JP2011001574A - Heat-resistant precision component - Google Patents

Heat-resistant precision component Download PDF

Info

Publication number
JP2011001574A
JP2011001574A JP2009143774A JP2009143774A JP2011001574A JP 2011001574 A JP2011001574 A JP 2011001574A JP 2009143774 A JP2009143774 A JP 2009143774A JP 2009143774 A JP2009143774 A JP 2009143774A JP 2011001574 A JP2011001574 A JP 2011001574A
Authority
JP
Japan
Prior art keywords
heat
steel
creep
resistant precision
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009143774A
Other languages
Japanese (ja)
Other versions
JP5713250B2 (en
Inventor
Kazuhiro Kimura
一弘 木村
Yoshiaki Toda
佳明 戸田
Hideaki Kushima
秀昭 九島
Kota Sawada
浩太 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2009143774A priority Critical patent/JP5713250B2/en
Priority to US13/378,158 priority patent/US20120132325A1/en
Priority to EP10789374.5A priority patent/EP2444508A4/en
Priority to PCT/JP2010/059453 priority patent/WO2010146999A1/en
Publication of JP2011001574A publication Critical patent/JP2011001574A/en
Application granted granted Critical
Publication of JP5713250B2 publication Critical patent/JP5713250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

PROBLEM TO BE SOLVED: To provide a heat-resistant precision component whose heat resistance is improved while further exhibiting the low thermal expansibility of a ferritic high Cr steel.SOLUTION: In the heat-resistant precision component, a thermal expansion coefficient in the temperature range from room temperature to 850°C is ≤15×10, and the minimum creep speed at 700°C under 100 MPa is ≤1×10/h. Further, regarding the method for producing the heat-resistant precision component, a ferritic high-Cr steel is hot-worked so as to be a prescribed component shape, is subjected to annealing heat treatment at ≥1,000°C, and is thereafter cooled to ≤400°C by rapid cooling at ≥100°C/min.

Description

本発明は、例えば蒸気タービンやガスタービン等の高温下で使用される機械構造体であって、そのロータやディスク、あるいはブレード等の、熱膨張係数が大きいと他の部品との配置関係に狂いが生じてしまう耐熱性の精密部品に関し、より詳しくは、フェライト系高Cr鋼からなる耐熱性精密部品に関する。   The present invention is a mechanical structure used at a high temperature such as a steam turbine or a gas turbine, and if the coefficient of thermal expansion is large, such as a rotor, a disk, or a blade, the arrangement relationship with other parts is distorted. More specifically, the present invention relates to a heat-resistant precision component made of ferritic high Cr steel.

従来はこの種、耐熱性精密部品は、フェライト系高Cr鋼より構成していたが、タービンが600℃を越える高温下での使用が要求されるに至り、特許文献1に示すように、Ni基合金により構成することが提案されるに至った。
しかし、Ni基合金の物理的性質上、熱膨張係数についてはフェライト系高Cr鋼の値以下に抑えることは不可能であるのみならず、むしろ、耐熱性のさらなる向上は熱膨張率を大きくする傾向にある。
その結果、600℃を越える高温下での使用に耐える耐熱性精密部品を実現することは極めて困難とされていた。
Conventionally, this type of heat-resistant precision component has been composed of ferritic high Cr steel, but the turbine is required to be used at a high temperature exceeding 600 ° C. As shown in Patent Document 1, Ni It has come to be proposed to be composed of a base alloy.
However, due to the physical properties of Ni-based alloys, it is not only impossible to keep the thermal expansion coefficient below the value of ferritic high Cr steel, but rather, further improvement in heat resistance increases the thermal expansion coefficient. There is a tendency.
As a result, it has been extremely difficult to realize heat-resistant precision parts that can withstand use at high temperatures exceeding 600 ° C.

本発明は、このような実情に鑑み、フェライト系高Cr鋼の持つ低熱膨張性をさらに発揮させつつ、耐熱性を向上した耐熱性精密部品を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a heat-resistant precision component having improved heat resistance while further exhibiting the low thermal expansion property of a ferritic high Cr steel.

発明1の耐熱性精密部品は、室温から850℃までの温度範囲の熱膨張係数が15×10−6以下で、700℃、100MPaでの最小クリープ速度が1×10−4/h以下であることを特徴とする。 The heat-resistant precision part of the invention 1 has a thermal expansion coefficient of 15 × 10 −6 or less in a temperature range from room temperature to 850 ° C., and a minimum creep rate at 700 ° C. and 100 MPa is 1 × 10 −4 / h or less. It is characterized by that.

