WO2010146999A1 - FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME - Google Patents

FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME Download PDF

Info

Publication number
WO2010146999A1
WO2010146999A1 PCT/JP2010/059453 JP2010059453W WO2010146999A1 WO 2010146999 A1 WO2010146999 A1 WO 2010146999A1 JP 2010059453 W JP2010059453 W JP 2010059453W WO 2010146999 A1 WO2010146999 A1 WO 2010146999A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
steel
ferritic
resistant precision
resistant
Prior art date
Application number
PCT/JP2010/059453
Other languages
French (fr)
Japanese (ja)
Inventor
一弘 木村
佳明 戸田
秀昭 九島
浩太 澤田
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to US13/378,158 priority Critical patent/US20120132325A1/en
Priority to EP10789374.5A priority patent/EP2444508A4/en
Publication of WO2010146999A1 publication Critical patent/WO2010146999A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic Cr steel which is a material for precision parts having heat resistance.
  • heat-resistant precision parts such as rotors and disks such as steam turbines and gas turbines used at high temperatures, and blades (hereinafter referred to as heat-resistant precision parts) have a large thermal expansion coefficient.
  • ferritic Cr steel sino-called ferritic high Cr steel
  • ferritic high Cr steel has been generally used as the material because there is an error in the arrangement relationship with other parts.
  • Patent Document 1 a Ni-base superalloy described in Patent Document 1 has been proposed as a material for heat-resistant precision parts.
  • ferritic Cr steel which has a small dimensional change due to thermal expansion, has low high-temperature strength, and the shape of precision parts changes due to creep deformation.
  • JP 2007-332412 A JP 2007-332412 A
  • the present invention has been made in view of such circumstances, and has improved heat resistance while exhibiting low thermal expansion, and a ferritic Cr steel for heat-resistant precision parts, a manufacturing method thereof, and heat-resistant precision parts. And providing a manufacturing method thereof.
  • the ferritic Cr steel for heat-resistant precision parts of the present invention is a ferritic Cr steel for precision parts having heat resistance, and its chemical composition is in mass%.
  • Cr 13-30%
  • Ni 1 ⁇ 10 ⁇ 1 to 2.5%
  • C 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 %
  • N 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 %
  • the ferrite phase is preferably 70% by volume or more.
  • an additive component is the mass%, Mo: 5 ⁇ 10 ⁇ 1 to 5%, W: 5 ⁇ 10 ⁇ 1 to 1 ⁇ 10%, V: 5 ⁇ 10 ⁇ 2 to 4 ⁇ 10 ⁇ 1 %, Nb: 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 1 %, Co: 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10%, or B: 2 ⁇ 10 ⁇ 3 to 4 ⁇ 10 ⁇ 3 % It is preferable that any one or two or more of carbides, nitrides or intermetallic compounds are precipitated in the crystal grains.
  • the addition amount of Mo and W is Mo + 0.5W ⁇ 3.0 mass% (however, Mo and W are addition amounts of each component (unit is mass%)) It is preferable that the relationship represented by is satisfied.
  • the ferritic Cr steel for heat-resistant precision parts of the present invention is a ferritic Cr steel for heat-resistant precision parts containing 13 mass% or more and 30 mass% or less of Cr, and has a thermal expansion in a temperature range from room temperature to 800 ° C.
  • the coefficient is 15 ⁇ 10 ⁇ 6 or less, the minimum creep rate at 700 ° C. and a stress of 100 MPa is 1 ⁇ 10 ⁇ 4 / h or less.
  • the method for producing a ferritic Cr steel for heat-resistant precision parts is a method for producing a ferritic Cr steel for precision parts having heat resistance, and the ferritic Cr steel having the above chemical composition is 850 to 1200 ° C. After being hot-worked within the temperature range and molded into a predetermined shape, it is annealed in a temperature range of 1000 to 1250 ° C. and then cooled to 400 ° C. or less at a cooling rate of 100 ° C./min or more. And
  • the heat-resistant precision component of the present invention is characterized by being formed from the above-described ferritic Cr steel for heat-resistant precision components.
  • the heat-resistant precision component can be any one of a turbine rotor, a disk, and a blade.
  • the method for producing a heat-resistant precision component according to the present invention comprises hot-working a ferritic Cr steel having the above chemical composition within a temperature range of 850 to 1200 ° C. and forming it into a part shape, and then a temperature range of 1000 to 1250 ° C. An annealing heat treatment is performed in the inside, and then it is cooled to 400 ° C. or lower at a cooling rate of 100 ° C./min or higher.
  • a ferritic Cr steel for heat-resistant precision parts and its manufacturing method and a heat-resistant precision part and its manufacturing method, heat-resistant precision parts for mechanical structures used at high temperatures, typically turbines.
  • high heat resistance creep strength
  • the ferritic Cr steel for heat-resistant precision parts of the present invention has excellent high temperature strength, heat resistance, oxidation resistance and high toughness even at high temperatures exceeding 650 ° C. (hereinafter, temperature display is in units of 50 ° C.). However, it is a material that can be used for parts of a mechanical structure such as a turbine that can withstand long-term use under high temperature and high pressure and the strength reduction is suppressed.
  • This ferritic Cr steel for heat-resistant precision parts is obtained by hot working a steel ingot of ferritic Cr steel within a temperature range of 850 to 1200 ° C. and forming it into a predetermined shape, and then within a temperature range of 1000 to 1250 ° C. It is manufactured by annealing and then cooling to 400 ° C. or lower at a cooling rate of 100 ° C./min or higher.
  • the temperature during hot working such as hot forging is 850 to 1200 ° C, preferably 950 to 1150 ° C, more preferably 1000 to 1100 ° C.
  • the ductility may be drastically reduced.
  • deformation resistance may increase, and defects such as cracks may occur due to processing.
  • the temperature at the time of the annealing annealing is 1000 to 1250 ° C., preferably 1000 to 1200 ° C., more preferably 1050 to 1200 ° C. If the upper limit temperature is exceeded, the crystal grains may be significantly coarsened, and the toughness, ductility, weldability, etc. of the steel may be impaired. On the other hand, if the temperature is lower than the lower limit temperature, the solution cannot be completely formed and sufficient strength characteristics may not be exhibited.
  • the second phase such as carbides, nitrides, and intermetallic compounds precipitates at a high rate, so that the second phase may precipitate during cooling from the annealing temperature. Therefore, in order to control the precipitation of the second phase, after the annealing heat treatment, the cooling rate to 400 ° C. or less is set to 100 ° C./min or more, preferably 120 ° C./min or more, more preferably 150 ° C./min or more. is there. If it is less than the lower limit, a coarse second phase precipitates at the grain boundaries during cooling, and it becomes difficult to disperse and precipitate the fine second phase within the crystal grains. The phase precipitation state cannot be controlled and sufficient strength may not be exhibited.
  • Ferritic Cr steel for heat-resistant precision parts manufactured in this way has a linear expansion coefficient of 15 ⁇ 10 ⁇ 6 or less in the temperature range from room temperature to 850 ° C.
  • the amount of thermal expansion and contraction at the time of starting and stopping increases, and it becomes difficult to manufacture heat-resistant precision parts with high dimensional accuracy.
  • the ferritic Cr steel for heat-resistant precision parts has a minimum creep rate of 1.0 ⁇ 10 ⁇ 4 / h or less at 700 ° C. and a stress of 100 MPa, preferably 1.0 ⁇ 10 ⁇ 5. / h or less. If the minimum creep speed exceeds the upper limit, the amount of creep deformation due to the load generated during operation increases in the turbine, and the rotating blades (blades) and stationary components (vanes) and containers (casing) ) May come into contact with the product and cause problems such as damage.
  • the ferritic Cr steel for heat-resistant precision parts preferably has a creep rupture time of 750 ° C., stress 80 MPa, 1,000 hr or more, 750 ° C., stress 50 MPa, 5,000 hr or more, and 750 ° C., stress 30 MPa. 10,000 hours or more.
  • the creep rupture time is less than the lower limit, the turbine has a short creep rupture life due to a load generated during operation, and it may be difficult to ensure a practically sufficient creep rupture life.
  • a ferritic Cr steel before forming such as a steel ingot to be hot-worked is a ferritic Cr steel having a chemical composition adjusted, the so-called ferritic high Cr steel having the following components (described below).
  • % Means mass%) 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 % C needs to be added in an amount of 1 ⁇ 10 ⁇ 3 % or more in order to improve the creep strength.
  • the upper limit of the amount of C added is set to 1 ⁇ 10 ⁇ 1 %.
  • Ni> 10 (C + N) is preferable.
  • Ni, C and N indicate the amount of each component added (unit: mass%).
  • Cr 13-30% It is indispensable that the amount of Cr added is 13% or more. In practice, it is preferable that 70% by volume or more of the ferrite phase is secured and that 13.5% or more is added to improve oxidation resistance. . When the amount of Cr exceeds 30%, the toughness is significantly lowered, so the upper limit of the amount of Cr is 30%.
