JP3021656B2 - Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength - Google Patents

Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength

Info

Publication number
JP3021656B2
JP3021656B2 JP5517801A JP51780193A JP3021656B2 JP 3021656 B2 JP3021656 B2 JP 3021656B2 JP 5517801 A JP5517801 A JP 5517801A JP 51780193 A JP51780193 A JP 51780193A JP 3021656 B2 JP3021656 B2 JP 3021656B2
Authority
JP
Japan
Prior art keywords
temperature
salt damage
strength
amount
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5517801A
Other languages
Japanese (ja)
Inventor
展弘 藤田
圭一 大村
栄次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5517801A priority Critical patent/JP3021656B2/en
Priority claimed from PCT/JP1993/000453 external-priority patent/WO1993021356A1/en
Application granted granted Critical
Publication of JP3021656B2 publication Critical patent/JP3021656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、自動車排気管や触媒外筒材、発電プラント
の排気ダクトなどの高温部材として用いられる、高い高
温強度を有するとともに特に耐高温塩害性に優れたフェ
ライト系ステンレス鋼に関する。
Description: TECHNICAL FIELD The present invention relates to ferrite having high high-temperature strength and particularly excellent high-temperature salt damage resistance, which is used as a high-temperature member such as an exhaust pipe of an automobile, a catalyst outer casing material, and an exhaust duct of a power plant. Related to stainless steel.

背景技術 近年、自動車の燃費向上、高出力化が望まれ、自動車
材料の軽量化が強く望まれている。また、公害規制の強
化から、排気ガスの浄化も強く要請されている。かかる
背景から、自動車排気系材料には、軽量化や部品として
の低熱容量化の観点から、既存のフェライト系ステンレ
ス鋼であるSUS430LXやAISI409が現在使用されている。
一方、燃費向上、高出力化が更に進み、これに伴い排ガ
スの最高温度が900℃前後まで上昇してきており、排気
マニホールド近傍では900℃前後に、又フロントパイプ
近傍では600℃前後に昇温する。したがって、これらの
薄板構造物に使用される耐熱材料には、次のような材質
特性が必要である。
BACKGROUND ART In recent years, it has been desired to improve the fuel efficiency and output of automobiles, and to strongly reduce the weight of automobile materials. In addition, due to the strengthening of pollution regulations, there is a strong demand for purification of exhaust gas. From such a background, SUS430LX and AISI409, which are existing ferritic stainless steels, are currently used as automotive exhaust system materials from the viewpoint of weight reduction and low heat capacity as components.
On the other hand, the fuel efficiency has been further improved and the output has been increased, and the maximum temperature of the exhaust gas has been rising to around 900 ° C., and the temperature rises to around 900 ° C. near the exhaust manifold and around 600 ° C. near the front pipe. Therefore, the heat-resistant material used for these thin plate structures needs the following material characteristics.

(1)高い高温強度と使用中の高温強度の確保 (2)熱疲労特性と高温疲労特性 (3)常温の加工性 (4)耐高温塩害性 (5)耐酸化性 (6)応力集中を起しにくい溶接ビード形状 等である。(1) Ensuring high high-temperature strength and high-temperature strength during use (2) Thermal fatigue properties and high-temperature fatigue properties (3) Workability at normal temperature (4) High-temperature salt damage resistance (5) Oxidation resistance (6) Stress concentration It is a weld bead shape that does not easily rise.

ここで、高温強度を向上させ、使用中の高温強度を確
保することで高温疲労が向上し、耐熱疲労性も向上する
ことが予想され、(1)の特性を達成することで(2)
の特性も向上することが予想される。又、前記構造物は
薄板の溶接構造となるため、溶接性や溶接部を含んだ耐
熱疲労特性が要求されるので、(6)の事項も又重要項
目となる。
Here, it is expected that the high-temperature strength is improved and the high-temperature strength during use is ensured, thereby improving the high-temperature fatigue and the heat-resistant fatigue resistance. By achieving the characteristics (1), (2)
Is also expected to improve. In addition, since the above-mentioned structure has a thin plate welded structure, heat resistance and fatigue resistance including weldability are required. Therefore, the item (6) is also an important item.

更に、(4)の耐高温塩害特性は最近薄肉化されてき
ている自動車排気系部品において特に注目されている。
厳冬期において自動車が凍結防止材(食塩が主体)の散
布された路面上を走行するとき、自動車排気系部品特に
排ガスによって600℃前後に加熱された排気マニフォー
ルドやフロントパイプに凍結防止材が飛散して付着する
と該部品の付着表面が腐食され減肉現象が生じて遂には
破損状態になり重大な事故を引起す。
Further, the high-temperature salt damage resistance property (4) has been particularly noted in automobile exhaust system parts which have recently been thinned.
When a car travels on a road surface sprayed with anti-freezing material (mainly salt) in severe winter, the anti-freezing material scatters on the exhaust manifold and front pipe heated to around 600 ° C by automobile exhaust system parts, especially exhaust gas. If adhered, the adhered surface of the part will be corroded, causing a thinning phenomenon, and eventually a broken state, causing a serious accident.

従って、排ガスの高温化による自動車排気系材料の高
温引張強度の向上と耐高温塩害特性の改善が重要な研究
課題となっている。
Therefore, improvement of high-temperature tensile strength and improvement of high-temperature salt damage resistance of automobile exhaust system materials by increasing the temperature of exhaust gas are important research subjects.

以上の各種特性を改善する技術として次のものが開示
されている。
The following are disclosed as techniques for improving the above various characteristics.

排気マニホールド用途としては、特開昭64−8254、特
開平3−274245、特開平4−74852等の各公報が挙げら
れる。特開昭64−8254号公報は、耐酸化性の観点からCr
を17%以上と高めにし、Nbを必須としMoを選択元素にし
ているものの、NbやMoよりもC,Nとの親和力の強い元素
(例えばTi)の添加は行われていない。このため、特に
Nbは使用中に炭窒化物を作り易い状態にあり、使用中の
高温強度の確保については考慮されていない。特開平3
−274245号公報については、高Cr側で、Nb及びMoが必須
でTiは選択元素である。これについても、高温使用中の
強度の確保については考慮されず、NiおよびCuが必須で
あり、本発明とは、Crも含めて異なる化学成分範囲のも
のである。特開平4−74852号公報については、特開平
3−274245号よりCrが低く、Nb,Tiが必須であるが、Mo
及びAlが無添加で、Siも0.5%以下としており、耐高温
塩害性や低Crにした場合の耐酸化性についての考慮がな
されていない。
Examples of exhaust manifold applications include JP-A-64-8254, JP-A-3-274245, and JP-A-4-74852. JP-A-64-8254 discloses Cr from the viewpoint of oxidation resistance.
Is increased to 17% or more, and Nb is indispensable and Mo is selected as an element, but an element (eg, Ti) having a higher affinity for C and N than Nb or Mo is not added. Because of this,
Nb is in a state where carbonitride is easily formed during use, and no consideration is given to ensuring high-temperature strength during use. JP Hei 3
With respect to JP-274245A, Nb and Mo are essential and Ti is a selective element on the high Cr side. Also in this case, it is not considered how to secure the strength during high temperature use, Ni and Cu are essential, and the present invention is in a different chemical component range including Cr. With respect to JP-A-4-74852, Cr is lower than that of JP-A-3-274245, and Nb and Ti are essential.
No addition of Al and 0.5% or less of Si, and no consideration is given to high-temperature salt damage resistance and oxidation resistance when low Cr is used.

