JP2959934B2 - Heat-resistant ferritic stainless steel - Google Patents

Heat-resistant ferritic stainless steel

Info

Publication number
JP2959934B2
JP2959934B2 JP21880193A JP21880193A JP2959934B2 JP 2959934 B2 JP2959934 B2 JP 2959934B2 JP 21880193 A JP21880193 A JP 21880193A JP 21880193 A JP21880193 A JP 21880193A JP 2959934 B2 JP2959934 B2 JP 2959934B2
Authority
JP
Japan
Prior art keywords
temperature
stainless steel
less
heat
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21880193A
Other languages
Japanese (ja)
Other versions
JPH0770709A (en
Inventor
展弘 藤田
章夫 山本
圭一 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16725578&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2959934(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21880193A priority Critical patent/JP2959934B2/en
Publication of JPH0770709A publication Critical patent/JPH0770709A/en
Application granted granted Critical
Publication of JP2959934B2 publication Critical patent/JP2959934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車排気管や触媒外
筒材、発電プラントの排気ダクトや脱硝設備ケーシング
などの高温部材として用いられるフェライト系ステンレ
ス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless steel used as a high-temperature member for an exhaust pipe of an automobile, an outer casing of a catalyst, an exhaust duct of a power plant, a casing of a denitration equipment, and the like.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上、高出力化が望
まれるとともに、自動車材料の軽量化が強く望まれてい
る。また、公害規則の強化から、排ガスの浄化も強く要
請されている。かかる背景から、自動車排気系材料に
は、軽量化や部品としての低熱容量化の観点から、既存
のフェライト系ステンレス鋼であるSUS430J1L
やAISI409が現在使用されている。
2. Description of the Related Art In recent years, it has been desired to improve the fuel efficiency and output of automobiles, and also to reduce the weight of automobile materials. In addition, due to the strengthening of pollution regulations, purification of exhaust gas is also strongly demanded. Against this background, SUS430J1L, an existing ferritic stainless steel, is used in automobile exhaust system materials from the viewpoint of weight reduction and low heat capacity as components.
And AISI 409 are currently used.

【0003】一方、さらなる燃費向上、高出力化が進
み、これに伴い排ガスの最高温度が900℃以上まで、
近々上昇すると言われている。これらの薄板構造物に使
用される耐熱材料には、(1)使用中の高温強度、熱疲
労特性と高温疲労特性、(2)常温の加工性を両立させ
ることが重要である。また、フロントパイプ等は、一部
地域で行われる融雪材(塩)散布による(3)高温塩害
の問題が生じる。ここで、高温強度を向上させ、使用中
の高温強度を確保することで高温疲労が向上し、耐熱疲
労性も向上すると予想される。
[0003] On the other hand, further improvement in fuel efficiency and higher output have been promoted, and accordingly, the maximum temperature of exhaust gas has been increased to 900 ° C or more.
It is said that it will rise soon. It is important for the heat-resistant material used for these thin plate structures to achieve both (1) high-temperature strength during use, thermal fatigue characteristics and high-temperature fatigue characteristics, and (2) workability at room temperature. Further, the front pipe and the like suffer from the problem of (3) high-temperature salt damage caused by spraying snow-melting material (salt) performed in some areas. Here, it is expected that the high-temperature fatigue is improved and the thermal fatigue resistance is also improved by improving the high-temperature strength and securing the high-temperature strength during use.

【0004】現在は、Nbを単独添加したSUS430
J1Lが使用されている。Nbの添加で、その固溶強化
で高温強度は向上し、加工性もC,Nの固着により向上
する。しかし、NbはCおよびNとの親和力が強く炭窒
化物を形成し易いため、使用中に炭窒化物が析出し、さ
らには凝集粗大化するため、Nbの固溶強化量が使用に
伴い低下する。
[0004] At present, SUS430 containing only Nb is added.
J1L is used. With the addition of Nb, high-temperature strength is improved by solid solution strengthening, and workability is also improved by the fixation of C and N. However, since Nb has a strong affinity with C and N and easily forms a carbonitride, the carbonitride precipitates during use and further agglomerates and coarsens, so the amount of solid solution strengthening of Nb decreases with use. I do.

【0005】したがって、Nbの単独添加だけでは使用
中にも高い高温強度を保持することは困難である。一
方、AISI409は、低Crであるため900℃付近
では異常酸化を起こしてしまう。また、NbやMoと言
った高温強化元素を含んでいないため高温強度は低い。
また、関連する公知例については次のようである。
[0005] Therefore, it is difficult to maintain high high-temperature strength during use only by adding Nb alone. On the other hand, since AISI409 has low Cr, abnormal oxidation occurs around 900 ° C. Also, since it does not contain high-temperature strengthening elements such as Nb and Mo, the high-temperature strength is low.
Related known examples are as follows.