発明2は、発明1の耐熱性精密部品の製造方法であって、前記フェライト系高Cr鋼を所定の部品形状に熱間加工を行い、1000℃以上で焼きなまし熱処理をした後、100℃/min以上の急冷にて400℃以下に冷却することを特徴とする。   Invention 2 is a method for producing a heat-resistant precision part according to Invention 1, wherein the ferritic high Cr steel is hot-worked into a predetermined part shape, annealed at 1000 ° C. or higher, and then 100 ° C./min. It cools to 400 degrees C or less by the above rapid cooling, It is characterized by the above-mentioned.

発明1により、タービンを代表例とする耐熱性機械構造の部品として、最高の低熱膨張性を維持しながらも、高い耐熱性(クリープ強度)を保有するに至ったものである。   The invention 1 has a high heat resistance (creep strength) while maintaining the highest low thermal expansibility as a heat resistant mechanical structure part having a turbine as a representative example.

650℃でのクリープ破断時間に及ぼす冷却速度の影響を示すグラフ。The graph which shows the influence of the cooling rate which has on the creep rupture time in 650 degreeC. 650℃でのクリープ試験結果を示すグラフ。The graph which shows the creep test result in 650 degreeC. 本発明鋼1と比較鋼6の650℃でのクリープ試験結果を示すグラフ。The graph which shows the creep test result in 650 degreeC of this invention steel 1 and the comparison steel 6. FIG. 700℃、応力100MPaでのクリープ速度と時間との関係を示すグラフ。The graph which shows the relationship between the creep rate in 700 degreeC and stress 100MPa, and time. 750℃、応力50MPaでのクリープ速度と時間との関係を示すグラフ。The graph which shows the relationship between the creep rate in 750 degreeC and stress 50MPa, and time. 750℃におけるクリープ破断時間を示すグラフ。The graph which shows the creep rupture time in 750 degreeC. 線膨張係数の温度依存性を示すグラフ。The graph which shows the temperature dependence of a linear expansion coefficient.

