPE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174040A (en) 2008-01-28 2009-08-06 Nisshin Steel Co Ltd Ferritic stainless steel for egr cooler, and egr cooler
JP2010095768A (en) 2008-10-17 2010-04-30 Nisshin Steel Co Ltd Cu-PLATED FERRITIC STAINLESS STEEL SHEET AND MULTIPLY-WOUND STEEL PIPE

Also Published As

Publication number Publication date
JP2020007599A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR101840964B1 (en) Material for cold-rolled stainless steel sheet and method for producing same
KR101762046B1 (en) Ferritic stainless steel sheet having excellent anti-bacterial activity, and method for producing same
JP5924459B1 (en) Stainless steel for cold rolled steel
KR101949629B1 (en) Stainless steel and production method therefor
JP2009263782A (en) Grain-oriented magnetic steel sheet and manufacturing method therefor
KR20160105869A (en) Ferritic stainless steel and method for producing same
JP2019112673A (en) Ferritic stainless cold rolled steel sheet and manufacturing method thereof
KR20180009775A (en) Cold-rolled stainless steel sheet material, manufacturing method therefor, and cold-rolled steel sheet
KR102286876B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
TWI653344B (en) Material for stainless steel cold-rolled steel plate and manufacturing method thereof
JP5679112B2 (en) Hot rolled steel sheet with excellent scale adhesion and method for producing the same
JP7102988B2 (en) Manufacturing method of ferritic stainless steel sheet, clad material and ferritic stainless steel sheet
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2020111792A (en) Ferritic stainless steel sheet, and manufacturing method thereof
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP3797063B2 (en) Steel plate for enamel with excellent nail skipping resistance, adhesion and workability, and its manufacturing method
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP6680279B2 (en) Ferritic stainless steel sheet and method of manufacturing the same
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method
JP2001011573A (en) Steel sheet for enameling excellent in fishscale resistance and adhesion and its production
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JP3923485B2 (en) Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JPH1112691A (en) Ferritic stainless cold rolled steel sheet having excellent formability and its manufacture
JP6790909B2 (en) Manufacturing method of hot-rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R151 Written notification of patent or utility model registration

Ref document number: 7102988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151