【0006】耐熱用途としては、特開昭64−8254
号、特開平2−175843号、特開平4−74852
号等の各公報が挙げられる。特開昭64−82543号
公報は、耐酸化性の観点からCrを16%以上と高めに
し、Nbを必須としMoを選択元素にしているものの、
NbやMoよりもC,Nとの親和力の強い元素(例えば
Ti)の添加は行われていない。このため、特にNbは
使用中に炭窒化物を作り易い状態にあり、使用中の高温
強度の確保については考慮されていない。特開平2−1
75843号公報については、高Cr側で、Nbおよび
Moが必須でTiは選択元素である。これについても、
高温使用中の強度の確保については考慮されず、Niお
よびCuが必須である。特開平4−74852号公報に
ついては、Nb,Tiが必須であるが、MoおよびAl
が無添加で、低Crにした場合の900℃を越える温度
領域での耐酸化性および高温塩害特性についての考慮が
なされていない。また、本発明者らは特願平4−270
102号明細書において900℃付近までの温度域用と
してフェライト系ステンレス鋼を発明しているが、低C
rとしているため900℃を越える領域での耐酸化性に
ついて十分でない。
[0006] For heat-resistant applications, see JP-A-64-8254.
JP-A-2-175843, JP-A-4-74852
And other publications. JP-A-64-82543 discloses that Cr is increased to 16% or more from the viewpoint of oxidation resistance, Nb is essential, and Mo is a selective element.
An element (eg, Ti) having a higher affinity for C and N than for Nb or Mo is not added. For this reason, Nb is particularly in a state where carbonitride is easily formed during use, and no consideration is given to securing high-temperature strength during use. JP-A-2-1
With regard to the publication of No. 75843, on the high Cr side, Nb and Mo are essential, and Ti is a selective element. Again,
No consideration is given to securing the strength during use at high temperatures, and Ni and Cu are essential. In JP-A-4-74852, Nb and Ti are essential, but Mo and Al
No consideration is given to oxidation resistance and high-temperature salt damage characteristics in a temperature range exceeding 900 ° C. when low Cr is added without adding. The present inventors have also filed Japanese Patent Application No. 4-270.
No. 102 invents a ferritic stainless steel for a temperature range up to around 900 ° C.
Therefore, the oxidation resistance in a region exceeding 900 ° C. is not sufficient.

【0007】また、一般用途として、特開平3−264
652号公報が挙げられ、これはCr量を11〜30%
と広範囲に渡っており低Cr側まで含んでいる。また、
TiおよびNbを必須、Moを選択元素としている。し
かしながら、成形性の観点からSi量を0.5%以下、
Al無添加としているため、低Crとした場合には、9
00℃を越える領域での耐酸化性を十分確保できない。
くわえて、高温塩害特性についても考慮されていない。
As a general use, see Japanese Patent Application Laid-Open No. 3-264.
652, which has a Cr content of 11 to 30%.
And a wide range, including the low Cr side. Also,
Ti and Nb are essential, and Mo is a selective element. However, from the viewpoint of moldability, the amount of Si is 0.5% or less,
Since Al is not added, when low Cr is used, 9
Oxidation resistance in the region exceeding 00 ° C. cannot be sufficiently ensured.
In addition, no consideration has been given to high-temperature salt damage characteristics.

【0008】[0008]

【発明が解決しようとする課題】このように、従来鋼や
公知例中には、高温で長時間使用される高温部材、特に
900℃を越えるような温度域で使用される自動車排気
系材料などの必要特性である、(1)使用中の高温強
度、熱疲労特性と高温疲労特性、(2)常温の加工性を
両立させること、(3)耐高温塩害性(600℃〜80
0℃)、および(4)900℃を越える領域での耐酸化
性などを十分に満たすように考慮した例はない。
As described above, some conventional steels and known examples include high-temperature members that are used at high temperatures for a long time, particularly automotive exhaust system materials used in a temperature range exceeding 900 ° C. The required properties of (1) high temperature strength during use, thermal fatigue properties and high temperature fatigue properties, (2) compatibility of workability at room temperature, and (3) high temperature salt damage resistance (600 ° C to 80 ° C)
0 ° C.), and (4) there is no example in which oxidation resistance in a region exceeding 900 ° C. is sufficiently satisfied.

【0009】本発明は、最高温度が900℃を越える場
合においても高温強度および耐酸化性の確保が可能で、
常温加工性および耐高温塩害性にも優れた材質特性を同
時に達成可能な高耐熱性フェライト系ステンレス鋼を提
供することを目的とする。
The present invention can ensure high-temperature strength and oxidation resistance even when the maximum temperature exceeds 900 ° C.
An object of the present invention is to provide a high heat-resistant ferritic stainless steel capable of simultaneously achieving material properties excellent in cold workability and high-temperature salt damage resistance.

【0010】[0010]

【課題を解決するための手段】耐熱フェライト系ステン
レス鋼の高温強度の向上は、固溶Nb,MoおよびWを
利用する方法と、高温において安定な析出相を微細分散
させる方法とが挙げられる。本発明者らは、まずMo,
WおよびNbの固溶を冷延焼鈍板において確保すること
に着目し、これらの元素を効率よく固溶させることを図
った。即ち、鋼中のC+Nを低減し、さらにTiを適量
添加することでこれらを固定して固溶C+N量を低下さ
せ加工性の向上を図ると同時に、Ti(C,N)による
高温の析出強化も機能させている。
Means for Solving the Problems To improve the high-temperature strength of heat-resistant ferritic stainless steel, there are a method using solid solution Nb, Mo and W, and a method of finely dispersing a precipitated phase stable at high temperature. The present inventors first set forth Mo,
Focusing on securing solid solution of W and Nb in the cold-rolled annealed sheet, these elements were efficiently dissolved. That is, the amount of C + N in steel is reduced, and by adding an appropriate amount of Ti, these are fixed and the amount of solute C + N is reduced to improve workability, and at the same time, precipitation strengthening at high temperature by Ti (C, N) is performed. Is also functioning.