又、マフラー用途として、特開平3−264652号公報が
挙げられる。これはCr量が11〜30%と広範囲に渡ってお
り、TiおよびNbを必須元素とし、Moを選択元素としてい
る。又、常温の耐塩害性として、35℃における塩水噴霧
試験を行い、耐塩害腐食にはCrを18%以上、Moを1.0〜
4.0%添加することが望ましいとしている。ここで言う
常温の塩害腐食は、ステンレス鋼においては耐錆性(耐
発錆性)と類似しており、CrとMoの添加で向上すること
は一般的な見解である(例えば、N.Suutala et.al.:Sta
inless Steels'84 Gotebrog,Sweden,P.240(1984))。
一方、耐高温塩害性は、高温における耐塩害腐食性の事
を指し、耐錆性とは異なり、温度依存性のある全面腐食
の形態で100μオーダーの腐食が進行する現象で、さら
に添付した第9図に示すようにCrは700℃における耐高
温塩害性に対して効果は殆ど無い。したがって、常温の
塩害腐食現象と高温の塩害腐食現象とは全く違った特性
であると言える。このように、特開平3−264652号公報
で耐高温塩害性について何の考慮もされていない。
Further, as a muffler application, JP-A-3-264652 can be mentioned. This has a wide Cr content of 11 to 30%, with Ti and Nb as essential elements and Mo as a selective element. In addition, a salt spray test at 35 ° C. was performed as salt resistance at room temperature. For salt damage corrosion, Cr was 18% or more and Mo was 1.0 to 1.0%.
It is desirable to add 4.0%. The normal temperature salt damage corrosion here is similar to the rust resistance (rust resistance) of stainless steel, and it is a general opinion that the addition of Cr and Mo improves the corrosion (for example, N. Suutala). et.al.:Sta
inless Steels '84 Gotebrog, Sweden, P. 240 (1984)).
On the other hand, high temperature salt damage resistance refers to salt damage corrosion resistance at high temperatures, and unlike rust resistance, a phenomenon in which corrosion in the order of 100μ proceeds in the form of temperature-dependent general corrosion, and As shown in FIG. 9, Cr has almost no effect on high-temperature salt damage resistance at 700 ° C. Therefore, it can be said that the salt damage corrosion phenomenon at normal temperature and the salt damage corrosion phenomenon at high temperature have completely different characteristics. As described above, JP-A-3-264652 does not consider any high-temperature salt damage resistance.

以上のように、各公知文献には自動車排気系材料の高
温強度、特に高温使用中の強度の確保及び耐高温塩害性
の改善について全く開示又は示唆されていないのであ
る。
As described above, none of the known documents discloses or suggests securing high-temperature strength of automobile exhaust system materials, particularly, strength during high-temperature use and improvement of high-temperature salt damage resistance.

本発明は、従来のSUS430LXと同等以上の使用前材質特
性と低製造コストを両立させ、特に使用中の高い高温強
度の確保、及び耐高温塩害性等の材質特性を同時に達成
できる耐熱性フェライト系ステンレス鋼を提供すること
を目的とする。
The present invention is a heat-resistant ferrite-based material that achieves both material properties before use equal to or higher than conventional SUS430LX and low production cost, and ensures material properties such as high-temperature strength during use, and high-temperature salt damage resistance at the same time. The purpose is to provide stainless steel.

更に本発明は上記材料において、耐酸化性、加工性及
び良好な溶接ビート形状等の材質特性を達成できる耐熱
性フェライト系ステンレス鋼を提供することを目的とす
る。
A further object of the present invention is to provide a heat-resistant ferritic stainless steel capable of achieving material properties such as oxidation resistance, workability, and a good weld bead shape in the above materials.

発明の構成 上記目的を達成するために、本発明は冷延焼鈍板内に
Mo,W及びNbの各成分の固溶量を所要量(eff.Nbの範囲
量)確保せしめたものである。
Configuration of the Invention In order to achieve the above object, the present invention provides a cold rolled annealed sheet
The required amount (the range of eff.Nb) of the solid solution of each component of Mo, W and Nb was secured.

本発明者らの研究によれば、耐熱フェライト系ステン
レス鋼の高温強度や耐高温塩害性の向上は、主に固溶N
b,Mo及びWに起因しており、高温強度向上には固溶Nb,M
o及びWが、耐高温塩害性には、固溶Mo及びWが効果的
である。本発明者らは、Mo,W及びNbの固溶を冷延焼鈍板
において確保することに着目し、これらの元素を効率よ
く固溶させることを究明した。即ち、C+Nを低下さ
せ、さらにTiを適量添加することでこれらを固定して固
溶C+N量を低下させ、加工性の向上を図ると同時に、
Ti(C,N)による高温の析出強化も機能させた。
According to the study of the present inventors, the improvement of high-temperature strength and high-temperature salt damage resistance of heat-resistant ferritic stainless steel is mainly caused by solid solution N
b, Mo and W, and to improve high temperature strength, solute Nb, M
For o and W, solid solution Mo and W are effective for high-temperature salt damage resistance. The present inventors have focused on securing solid solution of Mo, W, and Nb in a cold-rolled annealed sheet, and have sought to efficiently dissolve these elements. That is, by lowering C + N and further adding an appropriate amount of Ti to fix them, lowering the amount of solid solution C + N and improving the workability,
High temperature precipitation strengthening by Ti (C, N) also worked.

又、Ti添加の最も重要な役割は、Mo,WやNbよりもC,N
との親和力が強いことを利用して、これらの元素でC,N
を固定することにある。C,Nを固定することでMo,W及びN
bの炭窒化物の析出を抑制し、これらの元素の固溶量を
使用前だけでなく、高温長時間に渡り確保することを可
能にした。これにより、同じ固溶Nb量を得るのにNb単独
添加の場合に比べ、Tiを添加することでNbの添加量が低
減できるという効果も得られるため特にTiを用いた場合
は原料コストも削減可能(一般に、NbはTiに比べ単位重
量当たりの原料コストが高い)としたのである。したが
って、安価であり、かつ固溶Nb,W,Moの持つ高温強化能
や耐高温塩害性を使用前から有効に機能させることがで
き、使用中にもこれらの元素の効果を確保することも可
能にした。また、特に自動車走行による高い高温強度を
長時間確保するために、すなわち実車走行中での部材の
高温強度を確保するために、eff.Nb量すなわち高温長時
間使用中の必要最低固溶Nb量を規定した。
Also, the most important role of Ti addition is that C, N rather than Mo, W or Nb.
Utilizing its strong affinity with C, N
Is to fix. By fixing C and N, Mo, W and N
Prevention of the precipitation of carbonitride b) enables the solid solution amount of these elements to be secured not only before use but also for a long time at high temperature. This has the effect of reducing the amount of Nb added by adding Ti as compared with the case of adding Nb alone to obtain the same amount of solid solution Nb, so the raw material cost is also reduced especially when Ti is used. It is possible (in general, Nb has a higher raw material cost per unit weight than Ti). Therefore, it is inexpensive, and the high-temperature strengthening ability and high-temperature salt damage resistance of solid-solution Nb, W, and Mo can be effectively functioned before use, and the effects of these elements can be secured during use. Made it possible. In addition, in order to secure high high-temperature strength especially during driving for a long period of time, that is, to ensure high-temperature strength of members during actual vehicle running, the amount of eff. Stipulated.

従来、eff.Nbの考え方は、特開平1−41694号公報に
もあるようにNbの析出炭化物としてMC型(Nb・C)を考
えており、このMC型炭化物に使用されるNb量を添加Nb量
から差し引いた値が固溶Nb量であり、これがeff.Nbであ
るとするものであった。
Conventionally, the concept of eff.Nb is to consider MC type (Nb · C) as a precipitated carbide of Nb as disclosed in JP-A-1-41694, and to add the amount of Nb used in the MC-type carbide. The value subtracted from the amount of Nb was the amount of solute Nb, which was assumed to be eff.Nb.

このeff.Nbは、(1)いわゆる使用前の固溶Nb量のみ
を規定、考慮していること、(2)Tiを含有する場合は
Tiの炭窒化物が優先析出することが条件であることな
ど、使用中の強度低下については全く考えられていない
ものであった。
This eff.Nb is (1) that only the so-called solid solution Nb amount before use is defined and taken into consideration. (2) When Ti is contained,
No reduction in strength during use was considered at all, such as the condition that preferential precipitation of Ti carbonitride occurred.

しかし、本発明においては、(1)使用中(自動車走
行中:600〜900℃を想定)のNbの析出がMC型から、M6C型
(Fe3Nb3C)に変化すること、(2)Nは、Tiを添加す
ると、Tiにより固着されNの1/2が窒化物として析出す
ることを明らかにするとともに、(3)Feとの金属間化
合物(Laves相)の析出はある程度までは強化に有効で
あることを考慮したうえで、使用前及び使用中の高温強
度を保持するための指標としてeff.Nbを規定した。な
お、使用前の高温強度としては、850℃での引張強度が3
4MPa以上及び900℃での引張強さが25MPa以上であること
が高温疲労特性及び熱疲労特性を確保する上で必要であ
る。又、使用中の高温強度の確保は、排気マニホールド
用材料としての最も重要な要求特性である熱疲労特性を
飛躍的に向上させる。これは、強化因子である固溶Nb,M
o及びW量を高温長時間に渡って確保しているため、熱
疲労中に生じる強度低下が生じ難くなり、熱疲労寿命の
飛躍的な延長を実現させている。
However, according to the present invention, (1) the precipitation of Nb during use (assuming that the vehicle is running: 600 to 900 ° C.) changes from MC type to M 6 C type (Fe 3 Nb 3 C); 2) N is clarified that when Ti is added, N is fixed by Ti and 1/2 of N is precipitated as a nitride, and (3) precipitation of intermetallic compound (Laves phase) with Fe is to some extent. Eff.Nb was specified as an index for maintaining high-temperature strength before and during use, taking into account that it is effective for strengthening. The tensile strength at 850 ° C before use is 3
It is necessary that the tensile strength at 4 MPa or more and the tensile strength at 900 ° C. be 25 MPa or more in order to ensure high temperature fatigue properties and thermal fatigue properties. In addition, ensuring high-temperature strength during use dramatically improves thermal fatigue properties, which is the most important required property as a material for an exhaust manifold. This is because solid solution Nb, M
Since the amount of o and W is secured over a long period of time at a high temperature, a decrease in strength that occurs during thermal fatigue is unlikely to occur, and the thermal fatigue life is dramatically extended.