この出願の発明によって、650℃(50℃単位、以下同じ)を越える高温でも優れた高温強度、耐熱性、耐酸化性、高靭性を有し、高温高圧下での長期間使用においても強度の低下が抑制できるタービン用鋼製部品が提供できる。
鋼塊の成形時の、熱間加工時の温度は900〜1200℃とし、好ましくは950〜1150℃、より好ましくは1000〜1100℃とする。
この温度範囲を超えると延性の急激な低下が生じる恐れがあり、この温度範囲未満であると変形抵抗が増大して、加工により割れ等の欠陥が生じる危険性がある。
焼きなまし熱処理は、1000〜1250℃とし、好ましくは1000〜1200℃、より好ましくは1050〜1150℃とする。
この範囲を超えると、結晶粒が著しく粗大化してしまい、材料の靭性、延性、溶接性等を損ねる恐れがある。
この範囲未満では、完全に溶体化することができず、十分な強度特性を発揮できなくなる恐れがある。
さらに、400℃以上の温度では、炭化物、窒化物、金属間化合物等の第二相が析出する速度が大きいため、焼きなまし温度からの冷却中にこれら第二相が析出するのを抑制するため、焼きなまし後の400℃以下までの冷却速度は、100℃/min以上、好ましくは120℃/min以上、より好ましくは150℃/minとする。
この範囲未満では、焼きなまし温度からの冷却中に炭化物、窒化物、金属間化合物等の第二相が析出してしまい、強度向上に有効な第二相の析出状態を制御できず、十分な強度を発現することができなくなる恐れがある。
700℃、応力100MPaでの最小クリープ速度が、1.0×10−4−1以下、より好ましくは、1.0×10−5−1以下である。
これ以上であると運転中に発生する荷重によるクリープ変形量が大きく、タービン回転体である動翼(ブレード)と静置部品である静翼(ベーン)や容器(ケーシング)が接触し、損傷等の不具合を発生させてしまう。
750℃、応力80MPaでのクリープ破断時間が、1,000hr以上
750℃、応力50MPaでのクリープ破断時間が、5,000hr以上
750℃、応力30MPaでのクリープ破断時間が、10,000hr以上
これ未満の破断時間であると、運転中に発生する荷重によるクリープ破断寿命が短く、実用上十分なクリープ破断寿命を確保することができない。
室温から850℃の温度範囲において、線膨張係数の値が15×10−6−1以下
これを超えると、起動および停止時の熱膨張および収縮量が大きく、高い寸法精度のタービン部材を設計製作することができない。
According to the invention of this application, it has excellent high temperature strength, heat resistance, oxidation resistance and high toughness even at high temperatures exceeding 650 ° C. (50 ° C. unit, hereinafter the same), and has high strength even in long-term use under high temperature and high pressure. It is possible to provide a steel part for turbine that can suppress the decrease.
The temperature at the time of hot working at the time of forming the steel ingot is 900 to 1200 ° C, preferably 950 to 1150 ° C, more preferably 1000 to 1100 ° C.
If this temperature range is exceeded, there is a risk that the ductility will drop sharply, and if it is less than this temperature range, there will be a risk that deformation resistance will increase and defects such as cracking will occur due to processing.
The annealing heat treatment is set to 1000 to 1250 ° C, preferably 1000 to 1200 ° C, more preferably 1050 to 1150 ° C.
If this range is exceeded, the crystal grains become extremely coarse, which may impair the toughness, ductility, weldability, etc. of the material.
If it is less than this range, the solution cannot be completely formed and sufficient strength characteristics may not be exhibited.
Furthermore, at a temperature of 400 ° C. or higher, the rate of precipitation of second phases such as carbides, nitrides, and intermetallic compounds is high, so that these second phases are prevented from precipitating during cooling from the annealing temperature. The cooling rate to 400 ° C. or lower after annealing is 100 ° C./min or higher, preferably 120 ° C./min or higher, more preferably 150 ° C./min.
If it is less than this range, the second phase of carbide, nitride, intermetallic compound, etc. precipitates during cooling from the annealing temperature, and the precipitation state of the second phase effective for improving the strength cannot be controlled. May not be able to be expressed.
The minimum creep rate at 700 ° C. and a stress of 100 MPa is 1.0 × 10 −4 h −1 or less, more preferably 1.0 × 10 −5 h −1 or less.
If it is more than this, the amount of creep deformation due to the load generated during operation will be large, and the rotor blade (blade), which is the turbine rotor, will come into contact with the stationary blade (vane), which is a stationary component, and the container (casing). Will cause a bug.
Creep rupture time at 750 ° C. and stress 80 MPa is 1,000 hr or more and 750 ° C. Creep rupture time at stress 50 MPa is 5,000 hr or more and 750 ° C. Creep rupture time at stress 30 MPa is 10,000 hr or less When the rupture time is, the creep rupture life due to the load generated during operation is short, and a practically sufficient creep rupture life cannot be ensured.
In the temperature range from room temperature to 850 ° C., the value of the linear expansion coefficient is 15 × 10 −6 ° C. −1 or less. It cannot be produced.