【0011】Ti添加の最も重要な役割は、MoやNb
よりもC,Nとの親和力が強いことを利用して、Tiで
C,Nを固定することにある。TiによりC,Nを固定
することでMo,WおよびNbの炭窒化物の析出を抑制
し、これらの元素の固溶量を使用前だけでなく、高温長
時間に渡り確保することを可能にしている。また、特に
高い高温強度を長時間確保するために、eff.Nb量
を規定し、高温長時間使用中の固溶Nb量を確保し、こ
のことによって950℃での引張強度を20MPa以上
としている。
The most important role of the addition of Ti is Mo or Nb.
It is to fix C and N with Ti by utilizing the fact that the affinity with C and N is stronger than that. By fixing C and N by Ti, the precipitation of carbonitrides of Mo, W and Nb can be suppressed, and the solid solution amount of these elements can be secured not only before use but also for a long time at high temperature. ing. In order to secure a particularly high high-temperature strength for a long time, eff. The amount of Nb is specified, and the amount of solid solution Nb during long-time use at high temperature is ensured, whereby the tensile strength at 950 ° C. is set to 20 MPa or more.

【0012】ここで、eff.Nbの考え方は、特願平
4−270102号明細書に於ける考え方と同様で、本
発明では、特に900℃を越える温度域(実施例では9
50℃)を考慮し、範囲を規定した。eff.Nbは
(1)使用中のNbの析出がMC型からM6 C型(Fe
3 Nb3 C)に変化すること、(2)Nの半分がTiに
より固着され、残り半分のNはNbの窒化物として析出
し残ったTiが炭化物を形成すること等の高温使用にと
もなうNbおよびTiの析出形態の変化を明らかにする
とともに、学振123委員会耐熱金属材料研究報告(v
ol.33,1992,P.1)に記載されているよう
に、(3)Feとの金属間化合物(Laves相)の析
出はある程度まで強化に有効であることを考慮したうえ
で、本願の請求項1に示す高温強度を保持するための指
標としてeff.Nbを規定した。これにより使用中の
高温強度レベルが推定可能となっている。
Here, eff. The concept of Nb is the same as the concept in the specification of Japanese Patent Application No. 4-270102, and in the present invention, in particular, in the temperature range exceeding 900 ° C. (9
(50 ° C.). eff. Nb is (1) Nb precipitation during use is changed from MC type to M 6 C type (Fe
3 Nb 3 C) change things, (2) half of N is fixed by Ti, the other half N due to high temperature use, such that the Ti remaining precipitate as nitrides of Nb to form carbides Nb Changes in the precipitation morphology of Ti and Ti, and a report on refractory metal materials (v.
ol. 33, 1992, p. As described in 1), (3) the high-temperature strength shown in claim 1 of the present application is taken into consideration, considering that the precipitation of an intermetallic compound (Laves phase) with Fe is effective to some extent in strengthening. As an index for holding eff. Nb was specified. This makes it possible to estimate the high-temperature strength level during use.

【0013】また、使用中の高温強度の確保は、排気マ
ニホールド用材料としての最も重要な要求特性である熱
疲労特性を飛躍的に向上させる。さらに、TiおよびN
bの添加で溶接部および溶接影響部の粒径粗大化阻止も
併せて図っており、溶接性についても良好である。一
方、Mo,WおよびNbは、Feとの金属間化合物を作
り易く、これが多量析出し粗大化すると使用中の靱性や
高温強度等を劣化させる。さらに、MoおよびWは耐高
温塩害性を向上させるが、過剰に添加するとその耐高温
塩害性向上効果を失ってしまう。
[0013] Ensuring high-temperature strength during use dramatically improves the thermal fatigue property, which is the most important required property as a material for an exhaust manifold. In addition, Ti and N
Addition of b also prevents coarsening of the grain size in the welded zone and the weld-affected zone, and has good weldability. On the other hand, Mo, W and Nb easily form an intermetallic compound with Fe, and when a large amount thereof precipitates and becomes coarse, the toughness during use and the high-temperature strength deteriorate. Further, Mo and W improve the high-temperature salt damage resistance, but when added in excess, the effect of improving the high-temperature salt damage resistance is lost.