更に、Ti及びNbの添加により溶接部及び溶接影響部の
粒径粗大化阻止も併せて図っており、溶接性についても
良好である。
Furthermore, the addition of Ti and Nb also prevents coarsening of the grain size in the welded part and the weld affected part, so that the weldability is good.

一方、Mo,W及びNbはFeとの金属間化合物を作り易く、
これが多量析出し粗大化すると使用中の靭性や高温強度
等を劣化させる。Mo及びWは耐高温塩害性に有効である
が多量添加は耐高温塩害性を劣化させる。また、NbやM
o,Wの添加は、再結晶温度を上昇させることや鋼板の靭
性を低下させること等の製造上の問題があり、以上の理
由からMo,W,Nb及びeff.Nbの上限を定めた。
On the other hand, Mo, W and Nb are easy to form an intermetallic compound with Fe,
If this precipitates in large quantities and becomes coarse, it deteriorates toughness during use and high-temperature strength. Mo and W are effective for high-temperature salt damage resistance, but the addition of a large amount degrades high-temperature salt damage resistance. Also, Nb and M
The addition of o and W has manufacturing problems such as raising the recrystallization temperature and lowering the toughness of the steel sheet. For these reasons, the upper limits of Mo, W, Nb and eff. Nb are determined.

又、本発明鋼は原料コスト削減の観点からSUS430LXよ
りCr量を低めている。このため、耐酸化性を確保するよ
う、Si及び必要によりAlを加工性、溶接性を損なわない
程度に添加した。又、Si及びAlは耐酸化性のみならず耐
高温塩害性も向上させる元素でもある。なお、特に耐酸
化性を要求される部材に適応するため希土類元素を熱間
加工性を害しない範囲で添加した。
Further, the steel of the present invention has a lower Cr content than SUS430LX from the viewpoint of reducing raw material costs. Therefore, in order to ensure oxidation resistance, Si and, if necessary, Al were added to such an extent that workability and weldability were not impaired. Si and Al are elements that improve not only oxidation resistance but also high-temperature salt damage resistance. In addition, a rare earth element was added in a range that does not impair hot workability in order to adapt particularly to a member requiring oxidation resistance.

以上のように、本発明鋼は、C,N,Si,Cr,Ti,Mo,W,Al及
びNbの最適添加バランスを十分考慮し、要求特性の各項
目を同時に達成可能なものとし、かつ原料コスト削減を
も同時に達成させるものである。
As described above, the steel of the present invention fully considers the optimal addition balance of C, N, Si, Cr, Ti, Mo, W, Al and Nb, and can simultaneously achieve the required characteristics, and At the same time, material costs can be reduced.

図面の簡単な説明 第1図は17Cr合金(Si,Alなし)におけるMo含有量と
高温塩害腐食減肉量との関係を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the Mo content in 17Cr alloy (without Si and Al) and the amount of high-temperature salt corrosion thinning.

第2図は17Cr,低Si合金におけるMo及び/又はWの含
有量と高温塩害腐食減肉量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the content of Mo and / or W in a 17Cr, low Si alloy and the amount of high-temperature salt corrosion thinning.

第3図は17Cr高Si合金におけるMoの含有量と高温塩害
腐食減肉量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the Mo content and the high-temperature salt damage corrosion thinning amount in a 17Cr high Si alloy.

第4図は各種合金における温度と引張強度との関係を
示す図である。
FIG. 4 is a diagram showing the relationship between temperature and tensile strength in various alloys.

第5図は高温時効に伴う時効時間と固溶Nb量の関係を
示す図である。
FIG. 5 is a graph showing the relationship between the aging time associated with high-temperature aging and the amount of dissolved Nb.

第6図はeff.Nbと900℃×500hr時効後の900℃におけ
る引張強度との関係を示す図である。
FIG. 6 is a diagram showing the relationship between eff.Nb and tensile strength at 900 ° C. after aging at 900 ° C. for 500 hours.

第7図はAl及びSUS430LXの200℃/900℃の熱疲労試験
結果を示す図である。
FIG. 7 is a diagram showing the results of a 200 ° C / 900 ° C thermal fatigue test of Al and SUS430LX.

第8図は温度と腐食減肉量との関係を示す図である。 FIG. 8 is a diagram showing the relationship between the temperature and the corrosion thinning amount.

第9図は耐高温塩害性に及ぼすCr量の影響を示す図で
ある。
FIG. 9 is a graph showing the effect of the amount of Cr on high-temperature salt damage resistance.

発明を実施するための最良の形態 本発明者らは従来十分な研究がされていなかったフェ
ライト系ステンレス鋼に係る自動車排気系材料の高温塩
害性について種々研究した結果、Mo及びWが耐高温塩害
性として極めて有効な元素であることを究明した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies on high-temperature salt damage of automobile exhaust system materials related to ferritic stainless steel, which had not been sufficiently studied so far. It has been determined that the element is an extremely effective element.

第1図はSi,Alなどを添加しない17Cr合金(真空溶解
で製造)にMoを添加し、その添加量と高温塩害性すなわ
ち高温塩害腐食減肉量との関係を示したものである。
FIG. 1 shows the relationship between the amount of Mo added to a 17Cr alloy (manufactured by vacuum melting) to which Si, Al, and the like are not added, and the amount of addition of Mo to high-temperature salt damage, that is, the amount of high-temperature salt corrosion thinning.

高温塩害腐食減肉量とは高温塩害の指数で、自動車が
実際に凍結防止材が散布された路面上を走行することを
シミュレートした以下の条件下での減肉厚みをいゝ、単
位を(mm/40サイクル)とする。
High-temperature salt damage thinning is an index of high-temperature salt damage, and refers to the thickness of thinning under the following conditions that simulates that a car actually runs on a road surface on which antifreeze has been sprayed. (Mm / 40 cycles).

(1)素材を飽和食塩水に5分間侵漬する。(1) Immerse the material in saturated saline for 5 minutes.

(2)700℃まで加熱し、120分間保定する。(2) Heat to 700 ° C and hold for 120 minutes.

(3)5分間空冷する。(3) Air-cool for 5 minutes.

(4)以上を40回繰返えす。(4) Repeat the above 40 times.

本発明者は第1図に示すようにMoを0.4重量%を添加
することによりMoの無添加の場合に比べ約半分の減肉量
にとゞめることができ、更に、1.5重量%添加すること
により約1/5の減肉量にとゞめることができることを確
認したのである。フェライト系ステンレス鋼において、
Moのこの特性は本発明者らにとって全く新しい知見であ
った。
As shown in FIG. 1, the present inventor can reduce the wall thickness by about half by adding 0.4% by weight of Mo as compared with the case where Mo is not added, and further, by adding 1.5% by weight. By doing so, it was confirmed that the thickness could be reduced to about 1/5. In ferritic stainless steel,
This property of Mo was a completely new finding for the inventors.

本発明者らは更に研究を進め、Moと同効物質のWもMo
と同様の効果を有すること、又Si(Al)と符号添加する
と上記減肉量が更に減少することを確認した。
The present inventors have further studied and found that W, which is the same substance as Mo, is Mo
It was confirmed that the same effect as described above was obtained, and that the addition of Si (Al) sign further reduced the above-mentioned wall thinning amount.

これを第2図及び第3図で示す。第2図は後述の実施
例1のデーターをプロットしたものでMoの単独添加又は
MoとWの複合添加にSiを0.1〜0.5重量%の範囲で添加し
たものであり、Mo,Wを0.2〜2.7%添加することで0.2mm/
40サイクル近傍の減肉量が得られることを示す。
This is shown in FIGS. 2 and 3. FIG. 2 is a plot of the data of Example 1 described below.
The addition of Si in the range of 0.1 to 0.5% by weight to the composite addition of Mo and W, and the addition of 0.2 to 2.7% of Mo and W results in 0.2 mm /
It shows that the amount of thinning around 40 cycles can be obtained.

