JP2009102728A - Ferritic stainless steel excellent in toughness and its manufacturing method - Google Patents

Ferritic stainless steel excellent in toughness and its manufacturing method Download PDF

Info

Publication number
JP2009102728A
JP2009102728A JP2008160143A JP2008160143A JP2009102728A JP 2009102728 A JP2009102728 A JP 2009102728A JP 2008160143 A JP2008160143 A JP 2008160143A JP 2008160143 A JP2008160143 A JP 2008160143A JP 2009102728 A JP2009102728 A JP 2009102728A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
rolled sheet
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008160143A
Other languages
Japanese (ja)
Other versions
JP5396752B2 (en
Inventor
Tomomasa Hirata
知正 平田
Yasushi Kato
康 加藤
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008160143A priority Critical patent/JP5396752B2/en
Publication of JP2009102728A publication Critical patent/JP2009102728A/en
Application granted granted Critical
Publication of JP5396752B2 publication Critical patent/JP5396752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel which realizes both high-temperature resistance and toughness that are required for automotive exhaust system components, and its manufacturing method. <P>SOLUTION: The ferritic stainless steel excellent in toughness contains deposits at an occupancy ratio of ≤0.4 on a crystal grain boundary, provided that the occupancy ratio of deposits on the crystal grain boundary is defined as a ratio of the length of the crystal grain boundary occupied by individual deposits to the length of the crystal grain boundary, which is determined through electron microscopic observation of crystal grains and deposits that appear on a given cross-section of a cold-rolled steel sheet and calculation by formula (1): occupancy ratio = Σ(the length of the crystal grain boundary occupied by individual deposits) / Σ(the length of the crystal grain boundary). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車や2輪車の排気管やプラントの排気ダクト、熱交換器、燃料電池などの高温環境下で使用される部材用として好適な、耐熱性と成形性とを兼ね備えたフェライト系ステンレス鋼に関する。   The present invention is a ferritic material having both heat resistance and formability suitable for use in a high-temperature environment such as an exhaust pipe of a car or a motorcycle, an exhaust duct of a plant, a heat exchanger, or a fuel cell. Regarding stainless steel.

エキゾーストマニホールド,排気パイプ,コンバータケース,マフラー等に代表される自動車用排気部材には,高温環境で特性を保つための耐熱性と,限られたスペースに配置されるための成形性が要求される。このような用途に、室温において軟質で成形性に優れ、高温耐力も比較的高い、NbとSiを含むフェライト系ステンレス鋼、例えば、Type429Nb鋼(14Cr-0.9Si-0.4Nb鋼)が多く使用されている。   Automotive exhaust members such as exhaust manifolds, exhaust pipes, converter cases, and mufflers are required to have heat resistance to maintain their characteristics in high-temperature environments and formability to be placed in a limited space. . For such applications, there are many ferritic stainless steels containing Nb and Si, such as Type 429Nb steel (14Cr-0.9Si-0.4Nb steel), which are soft at room temperature, have excellent formability, and have relatively high high-temperature proof stress. in use.

しかし、自動車排気ガス規制の強化により、排気ガスが高温化すると、前記したType429Nb鋼では高温耐力が不足するという問題がある。このような問題に対しては、Type429Nb鋼よりも合金元素の添加量を増加させたSUS444鋼(18Cr-2Mo-Nb鋼)などが使用される。   However, there is a problem that the high temperature proof stress is insufficient in the above-described Type 429Nb steel when the exhaust gas is heated to a high temperature due to the strengthening of automobile exhaust gas regulations. For such a problem, SUS444 steel (18Cr-2Mo-Nb steel) in which the addition amount of the alloy element is increased as compared with Type 429Nb steel is used.

しかし、SUS444鋼は、Type429Nb鋼に比べて、室温における加工性が低下する上に、靱性が乏しいために加工時に脆性破壊を起こし易いという問題がある。これらの対策として、析出物量を抑制することで靭性を確保した技術がある。   However, SUS444 steel has a problem that it has a lower workability at room temperature than Type 429Nb steel and has a tendency to cause brittle fracture during processing due to its poor toughness. As these countermeasures, there is a technique that ensures toughness by suppressing the amount of precipitates.

例えば、特許文献1では、最終仕上げ焼鈍において、加熱後600℃までの冷却速度を、2℃/s以上とすることで、靭性の低下を抑制する技術が開示されている。しかしながら、Nb含有量が多い場合は、析出量も多くなり、2℃/s以上で冷却を行っても、析出を十分に抑制できずに靱性が低下する場合がある。   For example, Patent Document 1 discloses a technique for suppressing a decrease in toughness by setting a cooling rate to 600 ° C. after heating to 2 ° C./s or more in final finish annealing. However, when the Nb content is high, the amount of precipitation increases, and even if cooling is performed at 2 ° C./s or more, precipitation may not be sufficiently suppressed and toughness may be reduced.

特許文献2は、最終焼鈍後の冷却速度をNb含有量に応じて変更することで靭性を改善する技術である。しかしながら、最終焼鈍後の冷却速度を早くするだけでは、析出抑制が十分ではないケースもある。
特許第2923825号公報 特願2006−18331号
Patent Document 2 is a technique for improving toughness by changing the cooling rate after the final annealing according to the Nb content. However, there are cases where precipitation suppression is not sufficient only by increasing the cooling rate after the final annealing.
Japanese Patent No. 2923825 Japanese Patent Application No. 2006-18331

上述のような技術を用いても加工の程度によっては脆性破壊を十分抑制するまでには至っていないという問題がある。そこで、本発明は、掛かる事情に鑑み、自動車用排気系部品に要求される、高温耐力と靭性を両立させたフェライト系ステンレス鋼およびその製造方法を提案することを目的とする。   There is a problem that even if the technique as described above is used, brittle fracture is not sufficiently suppressed depending on the degree of processing. SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to propose a ferritic stainless steel that is compatible with high-temperature proof stress and toughness required for automobile exhaust system parts and a method for producing the same.

発明者等はフェライト系ステンレス鋼の靭性に及ぼす析出物の関係について鋭意研究を重ね、粒界に析出する析出物の量を適切に制御することにより、靭性に優れるフェライト系ステンレス鋼を得られることを知見した。その要旨は、以下の通りである。   The inventors have conducted intensive research on the relationship between precipitates affecting the toughness of ferritic stainless steel, and can appropriately obtain the ferritic stainless steel having excellent toughness by appropriately controlling the amount of precipitates precipitated at grain boundaries. I found out. The summary is as follows.

第一の発明は、冷延鋼板の任意の切断面に出現する結晶粒及び析出物を電子顕微鏡で観察して、結晶粒界上析出物の占有率を、結晶粒界上において各析出物の占める長さと結晶粒界長さとの比として、式(1)で算出し、該占有率を0.4以下としたことを特徴とする靱性に優れたフェライト系ステンレス鋼である。   In the first invention, the crystal grains and precipitates appearing on an arbitrary cut surface of the cold-rolled steel sheet are observed with an electron microscope, and the occupancy ratio of the precipitates on the crystal grain boundaries is determined on the crystal grain boundaries. It is a ferritic stainless steel excellent in toughness characterized in that the ratio between the occupied length and the grain boundary length is calculated by the formula (1) and the occupation ratio is set to 0.4 or less.