【0014】次に、本願の請求項に記載の発明では、
Vの析出物(VNと推定される)の析出強化を利用し、
900℃を越える温度域での高温強化を図ったものであ
る。Vの析出強化の効果は、高温時効後に於いても大き
くは低下しない。また、固溶強化に比べ、強化量が大き
い。しかし、1>(V/51)/(N/14)ではNが
Vに対して過剰になると、他の窒化物が複合析出し、析
出物が粗大化するので析出強化量が低下する。したがっ
て、Vの原子数をNの原子数に対して過剰にしておく必
要がある((V/51/(N/14)≧1とする)。
また、MoおよびWの高温強度および耐高温塩害性向上
効果はV添加系鋼でも同様に作用する。
Next, in the invention according to claim 3 of the present application,
Utilizing precipitation strengthening of precipitates of V (estimated as VN),
This is intended to enhance the high temperature in a temperature range exceeding 900 ° C. The effect of the precipitation strengthening of V does not decrease significantly even after high-temperature aging. Also, the amount of reinforcement is larger than that of solid solution strengthening. However, when 1> (V / 51) / (N / 14), if N becomes excessive with respect to V, other nitrides are precipitated in a complex manner and the precipitates are coarsened, so that the amount of precipitation strengthening decreases. Therefore, it is necessary to keep the number of V atoms in excess of the number of N atoms ((V / 51 ) / (N / 14) ≧ 1).
Further, the effect of improving the high-temperature strength and the high-temperature salt damage resistance of Mo and W also acts on the V-added steel.

【0015】また、さらなる耐酸化性を要求される部材
に適応するため、本願の請求項では希土類元素を熱
間加工性を害しない範囲で添加した。
Further, in order to be adapted to a member requiring further oxidation resistance, in claim 5 of the present application, a rare earth element is added within a range that does not impair hot workability.

【0016】[0016]

【作用】以下に、本発明の鋼成分の限定理由について説
明する(化学成分の%は全て重量%)。 C :NbおよびMoの固溶強化にて高温強度を支える
ため、また加工性および熱延板靱性の向上の観点からも
低く抑えたい。しかし、極低化は経済性に不利であると
共に、使用前の高温強度の一部をTi,Nbの炭窒化物
で支えていることから、0.003〜0.015%と
し、V無添加の場合、Nと合わせて;C+N≦0.03
%とした。
The reasons for limiting the steel components of the present invention will be described below (all chemical components are% by weight). C: In order to support high-temperature strength by solid solution strengthening of Nb and Mo, it is desired to keep the strength low from the viewpoint of workability and toughness of hot rolled sheet. However, the extremely low temperature is disadvantageous to the economy, and a part of the high temperature strength before use is supported by the carbonitride of Ti and Nb. In case of, together with N; C + N ≦ 0.03
%.

【0017】Si:脱酸材として有効であると共に、耐
酸化性および耐高温塩害性を向上させる元素であるので
0.1%以上とし、一方では、加工性や溶接性を低下さ
せるため2%以下とした。 Mn:脱酸元素であるので最低0.1%は必要である。
また、オーステナイト形成元素でありマルテンサイト変
態を阻止するために上限を2%とした。
Si: An element that is effective as a deoxidizing material and improves the oxidation resistance and high-temperature salt damage resistance, so that the content of Si is 0.1% or more. On the other hand, 2% is used to reduce workability and weldability. It was as follows. Mn: Since it is a deoxidizing element, at least 0.1% is required.
The upper limit is set to 2% in order to prevent martensitic transformation as an austenite forming element.

【0018】P :高温高強度化(固溶強化)に有用で
あるが、溶接性劣化を招くので0.01〜0.1%とし
た。 S :MnSの形成元素で、ステンレス鋼の基本特性で
ある耐食性を低下させるため0.01%以下とした。 Cr:耐酸化性向上に有効であり、900℃以上での耐
酸化性を確保するため17%以上とした。また、本発明
鋼の使用環境として最高温度を900℃以上と考えると
20%以上の添加はあまり有効ではないので、上限を2
0%とした。
P: Useful for increasing the strength at high temperatures (solid solution strengthening), but causes deterioration in weldability, so it was made 0.01 to 0.1%. S: an element forming MnS, and is set to 0.01% or less in order to reduce corrosion resistance, which is a basic property of stainless steel. Cr: Effective for improving the oxidation resistance, and 17% or more to secure the oxidation resistance at 900 ° C. or more. When the maximum temperature is considered to be 900 ° C. or higher as the use environment of the steel of the present invention, the addition of 20% or more is not very effective.
0%.

【0019】Nb:溶接部および溶接影響部での粒成長
の阻止および高温強度の確保のための添加元素である。
しかし、C,NおよびFeとの親和力が強く、使用中に
析出物を形成し、Nbの固溶強化の効果を900℃以上
の領域でより有効に働かせるために、V無添加の場合
(すなわちNbの固溶強化を主に利用する場合)は、
0.3〜0.8%で、かつeff.Nbとして0.3〜
0.6%とした。Vの析出強化を利用する場合は、熱間
加工性とのバランスを取るため、0.2〜0.6%とし
た。
Nb: an additional element for preventing grain growth and ensuring high-temperature strength in the weld and the weld affected zone.
However, in order to have a strong affinity with C, N and Fe, to form a precipitate during use, and to make the effect of solid solution strengthening of Nb work more effectively in the region of 900 ° C. or more, in the case where V is not added (ie, When mainly using solid solution strengthening of Nb)
0.3-0.8% and eff. 0.3 or more as Nb
0.6%. When using precipitation strengthening of V, the content is set to 0.2 to 0.6% in order to balance with hot workability.