第3図は後述の実施例2のデーターをプロットしたも
ので、Siを0.5超添加した場合のMo添加量と減肉量の関
係を示したものであり、0.5%Moを中心にして減肉量が
0.1〜0.2mm/40サイクルの範囲に納まることを示し、第
2図の場合に比べ耐塩害性が優れていることを示してい
る。
FIG. 3 is a plot of the data of Example 2 to be described later, showing the relationship between the amount of Mo added and the amount of wall thinning when Si is added in excess of 0.5. Quantity
It shows that it falls within the range of 0.1 to 0.2 mm / 40 cycles, which indicates that the salt damage resistance is superior to the case of FIG.

すなわち、Mo又はWを0.1〜2.0%の範囲内に添加する
と高温塩害腐食減肉量が急激に低下することが判明した
のである。
That is, it has been found that when Mo or W is added within the range of 0.1 to 2.0%, the amount of high-temperature salt-corrosion thinning rapidly decreases.

(1)素材を5%食塩水に10分間侵漬する。(1) Soak the material in 5% saline for 10 minutes.

(2)720℃まで加熱し、90分間保定する。(2) Heat to 720 ° C and hold for 90 minutes.

(3)5分間空冷する。(3) Air-cool for 5 minutes.

(4)以上を20回繰返す。(4) Repeat the above 20 times.

このように、Mo又はWは高温塩害性に対し極めて顕著
な効果を有している。
Thus, Mo or W has a very remarkable effect on high-temperature salt damage.

又、本発明は前述の如く、固有Nb量を十分に確保でき
るものであるから使用前の高温強度として850℃での引
張強度を34MPa以上、900℃での引張強度を25MPa以上に
することができ、優れた高温疲労特性及び熱疲労特性を
確保することができるが、これを表示したのが第4図で
ある。該図は引張強度と温度との関係を示したもので、
本発明鋼(図中○印第3表Al鋼)が850℃及び900℃の高
温において所望の高い強度を有することを示している
(図中点線が本発明の下限値)。なお、□印はMo,Wを添
加せずにNbだけを添加した鋼(SUS430LX(19Cr 0.5N
b))であって、900℃の高温側で引張強度が低下してお
り、又△印はTi単独添加の鋼(AISI409(11Cr 0.3T
i))であって、本発明鋼に比べ低い強度を示してい
る。
Further, as described above, since the present invention can sufficiently secure the intrinsic Nb amount, the tensile strength at 850 ° C. as a high-temperature strength before use can be 34 MPa or more as a high-temperature strength before use, and the tensile strength at 900 ° C. can be 25 MPa or more. As a result, excellent high-temperature fatigue characteristics and thermal fatigue characteristics can be ensured, and FIG. 4 shows these. The figure shows the relationship between tensile strength and temperature,
It shows that the steel of the present invention (the Al steel in Table 3 in Table 1) has a desired high strength at high temperatures of 850 ° C. and 900 ° C. (the dotted line in the figure is the lower limit of the present invention). In addition, the □ marks indicate steel (SUS430LX (19Cr 0.5N
b)), the tensile strength decreased at the high temperature side of 900 ° C, and the symbol △ indicates steel with only Ti added (AISI409 (11Cr 0.3T
i)), which shows lower strength than the steel of the present invention.

以下本発明の含有成分の限定理由を説明する。 Hereinafter, the reasons for limiting the components of the present invention will be described.

C:本発明鋼はNb及びMo,Wの固溶強化にて使用前、使用中
の高温強度を主に支えており、さらに加工性及び熱延板
靭性の向上の観点からもCの含有量を低く抑えたい。し
かし、極低化は経済性に不利であると共に、使用前の高
温強度の一部をTi,Nbの炭窒化物で支えていることか
ら、0.003〜0.015%の範囲とし、Nと合わせて;C+N≦
0.03%とした。
C: The steel of the present invention mainly supports high-temperature strength before and during use by solid solution strengthening of Nb, Mo, and W, and also contains C from the viewpoint of improving workability and toughness of hot-rolled sheet. Want to keep low. However, the extremely low temperature is disadvantageous to the economy, and a part of the high temperature strength before use is supported by carbonitride of Ti and Nb. C + N ≦
0.03%.

Si:脱酸材として有効であると共に、耐酸化性及び耐高
温塩害性を向上させる元素である。本発明鋼はSUS430LX
に比べ低Crとしているため耐酸化性向上、特に排ガス中
での耐酸化性向上の観点から0.1%以上が必要な添加量
である。又、耐高温塩害性にも有効な元素であるので、
0.5%超が好ましい。一方下限は、加工性や溶接性を低
下させるため1%とした。
Si: an element that is effective as a deoxidizing material and improves oxidation resistance and high-temperature salt damage resistance. The steel of the present invention is SUS430LX
Since the Cr content is lower than that of, the addition amount is required to be 0.1% or more from the viewpoint of improving oxidation resistance, particularly from the viewpoint of improving oxidation resistance in exhaust gas. In addition, since it is an effective element for high-temperature salt damage resistance,
More than 0.5% is preferred. On the other hand, the lower limit was set to 1% in order to reduce workability and weldability.

Mn:脱酸元素であるので最低0.1%は必要である。又、オ
ーステナイト形成元素でありマルテンサイト変態を阻止
するために上限を1%とした。
Mn: At least 0.1% is necessary because it is a deoxidizing element. Further, the upper limit is set to 1% in order to prevent martensitic transformation as an austenite forming element.

P:高温高強度化(固溶強化)に有用であるが、溶接性劣
化を招くので0.01〜0.1%とした。
P: Useful for high temperature and high strength (solid solution strengthening), but causes deterioration of weldability, so it was made 0.01 to 0.1%.

S:MnSの形成元素で、ステンレス鋼の基本特性である耐
食性を低下させるため0.01%以下とした。
S: an element forming MnS, the content is set to 0.01% or less in order to reduce the corrosion resistance which is a basic property of stainless steel.

Cr:耐酸化性及び耐高温塩害性向上に有効であり、900℃
付近での耐酸化性を確保するため13%以上とした。又、
本発明鋼の使用環境として最高温度を900℃付近と考え
ると17%以上の添加はあまり有効ではないので、上限を
17%未満とした。
Cr: effective at improving oxidation resistance and high-temperature salt damage resistance, 900 ° C
It is 13% or more to secure oxidation resistance in the vicinity. or,
Assuming that the maximum temperature of the steel of the present invention is around 900 ° C, the addition of 17% or more is not very effective.
Less than 17%.

Nb:溶接部及び溶接影響部での粒成長の防止及び高温強
度の確保のための添加元素である。しかし、C,N及びFe
との親和力が強く、使用中に析出物を形成し、Nbの固溶
強化の効果をより有効に働かせるために、0.1〜0.5%未
満で、かつ好ましくはeff.Nbとして、0.1〜0.4%とし
た。
Nb: an additional element for preventing grain growth and ensuring high-temperature strength in the weld and the weld affected zone. However, C, N and Fe
To form precipitates during use and to make the effect of solid solution strengthening of Nb work more effectively, 0.1 to less than 0.5%, and preferably 0.1 to 0.4% as eff.Nb. did.