Figure 2009102728
Figure 2009102728

第二の発明は、質量%で、C<0.020%、Si≦0.25%、Mn<2.00%、P<0.060%、S<0.008%、Cr:12.0%以上、20.0%未満、Ni<1.00%、Nb:10×(C+N)%以上、0.80%未満、N<0.020%、B:0.0005%以上、0.0100%未満を含み、残部はFeおよび不可避的不純物からなる組成を有することを特徴とする第一の発明に記載の靱性に優れたフェライト系ステンレス鋼である。   The second invention is, by mass%, C <0.020%, Si ≦ 0.25%, Mn <2.00%, P <0.060%, S <0.008%, Cr: 12.0 % Or more, less than 20.0%, Ni <1.00%, Nb: 10 × (C + N)% or more, less than 0.80%, N <0.020%, B: 0.0005% or more, 0.0100 %, And the balance is a ferritic stainless steel having excellent toughness as set forth in the first invention, characterized in that it has a composition comprising Fe and inevitable impurities.

第三の発明は、更に質量%で、Mo<3.00%、W<5.00%、Ti<0.5%、Zr<0.5%、Co<3%、Cu<2.00%、V<0.5%の1種または2種以上を含有することを特徴とする第二の発明に記載の靱性に優れたフェライト系ステンレス鋼である。   The third invention is further in terms of mass%, Mo <3.00%, W <5.00%, Ti <0.5%, Zr <0.5%, Co <3%, Cu <2.00%. The ferritic stainless steel having excellent toughness according to the second aspect of the invention, containing one or more of V <0.5%.

第四の発明は、質量%で、C<0.020%、Si≦0.25%、Mn<2.00%、P<0.060%、S<0.008%、Cr:12.0%以上、20.0%未満、Ni<1.00%、Nb:10×(C+N%)以上、0.80%未満、N<0.020%、B:0.0005%以上、0.0100%未満を含み、残部はFeおよび不可避的不純物からなる組成を有する鋼素材を用いた、熱間圧延、熱延板焼鈍および冷延板焼鈍工程において、900〜700℃に曝される時間の合計を150秒以下、且つ熱延板焼鈍および冷延板焼鈍後の900℃から700℃への冷却時間の合計を20秒以下として製造することを特徴とする靱性に優れたフェライト系ステンレス鋼の製造方法である。   The fourth invention is mass%, C <0.020%, Si ≦ 0.25%, Mn <2.00%, P <0.060%, S <0.008%, Cr: 12.0 % Or more, less than 20.0%, Ni <1.00%, Nb: 10 × (C + N%) or more, less than 0.80%, N <0.020%, B: 0.0005% or more, 0.0100 % Of the total time exposed to 900 to 700 ° C. in the hot rolling, hot rolled sheet annealing and cold rolled sheet annealing processes using a steel material having a composition comprising Fe and inevitable impurities. Of ferritic stainless steel having excellent toughness, characterized in that the total cooling time from 900 ° C. to 700 ° C. after hot-rolled sheet annealing and cold-rolled sheet annealing is 20 seconds or less Is the method.

第五の発明は、更に質量%で、Mo<3.00%、W<5.00%、Ti<0.5%、Zr<0.5%、Co<3%、Cu<2.00%、V<0.5%の1種または2種以上を含有することを特徴とする第四の発明に記載の靱性に優れたフェライト系ステンレス鋼の製造方法である。   According to the fifth aspect of the present invention, Mo <3.00%, W <5.00%, Ti <0.5%, Zr <0.5%, Co <3%, Cu <2.00%. V <0.5% of one type or two or more types. The method for producing a ferritic stainless steel excellent in toughness according to the fourth invention.

第六の発明は、さらに、質量%で、Cu:0.8〜2.0%を含む鋼素材の熱延板焼鈍および冷延板焼鈍後の700℃から500℃への冷却時間の合計を20秒以下とすることを特徴とする第四の発明に記載の靱性に優れたフェライト系ステンレス鋼の製造方法である。   In the sixth invention, the total of the cooling time from 700 ° C. to 500 ° C. after hot-rolled sheet annealing and cold-rolled sheet annealing of a steel material containing Cu: 0.8 to 2.0% by mass% is further provided. The method for producing a ferritic stainless steel having excellent toughness according to the fourth invention, characterized in that the time is 20 seconds or less.

第七の発明は、さらに、質量%で、Cu:0.8〜2.0%を含み、且つMo<3.00%、W<5.00%、Ti<0.5%、Zr<0.5%、Co<3%、V<0.5%の1種または2種以上を含有する鋼素材の熱延板焼鈍および冷延板焼鈍後の700℃から500℃への冷却時間の合計を20秒以下とすることを特徴とする第四の発明に記載の靱性に優れたフェライト系ステンレス鋼の製造方法である。   The seventh invention further includes, in mass%, Cu: 0.8 to 2.0%, and Mo <3.00%, W <5.00%, Ti <0.5%, Zr <0. Total cooling time from 700 ° C. to 500 ° C. after hot-rolled sheet annealing and cold-rolled sheet annealing of steel materials containing 5%, Co <3%, V <0.5% The method for producing a ferritic stainless steel excellent in toughness according to the fourth invention, characterized in that is made 20 seconds or less.

本発明によれば、鋼の結晶粒界上において析出物の占める割合を制御することで、靱性及び高温強度に優れたフェライト系ステンレス鋼が得られる。そして、本発明のフェライト系ステンレス鋼は、靱性と高温強度に優れるため、例えば、自動車用排気系部材として好適な部材が安価に得られ、産業上、大きな効果をもたらすことができる。また、本発明は、自動車用排気系部材と同様の特性が要求され、主に高温環境で使用されるような種々の部材としても好適であり、工業的価値は極めて高い。   According to the present invention, ferritic stainless steel excellent in toughness and high-temperature strength can be obtained by controlling the proportion of precipitates on the grain boundaries of steel. And since the ferritic stainless steel of this invention is excellent in toughness and high temperature strength, for example, a suitable member as an exhaust system member for automobiles can be obtained at a low cost, and a great effect can be brought about industrially. Further, the present invention is required to have the same characteristics as those of an automobile exhaust system member, and is also suitable as various members used mainly in a high temperature environment, and has an extremely high industrial value.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

1.実験結果について
まず、本発明者等が行った基礎的な実験結果について説明する。なお、本明細書において、鋼の成分を示す%は全てmass%をあらわす。
1. About Experimental Results First, basic experimental results conducted by the present inventors will be described. In addition, in this specification, all the% which shows the component of steel represents mass%.

0.01%C−0.01%N−0.1%Si−15%Cr−0.5%Nb−0.0015%B鋼をベースとした100Kg鋼塊を種々溶製した後、種々の条件で熱間圧延、熱延板焼鈍、酸洗、冷間圧延、冷延板焼鈍を順次施し、板厚1.5〜2.5mmの冷延焼鈍板を作製した。得られた冷延焼鈍板について以下の方法で評価した。   After various melting of 100 kg steel ingots based on 0.01% C-0.01% N-0.1% Si-15% Cr-0.5% Nb-0.0015% B steel, Under the conditions, hot rolling, hot rolled sheet annealing, pickling, cold rolling, and cold rolled sheet annealing were sequentially performed to produce a cold rolled annealed sheet having a thickness of 1.5 to 2.5 mm. The obtained cold-rolled annealed sheet was evaluated by the following method.