【0020】Ti:C,Nとの親和力が強いため、V無
添加の場合のみの添加とした。C+Nを固着し、加工性
の向上および金相組織の長時間安定性の確保のために必
要な元素である。Tiは、Mo,WおよびNbよりも
C,Nとの親和力が強いため、使用中のNb,Moの炭
窒化物の析出を抑える働きがある。これにより、使用中
の固溶Mo,WおよびNbを確保でき、使用中の高温強
度を確保できる。母相中に固溶しないCおよびNを固着
するために、最低添加量を0.01%とした。また、使
用前の高温強度の一部をTiの炭窒化物で支えているこ
とから、0.5%をこえるTiの添加は炭窒化物を粗大
化させるため使用前の高温強度を低下させる。したがっ
てTiの上限を0.5%とした。
Since Ti: has a strong affinity for C and N, it was added only when V was not added. C + N is an element necessary for fixing C, improving workability and ensuring long-term stability of the metal phase structure. Since Ti has a stronger affinity for C and N than Mo, W and Nb, it has a function of suppressing the precipitation of carbonitrides of Nb and Mo during use. Thereby, solid solution Mo, W and Nb during use can be secured, and high-temperature strength during use can be secured. In order to fix C and N which do not form a solid solution in the mother phase, the minimum addition amount was 0.01%. In addition, since a part of the high-temperature strength before use is supported by the carbonitride of Ti, the addition of Ti exceeding 0.5% lowers the high-temperature strength before use to coarsen the carbonitride. Therefore, the upper limit of Ti is set to 0.5%.

【0021】Mo:高温強度および耐高温塩害性を高め
る添加元素であり、ステンレス鋼の基本的特性である耐
食性の確保からも0.1%以上の添加は必要である。ま
た、Nbに比べ、析出しにくいため使用中でも固溶量を
確保できるため、使用中の高温強度の保持に有効であ
る。しかし、2%を越えると常温の延性や熱間加工性お
よび耐高温塩害性が劣化する。また、Feとの金属間化
合物や炭窒化物が多量析出しないことを考慮して、単独
添加で上限を2%とし、Wとの複合添加では3.0≧M
o+W≧0.1とした。
Mo: An additive element for increasing high-temperature strength and high-temperature salt damage resistance, it is necessary to add 0.1% or more to ensure corrosion resistance, which is a basic characteristic of stainless steel. Further, since it is harder to precipitate than Nb, the amount of solid solution can be ensured even during use, which is effective for maintaining high-temperature strength during use. However, when it exceeds 2%, ductility at normal temperature, hot workability and high-temperature salt damage resistance deteriorate. In consideration of the fact that a large amount of intermetallic compounds and carbonitrides with Fe do not precipitate, the upper limit is set to 2% for single addition and 3.0 ≧ M for composite addition with W.
o + W ≧ 0.1.

【0022】W :高温強度および耐高温塩害性を高め
る添加元素である。また、Nbに比べ、析出しにくく、
使用中の高温強度の保持に有効である。しかし、2%を
越えると常温の延性や熱間加工性および耐高温塩害性が
劣化する。また、Feとの金属間化合物や炭窒化物が多
量析出しないことを考慮して、単独添加で上限を2%と
し、Moとの複合添加では3.0≧Mo+W≧0.1と
した。
W: an additive element for increasing high-temperature strength and high-temperature salt damage resistance. In addition, compared to Nb, it is less likely to precipitate,
Effective for maintaining high-temperature strength during use. However, when it exceeds 2%, ductility at normal temperature, hot workability and high-temperature salt damage resistance deteriorate. In consideration of the fact that a large amount of intermetallic compounds and carbonitrides with Fe do not precipitate, the upper limit was set to 2% for single addition, and 3.0 ≧ Mo + W ≧ 0.1 for composite addition with Mo.

【0023】N :V無添加の場合は、Nb,Moの固
溶強化にて高温強度を主に支えており、さらに加工性お
よび熱延板靱性の向上の観点からも極力低く抑えたい。
しかしながら、極低化は経済性に不利であるため、高温
強度を低下させないレベルとして単独で0.02%以
下、Cと合わせて;C+N≦0.03%とした。また、
V添加の場合、VN析出形成元素として高温強化に大き
く寄与するため(V/51)/(N/14)≧1を満た
す上で0.005〜0.3%とした。
In the case where N: V is not added, high-temperature strength is mainly supported by solid solution strengthening of Nb and Mo, and further, it is desired to suppress the workability and toughness of hot-rolled sheet as low as possible.
However, since the extremely low temperature is disadvantageous to the economics, the level at which the high-temperature strength is not reduced is set to 0.02% or less by itself, and the sum of C and C + N ≦ 0.03%. Also,
In the case of addition of V, the content of (V / 51) / (N / 14) ≧ 1 is set to 0.005 to 0.3% in order to greatly contribute to high-temperature strengthening as a VN precipitation forming element.