eff.Nb:使用中の高温強度を確保するための指標であ
る。本発明鋼は、固溶Nb,Mo及びWで高温強度を支えて
おり、中でも、固溶Nbは最も高温強化効果がある。しか
し、NbはC,N及びFeと析出物を作り易く、これらの一部
も固溶Nb同様高温強化に寄与すると考えられているが、
高温使用中(実車走行中)に析出相は凝集粗大化し固溶
Nbは減少していく。第5図(実施例2の各試料に基づ
く)に900℃での連続使用を考慮想定し、900℃単純時効
に伴う固溶Nb量の変化を示す。時効に伴い、固溶Nbは減
少する。しかし、その減少の程度はNb単独添加のSUS430
LXやB2に比べ、TiとNbとを複合添加した本発明鋼の1つ
であるAlで少ない。これは、高温使用に伴い高温強化因
子である固溶Nbが確保され、高温使用中の部材の高温強
度が確保される事を意味する。これは、Tiを添加する事
の効果で、CとNbの結合を阻止するため、高温使用中の
固溶Nb量が確保できる。この点に着目して、Ti及びNbの
複合添加の場合において下記の式に基づいたeff.Nb、す
なわち高温使用中での高温強度確保に関する因子を規定
した。第6図(実施例2のMo:0.4〜0.6%の試料に基づ
く)に示すように高温使用を考慮して、900℃で500h時
効後の高温強度(900℃の引張り強度)が18MPa確保でき
るeff.Nb量として、0.1を下限とした。又、0.4を越える
とeff,Nbの増加に伴う高温強度の上昇が飽和するため上
限を0.4%とした。
eff.Nb: An index for securing high-temperature strength during use. The steel of the present invention supports high-temperature strength with solid-solution Nb, Mo, and W. Among them, solid-solution Nb has the highest-temperature strengthening effect. However, Nb easily forms precipitates with C, N and Fe, and it is thought that some of these also contribute to high-temperature strengthening like solid-solution Nb,
During use at high temperatures (during actual vehicle operation), the precipitated phase aggregates and becomes coarse and solid solution
Nb decreases. FIG. 5 (based on each sample of Example 2) shows the change in the amount of solute Nb due to simple aging at 900 ° C. in consideration of continuous use at 900 ° C. With aging, the solute Nb decreases. However, the degree of the decrease was due to SUS430 with only Nb added.
Compared with LX and B2, Al, which is one of the steels of the present invention to which Ti and Nb are added in combination, is less. This means that solid solution Nb, which is a high-temperature strengthening factor, is secured with high temperature use, and the high temperature strength of the member during high temperature use is secured. This is because the effect of adding Ti prevents the bonding of C and Nb, so that the amount of solid-dissolved Nb during high-temperature use can be secured. Focusing on this point, eff.Nb based on the following equation in the case of the composite addition of Ti and Nb, that is, a factor relating to securing high-temperature strength during high-temperature use was defined. As shown in FIG. 6 (based on the sample of Mo: 0.4 to 0.6% in Example 2), in consideration of high temperature use, a high temperature strength (tensile strength at 900 ° C.) of 18 MPa after aging at 900 ° C. for 500 hours can be secured. The lower limit of the amount of eff.Nb was 0.1. On the other hand, if it exceeds 0.4, the increase in the high-temperature strength accompanying the increase in eff and Nb is saturated, so the upper limit was made 0.4%.

なお、eff.Nbは以下の式によって求められる。 Note that eff.Nb is obtained by the following equation.

eff.Nb(%)=Nb(%)−3×93×fc/12−93×fn/14 …(1) 但し、(1)Ti(%)−48・(N(%)/2)/14>0の
とき、 C(%)−12・{Ti(%)−48・(N(%)/2)/14}/
48>0で fc=C(%)−12・{Ti(%)−48・(N(%)/2)/1
4}/48 fn=N(%)/2 C(%)−12・{Ti(%)−48・(N(%)/2)/14}/
48≦0で fc=0 fn=N(%)/2 (2)Ti(%)−48・(N(%)/2)/14≦0のとき、 fc=C(%) fn=N(%)−14・(Ti(%)/2)/48 すなわち、 (1)Ti原子数がN原子数の1/2よりも多い時は、Nは
半分がNbN、残り半分がTiNとなる。
eff.Nb (%) = Nb (%)-3 × 93 × fc / 12−93 × fn / 14 (1) where (1) Ti (%) − 48 · (N (%) / 2) / When 14> 0, C (%)-12 · {Ti (%)-48 · (N (%) / 2) / 14} /
When 48> 0, fc = C (%)-12 {Ti (%)-48 · (N (%) / 2) / 1
4} / 48 fn = N (%) / 2 C (%)-12 {{Ti (%)-4848 (N (%) / 2) / 14} /
When 48 ≦ 0, fc = 0 fn = N (%) / 2 (2) When Ti (%) − 48 · (N (%) / 2) / 14 ≦ 0, fc = C (%) fn = N ( %)-14. (Ti (%) / 2) / 48 That is, (1) When the number of Ti atoms is more than 1/2 of the number of N atoms, half of N is NbN and the other half is TiN.

i)TiNから残ったTi原子数がCの原子数より少ないと
き、CはまずTiCとなり残りはFe3Nb3Cとなる。
i) When the number of Ti atoms remaining from TiN is smaller than the number of C atoms, C becomes TiC first and the rest becomes Fe 3 Nb 3 C.

ii)TiNから残ったTi原子数がCの原子数以上のとき、
CはTiCとなる。
ii) When the number of Ti atoms remaining from TiN is equal to or greater than the number of C atoms,
C becomes TiC.

(2)Ti原子数がN原子数の1/2以下の時は、NはまずT
iNとなり、残りがNbNとなる。
(2) When the number of Ti atoms is less than 1/2 of the number of N atoms, N is first T
iN and the rest NbN.

Ti:C+Nを固着し、加工性の向上及び金相組織の長時間
安定性の確保のために必要な元素である。Tiは、Mo,W及
びNbよりもC,Nとの親和力が強いため、使用中のNb,Mo及
びWの炭窒化物の析出を抑える働きがある。これによ
り、使用中の固溶Mo,W及びNbを確保でき、使用中の高温
強度を確保できる。母相中に固溶しないC及びNを固着
するために、最低添加量を0.01%とした。又、使用前の
高温強度の一部をTiの炭窒化物で支えていることから、
0.5%を越えるTiの添加は炭窒化物を粗大化させるため
使用前の高温強度を低下させる。又、0.5%を越える添
加は溶接ビード形状を悪くする。
Ti: C + N is an element necessary for fixing the workability and ensuring long-term stability of the metal phase structure. Since Ti has a higher affinity for C and N than Mo, W and Nb, it has a function of suppressing the precipitation of carbonitrides of Nb, Mo and W during use. Thereby, Mo, W, and Nb can be secured during use, and high-temperature strength during use can be secured. In order to fix C and N which do not form a solid solution in the mother phase, the minimum addition amount was 0.01%. Also, since part of the high temperature strength before use is supported by Ti carbonitride,
Addition of more than 0.5% of Ti reduces the high-temperature strength before use to coarsen the carbonitride. Further, the addition exceeding 0.5% deteriorates the weld bead shape.

このため、上限を0.5%とした。Therefore, the upper limit is set to 0.5%.

W:高温強度及び耐高温塩害性を高める添加元素であり、
0.1%以上の添加が必要である。又、Nbに比べ、析出し
にくいので使用中でも固溶量を確保できるため、使用中
の高温強度の保持に有効である。しかし、耐高温塩害性
を劣化させるので2%を上限とした。ただし、Wは、Mo
と複合添加することになるが、その際の合計添加量の上
限を3%とした。なお、Wは再結晶温度を上昇させると
ともにFeとの金属間化合物や炭窒化物を多量に析出する
可能性のある元素の1つなので、これらも考慮して上記
範囲を定めた。
W: an additive element that enhances high-temperature strength and high-temperature salt damage resistance,
It is necessary to add 0.1% or more. Further, since it is harder to precipitate than Nb, the amount of solid solution can be secured even during use, which is effective for maintaining high-temperature strength during use. However, the upper limit is set to 2% because the high-temperature salt damage resistance is deteriorated. Where W is Mo
In addition, the upper limit of the total addition amount was 3%. Note that W is one of the elements that may increase the recrystallization temperature and precipitate a large amount of intermetallic compounds and carbonitrides with Fe, so the above range is determined in consideration of these.

Mo:高温強度及び耐高温塩害性を高める添加元素であ
り、本発明鋼が低Crを特徴としているためステンレス鋼
の基本的特性である耐食性を向上させる意味で、0.1%
以上の添加が必要である。又、Nbに比べ、析出しにくい
ため使用中でも固溶量を確保できるため、使用中の高温
強度の保持に有効である。しかし、多量添加は耐高温塩
害性を劣化させるため2%を上限とした。ただし、Wと
複合添加する場合には、合計添加量の上限を3%とし
た。なお、Moは再結晶温度を上昇させるとともにFeとの
金属間化合物や炭窒化物を多量に析出する可能性がある
元素の1つなので、これらも考慮して上記範囲を定め
た。
Mo: an additive element that enhances high-temperature strength and high-temperature salt damage resistance. Since the steel of the present invention is characterized by low Cr, it is 0.1% in the sense of improving corrosion resistance, which is a basic characteristic of stainless steel.
The above addition is necessary. Further, compared to Nb, since precipitation is less likely to occur, the amount of solid solution can be ensured even during use, which is effective for maintaining high-temperature strength during use. However, the addition of a large amount deteriorates the high-temperature salt damage resistance, so that the upper limit is 2%. However, when combined with W, the upper limit of the total amount was 3%. Since Mo is one of the elements that may increase the recrystallization temperature and precipitate a large amount of intermetallic compounds and carbonitrides with Fe, the above range is determined in consideration of these.