本発明の部品を構成する鋼は、以下のような各成分にて調整された高クロムフェライト耐熱鋼である。(以下%は、別途断りがない限り、重量%で示す)
C:1×10−3〜1×10−1
クリープ強度向上のために、1×10−3%以上の添加が必要である。また、過剰添加は靭性を低下させるため、上限は1×10−1%とするとともに、1×10−2%以上添加する場合は、Ni>10(C+N)を満足する必要がある。
Cr:13〜30%
Crは13%以上であることが欠かせないが、実際的にはフェライト相を70体積%以上確保するとともに、耐酸化性向上のために13.5%以上が好ましい。また、30%以上では靭性の低下が著しいため、上限を30%とする。
N:1×10−3〜1×10−1
クリープ強度向上のために、1×10−3%以上の添加が必要である。また、過剰添加は靭性を低下させるため、上限は1×10−1%とするとともに、1×10−2%以上添加する場合は、Ni>10(C+N)を満足する必要がある。
Ni:1×10−1〜2.5%
靭性向上のために1×10−1%以上の添加が好ましい。とくに、CあるいはNの添加量が1×10−2重量%以上である場合は、靭性確保のため、Ni>10(C+N)の添加が必要である。また、過剰添加はフェライト相の体積率を低下させるため、上限は2.5%とする。表2から明らかなように、Niの添加量がNi>10(C+N)未満の比較鋼6〜9は、冷却速度の違いによらずシャルピー衝撃値は小さいが、本発明鋼の水冷材は高いシャルピー衝撃値を示す。
フェライト相が70体積%以上を占める、焼き戻しマルテンサイト組織は、高温で不安定である。これに対してフェライト相は高温での組織安定性が高い。そのため、クリープ強度向上のためにフェライト相が70体積%以上含有されていることが望ましい。表2から明らかなように、本発明鋼3〜5を炉冷するとフェライト相の体積率は70%未満となるが、水冷によりフェライト相の体積率は70%以上となり、図1から明らかなように、本発明鋼3〜5の水冷材は炉冷材よりも約10倍の長いクリープ破断時間を示す。また図2から明らかなように、クロム量が13重量%未満で、フェライト相の体積率が70%未満の比較鋼10〜16に対して、本発明鋼の方が長いクリープ破断時間を示す。
金属間化合物や炭化物および窒化物の1種以上の析出によって強化されている。クリープ強度を高めるためには、金属間化合物や炭化物および窒化物の1種以上を析出させることが有効である。図3から明らかなように、本発明鋼1はW添加量が多く、金属間化合物の析出量が多いため、W添加量が少ない比較鋼6よりも約100倍の長いクリープ破断時間を示す。
The steel constituting the component of the present invention is a high chromium ferritic heat resistant steel adjusted with the following components. (Hereinafter, “%” indicates “% by weight” unless otherwise specified.)
C: 1 × 10 −3 to 1 × 10 −1 %
In order to improve creep strength, addition of 1 × 10 −3 % or more is necessary. Moreover, since excessive addition reduces toughness, the upper limit is made 1 × 10 −1 %, and when adding 1 × 10 −2 % or more, Ni> 10 (C + N) needs to be satisfied.
Cr: 13-30%
It is indispensable that Cr is 13% or more, but practically, it is preferably 13.5% or more for securing 70% by volume or more of ferrite phase and improving oxidation resistance. Moreover, since the toughness fall is remarkable at 30% or more, an upper limit is made into 30%.
N: 1 × 10 −3 to 1 × 10 −1 %
In order to improve creep strength, addition of 1 × 10 −3 % or more is necessary. Moreover, since excessive addition reduces toughness, the upper limit is made 1 × 10 −1 %, and when adding 1 × 10 −2 % or more, Ni> 10 (C + N) needs to be satisfied.
Ni: 1 × 10 −1 to 2.5%
Addition of 1 × 10 −1 % or more is preferable for improving toughness. In particular, when the addition amount of C or N is 1 × 10 −2 wt% or more, it is necessary to add Ni> 10 (C + N) to ensure toughness. Further, excessive addition reduces the volume fraction of the ferrite phase, so the upper limit is made 2.5%. As is apparent from Table 2, the comparative steels 6 to 9 in which the addition amount of Ni is less than Ni> 10 (C + N) has a small Charpy impact value regardless of the cooling rate, but the water-cooled material of the steel of the present invention is high. Indicates Charpy impact value.
The tempered martensite structure in which the ferrite phase occupies 70% by volume or more is unstable at high temperatures. In contrast, the ferrite phase has high structure stability at high temperatures. Therefore, it is desirable that 70% by volume or more of ferrite phase is contained in order to improve creep strength. As apparent from Table 2, when the inventive steels 3 to 5 are cooled in the furnace, the volume fraction of the ferrite phase becomes less than 70%, but the volume fraction of the ferrite phase becomes 70% or more by water cooling, which is apparent from FIG. In addition, the water-cooled materials of the inventive steels 3 to 5 show a creep rupture time that is about 10 times longer than that of the furnace-cooled material. Further, as apparent from FIG. 2, the steel of the present invention shows a longer creep rupture time than the comparative steels 10 to 16 in which the chromium content is less than 13% by weight and the volume fraction of the ferrite phase is less than 70%.
It is strengthened by the precipitation of one or more of intermetallic compounds, carbides and nitrides. In order to increase the creep strength, it is effective to deposit one or more of intermetallic compounds, carbides and nitrides. As is clear from FIG. 3, the steel 1 of the present invention has a large amount of W added and a large amount of intermetallic compound precipitated, and therefore exhibits a creep rupture time about 100 times longer than that of the comparative steel 6 having a small amount of W added.