【0024】V:炭窒化物形成元素で、析出強化に必要
な元素である。一方、過剰添加ではVの析出強化能が飽
和するうえ、常温延性にも悪影響を及ぼすため、特にN
に対して(V/51)/(N/14)≧1を満たす上で
0.01〜1.0%とした。希土類元素(ランタノイド
系の元素またはYを含むミシュメタル):本願請求項
に記載の発明の中に含まれる添加元素である。耐酸化性
のさらなる向上を必要とする場合、添加する元素であ
る。しかし、添加量が0.05%を越えると熱間加工性
が劣るので、これを上限とした。
V: Carbonitride forming element, necessary for precipitation strengthening. On the other hand, excessive addition saturates the precipitation strengthening ability of V and adversely affects the room temperature ductility.
(V / 51) / (N / 14) ≧ 1 with respect to 0.01 to 1.0%. Rare earth element (lanthanoid element or misch metal containing Y): Claim 5 of the present application
Are additional elements included in the invention described in (1). This element is added when further improvement in oxidation resistance is required. However, if the addition amount exceeds 0.05%, the hot workability is inferior, so this was made the upper limit.

【0025】高温強度:900℃を越える温度域での耐
熱疲労特性、疲労特性を確保するため950℃での高温
強度を20MPa以上とした。
High-temperature strength: The high-temperature strength at 950 ° C. was set to 20 MPa or more in order to secure heat-resistant fatigue properties and fatigue properties in a temperature range exceeding 900 ° C.

【0026】[0026]

【実施例】表1に示す化学成分の供試鋼を真空溶解にて
スラブ形状に溶製し、その後、スラブ加熱−熱間圧延−
冷間圧延−焼鈍酸洗を経て2mmの薄板を作製した。この
薄板より引張り試験、高温塩害試験および高温引張り試
験を行った。
EXAMPLES Test steels having the chemical components shown in Table 1 were melted in a slab shape by vacuum melting, and then slab heating-hot rolling-
A 2 mm thin plate was produced through cold rolling and annealing pickling. A tensile test, a high-temperature salt damage test and a high-temperature tensile test were performed on this thin plate.

【0027】[0027]

【表1】 [Table 1]

【0028】表2には、本願発明鋼と比較鋼の材質特性
の比較を示す。試料No. A3〜5とA7〜16の本発明
鋼は、950℃における時効前(使用前を想定)の高温
強度、時効後(使用中を想定)の高温強度のいずれにお
いても20MPa以上の強度を有している。また、耐高
温塩害性および常温延性のそれぞれの特性についても良
好である。
Table 2 shows a comparison of the material properties between the steel of the present invention and the comparative steel. The steels of the present invention of Sample Nos. A3 to 5 and A7 to 16 each had a high temperature strength of 20 MPa or more at 950 ° C. before and after aging (assuming before use) and after aging (assuming during use). Has strength. Further, the respective properties of high-temperature salt damage resistance and ordinary temperature ductility are also good.

【0029】Ti添加量の多い試料No. B3では、ほぼ
同量のeff.NbおよびMo+W量を有する試料No.
A7に比べ時効前の高温強度が低くなっている。(V
/51)/(N/14)比の小さい試料No. B5は時効
前後(特に時効後)で高温強度が低くなっている。Mo
およびWが過剰添加である試料No. B3、B4、B7お
よびB8では耐高温塩害性が劣る。MoおよびWの過剰
添加は熱間加工性も低下させることが試料No. B7
およびB8の例から判る。V過剰添加の試料No. B6
は、常温延性が低く、熱間加工性にも問題がある。ま
た、REM量が0.05%を越えると、試料No. B9お
よびB10の例のように、熱間加工性が悪い。
In the sample No. B3 in which the amount of Ti added is large, the eff. Sample No. having Nb and Mo + W amounts
The high temperature strength before aging is lower than that of A7. (V
The sample No. B5 having a small ratio of (/ 51) / (N / 14) has a low high-temperature strength before and after aging (particularly after aging). Mo
In Sample Nos. B3, B4, B7 and B8 in which N and W are excessively added, the resistance to high-temperature salt damage is poor. Excessive addition of Mo and W, that hot workability also lowers, Sample No. B7
And B8. Sample No. B6 with excessive addition of V
Has low ductility at room temperature and also has a problem in hot workability. On the other hand, when the REM amount exceeds 0.05%, the hot workability is poor as in the examples of Sample Nos. B9 and B10.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明は、高温長時間使用される部材、
特に自動車排気系材料として、燃費向上や大気浄化にと
もなう今後の排気ガス高温化に対応可能な成分系を見い
だしたもので、900℃を越える温度域に於いても対応
可能な高耐熱フェライト系ステンレス鋼を提供できるも
のである。
According to the present invention, there is provided a member which is used for a long time at a high temperature,
In particular, as a material for automobile exhaust systems, we have found a component system that can cope with a future increase in exhaust gas temperature due to improvements in fuel efficiency and air purification, and a high heat-resistant ferritic stainless steel that can be used even in a temperature range exceeding 900 ° C. It can provide steel.