  • N 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 1 % N needs to be added in an amount of 1 ⁇ 10 ⁇ 3 % or more in order to improve the creep strength.
  • the upper limit of the amount of N added is set to 1 ⁇ 10 ⁇ 1 %.
  • N is added in an amount of 1 ⁇ 10 ⁇ 2 % or more, it is preferable that Ni> 10 (C + N) as in the case of C.
  • Ni 1 ⁇ 10 ⁇ 1 to 2.5%
  • Ni needs to be added in an amount of 1 ⁇ 10 ⁇ 1 % or more in order to improve toughness.
  • the addition amount of at least one or both of C and N is 1 ⁇ 10 ⁇ 2 % or more
  • the addition amount of Ni preferably satisfies Ni> 10 (C + N) as described above to ensure toughness.
  • excessive addition reduces the volume fraction of the ferrite phase, so the upper limit of the amount of Ni added is 2.5%.
  • Ferritic Cr steel can be strengthened by controlled precipitation of one or more of carbides, nitrides or intermetallic compounds, that is, fine dispersion precipitation within crystal grains, and creep strength It becomes effective to raise. For this reason, the ferritic Cr steel allows the addition of the following components in addition to the above components in its chemical composition.
  • Mo 5 ⁇ 10 ⁇ 1 to 5%
  • Mo is a chemical component effective for precipitation of intermetallic compounds, and can increase creep strength.
  • the addition amount can be 5 ⁇ 10 ⁇ 1 % or more.
  • the upper limit of the amount of Mo added is preferably 5%.
  • W 5 ⁇ 10 ⁇ 1 to 1 ⁇ 10%
  • W is a chemical component effective for precipitation of intermetallic compounds, and can increase the creep strength.
  • the addition amount can be 5 ⁇ 10 ⁇ 1 % or more.
  • the upper limit of the amount of W added is preferably 1 ⁇ 10%.
  • addition amount can satisfy
  • fill the relationship shown by Mo + 0.5W> 3.0% so that the precipitation amount of an intermetallic compound may fully be ensured (in Formula, Mo and W represent respective addition amounts (unit: mass%)).
  • the addition amount can be 5 ⁇ 10 ⁇ 2 % or more, but excessive addition is not always effective for the formation of carbides and nitrides, so the upper limit of the addition amount is 4 ⁇ 10 ⁇ 1 %. Is preferred.
  • Nb 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 1 %
  • Nb forms carbides and nitrides that are effective in improving creep strength.
  • the addition amount can be 1 ⁇ 10 ⁇ 2 % or more, but excessive addition is not always effective for the formation of carbides and nitrides, so the upper limit of the addition amount is 1 ⁇ 10 ⁇ 1 %. Is preferred.
  • Co 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10% Co is an effective component for improving the creep strength by refining precipitated carbides, nitrides and intermetallic compounds.
  • the addition amount can be 1 ⁇ 10 ⁇ 1 % or more, but excessive addition may reduce the volume fraction of the ferrite phase, so the upper limit of the addition amount is preferably 1 ⁇ 10%. . (10) B: 2 ⁇ 10 ⁇ 3 to 4 ⁇ 10 ⁇ 3 % B is a component effective for refining and stabilizing precipitates and strengthening grain boundaries.
  • the addition amount can be 2 ⁇ 10 ⁇ 3 % or more.
  • excessive addition may generate boron nitride and may not always be effective in improving the creep strength, so the upper limit of the amount of B is preferably 4 ⁇ 10 ⁇ 3 %.
  • Mn 5 ⁇ 10 ⁇ 2 to 8 ⁇ 10 ⁇ 1 % It is an effective component as a deoxidizing material.
  • the addition amount can be 5 ⁇ 10 ⁇ 2 % or more.
  • the upper limit of the amount of Mn added is preferably 8 ⁇ 10 ⁇ 1 %.
  • Si 5 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 1 % It is an effective component as a deoxidizing material.
  • the addition amount can be 5 ⁇ 10 ⁇ 2 % or more.
  • the upper limit of Si addition amount is preferably 5 ⁇ 10 ⁇ 1 %.
  • ferritic Cr steel for heat-resistant precision parts consists of Fe and inevitable impurities.
  • the ferrite-based Cr steel for heat-resistant precision parts has 70% by volume or more of ferrite phase to improve creep strength.
  • the tempered martensite structure is unstable at high temperatures, but the ferrite phase has high structure stability at high temperatures.
  • Table 2 when the inventive steels 2 to 4 are cooled in the furnace, the cooling rate after the annealing heat treatment is slow, so the volume fraction of the ferrite phase is less than 70%. When the cooling rate up to 100 ° C./min or higher, the volume fraction of the ferrite phase becomes 70% or higher. For this reason, as shown in FIG. 1, the water-cooled materials of the inventive steels 2 to 4 show a creep rupture time that is about 10 times longer than that of the furnace-cooled material.
  • the steels 1 to 4 of the present invention have creep rupture compared to the comparative steels 9 to 15 in which the added amount of Cr is less than 13% and the volume fraction of the ferrite phase is less than 70%. Long time.
  • Diameters of round bars of steels 1 to 8 (invention steels 1 to 6 and comparative steels 7 and 8) having the chemical composition shown in Table 1 were hot forged at a temperature range of 850 to 1150 ° C. with a 10 kg steel ingot. After forming to 15 mm and annealing heat treatment at 1200 ° C., each was produced by cooling by furnace cooling or water cooling.
  • Table 1 also shows the chemical compositions of steels 9 to 15 (comparative steels), which are existing ferritic heat resistant steels.
  • the comparative steels 7 and 8 which have a small amount of added Ni and are outside the range of the steel of the present invention have a small impact value regardless of the cooling rate after annealing heat treatment, whereas the steels of the present invention 1 to 4 are cooled.
  • the impact value In the case of furnace cooling at a low speed, the impact value is small, but in water cooling at a high cooling speed, the impact value is 300 J / cm 2 or more, which is larger than that of the furnace cooling material and comparative steels 7 and 8.
  • FIG. 1 is a graph showing the influence of the cooling rate on the creep rupture time at 650 ° C. of inventive steels 2-4. It can be seen that the water-cooled material having a high cooling rate has a creep rupture time approximately 10 times longer than that of the furnace-cooled material having a low cooling rate.
  • Table 3 shows the measurement data that created FIG.
  • the cooling rate As a condition required for the cooling rate, after annealing heat treatment within a temperature range of 1000 to 1250 ° C., the precipitation is continued until the temperature reaches 400 ° C., which is a low temperature at which carbide, nitride and intermetallic compounds do not substantially precipitate. It is confirmed that the cooling is performed at a high cooling rate capable of suppressing the above-mentioned, specifically, at 100 ° C./min or more.
  • FIG. 2 is a graph showing the results of a creep test at 650 ° C.
  • inventive steels 1 to 4 have higher creep strength than the comparative steels 9 to 15 in which the addition amount of Cr is less than 13% by mass and the volume fraction of the ferrite phase is less than 70%.
  • Table 4 shows the measurement data that created FIG.
  • FIG. 3 is a graph showing the relationship between creep rate and time at 700 ° C. and stress of 100 MPa.
  • the steels 2 and 4 of the present invention have a creep rate as small as about 1000 times that of the comparative steels 9 to 11, and the creep rupture time is about 100 times longer.
  • Table 5 shows the minimum creep rate obtained from FIG. In the steels 2 and 4 of the present invention, the minimum creep rate is 1.0 ⁇ 10 ⁇ 4 / h or less, and 1.0 ⁇ 10 ⁇ 5 / h or less.
  • FIG. 4 is a graph showing the relationship between creep rate and time at 750 ° C. and a stress of 50 MPa.
  • the invention steel 4 was not broken and the test was in progress.
  • the steels 2 and 4 of the present invention both have a creep rate as small as 1/100 or less, and the creep rupture time is about 100 times longer than that of the comparative steels 9 and 13.
  • Table 6 shows the measurement data that created FIG.
  • FIG. 5 is a graph showing the creep rupture time at 750 ° C.
  • the creep rupture time of the inventive steels 2 and 4 is about 100 times longer than the rupture time of the comparative steels 9 to 15, and the austenitic heat resistant steels 21 to It can be seen that it is longer than SUS316, which is 28. Furthermore, it can be seen that the creep rupture time is about the same as that of SUS316 in steels 2 and 4 of the present invention even at a stress of 30 MPa.
  • Table 7 shows the measurement data that created FIG.
  • FIG. 6 is a graph showing the temperature dependence of the linear expansion coefficient. It is the result of having compared the linear expansion coefficient of this invention steel and practical heat-resistant material.
  • the inventive steels 2 and 4 were heated from room temperature to 1000 ° C. at a rate of 1000 ° C./h, and the thermal expansion at that time was measured to obtain the linear expansion coefficient at each temperature.
  • the linear expansion coefficient of the practical heat-resistant material is a value specified in the boiler pressure vessel standard of the American Society of Mechanical Engineers (ASME).
  • Table 8 shows the measurement data that created FIG.
  • the linear expansion coefficient is 15 ⁇ 10 ⁇ 6 or less in the temperature range from room temperature to 850 ° C., and it has low thermal expansion equivalent to or higher than that of ferritic steel. I understand.
  • a ferritic Cr steel having low heat expansion and improved heat resistance is realized.
  • This ferritic Cr steel realizes heat-resistant precision parts for mechanical structures such as turbines that are used at high temperatures exceeding 650 ° C.