さらに、上記成分に加え、以下のものを含有させることが望ましい。
Mo:5×10−1〜5%
クリープ強度を高めるために必要な金属間化合物を析出させるために、5×10−1%以上含有するのが好ましい。また、過剰添加は靭性を低下させるため、上限は5%とする。
W:5×10−1〜1×10%
クリープ強度を高めるために必要な金属間化合物を析出させるために、5×10−1%以上含有するのが好ましい。また、過剰添加は靭性を低下させるため、上限は1×10%とする。
V:5×10−2〜4×10−1
クリープ強度向上に有効な炭化物、窒化物を形成させるために、5×10−2%以上含有するのが好ましい。また、過剰添加は炭化物、窒化物の形成に有効ではないので、上限は4×10−1%とする。
Nb:1×10−2〜1×10−1
クリープ強度向上に有効な炭化物、窒化物を形成させるために、1×10−2%以上含有するのが好ましい。また、過剰添加は炭化物、窒化物の形成に有効ではないので、上限は1×10−1%とする。
Co:1×10−1〜1×10%
炭化物、窒化物及び金属間化合物などの析出物を微細化し、クリープ強度向上に有効なため、1×10−1%以上含有するのが好ましい。また、過剰添加はフェライト相の体積率を低下させるため、上限は1×10%とする。
B:2×10−3〜4×10−3
析出物を微細化かつ安定化させるとともに、粒界強化に有効なため、2×10−3%以上含有するのが好ましい。また、過剰添加は窒化ボロンを生成してしまい、クリープ強度の向上に有効ではないので、上限は4×10−3%とする。
In addition to the above components, it is desirable to contain the following.
Mo: 5 × 10 −1 to 5%
In order to precipitate an intermetallic compound necessary for increasing the creep strength, it is preferable to contain 5 × 10 −1 % or more. Moreover, since excessive addition reduces toughness, the upper limit is made 5%.
W: 5 × 10 −1 to 1 × 10%
In order to precipitate an intermetallic compound necessary for increasing the creep strength, it is preferable to contain 5 × 10 −1 % or more. Moreover, since excessive addition reduces toughness, the upper limit is made 1 × 10%.
V: 5 × 10 −2 to 4 × 10 −1 %
In order to form carbides and nitrides effective for improving the creep strength, the content is preferably 5 × 10 −2 % or more. Further, since excessive addition is not effective for the formation of carbides and nitrides, the upper limit is made 4 × 10 −1 %.
Nb: 1 × 10 −2 to 1 × 10 −1 %
In order to form carbides and nitrides effective for improving the creep strength, it is preferable to contain 1 × 10 −2 % or more. Further, since excessive addition is not effective for the formation of carbides and nitrides, the upper limit is set to 1 × 10 −1 %.
Co: 1 × 10 −1 to 1 × 10%
Since precipitates such as carbides, nitrides, and intermetallic compounds are refined and effective in improving the creep strength, the content is preferably 1 × 10 −1 % or more. Moreover, since excessive addition reduces the volume fraction of a ferrite phase, an upper limit shall be 1x10%.
B: 2 × 10 −3 to 4 × 10 −3 %
It is preferable to contain 2 × 10 −3 % or more because the precipitate is refined and stabilized and effective for strengthening the grain boundary. Further, excessive addition generates boron nitride and is not effective in improving the creep strength, so the upper limit is made 4 × 10 −3 %.

又さらに、上記成分に加え、以下のものを含有させることが望ましい。
クリープ強度を高めるために必要な金属間化合物の析出量を十分に確保するため、MoおよびWをそれぞれ5×10−1重量%以上含有し、Mo+0.5W≧3.0重量%以上含有する。図3から明らかなように、Mo+0.5Wが3重量%以上の本発明鋼1は、Mo+0.5Wが3.0重量%未満の比較鋼6に比べて約100倍のクリープ破断時間を示している。 以下の実施例では、丸棒を持って部品と仮定して、各種特性を測定したが、各部品形状に成形された後のものであっても、丸棒の測定結果をもって容易に予測できるものである。
Furthermore, in addition to the above components, it is desirable to contain the following.
In order to sufficiently secure the precipitation amount of the intermetallic compound necessary for increasing the creep strength, Mo and W are each contained 5 × 10 −1 wt% or more, and Mo + 0.5 W ≧ 3.0 wt% or more. As is apparent from FIG. 3, the steel of the present invention 1 with Mo + 0.5W of 3 wt% or more shows a creep rupture time about 100 times that of the comparative steel 6 with Mo + 0.5 W of less than 3.0 wt%. Yes. In the following examples, various characteristics were measured on the assumption that the part has a round bar. However, even after being molded into each part shape, it can be easily predicted from the measurement result of the round bar. It is.

表1に示されている1〜9の組成の材料について、それぞれ10kgの鋼塊を作製し、熱間鍛造により直径15mmの丸棒に成形して、1,200℃で焼きなまし熱処理後、それぞれを、炉冷及び水冷により冷却した。また、表1に示されている10〜16の組成の材料は既存のフェライト系耐熱鋼であり、比較鋼として用いた。
About the material of the composition of 1-9 shown by Table 1, each 10kg steel ingot is produced, and it shape | molds into a 15 mm diameter round bar by hot forging, and after annealing heat processing at 1,200 degreeC, each Cooled by furnace cooling and water cooling. Moreover, the material of the composition of 10-16 shown by Table 1 is the existing ferritic heat-resistant steel, and was used as a comparative steel.