Al:脱酸材として有効であると共に、耐酸化性及び耐高
温塩害性を向上させる元素である。本発明鋼はSUS430LX
に比べ低Crとしているため耐酸化性向上、特に排ガス中
での耐酸化性向上の観点から有用な添加元素である。
又、耐高温塩害性にも有用な元素であるので0.02%以上
は好ましい。一方では、加工性の劣化や溶接ビート形状
を悪くするため0.3%以下とした。Siとともに複合添加
すると耐塩害性をより一層改善することができる。
Al: An element that is effective as a deoxidizing material and improves oxidation resistance and high-temperature salt damage resistance. The steel of the present invention is SUS430LX
It is an additive element useful from the viewpoint of improving the oxidation resistance, particularly from the viewpoint of improving the oxidation resistance in exhaust gas, because it has a lower Cr than that of Cr.
Further, 0.02% or more is preferable because it is a useful element for high-temperature salt damage resistance. On the other hand, the content is set to 0.3% or less in order to deteriorate the workability and deteriorate the shape of the welding beat. When combined with Si, salt damage resistance can be further improved.

N:本発明鋼はNb,Mo,Wの固溶強化にて高温強度を主に支
えており、さらに加工性及び熱延板靭性の向上の観点か
らも極力低く抑えたい。しかしながら、極低下は経済的
に不利であるため、高温強度を低下させないレベルとし
て単独で0.02%以下、Cと合わせて;C+N≦0.03%とし
た。
N: The steel of the present invention mainly supports high-temperature strength by solid solution strengthening of Nb, Mo, and W, and further, it is desired to suppress the workability and toughness of hot-rolled sheet as low as possible. However, since the extreme decrease is economically disadvantageous, the level at which the high-temperature strength is not decreased is set to 0.02% or less by itself, and combined with C; C + N ≦ 0.03%.

希土類元素(ランタノイド系の元素又はYを含むミシュ
メタル):本発明鋼は、Cr量を13〜17%と低い範囲とし
ているため、耐酸化性向上のためにSi,Alを添加してい
るが、耐酸化性の向上をさらに必要とする場合に添加す
る元素である。しかし、添加量が0.001%未満では安定
した効果が得られず、0.05%を越えると熱間加工性が劣
るので、0.001〜0.05%の範囲とした。
Rare earth elements (Milan metals containing lanthanoid elements or Y): Since the steel of the present invention has a low Cr content of 13 to 17%, Si and Al are added to improve oxidation resistance. This element is added when the oxidation resistance needs to be further improved. However, if the addition amount is less than 0.001%, a stable effect cannot be obtained, and if it exceeds 0.05%, hot workability is inferior.

高温強度:自動車の燃費向上、高出力化により、排ガス
温度が900℃前後にまで上昇してきている事から、この
条件での熱疲労、高温疲労に耐え得るため850℃での引
張り強さを34MPa以上及び900℃での引張り強さを25MPa
以上とした。又、高温使用中はその強化因子である固溶
Nbが低下する事から、高温強度も高温使用に伴い低下す
る。この高温使用中の高温強度確保の観点から、1例と
して、Mo:0.4〜0.6%を含有する本発明鋼が900℃×500h
時効を施した後の900℃での引張り強さを18MPa以上に確
保することを第6図に示す。
High temperature strength: Exhaust gas temperature has risen to around 900 ° C due to improved fuel efficiency and high output of automobiles. Therefore, to withstand thermal fatigue and high temperature fatigue under these conditions, the tensile strength at 850 ° C is 34MPa. Above and 900 ℃ tensile strength 25MPa
It was above. During high temperature use, the solid solution
Since Nb decreases, high-temperature strength also decreases with high-temperature use. From the viewpoint of ensuring high-temperature strength during high-temperature use, as an example, the steel of the present invention containing Mo: 0.4 to 0.6% is 900 ° C. × 500 h.
FIG. 6 shows that the tensile strength at 900 ° C. after aging is secured to 18 MPa or more.

実施例 実施例1 第1表に示す化学成分の供試鋼を真空溶解にて各8kg
溶製し、その後、1250℃加熱−熱間圧延−酸洗−冷間圧
延−850〜1000℃焼鈍−酸洗を経て2mmの薄板を作製し
た。この薄板を用いて、引張り試験、サイクル時効、高
温塩害試験及び高温引張り試験を行い、その諸特性につ
いて第2表に示す。
EXAMPLES Example 1 8 kg each of test steels having the chemical components shown in Table 1 were melted in a vacuum.
It was melted and then subjected to heating at 1250 ° C., hot rolling, pickling, cold rolling, annealing at 850 to 1000 ° C., and pickling to produce a 2 mm thin plate. Using this thin plate, a tensile test, a cycle aging test, a high-temperature salt damage test and a high-temperature tensile test were performed, and various characteristics are shown in Table 2.

耐高温塩害性については、Moを単独で0.48%、複合で
1.46及び2.67%添加した発明鋼(NUS13,21及び22)で腐
食減肉量が少ない良好な値を示した。一方、Mo及びWを
過剰添加したNUS24,26及び27では、高温塩害腐食減肉量
が大きくなり、加えて常温延性も低かった。又、Siの高
いNUS30は耐高温塩害性が良好であるが常温延性が低か
った。
Regarding high temperature salt damage resistance, Mo alone is 0.48%,
Inventive steels (NUS13, 21, and 22) to which 1.46 and 2.67% were added showed good values with little corrosion thinning. On the other hand, in NUS24, 26 and 27 to which Mo and W were excessively added, the amount of high-temperature salt corrosion thinning was large, and in addition, the room-temperature ductility was low. Also, NUS30 with high Si had good high-temperature salt damage resistance, but low room-temperature ductility.

高温強度については、eff.Nb量の低いNUS25で、サイ
クル時効後の高温強度がいずれも低く、又、Nb無添加で
あるNUS28及び30ではサイクル加熱前後での高温強度が
低い値となった。さらには、eff.Nb量は本発明の範囲内
にあってもTiが過剰添加されているNUS29は初期の高温
強度が低かった。又、eff.Nbが0.187〜0.343にある発明
鋼は、サイクル時効前後で高い高温強度が確保できてい
るうえ、常温延性についても良好であった。
Regarding the high temperature strength, NUS25 having a low eff.Nb amount had low high temperature strength after cycle aging, and NUS28 and 30 without Nb had low values of high temperature strength before and after cycle heating. Furthermore, even though the eff.Nb amount was within the range of the present invention, NUS29 to which Ti was excessively added had low initial high-temperature strength. In addition, the inventive steel having eff.Nb in the range of 0.187 to 0.343 was able to secure high high-temperature strength before and after cycle aging, and also had good room-temperature ductility.

実施例2 第3表に示す化学成分の供試鋼を真空溶解にてスラブ
形状に溶製し、その後1250℃のスラブ加熱−熱間圧延−
酸洗−冷間圧延−850〜1000℃の焼鈍−酸洗を経て2mmの
薄板を作製した。前記各工程において固溶Mo及びNb量を
測定し、最終的には、冷延焼鈍板を用いて、引張り試
験、高温塩害試験及び高温引張り試験を行い、その諸特
性を測定した。
Example 2 Test steels having the chemical components shown in Table 3 were melted in a slab shape by vacuum melting, and then slab heating at 1250 ° C.-hot rolling-
A 2 mm thin plate was prepared through pickling-cold rolling-annealing at 850 to 1000 ° C.-pickling. In each of the above steps, the amounts of dissolved Mo and Nb were measured, and finally, a tensile test, a high-temperature salt damage test and a high-temperature tensile test were performed using a cold-rolled annealed plate to measure various properties thereof.

第4表に本発明鋼と比較鋼の材質特性の比較を示す。 Table 4 shows a comparison of the material properties of the steel of the present invention and the comparative steel.

第4表からわかるように、比較鋼のNb単独添加のB2,4
30LX,C+N量の高いB4及びTi添加量の少ないB7は、使用
前は高い高温強度を有していたが、eff.Nbがいずれも0.
1%以下であるため時効処理後の高温強度が低下し、使
用前の高温強度の70%以下である18MPa以下の引張り強
度にまで低下した。これに対し、Ti,Nb,Mo及びC+N量
を適量にバランスさせ、eff.Nbを確保した本発明鋼A1〜
A8は、使用前の強度も高く、時効処理しても23MPa程度
の高温強度を確保することができた。
As can be seen from Table 4, the B2,4
30LX, B4 with a high C + N amount and B7 with a low Ti addition amount had high high-temperature strength before use, but eff.
Since the content was 1% or less, the high-temperature strength after the aging treatment was reduced, and the tensile strength was reduced to 18 MPa or less, which was 70% or less of the high-temperature strength before use. On the other hand, Ti, Nb, Mo and C + N are appropriately balanced to secure eff.
A8 had high strength before use, and could secure high-temperature strength of about 23 MPa even after aging treatment.

又、第7図に示すように本発明鋼A1の熱疲労寿命はSU
S430LXに比べ約1.6倍の寿命を持つことがわかった。こ
れは、TiによりC+Nを固着することで固溶Nb,Moの高
温強化の働きを長時間に渡って有効に機能させたためで
あり、これにより熱疲労寿命の飛躍的な延長が実現し
た。
As shown in FIG. 7, the thermal fatigue life of the steel A1 of the present invention is SU
It was found that the service life was about 1.6 times that of the S430LX. This is because, by fixing C + N by Ti, the function of strengthening the solute Nb and Mo at high temperatures was effectively functioned over a long period of time, thereby significantly extending the thermal fatigue life.

なお、熱疲労試験は次のようにして行なわれた。2mm
厚の薄板形状の試験片を用いて、評点間距離が加熱冷却
によって伸縮しないよう拘束(完全拘束または100%拘
束と言う)した状態で、評点間部分をあらかじめ200%
に保定し、この時点をスタート点とし、200℃から900℃
まで60秒で昇温→900℃での30秒保定→200℃まで60秒で
冷却を1サイクルとして、このサイクルを繰返すことに
より初期荷重の10%まで荷重が低下した時点で破断と見
なしこれを破損繰り返し数(Nf)とした。
The thermal fatigue test was performed as follows. 2mm
Using a thick, thin plate-shaped test piece, with the distance between the grades constrained to prevent expansion and contraction by heating and cooling (referred to as complete constraint or 100% constraint), the area between the grades was 200% in advance.
At which point the starting point is 200 ° C to 900 ° C
Temperature rise in 60 seconds → Hold at 900 ° C for 30 seconds → Cooling to 200 ° C in 60 seconds as one cycle, repeat this cycle, and when the load falls to 10% of the initial load The number of repetitions (Nf) was determined.

又、eff.Nbが高いB6については時効処理後の高温強度
についても良好であったが、Mo,C+N量がほぼ同様のA3
や、eff.Nbの高めにあるA5やA7と比較すると時効処理後
の高温強度もほぼ同レベルであり、eff.Nbとして0.4%
以上の化学組成配分は有効てはなかった。これは、eff.
Nbにして0.4を越えるとFeとNbとの金属間化合物が粗大
化し、析出強化が有効に働かなくなることを意味する。
B6 with a high eff.Nb also had good high-temperature strength after aging, but A3 with almost the same amount of Mo, C + N.
Also, compared with A5 and A7 which have higher eff.Nb, the high temperature strength after aging treatment is almost the same level, and 0.4% as eff.Nb
The above chemical composition distribution was not effective. This is eff.
If Nb exceeds 0.4, the intermetallic compound of Fe and Nb becomes coarse, meaning that precipitation strengthening does not work effectively.

又、C+N量が0.03%を越えると固溶Nb量の確保が難
しくなるため、B4のように時効処理後の高温強度が保持
できなくなった。一方、C量が低めのA4では初期の強度
がやや低めになった。これはTi(C,N)の強化が働きに
くくなっていたためである。Tiは過剰添加するとB3の例
からわかるように使用前の高温強度が低くなり、溶接ビ
ード形状も悪くなる。Moの添加は、高温強度の向上に有
効であると同時に、耐高温塩害性を向上させることがMo
添加量の高いA4及びA8と添加量の低いB7との比較からわ
かる。
On the other hand, if the amount of C + N exceeds 0.03%, it becomes difficult to secure the amount of solute Nb, so that the high temperature strength after aging treatment cannot be maintained as in B4. On the other hand, in the case of A4 having a lower C content, the initial strength was slightly lower. This is because strengthening of Ti (C, N) became difficult to work. As can be seen from the example of B3, when Ti is excessively added, the high-temperature strength before use decreases and the weld bead shape also deteriorates. The addition of Mo is effective in improving the high-temperature strength, and at the same time, improving the high-temperature salt damage resistance.
It can be seen from a comparison between A4 and A8 with a high addition amount and B7 with a low addition amount.

一方、B1の例からもわかるようにMoの過剰添加は耐高
温塩害性を劣化せしめた。耐高温塩害性についてはSiも
有効で、この効果はA3やB2の例からも明らかである。
又、A2及びA6とB6との比較からわかるようにSiは耐酸化
性を向上させ、特に900℃×500時間の排ガス中での異常
酸化を防止するためには0.5%超の添加が必要であっ
た。又、1%程度のSi添加では、常温引張りにおける破
断伸びは低下しないことも、A3,A4及びB2等の例から明
らかとなった。A1も、Si同様、耐酸化性及び耐高温塩害
性を向上させることが、A2,A6との例から判明した。一
方、B5からAlの多量添加で常温延性が低下傾向にあるこ
とや溶接ビード形状が悪くなることが判明した。
On the other hand, as can be seen from the example of B1, excessive addition of Mo deteriorated the high-temperature salt damage resistance. Si is also effective for high-temperature salt damage resistance, and this effect is clear from the examples of A3 and B2.
In addition, as can be seen from the comparison between A2 and A6 and B6, Si needs to be added in an amount of more than 0.5% to improve oxidation resistance, and particularly to prevent abnormal oxidation in exhaust gas at 900 ° C for 500 hours. there were. It was also evident from the examples of A3, A4, B2 and the like that the elongation at break at room temperature tension did not decrease when about 1% of Si was added. It was found from the examples of A2 and A6 that A1 also improved oxidation resistance and high-temperature salt damage resistance similarly to Si. On the other hand, it was found that the addition of a large amount of Al from B5 tends to lower the room-temperature ductility and deteriorate the weld bead shape.

なお、B8は希土類元素を多量に含んでいるので熱延が
不可能であった。
Since B8 contains a large amount of rare earth elements, hot rolling was impossible.

次に、本発明鋼A1、比較鋼B2及びSUS430LXの高温塩害
性について、温度と腐食減肉量との関係を第8図に示
す。図に示すように、A1とB2は700℃迄は同じ減肉量で
あったが、750℃においてB2の減肉量はA1のそれに比べ
0.1mm/40サイクル増加した。又、SUS430LXは700℃でA1
の3倍近く減肉した。
Next, regarding the high-temperature salt damage of the steel A1, the comparative steel B2, and the SUS430LX of the present invention, the relationship between the temperature and the amount of corrosion thinning is shown in FIG. As shown in the figure, A1 and B2 had the same wall loss up to 700 ° C, but at 750 ° C, the wall loss of B2 was smaller than that of A1.
0.1mm / 40 cycles increased. SUS430LX is A1 at 700 ℃
Was reduced by nearly three times.

これにより本発明鋼が高温塩害性において非常に優れ
ていることがわかる。
This shows that the steel of the present invention is very excellent in high-temperature salt damage.

産業上の利用可能性 本発明は、高温長時間使用される部材、特に自動車排
気系材料として、使用環境を充分考慮し、必要特性のバ
ランスのとれた成分系を見いだしたもので、今後の自動
車の高燃費化・高出力化・排ガス浄化性能等の向上に対
応可能なフェライト系ステンレス鋼を提供できるもので
ある。
INDUSTRIAL APPLICABILITY The present invention finds a component system in which necessary properties are well-balanced as a member used at high temperature for a long time, in particular, as a material for an automobile exhaust system, in consideration of a use environment, and a future automobile system. It is possible to provide a ferritic stainless steel capable of coping with higher fuel efficiency, higher output, and improved exhaust gas purification performance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−8254(JP,A) 特開 平3−274245(JP,A) 特開 平4−74852(JP,A) 特開 平3−264652(JP,A) 特開 昭62−112757(JP,A) 特開 平5−125491(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22C 38/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-8254 (JP, A) JP-A-3-274245 (JP, A) JP-A-4-74852 (JP, A) JP-A-3-74845 264652 (JP, A) JP-A-62-112757 (JP, A) JP-A-5-125491 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 302 C22C 38/28