フロントページの続き (56)参考文献 特開 平5−125491(JP,A) 特開 平3−264652(JP,A) 特開 昭61−117251(JP,A) 特開 昭55−110759(JP,A) 特開 昭53−118218(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 C22C 38/28 Continuation of the front page (56) References JP-A-5-125549 (JP, A) JP-A-3-264652 (JP, A) JP-A-61-117251 (JP, A) JP-A-55-110759 (JP, A) , A) JP-A-53-118218 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00 302 C22C 38/28

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C:0.003〜0.015 N:0.02以下 C+N:0.03以下 Si:0.1〜2 Mn:0.1〜2 P:0.01〜0.1 S:0.01以下 Cr:17〜20 Ti:0.01〜0.5 Nb:0.3〜0.8Mo:0.1〜2.0 を含み、 残部Feおよび不可避的不純物からなり、かつ下記式で
計算されるeff.Nbが0.3〜0.6の範囲であ
ことを特徴とする950℃での引張強度が20MPa
以上で、かつ耐高温塩害腐食性および加工性に優れた耐
熱フェライト系ステンレス鋼 eff.Nb(%)=Nb(%)−3・93・fc/1
2−93・fn/14但し、Ti(%)−48・(N
(%)/2)/14>0のとき、 C(%)−12・(Ti(%)−48・(N(%)/
2)/14)/48>0で fc=C(%)−12・{Ti(%)−48・(N
(%)/2)/14}/48 fn=N(%)/2 C(%)−12・(Ti(%)−48・(N(%)/
2)/14)/48≦0で fc=0 fn=N(%)/2 Ti(%)−48・(N(%)/2)/14≦0のと
き、 fc=C(%) fn=N(%)−14・(Ti(%)/2)/48
1. In% by weight, C: 0.003 to 0.015 N: 0.02 or less C + N: 0.03 or less Si: 0.1 to 2 Mn: 0.1 to 2 P: 0.01 to 0.1 S: 0.01 or less Cr: 17 to 20 Ti: 0.01 to 0.5 Nb: 0.3 to 0.8 Mo: 0.1 to 2.0 , balance Fe and unavoidable impurities Eff. Calculated from the following equation: Nb is characterized scope der Rukoto of 0.3 to 0.6, 20 MPa tensile strength at 950 ° C.
The above is a heat-resistant ferritic stainless steel excellent in high-temperature salt damage corrosion resistance and workability . eff. Nb (%) = Nb (%) − 3.93 · fc / 1
2-93 · fn / 14 where Ti (%)-48 · (N
(%) / 2) / 14> 0, C (%)-12 · (Ti (%) − 48 · (N (%) /
2) / 14) / 48> 0, fc = C (%) − 12 · {Ti (%) − 48 · (N
(%) / 2) / 14 ° / 48 fn = N (%) / 2 C (%)-12 · (Ti (%) − 48 · (N (%) /
2) / 14) / 48 ≦ 0, fc = 0 fn = N (%) / 2 Ti (%) − 48 · (N (%) / 2) / 14 ≦ 0, fc = C (%) fn = N (%)-14. (Ti (%) / 2) / 48
【請求項2】 重量%で、 C:0.003〜0.015 N:0.02以下 C+N:0.03以下 Si:0.1〜2 Mn:0.1〜2 P:0.01〜0.1 S:0.01以下 Cr:17〜20 Ti:0.01〜0.5 Nb:0.3〜0.8Mo:0.1〜2.0 W:0.1〜2.0(但し、Mo+W:0.1〜3.
0) を含み、 残部Feおよび不可避的不純物からなり、かつ下記式で
計算されるeff.Nbが0.3〜0.6の範囲であ
ことを特徴とする950℃での引張強度が20MPa
以上で、かつ耐高温塩害腐食性および加工性に優れた耐
熱フェライト系ステンレス鋼 eff.Nb(%)=Nb(%)−3・93・fc/1
2−93・fn/14但し、Ti(%)−48・(N
(%)/2)/14>0のとき、 C(%)−12・(Ti(%)−48・(N(%)/
2)/14)/48>0で fc=C(%)−12・{Ti(%)−48・(N
(%)/2)/14}/48 fn=N(%)/2 C(%)−12・(Ti(%)−48・(N(%)/
2)/14)/48≦0で fc=0 fn=N(%)/2 Ti(%)−48・(N(%)/2)/14≦0のと
き、 fc=C(%) fn=N(%)−14・(Ti(%)/2)/48
2. In % by weight, C: 0.003 to 0.015 N: 0.02 or less C + N: 0.03 or less Si: 0.1 to 2 Mn: 0.1 to 2 P: 0.01 to 0.1 S: 0.01 or less Cr: 17 to 20 Ti: 0.01 to 0.5 Nb: 0.3 to 0.8 Mo: 0.1 to 2.0 W: 0.1 to 2.0 (However, Mo + W: 0.1-3.
0) , the balance being Fe and unavoidable impurities, and eff. Nb is characterized scope der Rukoto of 0.3 to 0.6, 20 MPa tensile strength at 950 ° C.
The above is a heat-resistant ferritic stainless steel excellent in high-temperature salt damage corrosion resistance and workability . eff. Nb (%) = Nb (%) − 3.93 · fc / 1
2-93 · fn / 14 where Ti (%)-48 · (N
(%) / 2) / 14> 0, C (%)-12 · (Ti (%) − 48 · (N (%) /
2) / 14) / 48> 0, fc = C (%) − 12 · {Ti (%) − 48 · (N
(%) / 2) / 14 ° / 48 fn = N (%) / 2 C (%)-12 · (Ti (%) − 48 · (N (%) /
2) / 14) / 48 ≦ 0, fc = 0 fn = N (%) / 2 Ti (%) − 48 · (N (%) / 2) / 14 ≦ 0, fc = C (%) fn = N (%)-14. (Ti (%) / 2) / 48
【請求項3】 重量%で、 C:0.003〜0.015 Si:0.1〜2 Mn:0.1〜2 P:0.01〜0.1 S:0.01以下 Cr:17〜20 Nb:0.2〜0.6 N:0.005〜0.3 V:0.01〜1.0 の範囲で1≦(V/51)/(N/14)を満たし、残
部Feおよび不可避不純物からなることを特徴とす
950℃での引張強度が20MPa以上である耐熱
フェライト系ステンレス鋼。
3. In weight%, C: 0.003 to 0.015 Si: 0.1 to 2 Mn: 0.1 to 2 P: 0.01 to 0.1 S: 0.01 or less Cr: 17 Nb: 0.2 to 0.6 N: 0.005 to 0.3 V: 0.01 to 1.0, satisfying 1 ≦ (V / 51) / (N / 14), and the balance Fe and wherein the unavoidable impurities, heat ferritic stainless steel is the tensile strength at 950 ° C. 20 MPa or higher.
【請求項4】 重量%で、 Mo:0.1〜2.0 W:0.1〜2.0 の少なくとも一種を含み、複合添加の場合は0.1〜
3.0重量%の範囲で含有する請求項3記載の耐熱フェ
ライト系ステンレス鋼。
(4) Mo: 0.1 to 2.0 W: 0.1 to 2.0 in weight%, and 0.1 to 2.0 in the case of composite addition.
The heat-resistant ferritic stainless steel according to claim 3, which is contained in a range of 3.0% by weight.
【請求項5】 少なくとも一種の希土類元素(ここで希
土類元素とは、ランタノイド系元素およびYのことを示
す)を合計で0.05重量%以下の範囲で含有する請
求項1、2、3、または4記載の耐熱フェライト系ステ
ンレス鋼。
5. (The here rare earth element, indicating that the lanthanoid elements and Y) at least one rare earth element and claims comprises in the range of 0.05 wt% or less in total 1, 2, 3 Or a heat-resistant ferritic stainless steel according to item 4.
JP21880193A 1993-09-02 1993-09-02 Heat-resistant ferritic stainless steel Expired - Lifetime JP2959934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21880193A JP2959934B2 (en) 1993-09-02 1993-09-02 Heat-resistant ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21880193A JP2959934B2 (en) 1993-09-02 1993-09-02 Heat-resistant ferritic stainless steel