このようにして成形した試験片について、100℃でシャルピー衝撃試験を行った。その結果を示したものが表2である。Ni量が少なく、本発明鋼の範囲外である比較鋼6〜9は、焼きなまし熱処理後の冷却速度の大小によらず衝撃値は小さいのに対し、本発明鋼1〜5は冷却速度が小さい炉冷では衝撃値が小さいが、冷却速度が大きい水冷では衝撃値が224J/cm以上と炉冷熱処理材および比較鋼6〜9に比べて桁違いに大きい。
A Charpy impact test was performed at 100 ° C. on the test piece thus molded. Table 2 shows the results. Comparative steels 6 to 9 having a small amount of Ni and outside the range of the steel of the present invention have small impact values regardless of the cooling rate after annealing heat treatment, while steels of the present invention 1 to 5 have a low cooling rate. In furnace cooling, the impact value is small, but in water cooling with a high cooling rate, the impact value is 224 J / cm 2 or more, which is an order of magnitude greater than that of the furnace-cooled heat treated material and comparative steels 6-9.

図1は本発明鋼3〜5の、650℃でのクリープ破断時間に及ぼす冷却速度の影響を示したものであり、冷却速度の小さな炉冷材に比べて、冷却速度の大きな水冷材は約10倍の長いクリープ破断時間を示すことがわかる。
表3は図1を作成した測定データである。
FIG. 1 shows the influence of the cooling rate on the creep rupture time at 650 ° C. of steels 3 to 5 of the present invention. Compared with the furnace cooling material having a low cooling rate, the water cooling material having a high cooling rate is about It can be seen that the creep rupture time is 10 times longer.
Table 3 shows the measurement data that created FIG.

図2は650℃でのクリープ試験結果を例示した図である。クロム量が13重量%未満で、フェライト相の体積率が70%未満の比較鋼10〜16に対して、本発明鋼2〜5の方が高いクリープ強度を有することがわかる。
冷却速度の要求条件:
1×10℃以上で焼きなまし熱処理をした後、金属間化合物や炭化物および窒化物等が実質的に析出しない低温度である400℃になるまで、その析出が生じない高速度、具体的には1×10℃/min以上で冷却する。
表4は図2を作成した測定データである。
FIG. 2 is a diagram illustrating the results of a creep test at 650 ° C. It can be seen that the inventive steels 2 to 5 have higher creep strength than the comparative steels 10 to 16 in which the chromium content is less than 13% by weight and the ferrite phase volume fraction is less than 70%.
Cooling rate requirements:
After annealing at 1 × 10 3 ° C. or higher, high speed at which no precipitation occurs until the temperature reaches 400 ° C., which is a low temperature at which intermetallic compounds, carbides, nitrides and the like are not substantially precipitated, specifically, Cool at 1 × 10 2 ° C./min or more.
Table 4 shows the measurement data that created FIG.

図3は650℃でのクリープ試験結果を例示した図である。Mo+0.5Wが3重量%以上の本発明鋼1は、Mo+0.5Wが3.0重量%未満の比較鋼6に比べて約100倍のクリープ破断時間を示すことがわかる。
表5は図3を作成した測定データである。
FIG. 3 is a diagram illustrating the results of a creep test at 650 ° C. It can be seen that the inventive steel 1 with Mo + 0.5W of 3 wt% or more shows a creep rupture time about 100 times that of the comparative steel 6 with Mo + 0.5 W of less than 3.0 wt%.
Table 5 shows the measurement data that created FIG.

図4は700℃、応力100MPaでのクリープ速度と時間との関係を例示した図である。本発明鋼3および5は、比較鋼10〜12に比べて約1000分の1の小さなクリープ速度を示し、約100倍以上の長いクリープ破断時間を示すことがわかる。
FIG. 4 is a diagram illustrating the relationship between the creep rate and time at 700 ° C. and a stress of 100 MPa. It can be seen that the inventive steels 3 and 5 show a creep rate that is about 1/1000 smaller than that of the comparative steels 10 to 12, and a long creep rupture time that is about 100 times or more.

