JP2017095786A - Al-CONTAINING FERRITIC STAINLESS STEEL WELD JOINT EXCELLENT IN 475°C BRITTLE EMBRITTLEMENT RESISTANCE - Google Patents

Al-CONTAINING FERRITIC STAINLESS STEEL WELD JOINT EXCELLENT IN 475°C BRITTLE EMBRITTLEMENT RESISTANCE Download PDF

Info

Publication number
JP2017095786A
JP2017095786A JP2015232001A JP2015232001A JP2017095786A JP 2017095786 A JP2017095786 A JP 2017095786A JP 2015232001 A JP2015232001 A JP 2015232001A JP 2015232001 A JP2015232001 A JP 2015232001A JP 2017095786 A JP2017095786 A JP 2017095786A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
welded joint
containing ferritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015232001A
Other languages
Japanese (ja)
Other versions
JP6655962B2 (en
Inventor
松本 和久
Kazuhisa Matsumoto
和久 松本
秦野 正治
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2015232001A priority Critical patent/JP6655962B2/en
Publication of JP2017095786A publication Critical patent/JP2017095786A/en
Application granted granted Critical
Publication of JP6655962B2 publication Critical patent/JP6655962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Al-containing ferritic stainless steel weld joint excellent in 475°C embrittlement resistance, suitable for fuel cell high temperature members such as a modifier, a heat exchanger used during modifying hydrocarbon-based fuel such as town gas, methane, natural gas, propane, kerosene, gasoline to hydrogen.SOLUTION: A chemical component of a weld joint metal part contains, by mass%, C:0.03% or less, N:0.03% or less, Si:2.0% or less, Mn:2.0% or less, P:0.040% or less, S:0.01% or less, Cr:15 to 25%, Al:1.0 to 4.0% and further one or more kind of Ti:1.0% or less, Nb:1.0% or less, V:1.0% or less with satisfying [Ti]/(2×[C]+[N]) of 4.0 or more and/or one or more kind of Mg:0.010% or less and Ca:0.005% or less and the balance Fe with inevitable impurities.SELECTED DRAWING: None

Description

本発明は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材に好適な耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手およびその製造方法に関する。   The present invention is suitable for high-temperature members of fuel cells such as reformers and heat exchangers used when reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen. The present invention relates to an Al-containing ferritic stainless steel welded joint excellent in resistance to brittleness at 475 ° C. and a method for producing the same.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, the spread of new systems replacing conventional power generation systems is accelerating due to problems such as depletion of fossil fuels such as petroleum and global warming due to CO 2 emissions. As one of them, “fuel cell”, which has high practical value as a distributed power source and a power source for automobiles, is attracting attention. There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) have high energy efficiency, and are expected to expand in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、水素を必要とする。水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。   A fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and requires hydrogen. Hydrogen is produced by a reforming reaction of hydrocarbon fuels such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst. Above all, a fuel cell using city gas as a raw fuel has an advantage that hydrogen can be produced in an area where city gas piping is provided.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃までの高温で運転される。このような高温運転下において、多量の水蒸気、二酸化炭素、一酸化炭素等を含む酸化性の雰囲気に曝され、水素の需要に応じて起動・停止による加熱・冷却サイクルが繰り返される。また、SOFCシステムでは、高Cr含有ステンレス鋼を適用した場合、SOFC動作温度においてCrの蒸発によるセラミックス電極の被毒を防止する課題がある。   The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to ensure the amount of heat necessary for the hydrogen reforming reaction. Under such a high temperature operation, it is exposed to an oxidizing atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide and the like, and the heating / cooling cycle by starting and stopping is repeated according to the demand for hydrogen. Further, in the SOFC system, when high Cr content stainless steel is applied, there is a problem of preventing poisoning of the ceramic electrode due to Cr evaporation at the SOFC operating temperature.

また、Crを15%以上含有するフェライト系ステンレス鋼では、400〜500℃程度の温度域に長時間曝されると、高Cr濃度相と低Cr濃度相のスピノーダル分解に起因した硬質化が生じる可能性が考えられる。いわゆる475℃脆性である。したがって、SOFCシステムにおける高温使用環境においては、475℃脆性に起因した材料劣化が生じる可能性が考えられる。   Further, in a ferritic stainless steel containing 15% or more of Cr, when it is exposed to a temperature range of about 400 to 500 ° C. for a long time, hardening due to spinodal decomposition of a high Cr concentration phase and a low Cr concentration phase occurs. There is a possibility. It is so-called 475 ° C brittle. Therefore, there is a possibility that material deterioration due to brittleness at 475 ° C. occurs in a high temperature use environment in the SOFC system.

SOFC用途では、良好な耐酸化性・耐Cr蒸発性を有するAl含有フェライト系ステンレス鋼の適用が推奨されている。しかしながら、Al含有フェライト系ステンレス鋼は他のフェライト系ステンレス鋼と比べ強度が高いため低靭性であり、例えば非特許文献1で開示されている通り、鉄鋼材料の延性脆性遷移温度はAl添加により増大することが知られている。 For SOFC applications, application of Al-containing ferritic stainless steel having good oxidation resistance and Cr evaporation resistance is recommended. However, since Al-containing ferritic stainless steel has higher strength than other ferritic stainless steels, it has low toughness. For example, as disclosed in Non-Patent Document 1, the ductile brittle transition temperature of steel materials increases with Al addition. It is known to do.

特許文献1には、高温水蒸気含有雰囲気での耐酸化性とクリープ破断寿命を兼備する燃料電池用フェライト系ステンレス鋼が開示されている。本ステンレス鋼のCr量は13〜20%であるが、Cr量が475℃脆性を示さない15%以下の場合、耐酸化性確保のために4%以上のAl添加が必要となるが、このように多量のAlを含む鋼板の靭性は著しく低下するため、実製造が困難となる。   Patent Document 1 discloses a ferritic stainless steel for fuel cells that has both oxidation resistance in a high-temperature steam-containing atmosphere and a creep rupture life. The amount of Cr in this stainless steel is 13 to 20%. If the amount of Cr is 15% or less that does not show brittleness at 475 ° C., 4% or more of Al should be added to ensure oxidation resistance. Thus, since the toughness of a steel sheet containing a large amount of Al is significantly reduced, actual production becomes difficult.

特許文献2には、耐酸化性、二次加工性に優れ、自動車排ガス経路に設置されるセンサの素子カバーなどの耐酸化性と高成形加工性が要求される用途に好適なフェライト系ステンレス鋼が開示されている。本ステンレス鋼の場合、実質18%程度のCrを含有するため、475℃脆性が発現する可能性が考えられる。   Patent Document 2 discloses a ferritic stainless steel that is excellent in oxidation resistance and secondary workability, and suitable for applications requiring oxidation resistance and high formability such as a sensor element cover installed in an automobile exhaust gas path. Is disclosed. In the case of this stainless steel, it contains about 18% of Cr, so that it is possible that brittleness at 475 ° C. will develop.

特許文献3には、表面性状に優れた高Al含有フェライト系ステンレス鋼板、その製造方法、ステンレス箔が開示されている。本ステンレス鋼の場合、実質18%程度のCrおよび3%以上のAlを含有するため、475℃脆性の発現および高Al含有による靭性低下が生じると考えられる。   Patent Document 3 discloses a high Al-containing ferritic stainless steel sheet having excellent surface properties, a method for producing the same, and a stainless steel foil. In the case of the present stainless steel, it contains substantially 18% Cr and 3% or more Al, so that it is considered that the 475 ° C. brittleness expression and the toughness reduction due to the high Al content occur.

特許文献4には、溶接性と加工性に優れた触媒担持用耐熱フェライト系ステンレス鋼が開示されている。本ステンレス鋼はAlを1〜2.5%程度含有し、溶接後も優れた成形加工性を有している点に特徴がある。   Patent Document 4 discloses a heat-resistant ferritic stainless steel for supporting a catalyst excellent in weldability and workability. This stainless steel is characterized in that it contains about 1 to 2.5% of Al and has excellent formability after welding.

特開2014−139342号公報JP 2014-139342 A 特開2012−12674号公報JP 2012-12673 A 特開2015−78415号公報Japanese Patent Laying-Open No. 2015-78415 特開2001−316773号公報JP 2001-316773 A

”The Increase in a Brittle−to−ductile Transition Temperature in Fe−Al Single crystal”, ISIJ International Vol.15 No.6 pp.999−1004“The Increase in a Brittle-to-ductile Transition Temperature in Fe-Al Single crystal”, ISIJ International Vol. 15 No. 6 pp. 999-1004

本発明では、SOFCシステムにおいて溶接構造を採用する場合に、475℃脆性に起因した溶接部の脆性破壊を回避することが特に重要な解決課題であると知見した。
特許文献1〜4においては、475℃脆性起因の硬化後の溶接部における課題は認識されていない。すなわち、溶接部における耐475℃脆性を確保する観点から開発されたフェライト系ステンレス鋼は現状存在しない。
本発明は、上述した課題を解消すべく開発されたものであり、耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手を提供するものである。
In the present invention, when adopting a welded structure in the SOFC system, it has been found that avoiding brittle fracture of the weld due to brittleness at 475 ° C. is a particularly important solution.
In patent documents 1-4, the problem in the welded part after hardening resulting from 475 degreeC brittleness is not recognized. That is, there is currently no ferritic stainless steel developed from the viewpoint of ensuring 475 ° C. brittleness resistance at the weld.
The present invention has been developed to solve the above-described problems, and provides an Al-containing ferritic stainless steel welded joint excellent in 475 ° C. brittleness resistance.