Publications (2)

Publication Number Publication Date
JPH0770709A JPH0770709A (en) 1995-03-14
JP2959934B2 true JP2959934B2 (en) 1999-10-06

Family

ID=16725578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21880193A Expired - Lifetime JP2959934B2 (en) 1993-09-02 1993-09-02 Heat-resistant ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP2959934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060650A1 (en) 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritic stainless steel material for automobile exhaust gas passage components
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146484A (en) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd High strength ferritic heat resistant steel
JP5417764B2 (en) * 2008-08-13 2014-02-19 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP5343446B2 (en) * 2008-08-13 2013-11-13 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5343445B2 (en) * 2008-08-13 2013-11-13 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and toughness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060650A1 (en) 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritic stainless steel material for automobile exhaust gas passage components
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10072323B2 (en) 2011-02-08 2018-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet

Also Published As

Publication number Publication date
JPH0770709A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP5138504B2 (en) Ferritic stainless steel for exhaust gas flow path members
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5297630B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP2009215648A (en) Ferritic stainless steel having excellent high temperature strength, and method for producing the same
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP2959934B2 (en) Heat-resistant ferritic stainless steel
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
KR20020037698A (en) SOFT Cr-CONTAINING STEEL
JP3706428B2 (en) Ferritic stainless steel for automotive exhaust system equipment
JP3067577B2 (en) Ferritic stainless steel with excellent oxidation resistance and high-temperature strength
EP0593776B1 (en) Ferritic stainless steel with excellent high-temperature salt injury resistance and high-temperature strength
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
JP3546714B2 (en) Cr-containing steel with excellent high-temperature strength, workability and surface properties
JP3744403B2 (en) Soft Cr-containing steel
JP5796398B2 (en) Ferritic stainless steel with excellent thermal and high temperature fatigue properties
JP3021656B2 (en) Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength
JP2010236001A (en) Ferritic stainless steel
JPH0741917A (en) Steel for automotive exhaust system
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JPH0741905A (en) Steel for automotive exhaust system
JP5796397B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990622

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250