図5は750℃、応力50MPaでのクリープ速度と時間との関係を例示した図である。本発明鋼5は未破断であり、試験進行中であるが、本発明鋼3および5は比較鋼10および14に比べて100分の1以下の小さなクリープ速度を示し、約100倍以上の長いクリープ破断時間を示すことがわかる。
表7は図5を作成した測定データである。

FIG. 5 is a diagram illustrating the relationship between the creep rate and time at 750 ° C. and a stress of 50 MPa. The steel 5 of the present invention is unbroken and the test is in progress, but the steels 3 and 5 of the present invention show a small creep rate of 1/100 or less compared with the comparative steels 10 and 14, and are about 100 times longer. It can be seen that the creep rupture time is indicated.
Table 7 shows the measurement data that created FIG.

図6は750℃におけるクリープ破断時間を例示した図である。本発明鋼3および5は、応力50および30MPaでの試験は未破断であり、進行中のクリープ試験時間である。応力80および50MPaでは、本発明鋼3および5のクリープ破断時間は、比較鋼10〜16の約100倍以上も長く、オーステナイト耐熱鋼であるSUS316よりも長いクリープ破断時間を示す。また、応力30MPaでも本発明鋼3および5は、オーステナイト耐熱鋼であるSUS316と同等以上のクリープ破断時間を示すことがわかる。
表8は図6を作成した測定データである。
FIG. 6 is a diagram illustrating the creep rupture time at 750 ° C. Inventive steels 3 and 5 are unbroken when tested at stresses of 50 and 30 MPa, and are the ongoing creep test time. At stresses of 80 and 50 MPa, the creep rupture times of the inventive steels 3 and 5 are about 100 times longer than that of the comparative steels 10 to 16, and show a longer creep rupture time than SUS316, which is an austenitic heat resistant steel. Further, it can be seen that the steels 3 and 5 of the present invention exhibit a creep rupture time equivalent to or better than that of SUS316, which is an austenitic heat resistant steel, even at a stress of 30 MPa.
Table 8 shows the measurement data that created FIG.

本発明鋼と実用耐熱材料の線膨張係数の比較を図7に示す。
本発明鋼を1000℃/hの速度で室温から1000℃まで昇温し、試験片の熱膨張を測定することにより、各温度における本発明鋼の線膨張係数を求めた。実用耐熱材料の線膨張係数は、米国機械学会(ASME)ボイラ圧力容器規格に規定されている値である。
表9は図7を作成した測定データである。
A comparison of the coefficient of linear expansion between the steel of the present invention and the practical heat resistant material is shown in FIG.
The steel of the present invention was heated from room temperature to 1000 ° C. at a rate of 1000 ° C./h, and the coefficient of linear expansion of the steel of the present invention at each temperature was determined by measuring the thermal expansion of the test piece. The linear expansion coefficient of the practical heat-resistant material is a value specified in the American Society of Mechanical Engineers (ASME) boiler pressure vessel standard.
Table 9 shows the measurement data that created FIG.

特開2007−332412号公報JP 2007-332412 A

Claims (2)

Crを13質量%以上含有するフェライト系高Cr鋼からなる耐熱性精密部品であって、室温から800℃までの温度範囲の熱膨張係数が15×10−6以下で、700℃、100MPaでの最小クリープ速度が1×10−4/h以下であることを特徴とする耐熱性精密部品。 A heat-resistant precision part made of a ferritic high Cr steel containing 13 mass% or more of Cr, having a thermal expansion coefficient of 15 × 10 −6 or less in a temperature range from room temperature to 800 ° C., at 700 ° C. and 100 MPa. A heat-resistant precision component having a minimum creep rate of 1 × 10 −4 / h or less. 請求項1に記載の耐熱性精密部品の製造方法であって、前記フェライト系高Cr鋼を所定の部品形状に熱間加工を行い、1000℃以上で焼きなまし熱処理をした後、100℃/min以上の急冷にて400℃以下に冷却することを特徴とする耐熱性精密部品の製造方法。   The method for producing a heat-resistant precision part according to claim 1, wherein the ferritic high Cr steel is hot worked into a predetermined part shape and annealed at 1000 ° C or higher, and then 100 ° C / min or higher. A method for producing a heat-resistant precision part, characterized by cooling to 400 ° C. or less by rapid cooling.
JP2009143774A 2009-06-17 2009-06-17 Heat-resistant precision parts Expired - Fee Related JP5713250B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009143774A JP5713250B2 (en) 2009-06-17 2009-06-17 Heat-resistant precision parts
US13/378,158 US20120132325A1 (en) 2009-06-17 2010-06-03 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME
EP10789374.5A EP2444508A4 (en) 2009-06-17 2010-06-03 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME
PCT/JP2010/059453 WO2010146999A1 (en) 2009-06-17 2010-06-03 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143774A JP5713250B2 (en) 2009-06-17 2009-06-17 Heat-resistant precision parts