(a)結晶粒界上析出物の占有率
得られた、冷延焼鈍板の圧延方向に垂直な任意の切断面から試料を採取し、析出物3の分布を電子顕微鏡で観察を行った。図3に走査型電子顕微鏡による結晶粒界上析出物の観察結果の一例を示す。結晶粒界長さ3mmに相当する視野を詳細に観察し、結晶粒界2の長さと結晶粒界上に析出している析出物3の長さを測定した。
(A) Occupancy ratio of precipitates on grain boundaries A sample was taken from an arbitrary cut surface perpendicular to the rolling direction of the obtained cold-rolled annealed plate, and the distribution of precipitates 3 was observed with an electron microscope. FIG. 3 shows an example of observation results of precipitates on the grain boundaries by a scanning electron microscope. The field of view corresponding to the crystal grain boundary length of 3 mm was observed in detail, and the length of the crystal grain boundary 2 and the length of the precipitate 3 deposited on the crystal grain boundary were measured.

ここで、結晶粒界2の長さは、図3に示すように、電子顕微鏡の1視野に出現した全結晶粒界長さの合計値(A)+(B)+(C)である。そして、結晶粒界上析出物の占有率を式(1)により算出した。   Here, the length of the crystal grain boundary 2 is a total value (A) + (B) + (C) of all the crystal grain boundary lengths appearing in one field of view of the electron microscope, as shown in FIG. And the occupation rate of the precipitate on a crystal grain boundary was computed by Formula (1).

Figure 2009102728
Figure 2009102728

(b)靱性
冷延焼鈍板から、JISZ2242の規定に準拠して、Vノッチの方向を板幅方向とするVノッチシャルピー試験片を採取し、−80〜+20℃の範囲でシャルピー試験を実施し、延性脆性破面遷移温度を調査した。ここで、本発明に於いて「靱性に優れる」とは、延性脆性破面遷移温度が−30℃未満になることをいう。また、特に靱性に優れるものは延性脆性遷移温度が−60℃未満になることをいう。
(B) Toughness A V-notched Charpy test piece having the V-notch direction as the sheet width direction was collected from a cold-rolled annealed plate in accordance with JISZ2242, and a Charpy test was conducted in the range of -80 to + 20 ° C. The ductile brittle fracture surface transition temperature was investigated. Here, in the present invention, “excellent toughness” means that the ductile brittle fracture surface transition temperature is less than −30 ° C. In addition, particularly excellent toughness means that the ductile brittle transition temperature is less than −60 ° C.

(c)高温強度
冷延焼鈍板から、JISZ2201に規定された13号B試験片を各2本ずつ採取し、JISG0567の規定に準拠して、試験温度900℃、歪速度0.3%/minの条件で高温引張試験を実施した。900℃における0.2%耐力を測定し、2本の平均値を求めた。
(C) High temperature strength Two pieces of each No. 13 B test piece specified in JISZ2201 were sampled from each cold-rolled annealed plate, and the test temperature was 900 ° C. and the strain rate was 0.3% / min in accordance with the provisions of JISG0567. The high temperature tensile test was carried out under the following conditions. The 0.2% yield strength at 900 ° C. was measured, and the average value of the two was determined.

シャルピー試験結果を結晶粒界上析出物の占有率の調査結果との関係で整理し、図2に示す。図2は、得られた冷延焼鈍板の靱性に及ぼす結晶粒界上析出物の占有率の影響の一例を示すものである。   The Charpy test results are organized in relation to the results of investigating the occupancy rate of precipitates on grain boundaries, and are shown in FIG. FIG. 2 shows an example of the influence of the occupancy ratio of the precipitates on the grain boundaries on the toughness of the obtained cold-rolled annealed sheet.

結晶粒界上析出物の占有率を0.4以下に制御することで、延性脆性波面遷移温度(図中DBTTと略記)は−30℃未満となり、良好な靭性となることがわかる。従って発明者等は、フェライト系ステンレス鋼の結晶粒界上析出物の占有率を0.4以下とすることにより、本発明の課題である、靭性に優れたフェライト系ステンレス鋼を得ることを見出した。   It can be seen that the ductile brittle wavefront transition temperature (abbreviated as DBTT in the figure) is less than −30 ° C. by controlling the occupancy ratio of the precipitates on the grain boundaries to 0.4 or less, and good toughness is obtained. Accordingly, the inventors have found that the ferritic stainless steel having excellent toughness, which is the subject of the present invention, is obtained by setting the occupancy ratio of the precipitates on the grain boundaries of the ferritic stainless steel to 0.4 or less. It was.

そこで、発明者等は、以上の知見に基づき、フェライト系ステンレス鋼を以下に示す成分組成、製造方法に制御することで、結晶粒界上析出物の占有率を0.4以下とした、靭性に優れたフェライト系ステンレス鋼を提供するものである。   Therefore, based on the above knowledge, the inventors controlled the ferritic stainless steel to the component composition and production method shown below, thereby setting the occupancy ratio of the precipitates on the grain boundaries to 0.4 or less. It is intended to provide a ferritic stainless steel excellent in the above.

2.成分組成について
本発明に係る靭性に優れたフェライト系ステンレス鋼の成分組成の限定理由は、以下の通りである。なお、成分%は、全て質量%を意味する。
2. About component composition The reason for limitation of the component composition of the ferritic stainless steel excellent in toughness according to the present invention is as follows. In addition, all component% means the mass%.

C:0.020%未満
Cは鋼の強度を増加させる元素であるが、0.020%以上含むと靱性および成形性の低下が顕著となるため、0.020%未満とした。成形性を考慮すると、C含有量は低いほど好ましく、より好適には0.008%以下である。
C: Less than 0.020% C is an element that increases the strength of the steel. However, if it is contained in an amount of 0.020% or more, the toughness and formability deteriorate significantly, so the content was made less than 0.020%. In consideration of moldability, the C content is preferably as low as possible, and more preferably 0.008% or less.

Si:0.25%以下
Siは本発明において重要な元素である。Siは合金元素の析出を促進する元素であり、Siを低減することで結晶粒界上析出物の占有率は減少する。Siを低減するほどその効果は大きいが、低減しすぎると耐酸化性の低下を招く。好ましくは0.01%以上0.1%未満である。
Si: 0.25% or less Si is an important element in the present invention. Si is an element that promotes precipitation of alloy elements, and by reducing Si, the occupancy ratio of precipitates on grain boundaries decreases. The effect is greater as Si is reduced, but if it is reduced too much, the oxidation resistance is lowered. Preferably it is 0.01% or more and less than 0.1%.

Mn:2.00%未満
Mnは脱酸剤としての作用を有するとともに、酸化皮膜の密着性を向上させる元素である。しかしながら、過剰に添加されると粗大なMnSを形成し、成形性、耐食性を低下させる。このため、本発明では2.00%未満に限定した。より好適には1.00%未満である。
Mn: less than 2.00% Mn is an element that acts as a deoxidizer and improves the adhesion of the oxide film. However, when added excessively, coarse MnS is formed, and moldability and corrosion resistance are lowered. For this reason, in this invention, it limited to less than 2.00%. More preferably, it is less than 1.00%.

P:0.060%未満
Pは成形性,靱性を低下させる元素であり,できるだけ低減するのが望ましいが,脱Pコストの観点から,0.060%未満に限定した。より好適には0.030%未満である。
P: Less than 0.060% P is an element that lowers formability and toughness, and it is desirable to reduce it as much as possible. However, from the viewpoint of de-P cost, it is limited to less than 0.060%. More preferably, it is less than 0.030%.