Abstract

Disclosed is a ferritic Cr-steel for a heat-resistant precision component, which contains Cr in an amount of 13-30% by mass (inclusive) and has a thermal expansion coefficient of 15 × 10-6 or less in a temperature range from room temperature to 800˚C and a minimum creep rate of 1 × 10-4/h or less at 700˚C at 100 MPa. The ferritic Cr-steel for a heat-resistant precision component is produced by being formed into a predetermined shape by hot working within a temperature range of 850-1200˚C, then being subjected to annealing within a temperature range of 1000-1250˚C, and then being cooled to 400˚C or less at a cooling rate of 100˚C/min or more. The production of this ferritic Cr-steel enables achievement of a heat-resistant precision component such as a rotor, disc or blade for a turbine, which can withstand use at high temperatures more than 600˚C.

Description

耐熱性精密部品用フェライト系Cr鋼とその製造方法、および耐熱性精密部品とその製造方法Ferritic Cr steel for heat-resistant precision parts and manufacturing method thereof, and heat-resistant precision parts and manufacturing method thereof
 本発明は、耐熱性を有する精密部品用の材料であるフェライト系Cr鋼に関する。 The present invention relates to a ferritic Cr steel which is a material for precision parts having heat resistance.
 たとえば、高温下で使用される蒸気タービンやガスタービンなどのロータやディスク、また、ブレードなどの、耐熱性を有する精密部品(以下、耐熱性精密部品と記す)は、熱膨張係数が大きいと、他の部品との配置関係に狂いが生じてしまうことから、その材料には、従来、フェライト系Cr鋼(いわゆる、フェライト系高Cr鋼)を用いるのが一般的であった。 For example, heat-resistant precision parts (hereinafter referred to as heat-resistant precision parts), such as rotors and disks such as steam turbines and gas turbines used at high temperatures, and blades (hereinafter referred to as heat-resistant precision parts) have a large thermal expansion coefficient. Conventionally, ferritic Cr steel (so-called ferritic high Cr steel) has been generally used as the material because there is an error in the arrangement relationship with other parts.
 ところが、タービンに650℃を超える高温下での使用が要求されるにともない、耐熱性精密部品用の材料として特許文献1に記載されているようなNi基超合金が提案されるに至った。 However, as the turbine is required to be used at a high temperature exceeding 650 ° C., a Ni-base superalloy described in Patent Document 1 has been proposed as a material for heat-resistant precision parts.
 その理由は、熱膨張による寸法変化が小さなフェライト系Cr鋼は高温強度が低く、クリープ変形により精密部品の形状が変化してしまうためである。 The reason is that ferritic Cr steel, which has a small dimensional change due to thermal expansion, has low high-temperature strength, and the shape of precision parts changes due to creep deformation.
 しかしながら、Ni基超合金の物理的性質上、熱膨張係数についてはフェライト系Cr鋼の値以下に抑えることは不可能であるのみならず、むしろ、耐熱性のさらなる向上は、熱膨張率を大きくする傾向にある。 However, due to the physical properties of Ni-base superalloys, it is not only possible to keep the thermal expansion coefficient below the value of ferritic Cr steel, but rather, further improvement in heat resistance increases the thermal expansion coefficient. Tend to.
 このように、熱膨張係数の小さいフェライト系Cr鋼ではクリープ変形量が大きく、クリープ変形量が小さく高温強度の高いNi基超合金では熱膨張係数が大きいというジレンマがある。 As described above, there is a dilemma that a ferritic Cr steel having a small thermal expansion coefficient has a large creep deformation amount, and a Ni-base superalloy having a small creep deformation amount and high high-temperature strength has a large thermal expansion coefficient.
 したがって、650℃を超える高温下での使用に耐えることができるとともに、形状や寸法変化の小さな耐熱性精密部品を実現することは、極めて困難とされていた。
特開2007-332412号公報
Therefore, it has been extremely difficult to realize a heat-resistant precision component that can withstand use at a high temperature exceeding 650 ° C. and that has a small shape and dimensional change.
JP 2007-332412 A
 本発明は、このような実情に鑑みてなされたものであり、低熱膨張性を発揮させつつ、耐熱性の向上した、耐熱性精密部品用フェライト系Cr鋼とその製造方法、および耐熱性精密部品とその製造方法を提供することを課題としている。 The present invention has been made in view of such circumstances, and has improved heat resistance while exhibiting low thermal expansion, and a ferritic Cr steel for heat-resistant precision parts, a manufacturing method thereof, and heat-resistant precision parts. And providing a manufacturing method thereof.
 上記の課題を解決するために、本発明の耐熱性精密部品用フェライト系Cr鋼は、耐熱性を有する精密部品用のフェライト系Cr鋼であって、その化学組成が、質量%で、
  Cr: 13~30%、
  Ni: 1×10-1~2.5%、
  C: 1×10-3~1×10-1%、および
  N: 1×10-3~1×10-1
を主に含み、添加成分と不可避的不純物の含有を許容し、残部がFeであり、フェライト相が形成されていることを特徴とする。
In order to solve the above problems, the ferritic Cr steel for heat-resistant precision parts of the present invention is a ferritic Cr steel for precision parts having heat resistance, and its chemical composition is in mass%.
Cr: 13-30%
Ni: 1 × 10 −1 to 2.5%,
C: 1 × 10 −3 to 1 × 10 −1 %, and N: 1 × 10 −3 to 1 × 10 −1 %
Is contained, the inclusion of an additive component and an unavoidable impurity is permitted, the balance is Fe, and a ferrite phase is formed.
 この耐熱性精密部品用フェライト系Cr鋼においては、Cの添加量が1×10―2質量%以上またはNiの添加量が1×10-2質量%以上のいずれか一方または両方のとき、Niの添加量が、
   Ni>10(C+N)(ただし、Ni、CおよびNは、各成分の添加量(単位は質量%)である)
で示される関係を満たしていることが好ましい。
In this ferritic Cr steel for heat-resistant precision parts, when either or both of the addition amount of C is 1 × 10 −2 mass% or more and the addition amount of Ni is 1 × 10 −2 mass% or more, Ni The addition amount of
Ni> 10 (C + N) (However, Ni, C, and N are the amount of each component added (unit: mass%))
It is preferable that the relationship represented by is satisfied.
 また、この耐熱性精密部品用フェライト系Cr鋼においては、フェライト相が70体積%以上であることが好ましい。 Further, in this ferritic Cr steel for heat-resistant precision parts, the ferrite phase is preferably 70% by volume or more.
 また、添加成分が、質量%で、
  Mo: 5×10-1~5%、
  W: 5×10-1~1×10%、
  V: 5×10-2~4×10-1%、
  Nb: 1×10-2~1×10-1%、
  Co: 1×10-1~1×10%、または
  B: 2×10-3~4×10-3
のいずれか1種または2種以上であり、炭化物、窒化物または金属間化合物のいずれか1種または2種以上が結晶粒内に析出していることが好ましい。
Moreover, an additive component is the mass%,
Mo: 5 × 10 −1 to 5%,
W: 5 × 10 −1 to 1 × 10%,
V: 5 × 10 −2 to 4 × 10 −1 %,
Nb: 1 × 10 −2 to 1 × 10 −1 %,
Co: 1 × 10 −1 to 1 × 10%, or B: 2 × 10 −3 to 4 × 10 −3 %
It is preferable that any one or two or more of carbides, nitrides or intermetallic compounds are precipitated in the crystal grains.
 また、この耐熱性精密部品用フェライトCr鋼においては、MoおよびWの添加量が、
   Mo+0.5W≧3.0質量%(ただし、MoおよびWは、各成分の添加量(単位は質量%)である)
で示される関係を満たしていることが好ましい。
Moreover, in this ferritic Cr steel for heat-resistant precision parts, the addition amount of Mo and W is
Mo + 0.5W ≧ 3.0 mass% (however, Mo and W are addition amounts of each component (unit is mass%))
It is preferable that the relationship represented by is satisfied.
 本発明の耐熱性精密部品用フェライト系Cr鋼は、Crを13質量%以上30質量%以下含有する耐熱性精密部品用フェライト系Cr鋼であって、室温から800℃までの温度範囲における熱膨張係数が15×10-6以下で、700℃、応力100MPaでの最小クリープ速度が1×10-4/h以下であることを特徴とする。 The ferritic Cr steel for heat-resistant precision parts of the present invention is a ferritic Cr steel for heat-resistant precision parts containing 13 mass% or more and 30 mass% or less of Cr, and has a thermal expansion in a temperature range from room temperature to 800 ° C. The coefficient is 15 × 10 −6 or less, the minimum creep rate at 700 ° C. and a stress of 100 MPa is 1 × 10 −4 / h or less.
 本発明の耐熱性精密部品用フェライト系Cr鋼の製造方法は、耐熱性を有する精密部品用のフェライト系Cr鋼の製造方法であって、上記化学組成を有するフェライト系Cr鋼を850~1200℃の温度範囲内で熱間加工し、所定形状に成形した後、1000~1250℃の温度範囲内で焼きなまし熱処理をし、次いで100℃/min以上の冷却速度で400℃以下に冷却することを特徴とする。 The method for producing a ferritic Cr steel for heat-resistant precision parts according to the present invention is a method for producing a ferritic Cr steel for precision parts having heat resistance, and the ferritic Cr steel having the above chemical composition is 850 to 1200 ° C. After being hot-worked within the temperature range and molded into a predetermined shape, it is annealed in a temperature range of 1000 to 1250 ° C. and then cooled to 400 ° C. or less at a cooling rate of 100 ° C./min or more. And
 本発明の耐熱性精密部品は、上記の耐熱性精密部品用フェライト系Cr鋼から形成されていることを特徴とする。 The heat-resistant precision component of the present invention is characterized by being formed from the above-described ferritic Cr steel for heat-resistant precision components.
 この耐熱性精密部品は、耐熱性精密部品が、タービンのロータ、ディスクまたはブレードのいずれか一つとすることができる。 The heat-resistant precision component can be any one of a turbine rotor, a disk, and a blade.
 本発明の耐熱性精密部品の製造方法は、上記化学組成を有するフェライト系Cr鋼を850~1200℃の温度範囲内で熱間加工し、部品形状に成形した後、1000~1250℃の温度範囲内で焼きなまし熱処理をし、次いで100℃/min以上の冷却速度で400℃以下に冷却することを特徴とする。 The method for producing a heat-resistant precision component according to the present invention comprises hot-working a ferritic Cr steel having the above chemical composition within a temperature range of 850 to 1200 ° C. and forming it into a part shape, and then a temperature range of 1000 to 1250 ° C. An annealing heat treatment is performed in the inside, and then it is cooled to 400 ° C. or lower at a cooling rate of 100 ° C./min or higher.
 本発明の耐熱性精密部品用フェライト系Cr鋼とその製造方法、および耐熱性精密部品とその製造方法によれば、タービンを代表例とする高温下で使用される機械構造物の耐熱性精密部品として、最高の低熱膨張性を維持しながらも、高い耐熱性(クリープ強度)が実現される。 According to the present invention, a ferritic Cr steel for heat-resistant precision parts and its manufacturing method, and a heat-resistant precision part and its manufacturing method, heat-resistant precision parts for mechanical structures used at high temperatures, typically turbines. As a result, high heat resistance (creep strength) is achieved while maintaining the best low thermal expansion.
650℃でのクリープ破断時間に及ぼす冷却速度の影響を示すグラフである。It is a graph which shows the influence of the cooling rate which has on the creep rupture time in 650 degreeC. 650℃でのクリープ試験結果を示すグラフである。It is a graph which shows the creep test result in 650 degreeC. 700℃、応力100MPaでのクリープ速度と時間の関係を示すグラフである。It is a graph which shows the relationship between the creep rate in 700 degreeC and stress 100MPa, and time. 750℃、応力50MPaでのクリープ速度と時間の関係を示すグラフである。It is a graph which shows the relationship between the creep rate and time at 750 ° C. and a stress of 50 MPa. 750℃におけるクリープ破断時間を示すグラフである。It is a graph which shows the creep rupture time in 750 degreeC. 線膨張係数の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of a linear expansion coefficient.
 本発明の耐熱性精密部品用フェライト系Cr鋼は、650℃(以下、温度表示は50℃を単位とする)を超える高温においても優れた高温強度、耐熱性、耐酸化性および高靭性を有し、高温高圧下での長期間使用に耐え、強度低下が抑制されたタービンなどの機械構造物の部品に用いられる材料である。 The ferritic Cr steel for heat-resistant precision parts of the present invention has excellent high temperature strength, heat resistance, oxidation resistance and high toughness even at high temperatures exceeding 650 ° C. (hereinafter, temperature display is in units of 50 ° C.). However, it is a material that can be used for parts of a mechanical structure such as a turbine that can withstand long-term use under high temperature and high pressure and the strength reduction is suppressed.
 この耐熱性精密部品用フェライト系Cr鋼は、フェライト系Cr鋼の鋼塊を850~1200℃の温度範囲内で熱間加工し、所定形状に成形した後、1000~1250℃の温度範囲内で焼きなまし熱処理をし、次いで100℃/min以上の冷却速度で400℃以下に冷却することによって製造される。 This ferritic Cr steel for heat-resistant precision parts is obtained by hot working a steel ingot of ferritic Cr steel within a temperature range of 850 to 1200 ° C. and forming it into a predetermined shape, and then within a temperature range of 1000 to 1250 ° C. It is manufactured by annealing and then cooling to 400 ° C. or lower at a cooling rate of 100 ° C./min or higher.
 熱間鍛造などの熱間加工時の温度は、850~1200℃とし、好ましくは950~1150℃、より好ましくは1000~1100℃である。上限温度を超えると、延性の急激な低下が生じる場合があり、下限温度未満であると、変形抵抗が増大して、加工により割れなどの欠陥が生じる場合がある。 The temperature during hot working such as hot forging is 850 to 1200 ° C, preferably 950 to 1150 ° C, more preferably 1000 to 1100 ° C. When the upper limit temperature is exceeded, the ductility may be drastically reduced. When the upper limit temperature is exceeded, deformation resistance may increase, and defects such as cracks may occur due to processing.
 焼きなまし熱処理時の温度は、1000~1250℃とし、好ましくは1000~1200℃、より好ましくは1050~1200℃である。上限温度を超えると、結晶粒の著しい粗大化が起こることがあり、鋼の靭性、延性、溶接性などが損なわれる場合がある。一方、下限温度未満では、完全に溶体化することができずに、十分な強度特性が発揮されない場合がある。 The temperature at the time of the annealing annealing is 1000 to 1250 ° C., preferably 1000 to 1200 ° C., more preferably 1050 to 1200 ° C. If the upper limit temperature is exceeded, the crystal grains may be significantly coarsened, and the toughness, ductility, weldability, etc. of the steel may be impaired. On the other hand, if the temperature is lower than the lower limit temperature, the solution cannot be completely formed and sufficient strength characteristics may not be exhibited.
 また、400℃以上の温度では、炭化物、窒化物、金属間化合物などの第2相が析出する速度が大きいために、焼きなまし温度からの冷却中に第2相が析出する可能性がある。そこで、この第2相の析出を制御するため、焼きなまし熱処理後、400℃以下までの冷却速度は、100℃/min以上とし、好ましくは120℃/min以上、より好ましくは150℃/min以上である。下限未満では、冷却の途中に粗大な第2相が結晶粒界に析出してしまい、結晶粒内に微細な第2相を分散析出させることができにくくなるため、強度向上に有効な第2相の析出状態を制御することができず、十分な強度が発現されない場合がある。 Also, at a temperature of 400 ° C. or higher, the second phase such as carbides, nitrides, and intermetallic compounds precipitates at a high rate, so that the second phase may precipitate during cooling from the annealing temperature. Therefore, in order to control the precipitation of the second phase, after the annealing heat treatment, the cooling rate to 400 ° C. or less is set to 100 ° C./min or more, preferably 120 ° C./min or more, more preferably 150 ° C./min or more. is there. If it is less than the lower limit, a coarse second phase precipitates at the grain boundaries during cooling, and it becomes difficult to disperse and precipitate the fine second phase within the crystal grains. The phase precipitation state cannot be controlled and sufficient strength may not be exhibited.
 このようにして製造される耐熱性精密部品用フェライト系Cr鋼は、室温から850℃の温度範囲において、線膨張係数が15×10-6以下となるものであり、上限を超えると、タービンでは、起動および停止時の熱膨張および収縮量が大きくなり、寸法精度の高い耐熱性精密部品の作製が難しくなる。 Ferritic Cr steel for heat-resistant precision parts manufactured in this way has a linear expansion coefficient of 15 × 10 −6 or less in the temperature range from room temperature to 850 ° C. The amount of thermal expansion and contraction at the time of starting and stopping increases, and it becomes difficult to manufacture heat-resistant precision parts with high dimensional accuracy.
 また、耐熱性精密部品用フェライト系Cr鋼は、700℃、応力100MPaでの最小クリープ速度が1.0×10-4/h以下となるものであり、好ましくは、1.0×10-5/h以下となるものである。最小クリープ速度が上限を超えると、タービンでは、運転中に発生する荷重によるクリープ変形量が大きくなり、回転部品である動翼(ブレード)と静置部品である静翼(ベーン)および容器(ケーシング)とが接触し、損傷などの不具合が発生する場合がある。 The ferritic Cr steel for heat-resistant precision parts has a minimum creep rate of 1.0 × 10 −4 / h or less at 700 ° C. and a stress of 100 MPa, preferably 1.0 × 10 −5. / h or less. If the minimum creep speed exceeds the upper limit, the amount of creep deformation due to the load generated during operation increases in the turbine, and the rotating blades (blades) and stationary components (vanes) and containers (casing) ) May come into contact with the product and cause problems such as damage.
 さらに、耐熱性精密部品用フェライト系Cr鋼は、クリープ破断時間が、好ましくは、750℃、応力80MPaで1,000hr以上、750℃、応力50MPaで5,000hr以上、および750℃、応力30MPaで10,000hr以上となるものである。クリープ破断時間が下限未満であると、タービンでは、運転中に発生する荷重によるクリープ破断寿命が短くなり、実用上十分なクリープ破断寿命を確保することが難しくなる場合がある。 Furthermore, the ferritic Cr steel for heat-resistant precision parts preferably has a creep rupture time of 750 ° C., stress 80 MPa, 1,000 hr or more, 750 ° C., stress 50 MPa, 5,000 hr or more, and 750 ° C., stress 30 MPa. 10,000 hours or more. When the creep rupture time is less than the lower limit, the turbine has a short creep rupture life due to a load generated during operation, and it may be difficult to ensure a practically sufficient creep rupture life.
 熱間加工を施す鋼塊などの成形前のフェライト系Cr鋼は、以下のような各成分を有する、化学組成が調整されたフェライト系Cr鋼、いわゆるフェライト系高Cr鋼である(以下に記す%は、質量%を意味する)。
(1) C: 1×10-3~1×10-1
 Cは、クリープ強度の向上のために、1×10-3%以上の添加が必要である。一方、過剰の添加は靭性を低下させるため、Cの添加量の上限は1×10-1%とする。Cを1×10-2%以上添加する場合は、Ni>10(C+N)とするのが好ましい。なお、この式において、Ni、CおよびNは、各成分の添加量(単位は質量%)を示している。
(2) Cr: 13~30%
 Crの添加量は13%以上であることが欠かせないが、実際的には、フェライト相を70体積%以上確保するとともに、耐酸化性向上のために13.5%以上とするのが好ましい。Crの添加量が30%を超えると、靭性の低下が顕著となるため、Crの添加量の上限は30%とする。
(3) N: 1×10-3~1×10-1
 Nは、クリープ強度の向上のために、1×10-3%以上の添加が必要である。一方、過剰の添加は靭性を低下させるため、Nの添加量の上限は1×10-1%とする。Nを1×10-2%以上添加する場合は、Cと同様に、Ni>10(C+N)とするのが好ましい。
(4) Ni: 1×10-1~2.5%
 Niは、靭性向上のために1×10-1%以上の添加が必要である。CまたはNの少なくとも一方または両方の添加量が1×10-2%以上である場合、靭性確保のために、Niの添加量は、上記のとおり、Ni>10(C+N)を満たすのが好ましい。一方、過剰の添加はフェライト相の体積率を低下させるため、Niの添加量の上限は2.5%とする。
A ferritic Cr steel before forming such as a steel ingot to be hot-worked is a ferritic Cr steel having a chemical composition adjusted, the so-called ferritic high Cr steel having the following components (described below). % Means mass%).
(1) C: 1 × 10 −3 to 1 × 10 −1 %
C needs to be added in an amount of 1 × 10 −3 % or more in order to improve the creep strength. On the other hand, since excessive addition reduces toughness, the upper limit of the amount of C added is set to 1 × 10 −1 %. When C is added in an amount of 1 × 10 −2 % or more, Ni> 10 (C + N) is preferable. In this formula, Ni, C and N indicate the amount of each component added (unit: mass%).
(2) Cr: 13-30%
It is indispensable that the amount of Cr added is 13% or more. In practice, it is preferable that 70% by volume or more of the ferrite phase is secured and that 13.5% or more is added to improve oxidation resistance. . When the amount of Cr exceeds 30%, the toughness is significantly lowered, so the upper limit of the amount of Cr is 30%.
(3) N: 1 × 10 −3 to 1 × 10 −1 %
N needs to be added in an amount of 1 × 10 −3 % or more in order to improve the creep strength. On the other hand, since excessive addition reduces toughness, the upper limit of the amount of N added is set to 1 × 10 −1 %. When N is added in an amount of 1 × 10 −2 % or more, it is preferable that Ni> 10 (C + N) as in the case of C.
(4) Ni: 1 × 10 −1 to 2.5%
Ni needs to be added in an amount of 1 × 10 −1 % or more in order to improve toughness. When the addition amount of at least one or both of C and N is 1 × 10 −2 % or more, the addition amount of Ni preferably satisfies Ni> 10 (C + N) as described above to ensure toughness. . On the other hand, excessive addition reduces the volume fraction of the ferrite phase, so the upper limit of the amount of Ni added is 2.5%.
 下記表2に示したように、Niの添加量が、Ni≦10(C+N)(式中、Ni、CおよびNは、各成分の添加量(単位は質量%)を示す)である比較鋼7、8は、冷却速度の違いによらず、シャルピー衝撃値が小さくなる。これに対し、Ni>10(C+N)で示される関係も満たす本発明鋼1~4の水冷材は、比較鋼7、8に比べ、シャルピー衝撃値が十分に大きい。 As shown in Table 2 below, comparative steel in which the addition amount of Ni is Ni ≦ 10 (C + N) (where Ni, C, and N indicate the addition amount of each component (unit: mass%)) 7 and 8 have a small Charpy impact value regardless of the difference in cooling rate. On the other hand, the water-cooled materials of the inventive steels 1 to 4 that also satisfy the relationship represented by Ni> 10 (C + N) have sufficiently large Charpy impact values compared to the comparative steels 7 and 8.
 フェライト系Cr鋼は、炭化物、窒化物または金属間化合物のいずれか1種または2種以上の、制御された析出、すなわち、結晶粒内での微細な分散析出によって強化することができ、クリープ強度を高めるために有効となる。このために、フェライト系Cr鋼は、その化学組成に、上記成分に加え、下記成分の添加を許容している。
(5) Mo: 5×10-1~5%
 Moは、金属間化合物の析出に有効な化学成分であり、クリープ強度を高めることができる。その添加量は、5×10-1%以上とすることができる。一方、過剰の添加は靭性を低下させる場合があるため、Moの添加量の上限は5%とするのが好ましい。
(6) W: 5×10-1~1×10%
 Wは、Moと同様に、金属間化合物の析出に有効な化学成分であり、クリープ強度を高めることができる。その添加量は、5×10-1%以上とすることができる。一方、過剰の添加は靭性を低下させる場合があるため、Wの添加量の上限は1×10%とするのが好ましい。
Ferritic Cr steel can be strengthened by controlled precipitation of one or more of carbides, nitrides or intermetallic compounds, that is, fine dispersion precipitation within crystal grains, and creep strength It becomes effective to raise. For this reason, the ferritic Cr steel allows the addition of the following components in addition to the above components in its chemical composition.
(5) Mo: 5 × 10 −1 to 5%
Mo is a chemical component effective for precipitation of intermetallic compounds, and can increase creep strength. The addition amount can be 5 × 10 −1 % or more. On the other hand, since excessive addition may reduce toughness, the upper limit of the amount of Mo added is preferably 5%.
(6) W: 5 × 10 −1 to 1 × 10%
W, like Mo, is a chemical component effective for precipitation of intermetallic compounds, and can increase the creep strength. The addition amount can be 5 × 10 −1 % or more. On the other hand, since excessive addition may reduce toughness, the upper limit of the amount of W added is preferably 1 × 10%.
 なお、MoとWについては、金属間化合物の析出量が十分に確保されるように、添加量がMo+0.5W≧3.0%で示される関係を満たすようにすることができる(式中、MoおよびWは、それぞれの添加量(単位は質量%)を示す)。
(7) V: 5×10-2~4×10-1
 Vは、クリープ強度向上に有効な炭化物や窒化物を形成する。その添加量は、5×10-2%以上とすることができるが、過剰の添加は、炭化物や窒化物の形成に必ずしも有効ではないので、添加量の上限は4×10-1%とするのが好ましい。
(8) Nb: 1×10-2~1×10-1
 Nbは、Vと同様に、クリープ強度向上に有効な炭化物や窒化物を形成する。その添加量は、1×10-2%以上とすることができるが、過剰の添加は、炭化物や窒化物の形成に必ずしも有効ではないので、添加量の上限は1×10-1%とするのが好ましい。
(9) Co: 1×10-1~1×10%
 Coは、析出する炭化物、窒化物および金属間化合物を微細化し、クリープ強度の向上に有効な成分である。その添加量は、1×10-1%以上とすることができるが、過剰の添加はフェライト相の体積率を低下させる場合があるため、添加量の上限は1×10%とするのが好ましい。
(10) B: 2×10-3~4×10-3
 Bは、析出物を微細化させ、安定化させるとともに、粒界強化に有効な成分である。その添加量は、2×10-3%以上とすることができる。一方、過剰の添加は、窒化ボロンが生成し、必ずしもクリープ強度の向上に有効とはならなくなる場合があるので、Bの添加量の上限は4×10-3%とするのが好ましい。
(11) Mn: 5×10-2~8×10-1
 脱酸材として有効な成分である。その添加量は5×10-2%以上とすることができる。一方、過剰の添加は強度および靭性に有害なため、Mn添加量の上限は8×10-1%とするのが好ましい。
(12) Si: 5×10-2~5×10-1
 脱酸材として有効な成分である。その添加量は5×10-2%以上とすることができる。一方、過剰の添加は、析出物の粗大化を促進させ、強度を低下させるため、Si添加量の上限は5×10-1%とするのが好ましい。
In addition, about Mo and W, addition amount can satisfy | fill the relationship shown by Mo + 0.5W> = 3.0% so that the precipitation amount of an intermetallic compound may fully be ensured (in Formula, Mo and W represent respective addition amounts (unit: mass%)).
(7) V: 5 × 10 −2 to 4 × 10 −1 %
V forms carbides and nitrides effective for improving the creep strength. The addition amount can be 5 × 10 −2 % or more, but excessive addition is not always effective for the formation of carbides and nitrides, so the upper limit of the addition amount is 4 × 10 −1 %. Is preferred.
(8) Nb: 1 × 10 −2 to 1 × 10 −1 %
Nb, like V, forms carbides and nitrides that are effective in improving creep strength. The addition amount can be 1 × 10 −2 % or more, but excessive addition is not always effective for the formation of carbides and nitrides, so the upper limit of the addition amount is 1 × 10 −1 %. Is preferred.
(9) Co: 1 × 10 −1 to 1 × 10%
Co is an effective component for improving the creep strength by refining precipitated carbides, nitrides and intermetallic compounds. The addition amount can be 1 × 10 −1 % or more, but excessive addition may reduce the volume fraction of the ferrite phase, so the upper limit of the addition amount is preferably 1 × 10%. .
(10) B: 2 × 10 −3 to 4 × 10 −3 %
B is a component effective for refining and stabilizing precipitates and strengthening grain boundaries. The addition amount can be 2 × 10 −3 % or more. On the other hand, excessive addition may generate boron nitride and may not always be effective in improving the creep strength, so the upper limit of the amount of B is preferably 4 × 10 −3 %.
(11) Mn: 5 × 10 −2 to 8 × 10 −1 %
It is an effective component as a deoxidizing material. The addition amount can be 5 × 10 −2 % or more. On the other hand, since excessive addition is harmful to strength and toughness, the upper limit of the amount of Mn added is preferably 8 × 10 −1 %.
(12) Si: 5 × 10 −2 to 5 × 10 −1 %
It is an effective component as a deoxidizing material. The addition amount can be 5 × 10 −2 % or more. On the other hand, excessive addition promotes coarsening of precipitates and lowers strength, so the upper limit of Si addition amount is preferably 5 × 10 −1 %.
 そして、耐熱性精密部品用フェライト系Cr鋼の化学組成は、残部がFeと不可避的不純物からなる。 And the chemical composition of ferritic Cr steel for heat-resistant precision parts consists of Fe and inevitable impurities.
 また、耐熱性精密部品用フェライト系Cr鋼は、クリープ強度向上のために、フェライト相が70体積%以上形成されていることが好ましい。焼き戻しマルテンサイト組織は、高温で不安定であるが、フェライト相は高温での組織安定性が高い。表2に示したように、本発明鋼2~4を炉冷すると、焼なまし熱処理後の冷却速度が遅いため、フェライト相の体積率は70%未満となるが、水冷により、400℃以下までの冷却速度が100℃/min以上となると、フェライト相の体積率は70%以上となる。このため、図1に示したように、本発明鋼2~4の水冷材は、炉冷材よりも約10倍の長いクリープ破断時間を示す。 Also, it is preferable that the ferrite-based Cr steel for heat-resistant precision parts has 70% by volume or more of ferrite phase to improve creep strength. The tempered martensite structure is unstable at high temperatures, but the ferrite phase has high structure stability at high temperatures. As shown in Table 2, when the inventive steels 2 to 4 are cooled in the furnace, the cooling rate after the annealing heat treatment is slow, so the volume fraction of the ferrite phase is less than 70%. When the cooling rate up to 100 ° C./min or higher, the volume fraction of the ferrite phase becomes 70% or higher. For this reason, as shown in FIG. 1, the water-cooled materials of the inventive steels 2 to 4 show a creep rupture time that is about 10 times longer than that of the furnace-cooled material.
 また、図2に示したように、Crの添加量が13%未満で、フェライト相の体積率が70%未満である比較鋼9~15に対して、本発明鋼1~4は、クリープ破断時間が長い。 In addition, as shown in FIG. 2, the steels 1 to 4 of the present invention have creep rupture compared to the comparative steels 9 to 15 in which the added amount of Cr is less than 13% and the volume fraction of the ferrite phase is less than 70%. Long time.
 以下に実施例を示す。 Examples are shown below.
 なお、実施例では、丸棒を部品と仮定して各種特性を測定した。上記フェライト系Cr鋼から製造された、たとえば、タービンにおけるロータやディスク、ブレードなどの精密部品が、その素材であるフェライト系Cr鋼と同等の特性を有することは、容易に予測され、理解することができる。 In the examples, various characteristics were measured on the assumption that a round bar is a part. It is easily predicted and understood that precision parts such as rotors, discs, blades, etc., manufactured from the above-mentioned ferritic Cr steel, have the same characteristics as the ferritic Cr steel that is the material. Can do.
 表1に示した化学組成を有する鋼1~8(本発明鋼1~6および比較鋼7、8)の丸棒を、10kgの鋼塊を850~1150℃の温度範囲で熱間鍛造により直径15mmに成形し、1200℃で焼きなまし熱処理後、それぞれを、炉冷または水冷により冷却して作製した。 Diameters of round bars of steels 1 to 8 (invention steels 1 to 6 and comparative steels 7 and 8) having the chemical composition shown in Table 1 were hot forged at a temperature range of 850 to 1150 ° C. with a 10 kg steel ingot. After forming to 15 mm and annealing heat treatment at 1200 ° C., each was produced by cooling by furnace cooling or water cooling.
 なお、表1には、既存のフェライト系耐熱鋼である鋼9~15(比較鋼)の化学組成を併せて示した。 Table 1 also shows the chemical compositions of steels 9 to 15 (comparative steels), which are existing ferritic heat resistant steels.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製した試験片について、100℃でシャルピー衝撃試験を行った。その結果を表2に示した。 The Charpy impact test was performed at 100 ° C. on the prepared test pieces. The results are shown in Table 2.
 Niの添加量が少なく、本発明鋼の範囲外である比較鋼7、8は、焼きなまし熱処理後の冷却速度の大小によらず衝撃値が小さいのに対し、本発明鋼1~4は、冷却速度が小さい炉冷では衝撃値が小さいが、冷却速度が大きい水冷では、衝撃値が300J/cm以上であり、炉冷材および比較鋼7、8に比べて大きい。 The comparative steels 7 and 8 which have a small amount of added Ni and are outside the range of the steel of the present invention have a small impact value regardless of the cooling rate after annealing heat treatment, whereas the steels of the present invention 1 to 4 are cooled. In the case of furnace cooling at a low speed, the impact value is small, but in water cooling at a high cooling speed, the impact value is 300 J / cm 2 or more, which is larger than that of the furnace cooling material and comparative steels 7 and 8.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1は、本発明鋼2~4の、650℃でのクリープ破断時間に及ぼす冷却速度の影響を示したグラフである。冷却速度の小さな炉冷材に比べ、冷却速度の大きな水冷材は、クリープ破断時間が約10倍長くなることが分かる。 FIG. 1 is a graph showing the influence of the cooling rate on the creep rupture time at 650 ° C. of inventive steels 2-4. It can be seen that the water-cooled material having a high cooling rate has a creep rupture time approximately 10 times longer than that of the furnace-cooled material having a low cooling rate.
 表3は、図1を作成した測定データを示している。 Table 3 shows the measurement data that created FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 冷却速度に要求される条件として、1000~1250℃の温度範囲内で焼きなまし熱処理をした後、炭化物、窒化物および金属間化合物が実質的に析出しない低温度である400℃になるまで、その析出を抑制することのできる高速の冷却速度、具体的には100℃/min以上で冷却することが確認される。 As a condition required for the cooling rate, after annealing heat treatment within a temperature range of 1000 to 1250 ° C., the precipitation is continued until the temperature reaches 400 ° C., which is a low temperature at which carbide, nitride and intermetallic compounds do not substantially precipitate. It is confirmed that the cooling is performed at a high cooling rate capable of suppressing the above-mentioned, specifically, at 100 ° C./min or more.
 図2は、650℃でのクリープ試験結果を示すグラフである。 FIG. 2 is a graph showing the results of a creep test at 650 ° C.
 Crの添加量が13質量%未満であり、フェライト相の体積率が70%未満である比較鋼9~15に比べ、本発明鋼1~4は、クリープ強度が高いものであることが分かる。 It can be seen that the inventive steels 1 to 4 have higher creep strength than the comparative steels 9 to 15 in which the addition amount of Cr is less than 13% by mass and the volume fraction of the ferrite phase is less than 70%.
 表4は、図2を作成した測定データを示している。 Table 4 shows the measurement data that created FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図3は、700℃、応力100MPaでのクリープ速度と時間の関係を示すグラフである。 FIG. 3 is a graph showing the relationship between creep rate and time at 700 ° C. and stress of 100 MPa.
 本発明鋼2、4では、比較鋼9~11に比べ、クリープ速度が、約1000分の一と小さく、また、クリープ破断時間が約100倍以上長いことが分かる。 It can be seen that the steels 2 and 4 of the present invention have a creep rate as small as about 1000 times that of the comparative steels 9 to 11, and the creep rupture time is about 100 times longer.
 表5は、図3から得られた最小クリープ速度を示している。本発明鋼2、4では、最小クリープ速度が、1.0×10-4/h以下であり、また、1.0×10-5/h以下ともなっている。 Table 5 shows the minimum creep rate obtained from FIG. In the steels 2 and 4 of the present invention, the minimum creep rate is 1.0 × 10 −4 / h or less, and 1.0 × 10 −5 / h or less.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図4は、750℃、応力50MPaでのクリープ速度と時間の関係を示すグラフである。 FIG. 4 is a graph showing the relationship between creep rate and time at 750 ° C. and a stress of 50 MPa.
 本発明鋼4は未破断であり、試験進行中となった。また、本発明鋼2、4では、いずれも、比較鋼9、13に比べ、クリープ速度が100分の一以下と小さく、また、クリープ破断時間が約100倍以上長いことが分かる。 The invention steel 4 was not broken and the test was in progress. In addition, it can be seen that the steels 2 and 4 of the present invention both have a creep rate as small as 1/100 or less, and the creep rupture time is about 100 times longer than that of the comparative steels 9 and 13.
 表6は、図4を作成した測定データを示している。 Table 6 shows the measurement data that created FIG.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図5は、750℃におけるクリープ破断時間を示すグラフである。 FIG. 5 is a graph showing the creep rupture time at 750 ° C.
 本発明鋼2、4では、応力50MPa、30MPaでの試験において未破断であり、試験進行中となった。また、応力80~50MPaでの試験において、本発明鋼2、4のクリープ破断時間は、比較鋼9~15の破断時間の約100倍以上長く、しかも、表7に示したオーステナイト耐熱鋼21~28であるSUS316よりも長いことが分かる。さらに、応力30MPaでも本発明鋼2、4では、クリープ破断時間はSUS316と同程度であることが分かる。 Invented steels 2 and 4 were not broken in the tests at stresses of 50 MPa and 30 MPa, and the test was in progress. Further, in the test at a stress of 80 to 50 MPa, the creep rupture time of the inventive steels 2 and 4 is about 100 times longer than the rupture time of the comparative steels 9 to 15, and the austenitic heat resistant steels 21 to It can be seen that it is longer than SUS316, which is 28. Furthermore, it can be seen that the creep rupture time is about the same as that of SUS316 in steels 2 and 4 of the present invention even at a stress of 30 MPa.
 表7は、図5を作成した測定データを示している。 Table 7 shows the measurement data that created FIG.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 図6は、線膨張係数の温度依存性を示すグラフである。本発明鋼と実用耐熱材料の線膨張係数を比較した結果である。 FIG. 6 is a graph showing the temperature dependence of the linear expansion coefficient. It is the result of having compared the linear expansion coefficient of this invention steel and practical heat-resistant material.
 本発明鋼2、4を1000℃/hの速度で室温から1000℃まで昇温し、そのときの熱膨張を測定することにより、各温度における線膨張係数を求めた。実用耐熱材料の線膨張係数は、米国機械学会(ASME)のボイラ圧力容器規格に規定されている値である。 The inventive steels 2 and 4 were heated from room temperature to 1000 ° C. at a rate of 1000 ° C./h, and the thermal expansion at that time was measured to obtain the linear expansion coefficient at each temperature. The linear expansion coefficient of the practical heat-resistant material is a value specified in the boiler pressure vessel standard of the American Society of Mechanical Engineers (ASME).
 表8は、図6を作成した測定データを示している。 Table 8 shows the measurement data that created FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明鋼2、4では、室温から850℃の温度範囲において、線膨張係数が15×10-6以下となっており、フェライト鋼と同等またはそれ以上の低熱膨張性を有していることが分かる。 In the steels 2 and 4 of the present invention, the linear expansion coefficient is 15 × 10 −6 or less in the temperature range from room temperature to 850 ° C., and it has low thermal expansion equivalent to or higher than that of ferritic steel. I understand.
 本発明によれば、低熱膨張性を有しながらも、耐熱性(クリープ強度)の向上したフェライト系Cr鋼が実現される。このフェライト系Cr鋼によって、タービンなどの650℃を超える高温下で使用される機械構造物の耐熱性精密部品が実現される。 According to the present invention, a ferritic Cr steel having low heat expansion and improved heat resistance (creep strength) is realized. This ferritic Cr steel realizes heat-resistant precision parts for mechanical structures such as turbines that are used at high temperatures exceeding 650 ° C.

Claims (10)

  1.  耐熱性を有する精密部品用のフェライト系Cr鋼であって、その化学組成が、質量%で、
      Cr: 13~30%、
      Ni: 1×10-1~2.5%、
      C: 1×10-3~1×10-1%、および
      N: 1×10-3~1×10-1
    を主に含み、添加成分と不可避的不純物の含有を許容し、残部がFeであり、フェライト相が形成されていることを特徴とする精密機械部品用フェライト系Cr鋼。
    Ferritic Cr steel for precision parts with heat resistance, whose chemical composition is mass%,
    Cr: 13-30%
    Ni: 1 × 10 −1 to 2.5%,
    C: 1 × 10 −3 to 1 × 10 −1 %, and N: 1 × 10 −3 to 1 × 10 −1 %
    , A ferritic Cr steel for precision machine parts, characterized in that the additive component and inevitable impurities are allowed to be contained, the balance being Fe, and a ferrite phase being formed.
  2.  Cの添加量が1×10―2質量%以上またはNiの添加量が1×10-2質量%以上のいずれか一方または両方のとき、Niの添加量が、
       Ni>10(C+N)(ただし、Ni、CおよびNは、各成分の添加量(単位は質量%)である)
    で示される関係を満たしていることを特徴とする請求項1に記載の耐熱性精密部品用フェライト系Cr鋼。
    When either one or both of the addition amount of C is 1 × 10 −2 mass% or more or the addition amount of Ni is 1 × 10 −2 mass% or more, the addition amount of Ni is
    Ni> 10 (C + N) (However, Ni, C, and N are the amount of each component added (unit: mass%))
    The ferritic Cr steel for heat-resistant precision parts according to claim 1, wherein the relationship represented by:
  3.  フェライト相が70体積%以上であることを特徴とする請求項1または2に記載の耐熱性精密部品用フェライト系Cr鋼。 Ferrite-based Cr steel for heat-resistant precision parts according to claim 1 or 2, wherein the ferrite phase is 70% by volume or more.
  4.  添加成分が、質量%で、
      Mo: 5×10-1~5%、
      W: 5×10-1~1×10%、
      V: 5×10-2~4×10-1%、
      Nb: 1×10-2~1×10-1%、
      Co: 1×10-1~1×10%、または
      B: 2×10-3~4×10-3
    のいずれか1種または2種以上であり、炭化物、窒化物または金属間化合物のいずれか1種または2種以上が結晶粒内に析出していることを特徴とする請求項1または2に記載の耐熱性精密部品用フェライト系Cr鋼。
    Additive component is mass%,
    Mo: 5 × 10 −1 to 5%,
    W: 5 × 10 −1 to 1 × 10%,
    V: 5 × 10 −2 to 4 × 10 −1 %,
    Nb: 1 × 10 −2 to 1 × 10 −1 %,
    Co: 1 × 10 −1 to 1 × 10%, or B: 2 × 10 −3 to 4 × 10 −3 %
    3. One or more of the above, wherein one or more of carbides, nitrides or intermetallic compounds are precipitated in the crystal grains. 4. Ferritic Cr steel for heat resistant precision parts.
  5.  MoおよびWの添加量が、
       Mo+0.5W≧3.0質量%(ただし、MoおよびWは、各成分の添加量(単位は質量%)である)
    で示される関係を満たしていることを特徴とする請求項4に記載の耐熱性精密部品用フェライト系Cr鋼。
    The amount of addition of Mo and W is
    Mo + 0.5W ≧ 3.0 mass% (however, Mo and W are addition amounts of each component (unit is mass%))
    5. The ferritic Cr steel for heat-resistant precision parts according to claim 4, wherein the relationship represented by:
  6.  Crを13質量%以上30質量%以下含有する耐熱性精密部品用フェライト系Cr鋼であって、室温から800℃までの温度範囲における熱膨張係数が15×10-6以下で、700℃、応力100MPaでの最小クリープ速度が1×10-4/h以下であることを特徴とする耐熱性精密部品用フェライト系Cr鋼。 Ferritic Cr steel for heat-resistant precision parts containing 13 to 30% by mass of Cr, having a thermal expansion coefficient of 15 × 10 −6 or less in a temperature range from room temperature to 800 ° C., 700 ° C., stress A ferritic Cr steel for heat-resistant precision parts, characterized in that the minimum creep rate at 100 MPa is 1 × 10 −4 / h or less.
  7.  耐熱性を有する精密部品用のフェライト系Cr鋼の製造方法であって、請求項1に記載の化学組成を有するフェライト系Cr鋼を850~1200℃の温度範囲内で熱間加工し、所定形状に成形した後、1000~1250℃の温度範囲内で焼きなまし熱処理をし、次いで100℃/min以上の冷却速度で400℃以下に冷却することを特徴とする耐熱性精密部品用フェライト系Cr鋼の製造方法。 A method for producing a ferritic Cr steel for precision parts having heat resistance, wherein the ferritic Cr steel having the chemical composition according to claim 1 is hot-worked within a temperature range of 850 to 1200 ° C. to obtain a predetermined shape. Of ferritic Cr steel for heat-resistant precision parts, characterized by being annealed in a temperature range of 1000 to 1250 ° C. and then cooled to 400 ° C. or lower at a cooling rate of 100 ° C./min or higher. Production method.
  8.  請求項1に記載の耐熱性精密部品用フェライト系Cr鋼から形成されていることを特徴とする耐熱性精密部品。 A heat-resistant precision part, characterized in that it is formed from the ferritic Cr steel for heat-resistant precision parts according to claim 1.
  9.  耐熱性精密部品が、タービンのロータ、ディスクまたはブレードのいずれか一つであることを特徴とする請求項8に記載の耐熱性精密部品。 The heat-resistant precision component according to claim 8, wherein the heat-resistant precision component is any one of a turbine rotor, a disk, and a blade.
  10.  請求項1に記載の化学組成を有するフェライト系Cr鋼を850~1200℃の温度範囲内で熱間加工し、部品形状に成形した後、1000~1250℃の温度範囲内で焼きなまし熱処理をし、次いで100℃/min以上の冷却速度で400℃以下に冷却することを特徴とする耐熱性精密部品の製造方法。 The ferritic Cr steel having the chemical composition according to claim 1 is hot-worked in a temperature range of 850 to 1200 ° C., formed into a part shape, and then annealed in a temperature range of 1000 to 1250 ° C., Next, a method for producing a heat-resistant precision part, which is cooled to 400 ° C. or lower at a cooling rate of 100 ° C./min or higher.
PCT/JP2010/059453 2009-06-17 2010-06-03 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME WO2010146999A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/378,158 US20120132325A1 (en) 2009-06-17 2010-06-03 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME
EP10789374.5A EP2444508A4 (en) 2009-06-17 2010-06-03 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009143774A JP5713250B2 (en) 2009-06-17 2009-06-17 Heat-resistant precision parts
JP2009-143774 2009-06-17