Publications (2)

Publication Number Publication Date
JP2011001574A true JP2011001574A (en) 2011-01-06
JP5713250B2 JP5713250B2 (en) 2015-05-07

Family

ID=43356320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143774A Expired - Fee Related JP5713250B2 (en) 2009-06-17 2009-06-17 Heat-resistant precision parts

Country Status (4)

Country Link
US (1) US20120132325A1 (en)
EP (1) EP2444508A4 (en)
JP (1) JP5713250B2 (en)
WO (1) WO2010146999A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5713250B2 (en) * 2009-06-17 2015-05-07 独立行政法人物質・材料研究機構 Heat-resistant precision parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253402A (en) * 2002-02-28 2003-09-10 National Institute For Materials Science High chromium ferritic heat resistant steel
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method
JP2009102828A (en) * 2007-10-22 2009-05-14 Kobelco Contstruction Machinery Ltd Valve operating device of construction equipment
WO2010146999A1 (en) * 2009-06-17 2010-12-23 独立行政法人物質・材料研究機構 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3269799B2 (en) * 1998-02-20 2002-04-02 川崎製鉄株式会社 Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
US6696016B1 (en) * 1999-09-24 2004-02-24 Japan As Represented By Director General Of National Research Institute For Metals High-chromium containing ferrite based heat resistant steel
JP3843314B2 (en) * 1999-09-24 2006-11-08 独立行政法人物質・材料研究機構 High Cr ferritic heat resistant steel
JP4206836B2 (en) * 2002-06-17 2009-01-14 Jfeスチール株式会社 Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
WO2005064030A1 (en) * 2003-12-26 2005-07-14 Jfe Steel Corporation FERRITIC Cr-CONTAINING STEEL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253402A (en) * 2002-02-28 2003-09-10 National Institute For Materials Science High chromium ferritic heat resistant steel
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method
JP2009102828A (en) * 2007-10-22 2009-05-14 Kobelco Contstruction Machinery Ltd Valve operating device of construction equipment
WO2010146999A1 (en) * 2009-06-17 2010-12-23 独立行政法人物質・材料研究機構 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME

Also Published As

Publication number Publication date
WO2010146999A1 (en) 2010-12-23
EP2444508A1 (en) 2012-04-25
EP2444508A4 (en) 2014-06-18
US20120132325A1 (en) 2012-05-31
JP5713250B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5988008B2 (en) Austenitic stainless steel sheet
JP5562825B2 (en) Heat-resistant cast steel, method for producing heat-resistant cast steel, cast component for steam turbine, and method for producing cast component for steam turbine
JP5127749B2 (en) Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
US8685316B2 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
JP2011162808A (en) Ni BASED ALLOY FOR FORGING AND COMPONENT FOR STEAM TURBINE PLANT USING THE SAME
JP5846076B2 (en) Austenitic heat-resistant alloy
JP6148843B2 (en) Large cast member made of nickel base alloy and method for producing the same
JP6816779B2 (en) Austenitic heat-resistant alloy member and its manufacturing method
JP6733211B2 (en) Ni-based superalloy for hot forging
JP5981250B2 (en) Ni-base alloy for casting, method for producing Ni-base alloy for casting, and turbine cast component
JP4887506B2 (en) Method for producing ferritic heat resistant steel
JP5265325B2 (en) Heat resistant steel with excellent creep strength and method for producing the same
JP5713250B2 (en) Heat-resistant precision parts
JP2016065265A (en) Heat resistant steel for steam turbine rotor blade and steam turbine rotor blade
JP5981357B2 (en) Heat resistant steel and steam turbine components
JP4177136B2 (en) Method for producing B-containing high Cr heat resistant steel
JP6173956B2 (en) Austenitic heat resistant steel and turbine parts
JP6688598B2 (en) Austenitic steel and cast austenitic steel using the same
JP5996403B2 (en) Heat resistant steel and method for producing the same
JP2015086432A (en) Austenitic heat resistant steel and turbine component
JP2011006727A (en) Heat resistant component for chemical treatment apparatus
JP2014005528A (en) Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT
JP2005023378A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2010095747A (en) Method for producing low thermal-expansion cast iron material
KR101937541B1 (en) Radiant tube and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150227

R150 Certificate of patent or registration of utility model

Ref document number: 5713250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees