JP2005314740A - Ferritic stainless steel having excellent heat resistance and workability and its production method - Google Patents

Ferritic stainless steel having excellent heat resistance and workability and its production method Download PDF

Info

Publication number
JP2005314740A
JP2005314740A JP2004133399A JP2004133399A JP2005314740A JP 2005314740 A JP2005314740 A JP 2005314740A JP 2004133399 A JP2004133399 A JP 2004133399A JP 2004133399 A JP2004133399 A JP 2004133399A JP 2005314740 A JP2005314740 A JP 2005314740A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
workability
heat resistance
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004133399A
Other languages
Japanese (ja)
Other versions
JP4312653B2 (en
Inventor
Yoshiharu Inoue
宜治 井上
Masao Kikuchi
正夫 菊池
Shinichi Teraoka
慎一 寺岡
Naoto Ono
直人 小野
Junichi Hamada
純一 濱田
Haruhiko Kajimura
治彦 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2004133399A priority Critical patent/JP4312653B2/en
Publication of JP2005314740A publication Critical patent/JP2005314740A/en
Application granted granted Critical
Publication of JP4312653B2 publication Critical patent/JP4312653B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide ferritic stainless steel having excellent heat resistance and workability, and to provide its production method. <P>SOLUTION: The ferritic stainless steel sheet has components satisfying, by mass, ≤0.015% C, 0.10 to 0.25% Si, 0.10 to 0.3% Mn (wherein, Si≤Mn), ≤0.04% P, ≤0.01% S, 0.001 to 0.2% Al, ≤0.015% N, 15 to 20% Cr, ≤0.5% Ni, 1.0 to 2.5% Mo, ≤0.2% V, Ti: 3X(C+N) to 0.25%, and 0.3 to 1% Nb (wherein, C+N: ≤0.02%), and the balance Fe with inevitable impurities. The steel sheet may comprise 0.1 to 1.0% Cu and 0.0003 to 0.005% B. It is also possible that the steel has a sheet thickness of 1 to 3 mm, a 0.2% proof stress of ≥15 MPa at 950°C, a mean elongation value of ≥30% at ordinary temperature, and a mean r value of ≥1.3. The production method is characterized in that, in a process where an ingot or a slab is cast, and is subjected to hot rolling, hot rolled sheet annealing, pickling, cold rolling, final annealing and pickling to obtain a product, the temperature in the hot rolled sheet annealing is controlled to 800 to 950°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マフラー、エキゾーストマニホールド等の自動車排気系部材に用いられる耐熱性および加工性に優れたフェライト系ステンレス鋼およびその製造方法に関するものである。   The present invention relates to a ferritic stainless steel excellent in heat resistance and workability used for automobile exhaust system members such as a muffler and an exhaust manifold, and a method for producing the same.

近年の環境問題の高まりから、自動車業界では、自動車の排気ガスの排出量を低減させる試みと排気ガスそのものを浄化する試みの両面から環境問題に対応する努力がなされている。前者の試みは、例えば自動車のエンジンの燃費の向上であり、車体の軽量化の試みである。また後者の試みは、例えばプラチナやロジウムなどの触媒を用いて排気ガス中の代表的な排出有害物質であるCO、HC、NOxを、COとHCは酸化してCO2 とH2 O(水)にし、NOxは窒素(N2 )に還元して無害化する試みである。 Due to the recent increase in environmental problems, the automobile industry is making efforts to deal with environmental problems from both an attempt to reduce the amount of exhaust gas emitted from automobiles and an attempt to purify the exhaust gas itself. The former attempt is, for example, an improvement in fuel consumption of an automobile engine and an attempt to reduce the weight of the vehicle body. In the latter attempt, for example, a catalyst such as platinum or rhodium is used to oxidize CO, HC, NOx, which are typical exhaust harmful substances in exhaust gas, and CO and HC are oxidized to CO 2 and H 2 O (water NOx is reduced to nitrogen (N 2 ) to make it harmless.

このような高温の腐食性ガスである排気ガスを通す自動車用排気系部材には、ステンレス鋼が耐熱性(高温強度、耐酸化性)で優れているため、通常用いられる材料となっている。そのなかでも最も高温にさらされる部材の1つであるエキゾーストマニホールドは、排気ガス浄化のための触媒反応の反応効率のために使用温度が高まり、最高1000℃程度までの昇温と、エンジン停止時の降温の繰り返しを受けるため、優れた耐熱性が必要とされている。   Stainless steel is excellent in heat resistance (high temperature strength and oxidation resistance) and is a commonly used material for automotive exhaust system members through which exhaust gas, which is high temperature corrosive gas, passes. Among them, the exhaust manifold, which is one of the parts exposed to the highest temperatures, has a higher operating temperature due to the reaction efficiency of the catalytic reaction for exhaust gas purification. Therefore, excellent heat resistance is required.

従来の自動車用排気系部材の材料としては、対応温度が950℃となる鋼種の開発が行われており、例えば特許文献1には、Cr:18〜22%、Mo:1.0〜2.0%、Nb:0.1〜1.0%を含有するステンレス鋼の発明が開示されている。現在では、950℃対応のエキゾーストマニホールド材としては、SUS444(19%Cr−2%Mo)系などのフェライト系ステンレス鋼が用いられている。   As a material for a conventional automobile exhaust system member, a steel type having a corresponding temperature of 950 ° C. has been developed. For example, Patent Document 1 discloses Cr: 18-22%, Mo: 1.0-2. An invention of a stainless steel containing 0%, Nb: 0.1-1.0% is disclosed. At present, ferritic stainless steel such as SUS444 (19% Cr-2% Mo) is used as an exhaust manifold material compatible with 950 ° C.

一方、エキゾーストマニホールドなどの自動車排気管部材は、車体内の限られたスペースを有効に利用するために複雑な形状となることもあり、過酷な加工を受ける場合も多く、優れた加工性も求められる。特に最近では軽量化志向のため、ますます複雑な形状となり、使用する鋼板への加工性に対する要求は厳しくなっている。   On the other hand, automobile exhaust pipe members such as exhaust manifolds may have complicated shapes in order to effectively use the limited space in the vehicle body, and are often subjected to severe processing, and excellent workability is also required. It is done. In recent years, in particular, due to the trend toward weight reduction, the shape has become increasingly complex, and the demand for workability on the steel sheet used has become stricter.

しかしながら、耐熱性が高い鋼板はNb,Mo等の合金元素量が多くなるため、加工性は低いのが普通である。特にエキゾーストマニホールドなどに使われる板厚1.5mm以上の厚い鋼板は、冷間圧延での圧延率を大きく取れないため、加工性は相対的に低くなる。そのため、耐熱性の高い高合金鋼板の加工性を改善することは大きな課題となっていた。   However, steel sheets with high heat resistance usually have low workability because the amount of alloy elements such as Nb and Mo increases. In particular, a thick steel plate having a thickness of 1.5 mm or more used for an exhaust manifold or the like has a relatively low workability because the rolling ratio in cold rolling cannot be increased. Therefore, improving the workability of high alloy steel plates with high heat resistance has been a major issue.

このような課題を解決するために、例えば特許文献2には、熱延終了温度、熱延板焼鈍温度、最終焼鈍温度を規定することにより、成形性に優れたCr含有耐熱耐食鋼板を得る製造方法の発明が開示されている。
また特許文献3には、Nbを多く含むフェライト系ステンレス鋼を最終焼鈍前に700〜850℃で25時間以下の析出処理を行うことによって、析出物と集合組織を制御した加工性に優れたフェライト系ステンレス鋼板およびその製造方法の発明が開示されている。
特開平06−100990号公報 特開2002−30346号公報 特開2002−194508号公報
In order to solve such a problem, for example, Patent Document 2 discloses a manufacturing method for obtaining a Cr-containing heat-resistant and corrosion-resistant steel sheet having excellent formability by defining a hot rolling end temperature, a hot rolled sheet annealing temperature, and a final annealing temperature. A method invention is disclosed.
In Patent Document 3, ferrite stainless steel containing a large amount of Nb is subjected to precipitation treatment at 700 to 850 ° C. for 25 hours or less before final annealing, thereby providing a ferrite with excellent workability with controlled precipitates and texture. An invention of a stainless steel plate and a method for producing the same is disclosed.
Japanese Patent Laid-Open No. 06-100990 JP 2002-30346 A JP 2002-194508 A

しかし特許文献2に記載の発明では、熱延を行う温度が実施例によると690〜1020℃とかなり低く、熱延設備に多大な負荷がかかるという問題を有していた。また特許文献3に記載の発明では、追加の析出処理工程が必要であり、工程増加によるコスト増加が問題であった。このように、できるだけ安価なコストで製造できる、優れた耐熱性と優れた加工性を兼ね備えたフェライト系ステンレス鋼板は従来見当たらなかった。
そこで本発明は、自動車排気系部材、特にエキゾーストマニホールド用として有用な、耐熱性と加工性に優れたフェライト系ステンレス鋼およびその製造方法を提供することを目的とするものである。
However, the invention described in Patent Document 2 has a problem that the temperature at which hot rolling is performed is as low as 690 to 1020 ° C. according to the embodiment, and a great load is applied to the hot rolling equipment. Moreover, in the invention described in Patent Document 3, an additional precipitation treatment step is necessary, and the cost increase due to the increase in the number of steps has been a problem. Thus, a ferritic stainless steel sheet having excellent heat resistance and excellent workability that can be manufactured at as low a cost as possible has not been found heretofore.
Accordingly, an object of the present invention is to provide a ferritic stainless steel excellent in heat resistance and workability, which is useful for an automobile exhaust system member, particularly an exhaust manifold, and a method for producing the same.

本発明の要旨は以下の通りである。
(1) 質量%で、
C :0.015%以下、 Si:0.10〜0.25%、
Mn:0.10〜0.30%、 P :0.040%以下、
S :0.020%以下、 Al:0.001〜0.20%、
N :0.015%以下、 Cr:15.0〜20.0%、
Ni:0.5%以下、 Mo:1.0〜2.5%、
V :0.2%以下、 Ti:3×(C+N)〜0.25%、
Nb:0.3〜1.0%
を含有し、
さらに前記C,Nは、C+N:0.020%以下の関係を満たし、
さらに前記Si,Mnは、Si≦Mnの関係を満たし、
残部Feおよび不可避的不純物からなることを特徴とする、耐熱性および加工性に優れたフェライト系ステンレス鋼。
(2) さらに質量%で、Cu:0.1〜1.0%を含有することを特徴とする、上記 (1)に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
(3) さらに質量%で、B:0.0003〜0.0050%以下を含有することを特徴とする、上記(1)または(2)に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
(4) 前記フェライト系ステンレス鋼は、板厚が1〜3mmであり、かつ、950℃での0.2%耐力が15MPa以上、常温での平均伸び値が30%以上、平均r値(平均ランクフォード値)が1.3以上であるフェライト系ステンレス鋼板であることを特徴とする、上記(1)ないし(3)のいずれか1項に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
(5) 前記フェライト系ステンレス鋼の結晶粒径が結晶粒度番号で5〜8番であることを特徴とする、上記(4)に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
(6) 板厚の1/2深さにおける圧延面の結晶方位が、次式で定義される積分強度比で5以上であることを特徴とする、上記(4)または(5)に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
積分強度比=X線回折の111ランダム回折強度/X線回折の200ランダム回折強度
The gist of the present invention is as follows.
(1) In mass%,
C: 0.015% or less, Si: 0.10 to 0.25%,
Mn: 0.10 to 0.30%, P: 0.040% or less,
S: 0.020% or less, Al: 0.001 to 0.20%,
N: 0.015% or less, Cr: 15.0-20.0%,
Ni: 0.5% or less, Mo: 1.0-2.5%,
V: 0.2% or less, Ti: 3 × (C + N) to 0.25%,
Nb: 0.3 to 1.0%
Containing
Furthermore, said C and N satisfy | fill the relationship of C + N: 0.020% or less,
Further, the Si and Mn satisfy the relationship of Si ≦ Mn,
A ferritic stainless steel excellent in heat resistance and workability, characterized by comprising the balance Fe and inevitable impurities.
(2) The ferritic stainless steel excellent in heat resistance and workability as described in (1) above, further containing, by mass%, Cu: 0.1 to 1.0%.
(3) Ferritic stainless steel excellent in heat resistance and workability as described in (1) or (2) above, further comprising, by mass%, B: 0.0003 to 0.0050% or less steel.
(4) The ferritic stainless steel has a plate thickness of 1 to 3 mm, a 0.2% proof stress at 950 ° C. of 15 MPa or more, an average elongation value at room temperature of 30% or more, an average r value (average The ferritic stainless steel excellent in heat resistance and workability according to any one of the above (1) to (3), characterized in that it is a ferritic stainless steel sheet having a Rankford value of 1.3 or more. steel.
(5) The ferritic stainless steel having excellent heat resistance and workability as described in (4) above, wherein the crystal grain size of the ferritic stainless steel is a crystal grain size number 5-8.
(6) The crystal orientation of the rolled surface at a half depth of the plate thickness is 5 or more in terms of an integrated intensity ratio defined by the following formula, as described in (4) or (5) above: Ferritic stainless steel with excellent heat resistance and workability.
Integral intensity ratio = 111 random diffraction intensity of X-ray diffraction / 200 random diffraction intensity of X-ray diffraction

(7) 上記(1)ないし(3)のいずれか1項に記載の鋼成分の鋼片を、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、最終焼鈍、酸洗を行って上記(4)ないし(6)のいずれか1項に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼を製造する際に、前記熱延板焼鈍の焼鈍温度を800〜950℃とすることを特徴とする、耐熱性および加工性に優れたフェライト系ステンレス鋼の製造方法。
(8) 前記冷間圧延に際し、直径300mm以上のワークロールを用いることを特徴とする、上記(7)に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼の製造方法。
(7) Performing hot rolling, hot-rolled sheet annealing, pickling, cold rolling, final annealing, pickling the steel slab of the steel component according to any one of (1) to (3) above When manufacturing the ferritic stainless steel excellent in heat resistance and workability described in any one of (4) to (6) above, the annealing temperature of the hot-rolled sheet annealing is set to 800 to 950 ° C. A method for producing ferritic stainless steel having excellent heat resistance and workability.
(8) The method for producing a ferritic stainless steel excellent in heat resistance and workability according to (7) above, wherein a work roll having a diameter of 300 mm or more is used in the cold rolling.

本発明により、自動車排気系部材、特にエキゾーストマニホールド用として有用な耐熱性と加工性に優れたフェライト系ステンレス鋼を提供することができ、製造者のみならず本鋼を利用する者にとっても多大な利益を得ることができ、工業的価値は極めて高い。   According to the present invention, it is possible to provide a ferritic stainless steel excellent in heat resistance and workability that is useful for automobile exhaust system members, particularly for exhaust manifolds, which is great not only for manufacturers but also for those who use this steel. Profits can be obtained and the industrial value is extremely high.

本発明を実施するための最良の形態と限定条件について詳細に説明する。
本発明者らは、自動車排気系部材、特に最高温度が1000℃程度に達するエキゾーストマニホールド用部材として、最適な特性を持つものを検討してきた。エキゾーストマニホールド材として要求される特性は、耐熱性(高温強度、耐酸化性)と加工性である。
必要特性の目標値として、
(a)高温強度:950℃での0.2%耐力15MPa以上、
(b)耐酸化性:950℃、200時間での大気中連続酸化試験において、スケール剥離 量が0.5mg/cm2 以下、
(c)加工性:常温の平均伸び値が30%以上、平均r値が1.2以上、できれば1.3 以上、
の全てを満足することとした。
The best mode and limiting conditions for carrying out the present invention will be described in detail.
The present inventors have studied an automobile exhaust system member, particularly an exhaust manifold member having a maximum temperature of about 1000 ° C., which has optimum characteristics. The characteristics required for the exhaust manifold material are heat resistance (high temperature strength, oxidation resistance) and workability.
As a target value of required characteristics,
(A) High temperature strength: 0.2% proof stress at 950 ° C. of 15 MPa or more,
(B) Oxidation resistance: In a continuous oxidation test in air at 950 ° C. for 200 hours, the amount of scale peeling is 0.5 mg / cm 2 or less,
(C) Workability: Average elongation value at room temperature is 30% or more, average r value is 1.2 or more, preferably 1.3 or more,
It was decided to satisfy all of the above.

これらの目標達成のために、成分元素の最適化と製造プロセスの構築を行った。
その結果、
(1)高温強度を満足するためには、0.3%以上のNbと1.0%以上のMoの複合添 加(高Nb高Mo添加)が必須である。
(2)耐酸化性を満足することと加工性向上のために、耐酸化性を向上しつつ、加工性の 劣化が少ないCr量を15%以上として、耐酸化性を増強する効果を持つが加工性を 顕著に劣化させる、Si,Mn量の削減を図った。
(3)高Nb高Mo添加の下で、加工性を満足するためには、C,Nをできるだけ低減し 、Ti添加と熱延板焼鈍の最適化により、高伸びと高r値を達成した。
In order to achieve these goals, the component elements were optimized and manufacturing processes were established.
as a result,
(1) In order to satisfy the high temperature strength, it is essential to add 0.3% or more of Nb and 1.0% or more of Mo (high Nb and high Mo).
(2) In order to satisfy oxidation resistance and improve workability, it has the effect of enhancing oxidation resistance by improving the oxidation resistance and setting the Cr content with little deterioration in workability to 15% or more. The amount of Si and Mn, which significantly deteriorates workability, was reduced.
(3) In order to satisfy workability under high Nb and high Mo addition, C and N were reduced as much as possible, and high elongation and high r value were achieved by optimization of Ti addition and hot-rolled sheet annealing. .

本発明の最大のポイントは上記(3)であり、(1)、(2)の要求特性から設定された成分系で如何に加工性を向上させ得るかにあった。特にr値(ランクフォード値、塑性ひずみ比)の向上が求められた。
本発明者らは、成分系および製造プロセスの詳細な検討を行い、優れた加工性を得るためには冷延前組織の作りこみが重要であることを見出した。すなわち、本発明の成分の熱延板を800〜950℃の範囲で熱延板焼鈍を行うことにより、優れた加工性が得られることを見出した。
The greatest point of the present invention is the above (3), which is how the workability can be improved with the component system set from the required characteristics of (1) and (2). In particular, improvement of r value (Rankford value, plastic strain ratio) was required.
The present inventors have conducted a detailed examination of the component system and the manufacturing process, and found that the formation of the structure before cold rolling is important in order to obtain excellent workability. That is, it has been found that excellent workability can be obtained by subjecting the hot-rolled sheet of the component of the present invention to hot-rolled sheet annealing in the range of 800 to 950 ° C.

図1は、熱延板焼鈍温度と平均r値の関係を示す一例である。同図から、Ti無添加の場合でも熱延板焼鈍温度が800〜900℃の範囲で比較的高い平均r値が得られるが、Ti添加の場合、さらに高い平均r値が得られることがわかる。
また図2に、Ti量と平均r値の関係を示す。同図から、Ti量が0.005%の場合は、Tiが少なすぎて添加効果がほとんど見られない。しかし、Ti量が0.05%になると顕著なr値向上効果が見られ、0.05%から0.25%の範囲で平均r値が1.3以上と優れた値を示す。
FIG. 1 is an example showing the relationship between the hot rolled sheet annealing temperature and the average r value. From the figure, it can be seen that even when Ti is not added, a relatively high average r value is obtained when the annealing temperature of the hot-rolled sheet is 800 to 900 ° C., but when Ti is added, a higher average r value is obtained. .
FIG. 2 shows the relationship between the Ti amount and the average r value. From the figure, when the amount of Ti is 0.005%, the addition effect is hardly seen because the amount of Ti is too small. However, when the Ti amount is 0.05%, a remarkable effect of improving the r value is observed, and an average r value of 1.3 or more is shown in the range of 0.05% to 0.25%.

このTi添加によるr値向上効果の理由は明らかでないが、次のように考えられる。
すなわち、Mo,Nbは、本発明の範囲の量では熱延板焼鈍時に炭窒化物やラーフェス相としてある程度析出する。Mo,Nbの析出の結果、母相の固溶Mo量、固溶Nb量が減少したため、冷延前組織としてr値に有利となった。さらに、Ti無添加ではこの熱延板焼鈍温度では再結晶しないが、Ti添加により再結晶温度が低下して、この熱延板焼鈍温度範囲で再結晶が起こるようになった。この再結晶により冷延前組織の微細化が達成されるので、r値向上に有利である。この2つの効果の重ね合わせにより、本発明の成分系で高いr値が得られたものと考えられる。
本発明者らは、以上の知見を基にさらに詳細な検討を進め、本発明を完成させた。
The reason for the effect of improving the r value by adding Ti is not clear, but is considered as follows.
That is, Mo and Nb are precipitated to some extent as carbonitrides and Ruffes phases during hot-rolled sheet annealing in amounts within the range of the present invention. As a result of the precipitation of Mo and Nb, the amount of solid solution Mo and the amount of solid solution Nb in the parent phase decreased, which was advantageous for the r value as the structure before cold rolling. Furthermore, recrystallization does not occur at this hot-rolled sheet annealing temperature without addition of Ti, but recrystallization temperature decreases due to the addition of Ti, and recrystallization occurs within this hot-rolled sheet annealing temperature range. This recrystallization achieves refinement of the structure before cold rolling, which is advantageous for improving the r value. It is considered that a high r value was obtained in the component system of the present invention by superimposing these two effects.
Based on the above knowledge, the present inventors proceeded with further detailed studies and completed the present invention.

次に、本発明の各成分に関する限定理由を述べる。
Cは、加工性、耐食性を劣化させるため、できるだけ少ないほうが好ましい。そこで本発明では、炭窒化物として固定して有害作用を除去するが、そのための固定元素であるTiの添加量をできるだけ少なくするため、Cの上限の含有量は0.015%以下とする。ただし、C量を0.002%未満にすることは精錬上過大なコスト負担を強いられることになるため、0.002%以上が好ましい。
Next, the reason for limitation regarding each component of this invention is described.
Since C deteriorates workability and corrosion resistance, it is preferable that C be as small as possible. Therefore, in the present invention, it is fixed as carbonitride to remove harmful effects, but the upper limit of C content is set to 0.015% or less in order to minimize the addition amount of Ti as a fixing element for that purpose. However, if the C content is less than 0.002%, an excessive cost burden is imposed on refining, so 0.002% or more is preferable.

Siは、耐酸化性を向上させる元素であり、耐熱ステンレス鋼には0.3〜1%程度添加されるのが通例であった。特にCr含有量が14%程度の場合、健全なCr2 3 スケールを形成するためにはSiが必須の元素となる。しかし、SiはCr2 3 皮膜と母相との密着性を阻害する元素でもあり、多量の添加はスケールが剥離しやすくなり好ましくない。そこで本発明者らは詳細な検討を重ね、Crを15%以上含有している場合、Si添加量が少なくても充分に耐酸化性を保てることを明らかにした。この知見によれば、Siが少ない程加工性の向上が見込めるため、Siの上限は0.25%とした。一方、Siを0.10%未満とすることは精錬上過大なコスト負担を強いられることになるため、0.10%を下限とした。なお、Si量を0.15%未満にすることは耐酸化性を劣化させる懸念があるため、好ましくは0.15%以上0.25%以下である。 Si is an element that improves the oxidation resistance, and is usually added to the heat-resistant stainless steel by about 0.3 to 1%. In particular, when the Cr content is about 14%, Si is an essential element for forming a sound Cr 2 O 3 scale. However, Si is also an element that hinders the adhesion between the Cr 2 O 3 film and the parent phase, and addition of a large amount is not preferable because the scale easily peels off. Therefore, the present inventors have conducted detailed studies and have clarified that when Cr is contained in an amount of 15% or more, sufficient oxidation resistance can be maintained even if the amount of Si added is small. According to this knowledge, since the improvement of workability can be expected as the amount of Si decreases, the upper limit of Si is set to 0.25%. On the other hand, if Si is less than 0.10%, an excessive cost burden is imposed on refining, so 0.10% was made the lower limit. In addition, since there exists a possibility of deteriorating oxidation resistance to make Si amount less than 0.15%, Preferably it is 0.15% or more and 0.25% or less.

Mnは、鋼中に不可避的に含まれる成分であるが、耐酸化性を向上する元素であると考えられていて、特にSiと共存する場合、Siによるスケール剥離を抑制する効果をもつ。しかしながら、Mnは酸化増量を増加させる傾向を持つ元素である。本発明のように、15%以上のCr含有量でSiを低減させた場合、Mnも低減できる。その結果、加工性の向上も期待できる。そこで本発明では酸化増量の許容範囲を考慮して、Mnの上限を0.30%以下とする。一方、Mn量を0.10%未満にすることは精錬上過大なコスト負担を強いられることになるため、0.10%を下限とした。Mnを低下させ過ぎると耐酸化性の劣化を招く懸念があるため、より好ましくは0.15〜0.30%である。
また、Si>Mnとなると、Mnの耐スケール剥離効果が不十分でスケール剥離を起こす懸念があるので、Si≦Mnとする。
Mn is a component that is inevitably contained in the steel, but is considered to be an element that improves oxidation resistance. In particular, when it coexists with Si, it has an effect of suppressing scale peeling by Si. However, Mn is an element that tends to increase the amount of oxidation. When Si is reduced with a Cr content of 15% or more as in the present invention, Mn can also be reduced. As a result, improvement in workability can be expected. Therefore, in the present invention, the upper limit of Mn is set to 0.30% or less in consideration of the allowable range of increase in oxidation. On the other hand, if the amount of Mn is less than 0.10%, an excessive cost burden is imposed on refining, so 0.10% was made the lower limit. Since there exists a possibility of causing deterioration of oxidation resistance when Mn is reduced too much, it is more preferably 0.15 to 0.30%.
In addition, when Si> Mn, there is a concern that the anti-scale peeling effect of Mn is insufficient and scale peeling occurs, and therefore Si ≦ Mn.

Pは、鋼中に不可避的に含まれる成分であるが、0.040%を超えて含有すると溶接性が低下するために、0.040%を上限とした。
Sは、鋼中に不可避的に含まれる成分であるが、0.020%を超えて含有するとMnSの形成量の増大により耐食性を低下させるので、0.020%を上限とした。
P is a component inevitably contained in the steel, but if it exceeds 0.040%, weldability decreases, so 0.040% was made the upper limit.
S is a component inevitably contained in the steel, but if it exceeds 0.020%, the corrosion resistance is lowered due to an increase in the amount of MnS formed, so 0.020% was made the upper limit.

Alは、脱酸元素として非常に有用である。本発明おいては、Siを極めて低レベルに制限するため、脱酸元素としてAlの添加が必須である。十分な脱酸を行うためには、脱酸後の鋼中のAl量は0.001%以上とする必要がある。しかし、過剰に添加すると加工性を劣化させるとともに内部酸化による高温疲労強度が低下するため、その上限を0.20%とする。   Al is very useful as a deoxidizing element. In the present invention, addition of Al as a deoxidizing element is essential in order to limit Si to an extremely low level. In order to perform sufficient deoxidation, the amount of Al in the steel after deoxidation needs to be 0.001% or more. However, if added excessively, the workability deteriorates and the high temperature fatigue strength due to internal oxidation decreases, so the upper limit is made 0.20%.

Nは、鋼中に含まれる不可避的不純物であり、Cと同様に加工性の劣化、および溶接性が低下するため、できるだけ少ないことが好ましい。そこでNの許容量の上限を0.015%以下とした。なお、0.005%未満にすることは精錬上過大なコスト負担を強いられることになるため、0.005%以上が好ましい。   N is an unavoidable impurity contained in the steel and, like C, is deteriorated in workability and weldability, and therefore is preferably as small as possible. Therefore, the upper limit of the allowable amount of N is set to 0.015% or less. Note that if it is less than 0.005%, an excessive cost burden is imposed on refining, so 0.005% or more is preferable.

Crは、保護性のあるCr2 3 皮膜を形成し耐酸化性を向上させる元素である。Crが15.0%未満の場合、健全なCr2 3 皮膜が形成され難く、耐酸化性を強化するためにSi,Mnの添加を必要とする。そこで本発明では、Si,Mnの効果を期待することなく耐酸化性を得ることのできる下限のCr量を15.0%とした。また、20.0%を超えてCrを含有すると加工性が低下するため、上限を20.0%とする。耐酸化性と加工性のバランスから、より好ましくは15.5〜18.5%である。 Cr is an element that forms a protective Cr 2 O 3 film and improves oxidation resistance. When Cr is less than 15.0%, it is difficult to form a sound Cr 2 O 3 film, and it is necessary to add Si and Mn to enhance the oxidation resistance. Therefore, in the present invention, the lower limit Cr amount that can obtain oxidation resistance without expecting the effects of Si and Mn is set to 15.0%. Moreover, since workability will fall when it contains Cr exceeding 20.0%, an upper limit shall be 20.0%. From the balance of oxidation resistance and workability, it is more preferably 15.5 to 18.5%.

Niは、不可避的不純物であるが、加工性を劣化させない0.5%までの含有は許容される。
Moは、高温強度を確保するために必要な元素である。また耐酸化性、耐食性を向上させる効果もある。よって1.0〜2.5%の範囲で添加する。1.0%未満では充分な高温強度が得られず、2.5%超添加すると加工性の劣化および酸洗時のデスケール性の劣化の問題が生じるからである。
Vは、不可避的不純物であるが、熱間圧延での疵発生の問題のない0.2%以下の含有は許容される。
Ni is an inevitable impurity, but it is allowed to contain up to 0.5% which does not deteriorate the workability.
Mo is an element necessary for ensuring high temperature strength. It also has the effect of improving oxidation resistance and corrosion resistance. Therefore, it adds in 1.0 to 2.5% of range. If it is less than 1.0%, sufficient high-temperature strength cannot be obtained, and if it exceeds 2.5%, problems of deterioration of workability and descaleability during pickling occur.
V is an unavoidable impurity, but it is allowed to contain 0.2% or less without the problem of wrinkling during hot rolling.

Tiは、(1)NbよりC,Nと結びついて炭窒化物を形成しやすいため、高温強度に有効であるが高価なNbの消費を抑制できること、(2)Ti添加により再結晶温度が低下するため、Nb系析出物を充分に析出させる温度での熱延板焼鈍において、再結晶を十分起こさせることができることの2点の効果を狙って添加する。しかし、3×(C+N)%未満ではその効果が乏しく、0.25%を超えると、固溶Tiが増えて再結晶温度が上昇するため、3×(C+N)〜0.25%以下とする。なお、図2に示すように、顕著なr値向上効果を示している4×(C+N)〜0.15%の範囲がより好ましい。   Ti is (1) more easily bonded to C and N than Nb to form carbonitrides, so it is effective for high-temperature strength, but can suppress the consumption of expensive Nb, and (2) Recrystallization temperature is reduced by adding Ti. Therefore, in the hot-rolled sheet annealing at a temperature at which Nb-based precipitates are sufficiently precipitated, the addition is performed aiming at two effects that recrystallization can be caused sufficiently. However, if it is less than 3 × (C + N)%, the effect is poor. If it exceeds 0.25%, the solid solution Ti increases and the recrystallization temperature rises, so that 3 × (C + N) to 0.25% or less. . In addition, as shown in FIG. 2, the range of 4 * (C + N)-0.15% which shows the remarkable r value improvement effect is more preferable.

Nbは、Moとともに高温強度を確保するために必要な元素である。加えて、TiとともにC,Nを炭窒化物として固定する機能がある。しかし、0.3%未満では必要な高温強度が確保できない。また1.0%を超えて添加すると、本発明の製造方法をもってしても加工性が劣化する。そのため0.3〜1.0%とする。なお、高温強度と加工性のバランスからは0.4〜0.6%が好ましい。   Nb is an element necessary for securing high temperature strength together with Mo. In addition, it has a function of fixing C and N as carbonitride together with Ti. However, if it is less than 0.3%, the required high temperature strength cannot be ensured. If it exceeds 1.0%, the workability deteriorates even with the production method of the present invention. Therefore, it is 0.3 to 1.0%. In addition, from the balance of high temperature strength and workability, 0.4 to 0.6% is preferable.

さらにCとNとは、その総和(C+N量)が0.020%を超えると加工性が低下するため、C+N量を0.020%以下とする必要がある。また、本発明ではC,Nを炭窒化物として固定するために主にTiを用いるが、高温強度を高めるために固溶Nbとして温存させるべきNbもC,Nと炭窒化物を形成して消費されてしまう。そこで、高価なNbの歩留向上のためには、C+N量は0.015%以下が好ましい。
以上の成分設計で、耐熱性(高温強度、耐酸化性)および加工性に優れたフェライト系ステンレス鋼を得ることが可能となる。
Further, when the sum of C and N (the amount of C + N) exceeds 0.020%, workability deteriorates, so the amount of C + N needs to be 0.020% or less. In the present invention, Ti is mainly used to fix C and N as carbonitrides. However, Nb that should be preserved as solid solution Nb also forms carbonitrides with C and N in order to increase high temperature strength. It will be consumed. Therefore, in order to improve the yield of expensive Nb, the C + N amount is preferably 0.015% or less.
With the above component design, it becomes possible to obtain a ferritic stainless steel excellent in heat resistance (high temperature strength, oxidation resistance) and workability.

これらの元素に加えて、以下の元素を添加しても良い。
Cuは、耐食性を向上させる元素であるが、0.1%未満ではその効果を期待できない。一方、1.0%を超えて添加すると加工性が劣化する。そのためCuの添加量は0.1〜1.0%とする。耐食性と加工性のバランスからは、0.1〜0.5%の範囲がより好ましい。
In addition to these elements, the following elements may be added.
Cu is an element that improves the corrosion resistance, but if less than 0.1%, the effect cannot be expected. On the other hand, if it exceeds 1.0%, workability deteriorates. Therefore, the addition amount of Cu is set to 0.1 to 1.0%. From the balance of corrosion resistance and workability, the range of 0.1 to 0.5% is more preferable.

Bは、二次加工性を向上させる元素であるが、0.0003%未満ではその効果を期待できない。一方、0.0050%を超えて添加すると(一次)加工性が劣化する。そのためBの添加量は0.0003〜0.0050%とする。なお、一次、二次加工性のバランスの観点からは、0.0003〜0.0020%の範囲がより好ましい範囲である。   B is an element that improves secondary workability, but if less than 0.0003%, the effect cannot be expected. On the other hand, if it exceeds 0.0050%, (primary) workability deteriorates. Therefore, the addition amount of B is set to 0.0003 to 0.0050%. In addition, from the viewpoint of a balance between primary and secondary workability, a range of 0.0003 to 0.0020% is a more preferable range.

本発明の鋼板の板厚は、エキゾーストマニホールド等の自動車排気系部材用として、板厚1〜3mmとするのが好ましい。1mm未満では本発明によらずとも優れた加工性が得られやすく、3mm超では、本発明の方法をもってしても優れた加工性を得られにくいからである。   The plate thickness of the steel plate of the present invention is preferably set to 1 to 3 mm for an automobile exhaust system member such as an exhaust manifold. If the thickness is less than 1 mm, excellent processability is easily obtained regardless of the present invention, and if it exceeds 3 mm, it is difficult to obtain excellent processability even with the method of the present invention.

自動車の燃費向上、高出力化により、排ガス温度が950℃前後まで上昇してきていることから、950℃での性能が耐熱性の指標として最適であり、自動車排気系部材としての必要性から高温強度として、950℃での0.2%耐力が15MPa以上であることが好ましい。ここでの高温強度の測定はJIS G 0567に準拠して行うこととする。また、測定する試験片の方向は圧延方向(L方向)とする。
さらに耐酸化性は、950℃、200時間の大気中酸化試験で酸化スケールの剥離量が0.5mg/cm2 以下であれば金属面が露出するような剥離状況に至らないため、実用上問題ない。スケール剥離のない場合がさらに好ましい。
Because the exhaust gas temperature has increased to around 950 ° C due to improved fuel economy and higher output of automobiles, the performance at 950 ° C is optimal as an index of heat resistance, and the high-temperature strength from the necessity as an automobile exhaust system member As for 0.2% yield strength in 950 ° C, it is preferred that it is 15 MPa or more. Here, the measurement of the high temperature strength is performed in accordance with JIS G 0567. The direction of the test piece to be measured is the rolling direction (L direction).
Furthermore, the oxidation resistance is a practical problem because it does not lead to a peeling situation in which the metal surface is exposed if the peeling amount of the oxide scale is 0.5 mg / cm 2 or less in an atmospheric oxidation test at 950 ° C. for 200 hours. Absent. More preferably, there is no scale peeling.

なお、大気中酸化試験による酸化増量および剥離量の評価については、以下のようにして評価する。
まず、試験片を、1辺20mmの正方形とし、表面および側面を研磨し、#400仕上げとして準備する。次に、試験前に質量測定を行った試験片を950℃に加熱した炉内に挿入する。200時間経過後、炉から取り出した試験片を直ちに、予め空の状態で質量を測定したふた付の金属容器に収納し空冷する。
加熱冷却後の試験片質量について、まず金属容器ごと質量測定を行い、次に試験片を金属容器より取りだし、試験片のみの質量測定を行う。これらの質量測定結果から、酸化増量は、容器入り酸化試験片質量より酸化前試験片質量および空容器質量を差し引き、試験片表面積で除した単位面積当たりの値で評価する。またスケール剥離量は、容器入り酸化後試験片質量より酸化後試験片質量および空容器質量を減じて、試験片表面積で除した単位面積当たりの値で評価する。
In addition, about the oxidation increase by the atmospheric oxidation test and evaluation of the amount of peeling, it evaluates as follows.
First, a test piece is formed into a square with a side of 20 mm, and the surface and side surfaces are polished and prepared as a # 400 finish. Next, the test piece subjected to mass measurement before the test is inserted into a furnace heated to 950 ° C. After 200 hours, the test piece taken out from the furnace is immediately stored in a metal container with a lid whose mass is measured in an empty state in advance and air-cooled.
Regarding the mass of the test piece after heating and cooling, first, the whole metal container is subjected to mass measurement, then the test piece is taken out from the metal container, and only the test piece is subjected to mass measurement. From these mass measurement results, the increase in oxidation is evaluated by the value per unit area obtained by subtracting the mass of the test piece before oxidation and the mass of the empty container from the mass of the oxidized test piece in a container and dividing the mass by the surface area of the test piece. The scale peeling amount is evaluated by a value per unit area obtained by subtracting the post-oxidation test piece mass and the empty container mass from the post-oxidation test piece mass contained in the container and dividing by the test piece surface area.

加工性に関しては、常温の伸びとr値が指標として最適である。鋼板の圧延方向、圧延方向と45°方向、圧延方向と90°方向をそれぞれL,D,C方向とし、それぞれの方向の伸びをEl(L),El(D),El(C)、r値をrL,rD,rCとして、平均伸び値={El(L)+2×El(D)+El(C)}/4、平均r値=(rL+2×rD+rC)/4で求められる、平均伸び値が30%以上、r値が1.4以上であることが好ましい。常温の伸びの測定は、JIS Z 2241に準拠して行い、r値の測定は、JIS Z 2254に準拠して行った。使用した試験片は全てJIS Z 2201に定められている13B号試験片である。   With respect to workability, room temperature elongation and r value are optimal as indices. The rolling direction of the steel sheet, the rolling direction and the 45 ° direction, the rolling direction and the 90 ° direction are the L, D, and C directions, respectively, and the elongation in each direction is El (L), El (D), El (C), r The average elongation value obtained by the following formula: average elongation value = {El (L) + 2 × El (D) + El (C)} / 4, average r value = (rL + 2 × rD + rC) / 4, where rL, rD, and rC are values. Is preferably 30% or more, and the r value is preferably 1.4 or more. The elongation at normal temperature was measured according to JIS Z 2241, and the r value was measured according to JIS Z 2254. All the test pieces used are No. 13B test pieces defined in JIS Z 2201.

また、本発明の鋼板の結晶粒度は、JIS G 0552で規定されている粒度番号で5〜8番が好ましい。5番未満であると、加工時にオレンジピールと呼ばれている肌荒れが起きやすく、8番超では加工性が劣化するからである。結晶粒度の測定はJIS G 0567に準拠して行うことができる。   In addition, the grain size of the steel sheet of the present invention is preferably a grain size number defined by JIS G 0552, which is 5 to 8. If it is less than No. 5, rough skin called orange peel is liable to occur during processing, and if it exceeds No. 8, processability deteriorates. The crystal grain size can be measured according to JIS G 0567.

本発明の鋼板の板厚の1/2の深さでの圧延面の結晶方位は、以下のようにして定める。すなわち、本発明の鋼板の板厚の1/2深さの面の111回折の積分強度と200回折の積分強度をX線回折法で測定する。次に、無方向性試料の111回折の積分強度と200回折の積分強度をX線回折法で測定する。本発明の鋼板の111回折積分強度を無方向性資料の111回折の積分強度で除した値を111ランダム回折強度とする。同様の200ランダム回折強度も求める。そして、この111ランダム回折強度と200ランダム回折強度の比(積分強度比=X線回折の111ランダム回折強度/X線回折の200ランダム回折強度)を鋼板の板厚の1/2深さでの圧延面の結晶方位とする。そして、この積分強度比が5未満であると必要なr値が得られないことから好ましくない。この比の上限は特に定めないが、40超とすることは技術的に非常に困難である。   The crystal orientation of the rolled surface at a depth of 1/2 the thickness of the steel sheet of the present invention is determined as follows. That is, the integral intensity of 111 diffraction and the integral intensity of 200 diffraction of the surface of 1/2 depth of the steel sheet of the present invention are measured by the X-ray diffraction method. Next, the integral intensity of 111 diffraction and the integral intensity of 200 diffraction of the non-directional sample are measured by the X-ray diffraction method. A value obtained by dividing the 111 diffraction integrated intensity of the steel plate of the present invention by the 111 diffraction integrated intensity of the non-directional material is defined as 111 random diffraction intensity. A similar 200 random diffraction intensity is also obtained. Then, the ratio of the 111 random diffraction intensity to the 200 random diffraction intensity (integral intensity ratio = 111 random diffraction intensity of X-ray diffraction / 200 random diffraction intensity of X-ray diffraction) is obtained at a half depth of the plate thickness of the steel sheet. The crystal orientation of the rolled surface. If the integral intensity ratio is less than 5, it is not preferable because a necessary r value cannot be obtained. Although the upper limit of this ratio is not particularly defined, it is technically very difficult to exceed 40.

本発明の耐熱性および加工性に優れたフェライト系ステンレス鋼の製造方法は、通常、所定の成分系に溶製した後、インゴット、スラブ等の鋼片とし、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、最終焼鈍、酸洗を経て、製品とする。   The manufacturing method of ferritic stainless steel excellent in heat resistance and workability of the present invention is usually a steel piece such as an ingot and a slab after being melted in a predetermined component system, hot rolling, hot-rolled sheet annealing, A product is obtained through pickling, cold rolling, final annealing, and pickling.

この工程において、本発明の最も重要な工程は、熱延板焼鈍である。本発明のステンレス鋼は高Nb高Mo含有のため、熱延板でほとんど再結晶は起こっていないため、このままの組織で冷間圧延、最終焼鈍を行っても優れた加工性は得られない。そこで、熱延板焼鈍で冷延前組織の造りこみを行う。その熱延板焼鈍は、800〜950℃で行う。800℃未満であると再結晶が起こらないため、製品状態でのr値が低下し、加工性が劣化するため好ましくない。950℃超であると、Nb、Moの析出量が少なくなり、母相中の固溶Nb、固溶Mo量も低下しないことから、製品状態でのr値が低下し、加工性も劣化するため好ましくない。
850〜950℃であれば、組織微細化と母相中の固溶Nb、固溶Mo量の低下の両面で、よりr値向上に有利な組織となるため好ましい。焼鈍時間は特に定めないが、10秒〜10時間が好ましい。10秒未満では焼鈍効果のばらつきが大きくなり好ましくなく、10時間超では粒成長が進みすぎて、r値向上に不利な組織になりやすくなるため好ましくない。製造コストの面からは1時間未満とする方がより好ましい。最も好ましい熱延板焼鈍条件は、焼鈍温度が850〜950℃、焼鈍時間が10秒以上1時間未満である。
In this process, the most important process of the present invention is hot-rolled sheet annealing. Since the stainless steel of the present invention contains high Nb and high Mo, almost no recrystallization occurs in the hot-rolled sheet. Therefore, excellent workability cannot be obtained even if cold rolling and final annealing are performed in this state. Therefore, the structure before cold rolling is formed by hot-rolled sheet annealing. The hot-rolled sheet annealing is performed at 800 to 950 ° C. If it is less than 800 ° C., recrystallization does not occur, so the r value in the product state is lowered and the workability is deteriorated, which is not preferable. If it exceeds 950 ° C., the amount of Nb and Mo deposited will decrease, and the amount of solid solution Nb and solid solution Mo in the matrix will not decrease, so the r value in the product state will decrease and the workability will also deteriorate. Therefore, it is not preferable.
If it is 850-950 degreeC, since it becomes a structure | tissue which is more advantageous for r value improvement in both sides of structure | tissue refinement | miniaturization and the fall of the amount of solid solution Nb and solid solution Mo in a mother phase, it is preferable. Although the annealing time is not particularly defined, 10 seconds to 10 hours are preferable. If it is less than 10 seconds, the variation in the annealing effect becomes large, which is not preferable, and if it exceeds 10 hours, the grain growth proceeds excessively, and the structure tends to be disadvantageous for improving the r value. From the viewpoint of manufacturing cost, it is more preferable to set it to less than 1 hour. The most preferable hot-rolled sheet annealing conditions are an annealing temperature of 850 to 950 ° C. and an annealing time of 10 seconds or more and less than 1 hour.

さらに冷間圧延は、直径300mm以上のワークロールを用いて行うと、r値が向上するため好ましい。直径300mm未満ではr値向上効果が小さいため好ましくない。ワークロール径の上限は特に定めないが、ワークロール径が大きくなるほど、ハウジング、モータ等の大型化が必要となり設備コスト上昇を伴うので、直径1000mm以下とするのが好ましい。   Further, cold rolling is preferably performed using a work roll having a diameter of 300 mm or more because the r value is improved. If the diameter is less than 300 mm, the effect of improving the r value is small, which is not preferable. Although the upper limit of the work roll diameter is not particularly defined, the larger the work roll diameter is, the larger the housing, the motor, etc. are required, and the equipment cost is increased, so the diameter is preferably 1000 mm or less.

その他の製造条件は特に定めないが、以下の条件が好ましい。
熱間圧延において、インゴットまたはスラブの加熱温度は1100〜1300℃が好ましい。1000℃未満では熱間圧延時に線状疵が多発し、1300℃超ではスケールが強固になり酸洗性を損なうためである。
熱間圧延の開始温度は、1050〜1300℃とするのが好ましい。1050℃未満では線状疵が多発し、また1300℃超ではスケールが強固になり酸洗性を損なうためである。
Other manufacturing conditions are not particularly defined, but the following conditions are preferable.
In the hot rolling, the heating temperature of the ingot or slab is preferably 1100 to 1300 ° C. If the temperature is lower than 1000 ° C., linear wrinkles occur frequently during hot rolling, and if it exceeds 1300 ° C., the scale becomes strong and the pickling property is impaired.
The hot rolling start temperature is preferably 1050 to 1300 ° C. When the temperature is lower than 1050 ° C., linear wrinkles occur frequently, and when it exceeds 1300 ° C., the scale becomes strong and the pickling property is impaired.

熱延の終了温度は、750〜900℃とするのが好ましい。750℃未満では、線状疵が増えるとともに鋼板の変形抵抗が大きくなるため、熱延ロールへの負荷が増大してロール寿命を低減させるためである。また900℃超とするためには、熱間圧延中に鋼板の温度低下を防ぐ設備が必要であり製造コストが高くなるためである。コストミニマムの観点から780〜880℃がより好ましい。   The end temperature of hot rolling is preferably 750 to 900 ° C. When the temperature is lower than 750 ° C., the number of linear wrinkles increases and the deformation resistance of the steel sheet increases, so the load on the hot-rolled roll increases and the roll life is reduced. Moreover, in order to make it over 900 degreeC, it is because the installation which prevents the temperature fall of a steel plate during hot rolling is required, and a manufacturing cost becomes high. 780-880 degreeC is more preferable from a viewpoint of cost minimum.

熱間圧延率は、熱間圧延率(%)={(インゴットまたはスラブ厚−熱間圧延後の板厚)/(インゴットまたはスラブ厚)}×100で規定される熱間圧延率が90%以上であることが好ましい。この値が90%未満であると熱間圧延後の熱延板に蓄積される歪が少なく、本発明の重要工程である熱延板焼鈍において、再結晶が起こり難くなるためである。加工性向上のためには95%以上がさらに好ましい。   As for the hot rolling rate, the hot rolling rate (%) = {(ingot or slab thickness−sheet thickness after hot rolling) / (ingot or slab thickness)} × 100 is defined as 90%. The above is preferable. If this value is less than 90%, the strain accumulated in the hot-rolled sheet after hot rolling is small, and recrystallization hardly occurs in the hot-rolled sheet annealing, which is an important process of the present invention. 95% or more is more preferable for improving workability.

冷間圧延率は、冷間圧延率(%)={(冷間圧延前の板厚−冷間圧延後の板厚)/(冷間圧延前の板厚)}×100で規定される冷間圧延率が50〜80%であることが好ましい。50%未満であると、本発明をもってしても加工性に優れた鋼板を得ることは困難であるためである。また冷延後の板厚が1〜3mmの場合、冷間圧延率を80%超とするには、冷延前の板厚を厚くして冷間圧延を行う必要があり、冷間圧延機にかかる負荷が過大となるためである。   The cold rolling ratio is a cold rolling ratio (%) = {(sheet thickness before cold rolling−sheet thickness after cold rolling) / (sheet thickness before cold rolling)} × 100 It is preferable that a hot rolling rate is 50 to 80%. It is because it is difficult to obtain the steel plate excellent in workability as it is less than 50% even if it has this invention. In addition, when the sheet thickness after cold rolling is 1 to 3 mm, in order to increase the cold rolling rate to more than 80%, it is necessary to perform cold rolling by increasing the sheet thickness before cold rolling. This is because an excessive load is applied.

最終焼鈍温度は、1000〜1100℃が好ましい。1000℃未満では、本発明の高Nb高Mo鋼は粒成長が不十分となり加工性が劣化するとともに、熱延板焼鈍で析出したNb,Mo含有析出物の溶解が不十分なため、高温強度を確保するための固溶Nb、固溶Moが不足するためである。一方、1100℃超では、粒成長が進みすぎて結晶粒径が大きくなりすぎ、加工時に肌荒れを起こすためである。   The final annealing temperature is preferably 1000 to 1100 ° C. If the temperature is less than 1000 ° C., the high Nb high Mo steel of the present invention has insufficient grain growth and deteriorates workability, and the Nb and Mo-containing precipitates precipitated by hot-rolled sheet annealing are insufficiently melted. This is because the solid solution Nb and the solid solution Mo for securing the carbon content are insufficient. On the other hand, when the temperature exceeds 1100 ° C., the grain growth is excessive and the crystal grain size becomes too large, causing rough skin during processing.

表1に示す化学成分を有する溶鋼を溶製し厚み200mmの鋼片とした後、1250℃に加熱して熱間圧延を行い、板厚5mmの熱延板を得た。このとき、熱延開始温度は1200〜1250℃、熱延終了温度は800〜880℃であった。その後、熱延板を900℃に加熱して60秒保持する熱延板焼鈍を行った。さらに、直径400mmのワークロールを用いて冷間圧延を行って2mm厚の冷延板にした後、1050℃に加熱して、60秒保持する最終焼鈍を行い、ふっ酸にて酸洗を行って得た鋼板を供試鋼とした。   Molten steel having the chemical components shown in Table 1 was melted to form a steel piece having a thickness of 200 mm, followed by hot rolling at 1250 ° C. to obtain a hot-rolled sheet having a thickness of 5 mm. At this time, the hot rolling start temperature was 1200 to 1250 ° C, and the hot rolling end temperature was 800 to 880 ° C. Then, the hot-rolled sheet annealing which heated a hot-rolled sheet to 900 degreeC and hold | maintained for 60 seconds was performed. Further, after cold rolling using a work roll having a diameter of 400 mm to form a cold-rolled sheet having a thickness of 2 mm, it is heated to 1050 ° C. and subjected to final annealing for 60 seconds, and pickling with hydrofluoric acid. The obtained steel plate was used as a test steel.

常温の引張試験は、JIS Z 2241に準拠して行った。測定した試験片の方向は、圧延方向(L方向)、圧延方向と45°方向(D方向)、圧延方向と90°方向(C方向)の3方向であり、それぞれの全伸びEl(L),El(D),El(C)と平均伸び値を求めた。r値測定は、JIS Z 2254に準拠して行った。測定した試験片の方向は引張試験と同じ3方向であり、それぞれのr値rL,rD,rCと平均r値を求めた。使用した試験片はすべてJIS Z 2201に定められた13B号試験片である。
高温引張試験は、JIS G 0567に準拠して行った。測定した試験片の方向は圧延方向(L方向)である。
The tensile test at room temperature was performed according to JIS Z 2241. The direction of the measured specimen is the rolling direction (L direction), the rolling direction and 45 ° direction (D direction), the rolling direction and 90 ° direction (C direction), and the total elongation El (L). , El (D), El (C) and average elongation values were determined. The r value measurement was performed according to JIS Z 2254. The direction of the measured specimen was the same three directions as in the tensile test, and the respective r values rL, rD, rC and the average r value were determined. All the test pieces used were No. 13B test pieces defined in JIS Z 2201.
The high temperature tensile test was performed according to JIS G 0567. The direction of the measured specimen is the rolling direction (L direction).

酸化試験は大気中で行った。試験片の形状は、1片20mmの正方形で、表面および側面を研磨し、#400仕上げとした。酸化増量および剥離量の評価方法は以下のように行った。
試験前に質量測定を行った試験片を、950℃に加熱した炉内に挿入し、200時間経過後に炉から取り出し、直ちに、予め空の状態で質量を測定したふた付の金属容器に収納し空冷する。まず金属容器ごと質量測定を行い、次に試験片を金属容器より取りだし、試験片のみの質量測定を行った。
これらの質量の測定結果から、酸化増量は、容器入り酸化試験片質量より酸化前試験片質量および空容器質量を減じて差し引き、試験片表面積で除した値で評価した。またスケール剥離量は、容器入り酸化後試験片質量より酸化後試験片質量および空容器質量を減じて、試験片表面積で除した値で評価した。
供試鋼の結晶粒度番号は、JIS G 0552に準拠して、切断法によって行った。
The oxidation test was conducted in the atmosphere. The shape of the test piece was a square of 20 mm, and the surface and side surfaces were polished to give a # 400 finish. The evaluation method of the amount of increase in oxidation and the amount of peeling was performed as follows.
Insert the test piece whose mass was measured before the test into a furnace heated to 950 ° C., remove it from the furnace after 200 hours, and immediately store it in a metal container with a lid whose mass was measured in advance in an empty state. Air-cool. First, the whole metal container was subjected to mass measurement, and then the test piece was taken out of the metal container, and only the test piece was subjected to mass measurement.
From the measurement results of these masses, the oxidation increase was evaluated by subtracting the pre-oxidation test piece mass and the empty container mass from the mass of the oxidation test piece contained in the container and dividing the result by the surface area of the test piece. Moreover, the scale peeling amount was evaluated by a value obtained by subtracting the post-oxidation test piece mass and the empty container mass from the post-oxidation test piece mass in the container and dividing the result by the test piece surface area.
The grain size number of the test steel was determined by a cutting method in accordance with JIS G 0552.

供試鋼の圧延面の結晶方位は、X線回折法を用いて行った。板厚の1/2まで切削した後、研磨仕上げを行った試験片を用いて、111回折強度および200回折強度を測定するとともに、粉末から作製した無方向性試験片についても同様の測定をし、その値で除した、111ランダム回折積分強度[I(111)]と200ランダム回折積分強度[I (200)]を求め、さらにその比、I(111)/I(200)を求め、圧延面の結晶方位の指標とした。   The crystal orientation of the rolled surface of the test steel was performed using an X-ray diffraction method. After cutting to 1/2 of the plate thickness, 111 and 200 diffraction intensities are measured using a polished test piece, and the same measurement is performed on a non-directional test piece made from powder. Then, 111 random diffraction integral intensity [I (111)] and 200 random diffraction integral intensity [I (200)] divided by the value are obtained, and the ratio, I (111) / I (200) is obtained, rolling It was used as an index of the crystal orientation of the surface.

表2に、常温引張試験結果、950℃での高温引張試験結果、950℃×200時間の大気中酸化試験の結果、および供試鋼の圧延面の結晶方位を表す積分強度比[I(111)/I(200)]を示す。
A鋼からG鋼までは、16%Cr−1.5%Mo−0.5%Nb鋼をベースに、Ti量のみを変化させた供試鋼である。本発明鋼であるB鋼からF鋼までは、高温強度が15MPa以上あり、酸化試験におけるスケール剥離もなく、耐熱性に優れているとともに、平均伸び値は30%以上有り、平均r値も1.3以上と優れた加工性を示している。
一方、Ti量が0.001%と少ないA鋼は、平均伸び値、平均r値が1.1と低く、加工性が充分でない。また、Ti量が0.3%と多すぎるG鋼も、平均r値が1.1と低く、加工性が充分でない。
Table 2 shows the results of the room temperature tensile test, the high temperature tensile test at 950 ° C., the result of the atmospheric oxidation test at 950 ° C. × 200 hours, and the integral strength ratio [I (111) representing the crystal orientation of the rolling surface of the test steel. ) / I (200)].
Steels A to G are test steels based on 16% Cr-1.5% Mo-0.5% Nb steel with only the Ti content changed. The steels of the present invention, from steel B to steel F, have a high-temperature strength of 15 MPa or more, no scale peeling in the oxidation test, excellent heat resistance, an average elongation value of 30% or more, and an average r value of 1 Excellent workability of 3 or more.
On the other hand, steel A having a small Ti content of 0.001% has a low average elongation value and average r value of 1.1, and the workability is not sufficient. Further, steel G having an excessive amount of Ti of 0.3% has an average r value as low as 1.1 and is not sufficiently workable.

A鋼からG鋼までを用いて、Ti量と平均r値の関係を示した図が図2である。本発明範囲からTi量が少なすぎる場合も、多すぎる場合も平均r値が低くなることが明らかである。
表2において、H鋼からR鋼までは本発明範囲を中心に含有成分を変化させたものである。本発明鋼であるH鋼からM鋼までは、優れた耐熱性と優れた加工性を示している。
これらに対し、C,N量の高いN鋼は加工性が充分でなく、Si,Mn量の高すぎるO鋼も加工性が充分でなく、Ni量が高いP鋼も加工性が充分でない。また、Nb,Moが低いQ鋼は、高温強度が充分ない。さらに、Moが低すぎるR鋼は加工性が充分でないばかりか、最終焼鈍後の酸洗でスケール残りが発生した。
FIG. 2 shows the relationship between the Ti amount and the average r value using A steel to G steel. From the scope of the present invention, it is clear that the average r value is low both when the amount of Ti is too small and when it is too large.
In Table 2, from H steel to R steel, the contained components are changed around the scope of the present invention. The steels of the present invention, from H steel to M steel, exhibit excellent heat resistance and excellent workability.
On the other hand, N steel with a high amount of C and N is not sufficiently workable, O steel with too much Si and Mn is not sufficiently workable, and P steel with a high Ni content is not sufficiently workable. Moreover, Q steel with low Nb and Mo does not have sufficient high-temperature strength. Furthermore, not only is the workability of R steel with Mo too low, but scale residue is generated by pickling after the final annealing.

Figure 2005314740
Figure 2005314740

Figure 2005314740
Figure 2005314740

表1のA鋼およびD鋼と同じ成分の鋼塊を溶製し、表3に示す製造条件で鋼板を作製した。A1〜A7鋼がA鋼と同じ成分、D1〜D19鋼がD鋼と同じ成分である。その後、これらを供試鋼して、実施例1と同じ評価試験を行った。その結果を表4に示す。
A1〜A7鋼、D1〜D7鋼は、中間焼鈍の温度を変化させたものである。Aシリーズ(A1〜A7鋼)はTi量無添加鋼(Ti量:不純物レベルの0.001%)であり、Dシリーズ(D1〜D7鋼)はTi量0.15%添加鋼である。
Steel ingots having the same components as those of steel A and steel D in Table 1 were melted, and steel sheets were produced under the production conditions shown in Table 3. A1-A7 steel is the same component as A steel, D1-D19 steel is the same component as D steel. Thereafter, these were used as test steels and subjected to the same evaluation test as in Example 1. The results are shown in Table 4.
A1 to A7 steel and D1 to D7 steel are obtained by changing the temperature of intermediate annealing. The A series (A1 to A7 steel) is a steel with no Ti content (Ti content: 0.001% of the impurity level), and the D series (D1 to D7 steel) is a steel with 0.15% Ti content.

表4において、Aシリーズ、Dシリーズともに、耐熱性は充分であるが、加工性、特にr値で差がある。図1に中間焼鈍温度と平均r値の関係を示すが、Ti無添加鋼であるA鋼は平均r値が最大で1.15であるのに対し、本発明鋼でありTi添加鋼であるDシリーズでは、中間焼鈍温度が800℃から950℃の範囲で、平均r値が1.3以上を示し、優れた加工性を示すことが明らかである。   In Table 4, both A series and D series have sufficient heat resistance, but there is a difference in workability, particularly r value. FIG. 1 shows the relationship between the intermediate annealing temperature and the average r value. Steel A, which is a Ti-free steel, has a maximum average r value of 1.15, whereas it is a steel of the present invention and a Ti-added steel. In the D series, it is clear that the average r value is 1.3 or more in the intermediate annealing temperature range of 800 ° C. to 950 ° C. and excellent workability is exhibited.

次にD8〜D19鋼は、D鋼の成分で製造条件を変えて製造した供試鋼である。D8〜D10鋼は最終の板厚を変化させた供試鋼である。
板厚が3.2mmと厚いD8鋼は、冷間圧延率が約47%と低いため、平均伸び30%、平均r値が1.2とやや低めである。板厚が0.8mmと薄いD10鋼は優れた加工性を示すが、本発明の製造方法以外でもこの程度の値を得ることは可能である。
D11,D12鋼は、冷間圧延ワークロールの直径を変えたものである。本発明の製造方法の範囲である直径300mmのワークロールを使用したD11鋼は、平均r値1.4と優れた加工性を示すが、直径100mmのワークロールを使用したD12鋼は、平均r値1.2とやや低めである。
Next, D8 to D19 steels are test steels manufactured by changing the manufacturing conditions with the components of D steel. D8 to D10 steels are test steels having different final plate thicknesses.
The D8 steel, which has a thick plate thickness of 3.2 mm, has a low cold rolling rate of about 47%, so the average elongation is 30% and the average r value is slightly low at 1.2. D10 steel with a thin plate thickness of 0.8 mm shows excellent workability, but it is possible to obtain this level of value other than the production method of the present invention.
D11 and D12 steels are obtained by changing the diameter of the cold-rolled work roll. D11 steel using a work roll with a diameter of 300 mm, which is a range of the production method of the present invention, shows excellent workability with an average r value of 1.4, but D12 steel using a work roll with a diameter of 100 mm has an average r The value 1.2 is slightly low.

D13,D14鋼は、最終焼鈍温度を変えたものであるが、最終焼鈍温度が1130℃と高いD13鋼は、加工性は優れた値を持つが、結晶粒度番号が5.5番と小さく、結晶粒が大きいので肌荒れが懸念される。最終焼鈍温度が950℃と低いD14鋼は、粒成長しにくいため結晶粒度番号が8.5と大きく、そのため平均r値が1.2とやや低位である。
D15,D16鋼は、インゴットの厚みを変えたものであり、80mmとインゴット厚みが薄いD15鋼は、熱間圧延の圧延率が94%と低く、平均伸び値30%、平均r値1.3と低めのレベルであるが、160mmであるD16鋼は、圧延率97%と充分で、平均伸び値32%、平均r値1.5と優れた値を示す。
D17〜D19鋼は熱延条件を変化させたものであるが、本発明の好ましい範囲にあるため、優れた加工性が得られている。
以上から、本発明のフェライト系ステンレス鋼は、優れた耐熱性と優れた加工性を持っていることは明らかである。
D13 and D14 steels have different final annealing temperatures, but D13 steel with a high final annealing temperature of 1130 ° C has excellent workability, but the grain size number is as small as 5.5. There are concerns about rough skin because of the large crystal grains. The D14 steel having a low final annealing temperature of 950 ° C. has a large grain size number of 8.5 because it is difficult to grow grains, and therefore the average r value is slightly low at 1.2.
The D15 and D16 steels have different ingot thicknesses, and the D15 steel with a thin ingot thickness of 80 mm has a low hot rolling reduction rate of 94%, an average elongation value of 30%, and an average r value of 1.3. However, the D16 steel of 160 mm is sufficient with a rolling rate of 97%, and exhibits an excellent value of an average elongation value of 32% and an average r value of 1.5.
Although D17-D19 steel is what changed hot-rolling conditions, since it exists in the preferable range of this invention, the outstanding workability is obtained.
From the above, it is clear that the ferritic stainless steel of the present invention has excellent heat resistance and excellent workability.

Figure 2005314740
Figure 2005314740

Figure 2005314740
Figure 2005314740

16%Cr−1.5%Mo−0.5%Nb系ステンレス鋼板の、平均r値に及ぼすTi添加と熱延板焼鈍温度の影響の一測定例を示す図である。It is a figure which shows the example of a measurement of the influence of Ti addition and the hot-rolled sheet annealing temperature which have on the average r value of a 16% Cr-1.5% Mo-0.5% Nb type stainless steel plate. 16%Cr−1.5%Mo−0.5%Nb−Ti系ステンレス鋼板の、平均r値に及ぼすTi添加量の影響の一測定例を示す図である。It is a figure which shows one measurement example of the influence of the amount of Ti which has on the average r value of a 16% Cr-1.5% Mo-0.5% Nb-Ti type stainless steel plate.

Claims (8)

質量%で、
C :0.015%以下、
Si:0.10〜0.25%、
Mn:0.10〜0.30%、
P :0.040%以下、
S :0.020%以下、
Al:0.001〜0.20%、
N :0.015%以下、
Cr:15.0〜20.0%、
Ni:0.5%以下、
Mo:1.0〜2.5%、
V :0.2%以下、
Ti:3×(C+N)〜0.25%、
Nb:0.3〜1.0%
を含有し、さらに前記C,Nは、
C+N:0.020%以下
の関係を満たし、さらに前記Si,Mnは、
Si≦Mn
の関係を満たし、残部Feおよび不可避的不純物からなることを特徴とする、耐熱性および加工性に優れたフェライト系ステンレス鋼。
% By mass
C: 0.015% or less,
Si: 0.10 to 0.25%,
Mn: 0.10 to 0.30%,
P: 0.040% or less,
S: 0.020% or less,
Al: 0.001 to 0.20%,
N: 0.015% or less,
Cr: 15.0-20.0%,
Ni: 0.5% or less,
Mo: 1.0-2.5%,
V: 0.2% or less,
Ti: 3 × (C + N) to 0.25%,
Nb: 0.3 to 1.0%
In addition, the C and N are
C + N: 0.020% or less is satisfied, and the Si and Mn are
Si ≦ Mn
Ferritic stainless steel excellent in heat resistance and workability, characterized by satisfying the above relationship and comprising the balance Fe and inevitable impurities.
さらに質量%で、
Cu:0.1〜1.0%
を含有することを特徴とする、請求項1に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
In addition,
Cu: 0.1 to 1.0%
The ferritic stainless steel excellent in heat resistance and workability according to claim 1, characterized by comprising:
さらに質量%で、
B :0.0003〜0.0050%以下
を含有することを特徴とする、請求項1または2に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
In addition,
B: Ferritic stainless steel excellent in heat resistance and workability according to claim 1 or 2, characterized by containing 0.0003 to 0.0050% or less.
前記フェライト系ステンレス鋼は、板厚が1〜3mmであり、かつ、950℃での0.2%耐力が15MPa以上、常温での平均伸び値が30%以上、平均r値 (平均ランクフォード値)が1.3以上であるフェライト系ステンレス鋼板であることを特徴とする、請求項1ないし3のいずれか1項に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。 The ferritic stainless steel has a plate thickness of 1 to 3 mm, a 0.2% proof stress at 950 ° C. of 15 MPa or more, an average elongation value at room temperature of 30% or more, an average r value (average Rankford value) 4. The ferritic stainless steel excellent in heat resistance and workability according to claim 1, wherein the ferritic stainless steel plate is a ferritic stainless steel plate having a value of 1.3 or more. 前記フェライト系ステンレス鋼の結晶粒径が結晶粒度番号で5〜8番であることを特徴とする、請求項4に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。 The ferritic stainless steel having excellent heat resistance and workability according to claim 4, wherein the ferritic stainless steel has a crystal grain size number of 5 to 8. 板厚の1/2深さにおける圧延面の結晶方位が、次式で定義される積分強度比で5以上であることを特徴とする、請求項4または5に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼。
積分強度比=X線回折の111ランダム回折強度/X線回折の200ランダム回折強度
The heat resistance and workability according to claim 4 or 5, wherein the crystal orientation of the rolled surface at a half depth of the plate thickness is 5 or more in terms of an integrated strength ratio defined by the following formula: Excellent ferritic stainless steel.
Integral intensity ratio = 111 random diffraction intensity of X-ray diffraction / 200 random diffraction intensity of X-ray diffraction
請求項1ないし3のいずれか1項に記載の鋼成分の鋼片を、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、最終焼鈍、酸洗を行って請求項4ないし6のいずれか1項に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼を製造する際に、前記熱延板焼鈍の焼鈍温度を800〜950℃とすることを特徴とする、耐熱性および加工性に優れたフェライト系ステンレス鋼の製造方法。 The steel slab of any one of claims 1 to 3 is subjected to hot rolling, hot-rolled sheet annealing, pickling, cold rolling, final annealing, and pickling. When manufacturing the ferritic stainless steel excellent in heat resistance and workability described in any one of the items, the annealing temperature of the hot-rolled sheet annealing is set to 800 to 950 ° C. Of ferritic stainless steel with excellent properties. 前記冷間圧延に際し、直径300mm以上のワークロールを用いることを特徴とする、請求項7に記載の耐熱性および加工性に優れたフェライト系ステンレス鋼の製造方法。
The method for producing ferritic stainless steel excellent in heat resistance and workability according to claim 7, wherein a work roll having a diameter of 300 mm or more is used in the cold rolling.
JP2004133399A 2004-04-28 2004-04-28 Ferritic stainless steel excellent in heat resistance and workability and method for producing the same Active JP4312653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133399A JP4312653B2 (en) 2004-04-28 2004-04-28 Ferritic stainless steel excellent in heat resistance and workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133399A JP4312653B2 (en) 2004-04-28 2004-04-28 Ferritic stainless steel excellent in heat resistance and workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005314740A true JP2005314740A (en) 2005-11-10
JP4312653B2 JP4312653B2 (en) 2009-08-12

Family

ID=35442468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133399A Active JP4312653B2 (en) 2004-04-28 2004-04-28 Ferritic stainless steel excellent in heat resistance and workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4312653B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093888A1 (en) * 2007-02-02 2008-08-07 Nisshin Steel Co., Ltd. Ferritic stainless steel for exhaust gas passage member
WO2009008457A1 (en) * 2007-07-09 2009-01-15 Jfe Precision Corporation Heat radiating component for electronic component, case for electronic component, carrier for electronic component, and package for electronic component
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method
EP2060650A1 (en) * 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritic stainless steel material for automobile exhaust gas passage components
WO2009110640A1 (en) * 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel having excellent heat resistance
WO2009110641A1 (en) * 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
JP2009235571A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and workability
KR100986844B1 (en) 2002-12-16 2010-10-08 주식회사 포스코 Method for manufacturing the ferritic stainless steel having the good formability
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
EP2557194A1 (en) * 2011-08-12 2013-02-13 Korea Institute of Science and Technology Oxidation-resistant ferritic stainless steel, method of manufacturing the same, and fuel cell interconnector using the ferritic stainless steel
JP2014177659A (en) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp Method for manufacturing heat resistant ferritic stainless steel sheet having excellent low temperature toughness and its manufacturing method
JP2015532681A (en) * 2012-09-03 2015-11-12 アペラム・ステンレス・フランス Ferritic stainless steel sheet, manufacturing method thereof, and particularly for use in exhaust pipes
JP2017179398A (en) * 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold
JP6669322B1 (en) * 2019-03-26 2020-03-18 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing the same
JP2020164941A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet
US11427881B2 (en) 2014-10-31 2022-08-30 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor
CN115679207A (en) * 2022-10-08 2023-02-03 首钢集团有限公司 Steel plate for automobile and preparation method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986844B1 (en) 2002-12-16 2010-10-08 주식회사 포스코 Method for manufacturing the ferritic stainless steel having the good formability
JP2008189974A (en) * 2007-02-02 2008-08-21 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas passage member
KR101473205B1 (en) 2007-02-02 2014-12-16 닛신 세이코 가부시키가이샤 Ferritic stainless steel for exhaust gas passage member
WO2008093888A1 (en) * 2007-02-02 2008-08-07 Nisshin Steel Co., Ltd. Ferritic stainless steel for exhaust gas passage member
CN102392194A (en) * 2007-02-02 2012-03-28 日新制钢株式会社 Ferritic stainless steel for exhaust gas passage member
WO2009008457A1 (en) * 2007-07-09 2009-01-15 Jfe Precision Corporation Heat radiating component for electronic component, case for electronic component, carrier for electronic component, and package for electronic component
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method
EP2060650A1 (en) * 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritic stainless steel material for automobile exhaust gas passage components
JP2009235573A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel with excellent heat resistance and toughness
JP2009235571A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel having excellent heat resistance and workability
WO2009110641A1 (en) * 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
WO2009110640A1 (en) * 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel having excellent heat resistance
US9279172B2 (en) 2008-03-07 2016-03-08 Jfe Steel Corporation Heat-resistance ferritic stainless steel
JP2011184731A (en) * 2010-03-08 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
EP2557194A1 (en) * 2011-08-12 2013-02-13 Korea Institute of Science and Technology Oxidation-resistant ferritic stainless steel, method of manufacturing the same, and fuel cell interconnector using the ferritic stainless steel
JP2015532681A (en) * 2012-09-03 2015-11-12 アペラム・ステンレス・フランス Ferritic stainless steel sheet, manufacturing method thereof, and particularly for use in exhaust pipes
JP2014177659A (en) * 2013-03-13 2014-09-25 Nippon Steel & Sumikin Stainless Steel Corp Method for manufacturing heat resistant ferritic stainless steel sheet having excellent low temperature toughness and its manufacturing method
US11427881B2 (en) 2014-10-31 2022-08-30 Nippon Steel Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor
JP2017179398A (en) * 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold
JP6669322B1 (en) * 2019-03-26 2020-03-18 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing the same
WO2020194484A1 (en) * 2019-03-26 2020-10-01 Jfeスチール株式会社 Ferritic stainless steel sheet and method for producing same
JP2020164941A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet
CN115679207A (en) * 2022-10-08 2023-02-03 首钢集团有限公司 Steel plate for automobile and preparation method thereof
CN115679207B (en) * 2022-10-08 2023-12-12 首钢集团有限公司 Steel plate for automobile and preparation method thereof

Also Published As

Publication number Publication date
JP4312653B2 (en) 2009-08-12

Similar Documents

Publication Publication Date Title
JP4949122B2 (en) Ferritic stainless steel sheet for automobile exhaust system with excellent heat fatigue resistance
JP4312653B2 (en) Ferritic stainless steel excellent in heat resistance and workability and method for producing the same
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
RU2578308C1 (en) Foil from ferrite stainless steel
JP6796708B2 (en) Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
JP4236503B2 (en) Al-containing heat-resistant ferritic stainless steel sheet excellent in workability and oxidation resistance and method for producing the same
CN114761594A (en) Ferritic stainless steel sheet
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
US11242578B2 (en) Ferrite-based stainless steel sheet having low specific gravity and production method therefor
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
WO2020090936A1 (en) Austenitic stainless steel sheet
JP4518834B2 (en) Manufacturing method of heat-resistant ferritic stainless steel sheet with excellent workability
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JP4049697B2 (en) Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same
JP4614787B2 (en) Ferritic stainless steel sheet excellent in workability and heat resistance and method for producing the same
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
JP2002194507A (en) Ferritic stainless steel superior in workability with less planar anisotropy and production method for the same
JP3958672B2 (en) Heat-resistant ferritic stainless steel with excellent oxidation resistance
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP2002212685A (en) SOFT Cr-CONTAINING STEEL
JP4562281B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JPH0741917A (en) Steel for automotive exhaust system
JPH0741905A (en) Steel for automotive exhaust system
JP3707435B2 (en) Cr-containing steel with excellent high-temperature strength and soft at room temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4312653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250