Publications (1)

Publication Number Publication Date
WO2010146999A1 true WO2010146999A1 (en) 2010-12-23

Family

ID=43356320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059453 WO2010146999A1 (en) 2009-06-17 2010-06-03 FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME

Country Status (4)

Country Link
US (1) US20120132325A1 (en)
EP (1) EP2444508A4 (en)
JP (1) JP5713250B2 (en)
WO (1) WO2010146999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001574A (en) * 2009-06-17 2011-01-06 National Institute For Materials Science Heat-resistant precision component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236650A (en) * 1998-02-20 1999-08-31 Kawasaki Steel Corp Ferritic stainless steel for engine exhaust member excellent in workability, intergranular corrosion resistance and high temperature strength
JP2003253402A (en) * 2002-02-28 2003-09-10 National Institute For Materials Science High chromium ferritic heat resistant steel
JP2004076154A (en) * 2002-06-17 2004-03-11 Jfe Steel Kk Ferritic stainless steel having excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696016B1 (en) * 1999-09-24 2004-02-24 Japan As Represented By Director General Of National Research Institute For Metals High-chromium containing ferrite based heat resistant steel
JP3843314B2 (en) * 1999-09-24 2006-11-08 独立行政法人物質・材料研究機構 High Cr ferritic heat resistant steel
WO2005064030A1 (en) * 2003-12-26 2005-07-14 Jfe Steel Corporation FERRITIC Cr-CONTAINING STEEL
JP4743190B2 (en) * 2007-10-22 2011-08-10 コベルコ建機株式会社 Valve operating device for construction machinery
JP5713250B2 (en) * 2009-06-17 2015-05-07 独立行政法人物質・材料研究機構 Heat-resistant precision parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236650A (en) * 1998-02-20 1999-08-31 Kawasaki Steel Corp Ferritic stainless steel for engine exhaust member excellent in workability, intergranular corrosion resistance and high temperature strength
JP2003253402A (en) * 2002-02-28 2003-09-10 National Institute For Materials Science High chromium ferritic heat resistant steel
JP2004076154A (en) * 2002-06-17 2004-03-11 Jfe Steel Kk Ferritic stainless steel having excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001574A (en) * 2009-06-17 2011-01-06 National Institute For Materials Science Heat-resistant precision component

Also Published As

Publication number Publication date
EP2444508A1 (en) 2012-04-25
EP2444508A4 (en) 2014-06-18
US20120132325A1 (en) 2012-05-31
JP5713250B2 (en) 2015-05-07
JP2011001574A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5562825B2 (en) Heat-resistant cast steel, method for producing heat-resistant cast steel, cast component for steam turbine, and method for producing cast component for steam turbine
JP5127749B2 (en) Ni-base alloy for turbine rotor of steam turbine and turbine rotor of steam turbine using the same
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
JP6148843B2 (en) Large cast member made of nickel base alloy and method for producing the same
JP2012255424A (en) Ni-BASED ALLOY FOR CASTING USED FOR STEAM TURBINE AND CASTING COMPONENT OF STEAM TURBINE
JP6733211B2 (en) Ni-based superalloy for hot forging
JP5981250B2 (en) Ni-base alloy for casting, method for producing Ni-base alloy for casting, and turbine cast component
JP5265325B2 (en) Heat resistant steel with excellent creep strength and method for producing the same
JP5932622B2 (en) Austenitic heat resistant steel and turbine parts
WO2010146999A1 (en) FERRITIC Cr-STEEL FOR HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME, AND HEAT-RESISTANT PRECISION COMPONENT AND METHOD FOR PRODUCING SAME
KR101507898B1 (en) super heat resistant alloy and the manufacturing method thereof
JP5646521B2 (en) Ni-based alloy for steam turbine casting and cast component for steam turbine
JP5981357B2 (en) Heat resistant steel and steam turbine components
JPWO2016111249A1 (en) Austenitic heat resistant steel and turbine parts
JP6688598B2 (en) Austenitic steel and cast austenitic steel using the same
JP2015086432A (en) Austenitic heat resistant steel and turbine component
JP6173956B2 (en) Austenitic heat resistant steel and turbine parts
JP2014005528A (en) Ni-BASED HEAT-RESISTANT ALLOY AND TURBINE COMPONENT
JP6173822B2 (en) Austenitic heat resistant steel and turbine parts
WO2010150636A1 (en) Heat-resistant component for chemical processing apparatus and method for producing same
JP5996403B2 (en) Heat resistant steel and method for producing the same
JPWO2016142961A1 (en) Ni-base alloy for casting and casting parts for turbine
JP2015199980A (en) Ni-BASED ALLOY FOR CASTING AND TURBINE CASTING COMPONENT
JP6062326B2 (en) Cast Ni-base alloy and turbine casting parts
JP2012117379A (en) CASTING Ni GROUP ALLOY FOR STEAM TURBINE AND CAST COMPONENT FOR THE STEAM TURBINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789374

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010789374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13378158

Country of ref document: US