S:0.008%未満
Sは耐食性を低下させる元素であるであり、できるだけ低減するのが望ましいが、脱Sコストの観点から、0.008%未満に限定した。より好適には0.005%未満である。
S: Less than 0.008% S is an element that lowers corrosion resistance, and it is desirable to reduce it as much as possible. However, from the viewpoint of removing S cost, it is limited to less than 0.008%. More preferably, it is less than 0.005%.

Cr:12.0%以上、20.0%未満
Crは耐食性、耐酸化性を向上させる元素であり、このような効果は12.0%以上の添加で認められる。ただし、過剰に添加されると靱性を低下させるので、20.0%未満に限定した。より好適には13.0%以上、16.0%未満である。
Cr: 12.0% or more and less than 20.0% Cr is an element that improves corrosion resistance and oxidation resistance, and such an effect is recognized when 12.0% or more is added. However, if added in excess, the toughness is reduced, so it was limited to less than 20.0%. More preferably, it is 13.0% or more and less than 16.0%.

Ni:1.00%未満
Niは靱性を向上させる元素であるが、過剰な添加は原料コストの増大を招くので1.00%未満に限定した。より好適には0.01%以上、0.80%未満である。
Ni: Less than 1.00% Ni is an element that improves toughness, but excessive addition causes an increase in raw material cost, so it was limited to less than 1.00%. More preferably, it is 0.01% or more and less than 0.80%.

Nb:10×(C+N)%以上、0.80%未満
NbはC、Nを固定することにより、鋼の成形性や耐食性等を向上させ、また鋼に固溶することにより、高温強度を高める効果を有する。このような効果は、10×(C+N)%以上の含有で認められる。しかしながら、過剰な添加は靱性の低下を招くため、0.80%未満に限定した。より好適には、0.20%以上、0.70%未満である。
Nb: 10 × (C + N)% or more and less than 0.80% Nb improves the formability and corrosion resistance of steel by fixing C and N, and increases the high temperature strength by dissolving in steel. Has an effect. Such an effect is recognized when the content is 10 × (C + N)% or more. However, excessive addition causes a reduction in toughness, so it was limited to less than 0.80%. More preferably, it is 0.20% or more and less than 0.70%.

N:0.020%未満
Nは鋼の靱性および成形性を低下させる元素であり、0.020%以上含むと、靱性および成形性の低下が顕著となる。このため、0.020%未満に限定した、より好適には0.010%未満である。
N: Less than 0.020% N is an element that lowers the toughness and formability of steel. When 0.020% or more is contained, the toughness and formability are significantly reduced. For this reason, it is limited to less than 0.020%, more preferably less than 0.010%.

B:0.0005%以上、0.0100%未満
Bは本発明において重要な元素である。Bは加工性、特に2次加工性を向上させる元素として知られているが、本明細書において定義する粒界上析出物占有率を低減する効果を持つ。このような効果は、0.0005%以上で顕著となるが、0.0100%以上添加するとBNが析出し、加工性が低下するため、0.0100%未満に限定する。より好適には0.0005%以上、0.0050%未満である。
B: 0.0005% or more and less than 0.0100% B is an important element in the present invention. B is known as an element that improves workability, particularly secondary workability, and has the effect of reducing the precipitate occupancy ratio on grain boundaries as defined in this specification. Such an effect becomes remarkable when the content is 0.0005% or more. However, when 0.0100% or more is added, BN precipitates and the workability decreases, so the content is limited to less than 0.0100%. More preferably, it is 0.0005% or more and less than 0.0050%.

Mo:3.00%未満、W:5.00%未満
Moは鋼に固溶することにより高温強度および耐食性を高める。このような効果は、0.80%以上の添加で認められるが、3.00%以上含むと成形性が低下し、原料コストの増大も招くため、3.00%未満に限定した。より好適には1.00%以上、2.50%未満である。WもMo同様の効果を有するが、好適範囲が異なる。5%以上添加で成形性が低下する。好適範囲は1.00%以上、3.00%未満である。
Mo: less than 3.00%, W: less than 5.00% Mo improves the high-temperature strength and corrosion resistance by dissolving in steel. Such an effect is recognized when 0.80% or more is added, but if it is contained 3.00% or more, the moldability is lowered and the raw material cost is increased, so the content is limited to less than 3.00%. More preferably, it is 1.00% or more and less than 2.50%. W also has the same effect as Mo, but the preferred range is different. When 5% or more is added, moldability is lowered. The preferred range is 1.00% or more and less than 3.00%.

Ti:0.5%未満、Zr:0.5%未満
Ti、Zrは成形性を向上させる元素であり、NbよりC、Nとの親和力が強いため、Nbの固溶量を増加させる。このような効果は、0.02%以上で顕著となるが、0.50%以上添加すると粗大なTi(C,N)が析出し、表面性状を劣化させるため、0.50%未満に限定する。より好適には0.02%以上、0.40%未満である。
Ti: Less than 0.5%, Zr: Less than 0.5% Ti and Zr are elements that improve the formability and have a stronger affinity for C and N than Nb, and therefore increase the solid solution amount of Nb. Such an effect becomes remarkable at 0.02% or more, but if added at 0.50% or more, coarse Ti (C, N) precipitates and deteriorates the surface properties, so it is limited to less than 0.50%. To do. More preferably, it is 0.02% or more and less than 0.40%.

Co:3%未満
Coは、高温強度を向上させる元素であり、必要に応じて含むことができる。このような効果は、0.50%以上の添加で顕著となるが、3.00%以上添加すると、鋼が脆化するため、3.00%未満に限定する。より好適には、0.80%以上、2.00%未満である。
Co: Less than 3% Co is an element that improves the high-temperature strength, and can be contained as necessary. Such an effect becomes remarkable when 0.50% or more is added, but if 3.00% or more is added, the steel becomes brittle, so the content is limited to less than 3.00%. More preferably, it is 0.80% or more and less than 2.00%.

Cu:2.00%未満
Cuは、成形性および耐食性を向上させる元素である。このような効果は、0.05%以上の添加で顕著となるが、2.00%以上の過剰な添加により脆化するため、2.00%未満に限定する。より好適には、0.05%以上、1.5%未満である。
Cu: Less than 2.00% Cu is an element that improves formability and corrosion resistance. Such an effect becomes remarkable when 0.05% or more is added, but it becomes brittle when excessive addition is 2.00% or more, so it is limited to less than 2.00%. More preferably, it is 0.05% or more and less than 1.5%.

また、Cuは自動車排気系部品などに与えられる熱サイクルにおいて、固溶と析出を繰り返すことで、長時間にわたって疲労寿命を向上する効果を有する。鋼素材中に0.8%未満の添加では、その効果が現れにくく、2.0%を超えて添加すると脆化するため、0.8〜2.0%の範囲が好ましい。   Further, Cu has an effect of improving the fatigue life over a long period of time by repeating solid solution and precipitation in a thermal cycle given to automobile exhaust system parts and the like. If less than 0.8% is added to the steel material, the effect is not likely to appear, and if added over 2.0%, embrittlement occurs, so a range of 0.8 to 2.0% is preferable.

V:0.5%未満
Vは、成形性を向上させる元素である。このような効果は、0.05%以上で顕著となるが、0.50%以上添加すると、粗大なV(C,N)が析出し、表面性状を劣化させるため、0.50%未満に限定する。より好適には、0.05%以上、0.40%未満である。
V: Less than 0.5% V is an element that improves moldability. Such an effect becomes remarkable at 0.05% or more, but when 0.50% or more is added, coarse V (C, N) precipitates and deteriorates the surface properties, so that it is less than 0.50%. limit. More preferably, it is 0.05% or more and less than 0.40%.

3.製造方法について
本発明に係る靭性に優れたフェライト系ステンレス鋼の製造方法は、含有成分を上述した成分組成の範囲に限定し、熱延板、冷延板の焼鈍条件、冷延圧下率、熱間仕上圧延における温度範囲を制御する点以外に関しては、特に限定されるものではなく、通常公知の方法がすべて適用できる(以下、各製造プロセスで使用する装置については、公知につき図示しない)。
3. About the manufacturing method The manufacturing method of the ferritic stainless steel excellent in toughness according to the present invention is limited to the range of the component composition described above, the hot rolled sheet, the annealing condition of the cold rolled sheet, the cold rolling reduction ratio, the heat Except for controlling the temperature range in the intermediate finish rolling, there is no particular limitation, and all known methods are generally applicable (hereinafter, the devices used in each manufacturing process are not shown because they are known).

例えば、製鋼工程は、転炉、電気炉等で上記した適正組成範囲に調整した溶鋼を溶製し、強攪拌・真空酸素脱炭処理(SS−VOD法という)により2次精錬を行って、溶鋼を溶製するのが好適である。鋳造方法は、生産性、品質の面から連続鋳造が好ましい。鋳造により得られた鋼鋳片(スラブ等)の圧延工程は、必要により再加熱し、熱間圧延し、900〜1100℃で熱延板焼鈍したのち酸洗するのが良い。酸洗された熱延板は、冷間圧延、仕上げ焼鈍、酸洗の各工程を順次経て、冷延焼鈍板とするのが好適である。以下に本発明を実施するにあたり好ましい条件を示す。   For example, in the steelmaking process, molten steel adjusted to the above-described proper composition range in a converter, electric furnace or the like is melted and subjected to secondary refining by strong stirring and vacuum oxygen decarburization treatment (referred to as SS-VOD method), It is preferable to melt molten steel. The casting method is preferably continuous casting in terms of productivity and quality. The rolling process of the steel slab (slab etc.) obtained by casting is good to re-heat if necessary, hot-roll, hot-rolled sheet annealing at 900-1100 ° C, and then pickled. The hot-rolled sheet that has been pickled is preferably made into a cold-rolled annealed sheet through the steps of cold rolling, finish annealing, and pickling. The following are preferred conditions for carrying out the present invention.

(a)加熱炉抽出後の熱間圧延、熱延板焼鈍および冷延板焼鈍工程において、900〜700℃に曝される時間の合計が150秒以下、且つ焼鈍後の900℃から700℃への冷却時間の合計が20秒以下とするのが、本発明の必須事項である。   (A) In the hot rolling, hot-rolled sheet annealing and cold-rolled sheet annealing steps after extraction from the heating furnace, the total time exposed to 900 to 700 ° C. is 150 seconds or less, and from 900 ° C. after annealing to 700 ° C. It is an essential matter of the present invention that the total cooling time is 20 seconds or less.

本発明において、Nb含有金属間化合物などが析出し易い、900〜700℃の間に曝される時間を、可能な限り低減することが重要である。特に冷却工程における冷却時間を短くすることが重要であるが、焼鈍工程における昇温時間を短くすることも重要であることが明らかとなった。   In the present invention, it is important to reduce as much as possible the time during which the Nb-containing intermetallic compound and the like are easily deposited, and the exposure time is between 900 to 700 ° C. In particular, it is important to shorten the cooling time in the cooling process, but it is also important to shorten the temperature raising time in the annealing process.

また、詳細な原因については研究中であるが、析出サイトと析出量は前工程の影響を受け易いので、冷延焼鈍板に於いて結晶粒界上析出物の占有率を0.4以下の範囲内とするためには、析出物が析出し易い温度域の合計の時間を制御する必要がある。   In addition, although the detailed cause is under study, the precipitation site and the precipitation amount are easily affected by the previous process, so the occupancy ratio of the precipitates on the grain boundaries in the cold-rolled annealed sheet is 0.4 or less. In order to make it within the range, it is necessary to control the total time of the temperature range in which precipitates are likely to precipitate.

図1に、熱間圧延、熱延板焼鈍および冷延板焼鈍工程において、900〜700℃に曝される時間の合計(秒)と熱延板焼鈍および冷延板焼鈍後における900℃から700℃への冷却時間の合計(秒)および結晶粒界上析出物の占有率の関係を示す。なお、冷延板圧下率は60%とした。本結果によれば、結晶粒界上析出物の占有率を0.4以下にするためには、熱間圧延、熱延板焼鈍および冷延板焼鈍工程において、900〜700℃に曝される時間の合計を150秒以下、且つ熱延板焼鈍および冷延板焼鈍後における900℃から700℃への冷却時間の合計を20秒以下とする必要があることが判る。   FIG. 1 shows the total time (seconds) of exposure to 900 to 700 ° C. and 900 to 700 ° C. after hot rolling and cold rolling annealing in hot rolling, hot rolling annealing and cold rolling annealing. The relationship between the total cooling time to ° C. (seconds) and the occupancy ratio of precipitates on grain boundaries is shown. Note that the cold rolling reduction ratio was 60%. According to this result, in order to reduce the occupancy ratio of the precipitates on the grain boundaries to 0.4 or less, it is exposed to 900 to 700 ° C. in the hot rolling, hot rolled sheet annealing and cold rolled sheet annealing processes. It can be seen that the total time needs to be 150 seconds or less and the total cooling time from 900 ° C. to 700 ° C. after hot-rolled sheet annealing and cold-rolled sheet annealing needs to be 20 seconds or less.

また、Cuを0.8〜2.0%含む場合は、熱延板焼鈍および冷延板焼鈍後の700℃から500℃への冷却時間の合計を20秒以下とすることで冷延板の靱性をより優れたものとすることが可能となる。700℃以下で保持される時間は小さいほど好ましい。   Moreover, when containing Cu 0.8 to 2.0%, the total of the cooling time from 700 degreeC to 500 degreeC after hot-rolled sheet annealing and cold-rolled sheet annealing shall be 20 seconds or less, and a cold-rolled sheet of It becomes possible to make the toughness more excellent. The smaller the time maintained at 700 ° C. or lower, the better.

(b)冷間圧延について
冷間圧延に於いて、あまり大きな歪を導入すると、最終焼鈍における析出量が増加したり、大きすぎる圧下率は鋼板の異方性を大きくする。また圧下率が低いと十分な再結晶組織を得られない。従って、好ましい冷間圧下率は40〜75%である。
(B) About cold rolling If a too large strain is introduced in the cold rolling, the precipitation amount in the final annealing increases, or a too high rolling reduction increases the anisotropy of the steel sheet. If the rolling reduction is low, a sufficient recrystallized structure cannot be obtained. Therefore, a preferable cold rolling reduction is 40 to 75%.

(c)焼鈍条件について
熱延板焼鈍および冷延板焼鈍に於いて、高温に曝される時間が長いと、結晶粒の粗大化を招き、靭性を低下させる恐れがある。従って、1000℃以上に曝される時間は短いほど良く、好ましくは300秒以下である。
(C) About annealing conditions In hot-rolled sheet annealing and cold-rolled sheet annealing, if the time exposed to high temperature is long, the crystal grains become coarse and the toughness may be reduced. Therefore, the shorter the time of exposure to 1000 ° C. or higher, the better, preferably 300 seconds or less.

表1及び表2に示す成分組成を有する種々のフェライト系ステンレス鋼を溶製した。得られた鋼塊を1200℃に加熱後、熱間圧延により板厚5〜6mmの熱延板とし、900〜1200℃の熱延板焼鈍および酸洗処理を施した。次いで、冷間圧延により板厚1.5〜2.5mmの冷延板とし、900℃〜1200℃の仕上げ焼鈍を行った。   Various ferritic stainless steels having the component compositions shown in Tables 1 and 2 were melted. The obtained steel ingot was heated to 1200 ° C., and then hot-rolled to a hot-rolled sheet having a thickness of 5 to 6 mm, and subjected to hot-rolled sheet annealing and pickling treatment at 900 to 1200 ° C. Next, cold rolling was performed to obtain a cold-rolled sheet having a thickness of 1.5 to 2.5 mm, and finish annealing was performed at 900 ° C to 1200 ° C.

このようにして得られたフェライト系ステンレス鋼の冷延焼鈍板について試験用の試料を採取して、以下に記載の評価方法に基づいて、シャルピー試験、高温引張試験、電子顕微鏡観察をおこなった。   A test sample was collected from the ferritic stainless steel cold-rolled annealed plate thus obtained, and a Charpy test, a high-temperature tensile test, and an electron microscope observation were performed based on the evaluation methods described below.

(a)靱性評価
冷延焼鈍板から、JISZ2242の規定に準拠して、Vノッチの方向を板幅方向とするVノッチシャルピー試験片を採取し、−80〜+20℃の範囲でシャルピー試験を実施し、延性脆性破面遷移温度を判定した。延性脆性波面遷移温度は−30℃未満を本発明の範囲と判断した。
(A) Toughness evaluation In accordance with JISZ2242, the V-notch Charpy test piece with the V-notch direction as the plate width direction is collected from the cold-rolled annealed plate, and the Charpy test is performed in the range of -80 to + 20 ° C. The ductile brittle fracture surface transition temperature was determined. The ductile brittle wavefront transition temperature was determined to be less than −30 ° C. within the scope of the present invention.

(b)高温強度評価
冷延焼鈍板から、JISZ2201に規定された13号B試験片を各2本ずつ採取し、JISG0567の規定に準拠して、試験温度900℃、歪速度0.3%/minの条件で高温引張試験を実施した。900℃における0.2%耐力を測定し、2本の平均値を求めた。高温強度は、25MPa以上の強度を本発明の範囲と判断した。
(B) High-temperature strength evaluation Two pieces of each No. 13 B test piece specified in JISZ2201 were sampled from the cold-rolled annealed plate, and the test temperature was 900 ° C and the strain rate was 0.3% / in accordance with the provisions of JISG0567. A high temperature tensile test was performed under the condition of min. The 0.2% yield strength at 900 ° C. was measured, and the average value of the two was determined. Regarding the high-temperature strength, a strength of 25 MPa or more was judged as the range of the present invention.

(c)結晶粒界上析出物の占有率評価
冷延焼鈍板の圧延方向に垂直な任意の切断面から試料を採取し、析出物の分布を電子顕微鏡で観察を行った。図3に示した実験結果と同様に、結晶粒界長さ3mmに相当する視野を詳細に観察し、結晶粒界の長さと結晶粒界上に析出している析出物の長さを測定した。
(C) Evaluation of Occupancy Ratio of Precipitates on Grain Boundary A sample was taken from an arbitrary cut surface perpendicular to the rolling direction of the cold-rolled annealed plate, and the precipitate distribution was observed with an electron microscope. Similar to the experimental results shown in FIG. 3, the field of view corresponding to the grain boundary length of 3 mm was observed in detail, and the length of the crystal grain boundary and the length of precipitates deposited on the grain boundary were measured. .

結晶粒界の長さは、図3に示した場合と同様に、電子顕微鏡の1視野に出現した全結晶粒界長さの合計値(A)+(B)+(C)で表した。そして、結晶粒界上析出物の占有率を式(1)により算出した。算出した値が0.4以下を本発明の範囲とした。   The length of the crystal grain boundary was represented by the total value (A) + (B) + (C) of all the grain boundary lengths appearing in one field of view of the electron microscope, as in the case shown in FIG. And the occupation rate of the precipitate on a crystal grain boundary was computed by Formula (1). The calculated value is 0.4 or less as the range of the present invention.

Figure 2009102728
Figure 2009102728

製造条件と得られた鋼板の延性脆性破面遷移温度、結晶粒界上析出物の占有率および900℃における高温強度を表1に示す。
なお、表1及び表2の分類区分中、HR+HA+CAは、熱間圧延、熱延板焼鈍および冷延板焼鈍において900〜700℃に曝された時間(秒)を、HA↓+CA↓は、熱延板焼鈍および冷延板焼鈍における900℃から700℃への冷却時間(秒)および700℃から500℃への冷却時間(秒)を、HA+CAは、熱延板焼鈍および冷延板焼鈍において1000℃以上に曝された時間(秒)を、Σ/Σは、結晶粒界上析出物の占有率を、DBTTは延性脆性破面遷移温度を意味している。
Table 1 shows the production conditions, the ductile brittle fracture surface transition temperature of the obtained steel sheet, the occupancy ratio of precipitates on the grain boundaries, and the high-temperature strength at 900 ° C.
In the classification categories in Tables 1 and 2, HR + HA + CA is the time (seconds) exposed to 900 to 700 ° C. in hot rolling, hot rolled sheet annealing, and cold rolled sheet annealing. CA ↓ is the cooling time from 900 ° C to 700 ° C (seconds) and 700 ° C to 500 ° C (seconds) in hot-rolled sheet annealing and cold-rolled sheet annealing, and HA + CA is hot-rolled sheet annealing. In addition, the time (seconds) exposed to 1000 ° C. or more in the cold-rolled sheet annealing, Σ / Σ means the occupancy ratio of precipitates on the grain boundaries, and DBTT means the ductile brittle fracture surface transition temperature.

Figure 2009102728
Figure 2009102728

Figure 2009102728
Figure 2009102728

熱間圧延、熱延板焼鈍および冷延板焼鈍において900〜700℃に曝される時間、熱延板焼鈍および冷延板焼鈍における900℃から700℃への冷却時間、1000℃以上に曝される時間および冷延圧下率を本発明の範囲内とした発明例である鋼種A〜Qは、結晶粒界上析出物の占有率は0.4以下、延性脆性波面遷移温度は−30℃未満、900℃における高温強度は25MPa以上の値が得られた。   Time to be exposed to 900-700 ° C in hot rolling, hot rolled sheet annealing and cold rolled sheet annealing, cooling time from 900 ° C to 700 ° C in hot rolled sheet annealing and cold rolled sheet annealing, exposed to 1000 ° C or more Steel types A to Q, which are examples of the invention in which the time and cold rolling reduction ratio are within the scope of the present invention, have an occupancy ratio of precipitates on grain boundaries of 0.4 or less and a ductile brittle wavefront transition temperature of less than −30 ° C. The high temperature strength at 900 ° C. was 25 MPa or more.

一方、比較例である鋼種V〜Zは、成分組成および/または製造条件が発明の範囲を外れているので、靱性、高温強度が不足した。   On the other hand, steel types V to Z, which are comparative examples, are insufficient in toughness and high-temperature strength because the component composition and / or production conditions are outside the scope of the invention.