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、 C:0.003〜0.015、N:0.02以下、C+N:0.03以下、Si:0.1
〜1.0、Mn:0.1〜1.0、P:0.01〜0.1、S:0.01以下、Cr:13
〜17未満、Ti:0.01〜0.5、Nb:0.1〜0.5未満、及び、Mo:
0.1〜2.0を含み、残部Fe及び不可避的不純物からなり、
かつ、下記(1)式で計算されるeff.Nbが0.1〜0.4
(%)の範囲にあり、更に900℃での引張強度が、25MPa
以上で、かつ850℃での引張強度が34MPa以上の高温強度
を有するとともに優れた耐高温塩害性を有することを特
徴とするフェライト系ステンレス鋼。 eff.Nb(%)=Nb(%)−3×93×fc/12−93×fn/14 …(1) 但し、(1)Ti(%)−48・(N(%)/2)/14>0の
とき、 C(%)−12・{Ti(%)−48・(N(%)/2)/14}/
48>0で fc=C(%)−12・{Ti(%)−48・(N(%)/2)/1
4}/48 fn=N(%)/2 C(%)−12・{Ti(%)−48・(N(%)/2)/14}/
48≦0で fc=0 fn=N(%)/2 (2)Ti(%)−48・(N(%)/2)/14≦0のとき、 fc=C(%) fn=N(%)−14・(Ti(%)/2)/48
C. 0.003 to 0.015, N: 0.02 or less, C + N: 0.03 or less, Si: 0.1% by weight.
~ 1.0, Mn: 0.1 ~ 1.0, P: 0.01 ~ 0.1, S: 0.01 or less, Cr: 13
~ 17, Ti: 0.01 ~ 0.5, Nb: 0.1 ~ 0.5, and Mo:
0.1 to 2.0, the balance consisting of Fe and unavoidable impurities,
And eff.Nb calculated by the following equation (1) is 0.1 to 0.4.
(%) Range, and the tensile strength at 900 ° C is 25MPa.
A ferritic stainless steel having a tensile strength at 850 ° C. of at least 34 MPa and a high temperature resistance to salt damage. eff.Nb (%) = Nb (%)-3 × 93 × fc / 12−93 × fn / 14 (1) where (1) Ti (%) − 48 · (N (%) / 2) / When 14> 0, C (%)-12 · {Ti (%)-48 · (N (%) / 2) / 14} /
When 48> 0, fc = C (%)-12 {Ti (%)-48 · (N (%) / 2) / 1
4} / 48 fn = N (%) / 2 C (%)-12 {{Ti (%)-4848 (N (%) / 2) / 14} /
When 48 ≦ 0, fc = 0 fn = N (%) / 2 (2) When Ti (%) − 48 · (N (%) / 2) / 14 ≦ 0, fc = C (%) fn = N ( %)-14 ・ (Ti (%) / 2) / 48
【請求項2】重量%で、 C:0.003〜0.015、N:0.02以下、C+N:0.03以下、Si:0.1
〜1.0、Mn:0.1〜1.0、P:0.01〜0.1、S:0.01以下、Cr:13
〜17未満、Ti:0.01〜0.5、Nb:0.1〜0.5未満、MO:0.1〜
2.0、及び、W:0.1〜2.0(ただし、Mo+W:0.2〜3.0)を
含み、残部Fe及び不可避的不純物からなり、かつ、下記
(1)式で計算されるeff.Nbが0.1〜0.4(%)の範囲に
あり、更に900℃での引張強度が25MPa以上で、かつ850
℃での引張強度が34MPa以上の高温強度を有するととも
に優れた耐高温塩害性を有することを特徴とするフェラ
イト系ステンレス鋼。 eff.Nb(%)=Nb(%)−3×93×fc/12−93×fn/14 …(1) 但し、(1)Ti(%)−48・(N(%)/2)/14>0の
とき、 C(%)−12・{Ti(%)−48・(N(%)/2)/14}/
48>0で fc=C(%)−12・{Ti(%)−48・(N(%)/2)/1
4}/48 fn=N(%)/2 C(%)−12・{Ti(%)−48・(N(%)/2)/14}/
48≦0で fc=0 fn=N(%)/2 (2)Ti(%)−48・(N(%)/2)/14≦0のとき、 fc=C(%) fn=N(%)−14・(Ti(%)/2)/48
2. In% by weight, C: 0.003 to 0.015, N: 0.02 or less, C + N: 0.03 or less, Si: 0.1
~ 1.0, Mn: 0.1 ~ 1.0, P: 0.01 ~ 0.1, S: 0.01 or less, Cr: 13
~ 17, Ti: 0.01 ~ 0.5, Nb: 0.1 ~ 0.5, MO: 0.1 ~
2.0 and W: 0.1 to 2.0 (however, Mo + W: 0.2 to 3.0), the balance being Fe and unavoidable impurities, and eff.Nb calculated by the following formula (1) is 0.1 to 0.4 (% ), The tensile strength at 900 ° C is 25 MPa or more, and 850
A ferritic stainless steel having a high-temperature strength of 34 MPa or more at a tensile strength of 30 ° C. and excellent resistance to salt damage at high temperatures. eff.Nb (%) = Nb (%)-3 × 93 × fc / 12−93 × fn / 14 (1) where (1) Ti (%) − 48 · (N (%) / 2) / When 14> 0, C (%)-12 · {Ti (%)-48 · (N (%) / 2) / 14} /
When 48> 0, fc = C (%)-12 {Ti (%)-48 · (N (%) / 2) / 1
4} / 48 fn = N (%) / 2 C (%)-12 {{Ti (%)-4848 (N (%) / 2) / 14} /
When 48 ≦ 0, fc = 0 fn = N (%) / 2 (2) When Ti (%) − 48 · (N (%) / 2) / 14 ≦ 0, fc = C (%) fn = N ( %)-14 ・ (Ti (%) / 2) / 48
【請求項3】前記化学成分において、Si:0.5超〜1.0重
量%を含む請求の範囲1または2記載のフェライト系ス
テンレス鋼。
3. The ferritic stainless steel according to claim 1, wherein said chemical component contains more than 0.5 to 1.0% by weight of Si.
【請求項4】前記化学成分において、Al:0.02〜0.3重量
%を含む請求の範囲1または2記載のフェライト系ステ
ンレス鋼。
4. The ferritic stainless steel according to claim 1, wherein the chemical component contains 0.02 to 0.3% by weight of Al.
【請求項5】前記化学成分において、希土類元素(ここ
で希土類元素とは、ランタノイド系元素およびYのこと
をいう)のグループから選ばれた少なくとも一種の元素
を、合計で0.001〜0.05重量%を含む請求の範囲1、
2、3、または4記載のフェライト系ステンレス鋼。
5. A method according to claim 1, wherein said chemical component comprises at least one element selected from the group consisting of rare earth elements (here, rare earth elements are lanthanoid elements and Y) in a total amount of 0.001 to 0.05% by weight. Claims 1, including
The ferritic stainless steel according to 2, 3, or 4.
JP5517801A 1992-04-09 1993-04-09 Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength Expired - Lifetime JP3021656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5517801A JP3021656B2 (en) 1992-04-09 1993-04-09 Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP04089121 1992-04-09
JP27010292 1992-10-08
JP34948492 1992-12-28
JP4-349484 1992-12-28
JP4-89121 1992-12-28
JP4-270102 1992-12-28
PCT/JP1993/000453 WO1993021356A1 (en) 1992-04-09 1993-04-09 Ferritic stainless steel with excellent high-temperature salt injury resistance and high-temperature strength
JP5517801A JP3021656B2 (en) 1992-04-09 1993-04-09 Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength

Publications (1)

Publication Number Publication Date
JP3021656B2 true JP3021656B2 (en) 2000-03-15

Family

ID=27467601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5517801A Expired - Lifetime JP3021656B2 (en) 1992-04-09 1993-04-09 Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength

Country Status (1)

Country Link
JP (1) JP3021656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133573A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10072323B2 (en) 2011-02-08 2018-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
WO2012133573A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same

Similar Documents

Publication Publication Date Title
JP4197492B2 (en) Ferritic stainless steel for exhaust gas flow path members
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
JP5297630B2 (en) Ferritic stainless steel plate with excellent heat resistance
EP2692889B1 (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
WO2011118854A1 (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
JP2009215648A (en) Ferritic stainless steel having excellent high temperature strength, and method for producing the same
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP4309140B2 (en) Ferritic stainless steel for automotive exhaust system equipment
JP3427502B2 (en) Ferrite stainless steel for automotive exhaust system components
JP4206836B2 (en) Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP2000303149A (en) Ferritic stainless steel for automotive exhaust system parts
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JP3067577B2 (en) Ferritic stainless steel with excellent oxidation resistance and high-temperature strength
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
EP0593776B1 (en) Ferritic stainless steel with excellent high-temperature salt injury resistance and high-temperature strength
WO1997034020A1 (en) Ferritic stainless steel for exhaust system equipment of vehicle
JP3021656B2 (en) Ferritic stainless steel with excellent high-temperature salt damage resistance and high-temperature strength
JP2959934B2 (en) Heat-resistant ferritic stainless steel
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JPH06100990A (en) Ferritic stainless steel excellent in strength at high temperature
JPH08120417A (en) Heat resistant ferritic stainless steel
JP4403033B2 (en) Austenitic stainless steel for exhaust manifold
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 14