本発明のフェライト系ステンレス鋼は、靱性と高温強度に優れるため、自動車用排気系部材として好適な部材が得られる。また、自動車用排気系部材と同様の特性が要求され、主に高温環境で使用されるような種々の部材にも適用できる。   Since the ferritic stainless steel of the present invention is excellent in toughness and high temperature strength, a member suitable as an exhaust system member for automobiles can be obtained. Moreover, the same characteristic as the exhaust system member for motor vehicles is requested | required, and it can apply also to various members which are mainly used in a high temperature environment.

熱延以降900〜700℃に曝された時間の合計、900℃から700℃への冷却時間の合計および結晶粒界上析出物の占有率の関係を説明する図である。It is a figure explaining the relationship of the total of the time exposed to 900-700 degreeC after hot rolling, the total of the cooling time from 900 degreeC to 700 degreeC, and the occupation rate of the precipitate on a grain boundary. 結晶粒界上析出物の占有率と靭性(延性脆性破面遷移温度)の関係を説明する図である。It is a figure explaining the relationship between the occupation rate of the precipitate on a crystal grain boundary, and toughness (ductile brittle fracture surface transition temperature). 結晶粒界上の析出物の観察例を説明する図である。It is a figure explaining the example of observation of the precipitate on a crystal grain boundary.

符号の説明Explanation of symbols

1 結晶粒
2 結晶粒界
3 析出物
1 Crystal grain 2 Grain boundary 3 Precipitate

Claims (7)

冷延鋼板の任意の切断面に出現する結晶粒及び析出物を電子顕微鏡で観察して、結晶粒界上析出物の占有率を、結晶粒界上において各析出物の占める長さと結晶粒界長さとの比として、式(1)で算出し、該占有率を0.4以下としたことを特徴とする靱性に優れたフェライト系ステンレス鋼。
Figure 2009102728
The crystal grains and precipitates appearing on an arbitrary cut surface of the cold-rolled steel sheet are observed with an electron microscope, and the occupancy ratio of the precipitates on the crystal grain boundaries is determined by the length of each precipitate on the crystal grain boundaries and the crystal grain boundaries. A ferritic stainless steel excellent in toughness, characterized by being calculated by the formula (1) as a ratio to the length and having an occupation ratio of 0.4 or less.
Figure 2009102728
質量%で、C<0.020%、Si≦0.25%、Mn<2.00%、P<0.060%、S<0.008%、Cr:12.0%以上、20.0%未満、Ni<1.00%、Nb:10×(C+N)%以上、0.80%未満、N<0.020%、B:0.0005%以上、0.0100%未満を含み、残部はFeおよび不可避的不純物からなる組成を有することを特徴とする請求項1記載の靱性に優れたフェライト系ステンレス鋼。   % By mass, C <0.020%, Si ≦ 0.25%, Mn <2.00%, P <0.060%, S <0.008%, Cr: 12.0% or more, 20.0 %, Ni <1.00%, Nb: 10 × (C + N)% or more, less than 0.80%, N <0.020%, B: 0.0005% or more, less than 0.0100%, the balance The ferritic stainless steel having excellent toughness according to claim 1, which has a composition comprising Fe and inevitable impurities. さらに、質量%で、Mo<3.00%、W<5.00%、Ti<0.5%、Zr<0.5%、Co<3%、Cu<2.00%、V<0.5%の1種または2種以上を含有することを特徴とする請求項2記載の靱性に優れたフェライト系ステンレス鋼。   Further, by mass%, Mo <3.00%, W <5.00%, Ti <0.5%, Zr <0.5%, Co <3%, Cu <2.00%, V <0. The ferritic stainless steel having excellent toughness according to claim 2, wherein the ferritic stainless steel contains 5% or more. 質量%で、C<0.020%、Si≦0.25%、Mn<2.00%、P<0.060%、S<0.008%、Cr:12.0%以上、20.0%未満、Ni<1.00%、Nb:10×(C+N%)以上、0.80%未満、N<0.020%、B:0.0005%以上、0.0100%未満を含み、残部はFeおよび不可避的不純物からなる組成を有する鋼素材を用いた、熱間圧延、熱延板焼鈍および冷延板焼鈍工程において、900〜700℃に曝される時間の合計を150秒以下、且つ熱延板焼鈍および冷延板焼鈍後の900℃から700℃への冷却時間の合計を20秒以下として製造することを特徴とする靱性に優れたフェライト系ステンレス鋼の製造方法。   % By mass, C <0.020%, Si ≦ 0.25%, Mn <2.00%, P <0.060%, S <0.008%, Cr: 12.0% or more, 20.0 %, Ni <1.00%, Nb: 10 × (C + N%) or more, less than 0.80%, N <0.020%, B: 0.0005% or more, less than 0.0100%, the balance In a hot rolling, hot-rolled sheet annealing and cold-rolled sheet annealing process using a steel material having a composition consisting of Fe and inevitable impurities, the total time exposed to 900 to 700 ° C. is 150 seconds or less, and A method for producing ferritic stainless steel having excellent toughness, characterized in that the total cooling time from 900 ° C. to 700 ° C. after hot-rolled sheet annealing and cold-rolled sheet annealing is 20 seconds or less. さらに、質量%で、Mo<3.00%、W<5.00%、Ti<0.5%、Zr<0.5%、Co<3%、Cu<2.00%、V<0.5%の1種または2種以上を含有することを特徴とする請求項4記載の靱性に優れたフェライト系ステンレス鋼の製造方法。   Further, by mass%, Mo <3.00%, W <5.00%, Ti <0.5%, Zr <0.5%, Co <3%, Cu <2.00%, V <0. The method for producing ferritic stainless steel having excellent toughness according to claim 4, comprising 5% of one kind or two or more kinds. さらに、質量%で、Cu:0.8〜2.0%を含む鋼素材の熱延板焼鈍および冷延板焼鈍後の700℃から500℃への冷却時間の合計を20秒以下とすることを特徴とする請求項4記載の靱性に優れたフェライト系ステンレス鋼の製造方法。   Furthermore, the total cooling time from 700 ° C. to 500 ° C. after hot-rolled sheet annealing and cold-rolled sheet annealing of a steel material containing Cu: 0.8 to 2.0% by mass% should be 20 seconds or less. The method for producing a ferritic stainless steel excellent in toughness according to claim 4. さらに、質量%で、Cu:0.8〜2.0%を含み、且つMo<3.00%、W<5.00%、Ti<0.5%、Zr<0.5%、Co<3%、V<0.5%の1種または2種以上を含有する鋼素材の熱延板焼鈍および冷延板焼鈍後の700℃から500℃への冷却時間の合計を20秒以下とすることを特徴とする請求項4記載の靱性に優れたフェライト系ステンレス鋼の製造方法。   Further, in mass%, Cu: 0.8 to 2.0%, and Mo <3.00%, W <5.00%, Ti <0.5%, Zr <0.5%, Co < The total cooling time from 700 ° C. to 500 ° C. after hot-rolled sheet annealing and cold-rolled sheet annealing of steel materials containing 3%, V <0.5%, or two or more is 20 seconds or less. The method for producing a ferritic stainless steel excellent in toughness according to claim 4.
JP2008160143A 2007-10-02 2008-06-19 Ferritic stainless steel with excellent toughness and method for producing the same Active JP5396752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160143A JP5396752B2 (en) 2007-10-02 2008-06-19 Ferritic stainless steel with excellent toughness and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007258414 2007-10-02
JP2007258414 2007-10-02
JP2008160143A JP5396752B2 (en) 2007-10-02 2008-06-19 Ferritic stainless steel with excellent toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009102728A true JP2009102728A (en) 2009-05-14
JP5396752B2 JP5396752B2 (en) 2014-01-22

Family

ID=40704705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160143A Active JP5396752B2 (en) 2007-10-02 2008-06-19 Ferritic stainless steel with excellent toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5396752B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120893A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Ferritic stainless steel material for automotive member of exhaust gas path
JP2009120894A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Ferritic stainless steel material for automotive member of exhaust gas path
WO2010146999A1 (en) * 2009-06-17 2010-12-23 独立行政法人物質・材料研究機構 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME
WO2010150636A1 (en) * 2009-06-24 2010-12-29 独立行政法人物質・材料研究機構 Heat-resistant component for chemical processing apparatus and method for producing same
JP2012007195A (en) * 2010-06-22 2012-01-12 Nisshin Steel Co Ltd LOW Cr STAINLESS STEEL EXCELLENT IN HEAT RESISTANCE AND AGE HARDENING CHARACTERISTICS, AND AUTOMOTIVE EXHAUST-GAS PATH MEMBER COMPRISING THE STEEL
WO2012133573A1 (en) * 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
WO2014001644A1 (en) 2012-06-26 2014-01-03 Outokumpu Oyj Ferritic stainless steel
TWI499465B (en) * 2010-01-28 2015-09-11 Jfe Steel Corp High-toughness and high-corrosion resistance hot rolled ferritic stainless steel sheet
EP2824208A4 (en) * 2012-03-09 2016-04-20 Nippon Steel & Sumikin Sst Ferritic stainless steel sheet
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
EP3572544A4 (en) * 2017-01-19 2020-05-20 Nippon Steel Stainless Steel Corporation Ferritic stainless steel and ferritic stainless steel for car exhaust gas pathway member

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299300A (en) * 1993-04-12 1994-10-25 Nippon Steel Corp Ferritic stainless steel wire rod and its production
JPH0849050A (en) * 1994-08-04 1996-02-20 Nippon Steel Corp Production of hot-dip plated ferritic stainless steel good in bendability
JP2000297329A (en) * 1999-04-13 2000-10-24 Nisshin Steel Co Ltd Manufacture of stainless steel strip free from deterioration in corrosion resistance due to grain boundary precipitate
JP2003041341A (en) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd Steel material with high toughness and method for manufacturing steel pipe thereof
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor
JP2005290513A (en) * 2004-04-02 2005-10-20 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for automotive exhaust system member having excellent thermal fatigue characteristic
JP2005298854A (en) * 2004-04-07 2005-10-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent formability, and its manufacturing method
JP2005314740A (en) * 2004-04-28 2005-11-10 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent heat resistance and workability and its production method
JP2007197779A (en) * 2006-01-27 2007-08-09 Jfe Steel Kk Manufacturing method of cr-containing steel sheet having excellent high-temperature strength and toughness, and cr-containing steel sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299300A (en) * 1993-04-12 1994-10-25 Nippon Steel Corp Ferritic stainless steel wire rod and its production
JPH0849050A (en) * 1994-08-04 1996-02-20 Nippon Steel Corp Production of hot-dip plated ferritic stainless steel good in bendability
JP2000297329A (en) * 1999-04-13 2000-10-24 Nisshin Steel Co Ltd Manufacture of stainless steel strip free from deterioration in corrosion resistance due to grain boundary precipitate
JP2003041341A (en) * 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd Steel material with high toughness and method for manufacturing steel pipe thereof
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor
JP2005290513A (en) * 2004-04-02 2005-10-20 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel for automotive exhaust system member having excellent thermal fatigue characteristic
JP2005298854A (en) * 2004-04-07 2005-10-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent formability, and its manufacturing method
JP2005314740A (en) * 2004-04-28 2005-11-10 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent heat resistance and workability and its production method
JP2007197779A (en) * 2006-01-27 2007-08-09 Jfe Steel Kk Manufacturing method of cr-containing steel sheet having excellent high-temperature strength and toughness, and cr-containing steel sheet

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120894A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Ferritic stainless steel material for automotive member of exhaust gas path
JP2009120893A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Ferritic stainless steel material for automotive member of exhaust gas path
WO2010146999A1 (en) * 2009-06-17 2010-12-23 独立行政法人物質・材料研究機構 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME
JP2011001574A (en) * 2009-06-17 2011-01-06 National Institute For Materials Science Heat-resistant precision component
WO2010150636A1 (en) * 2009-06-24 2010-12-29 独立行政法人物質・材料研究機構 Heat-resistant component for chemical processing apparatus and method for producing same
TWI499465B (en) * 2010-01-28 2015-09-11 Jfe Steel Corp High-toughness and high-corrosion resistance hot rolled ferritic stainless steel sheet
JP2012007195A (en) * 2010-06-22 2012-01-12 Nisshin Steel Co Ltd LOW Cr STAINLESS STEEL EXCELLENT IN HEAT RESISTANCE AND AGE HARDENING CHARACTERISTICS, AND AUTOMOTIVE EXHAUST-GAS PATH MEMBER COMPRISING THE STEEL
WO2012133573A1 (en) * 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP2012207252A (en) * 2011-03-29 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
EP2824208A4 (en) * 2012-03-09 2016-04-20 Nippon Steel & Sumikin Sst Ferritic stainless steel sheet
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
EP2864518A4 (en) * 2012-06-26 2015-12-30 Outokumpu Oy Ferritic stainless steel
JP2015526593A (en) * 2012-06-26 2015-09-10 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Ferritic stainless steel
WO2014001644A1 (en) 2012-06-26 2014-01-03 Outokumpu Oyj Ferritic stainless steel
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
EP3572544A4 (en) * 2017-01-19 2020-05-20 Nippon Steel Stainless Steel Corporation Ferritic stainless steel and ferritic stainless steel for car exhaust gas pathway member

Also Published As

Publication number Publication date
JP5396752B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
KR102267129B1 (en) Nb-containing ferritic stainless hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless cold-rolled stainless steel sheet and manufacturing method thereof
US9279172B2 (en) Heat-resistance ferritic stainless steel
CA2866136C (en) Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
WO2010110466A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
CN114502760B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
EP3604596A1 (en) Ferrite-based stainless steel sheet having low specific gravity and production method therefor
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP2022045505A (en) Ferritic stainless steel sheet, manufacturing method thereof, and member for gas exhaust system
JP5347316B2 (en) Ferritic stainless steel sheet with excellent toughness
JP5348458B2 (en) Cr-containing steel pipe and manufacturing method thereof
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP4715530B2 (en) Method for producing Cr-containing steel sheet excellent in high-temperature strength and toughness, and Cr-containing steel sheet
CN112912528B (en) High-strength ferritic stainless steel for clamping device and method for manufacturing same
CN114945689A (en) High-strength ferritic stainless steel for clamping device and method for manufacturing same
JP4940844B2 (en) Method for producing Cr-containing steel pipe excellent in high-temperature strength and toughness, and Cr-containing steel pipe
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JPH09118961A (en) Ferritic stainless steel excellent in workability and heat resistance
JP2004010967A (en) Ferritic stainless steel pipe with excellent fabrication quality

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5396752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250