(1)溶接金属部の化学成分が、質量%にて、C:0.03%以下、N:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.040%以下、S:0.01%以下、Cr:15.0〜25.0%、Al:1.0〜4.0%を含み、更にTi:1.0%以下、Nb:1.0%以下、V:1.0%以下の1種類または2種以上からなり且つ式(1)を満たす第1群、およびMg:0.010%以下、Ca:0.005%以下の1種または2種以上からなる第2群のうち少なくともいずれかの群を含有し、残部がFeおよび不可避的不純物であることを特徴とする耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
([Ti]+[Nb]+[V])/(2×[C]+[N])≧4.0・・・・式(1)
ここで、[Ti]、[Nb]、[V]、[C]、[N]は、それぞれの元素の含有量(質量%)を示す。
(2)溶接金属部の化学成分が、更に、質量%にて、
Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下の1種または2種以上からなる第3群、および、Co:0.10%以下、Sn0.10%以下、As:0.05%以下、B:0.005%以下、Pb:0.005%以下、Zr:0.1%以下、Zn:0.03%以下、Y:0.10%以下、Ga:0.10%以下、La:0.10%以下、Hf:0.10%以下、Sb:0.10%以下、REM:0.10%以下、Ta:0.5%以下の1種または2種以上からなる第4群のうち、少なくともいずれかの群を含有することを特徴とする(1)に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(3)式(2)が質量%にて、0.20%以下であることを特徴とする請求項2に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
[Co]+[Sn]+[As]+[B]+[Pb]+[Zr]+[Zn]+[Y]+[Ga]+[La]+[Hf]+[Sb]+[REM]+[Ta]・・・式(2)
ここで、[Co]、[Sn]、[As]、[B]、[Pb]、[Zr]、[Zn]、[Y]、[Ga]、[La]、[Hf]、[Sb]、[REM]、[Ta]は、それぞれの元素の含有量(質量%)を示す。
(4)溶接金属部における結晶粒径の大きさが350μm以下であることを特徴とする(1)〜(3)に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(5)燃料改質器、熱交換器あるいは燃料電池高温部材に適用されることを特徴とする(1)〜(4)に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(6)ガスタービン及び発電システムの少なくともいずれかに用いられる高温部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(7)エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ及びセンターパイプの少なくともいずれかの自動車用部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(8)ストーブ及びファンヒータの少なくともいずれかの燃焼機器に用いられる高温部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
以下、上記(1)〜(8)に係るAl含有フェライト系ステンレス鋼溶接継手をそれぞれ本発明という。
(1) The chemical composition of the weld metal part is, in mass%, C: 0.03% or less, N: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.040% or less, S: 0.01% or less, Cr: 15.0-25.0%, Al: 1.0-4.0%, Ti: 1.0% or less, Nb: 1 0.0% or less, V: 1.0% or less, the first group consisting of one or more and satisfying the formula (1), and Mg: 0.010% or less, Ca: 0.005% or less Al-containing ferritic stainless steel welded joint with excellent resistance to brittleness at 475 ° C., characterized in that it contains at least one of the seeds or the second group consisting of two or more kinds, the balance being Fe and inevitable impurities .
([Ti] + [Nb] + [V]) / (2 × [C] + [N]) ≧ 4.0 (1)
Here, [Ti], [Nb], [V], [C], and [N] indicate the content (% by mass) of each element.
(2) The chemical composition of the weld metal part is further in mass%,
A third group consisting of one or more of Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, and Co: 0. 10% or less, Sn 0.10% or less, As: 0.05% or less, B: 0.005% or less, Pb: 0.005% or less, Zr: 0.1% or less, Zn: 0.03% or less, Y: 0.10% or less, Ga: 0.10% or less, La: 0.10% or less, Hf: 0.10% or less, Sb: 0.10% or less, REM: 0.10% or less, Ta: The Al-containing ferrite system having excellent resistance to brittleness at 475 ° C. according to (1), characterized in that it contains at least one of the fourth group consisting of one or more of 0.5% or less Stainless steel welded joint.
(3) The Al-containing ferritic stainless steel welded joint having excellent 475 ° C brittleness resistance according to claim 2, wherein the formula (2) is 0.20% or less in terms of mass%.
[Co] + [Sn] + [As] + [B] + [Pb] + [Zr] + [Zn] + [Y] + [Ga] + [La] + [Hf] + [Sb] + [REM ] + [Ta] Formula (2)
Here, [Co], [Sn], [As], [B], [Pb], [Zr], [Zn], [Y], [Ga], [La], [Hf], [Sb] , [REM], and [Ta] indicate the content (% by mass) of each element.
(4) The Al-containing ferritic stainless steel welded joint having excellent brittleness resistance at 475 ° C. according to (1) to (3), wherein the crystal grain size in the weld metal part is 350 μm or less.
(5) The Al-containing ferritic stainless steel welded joint having excellent brittle resistance at 475 ° C. according to (1) to (4), which is applied to a fuel reformer, a heat exchanger, or a fuel cell high-temperature member .
(6) The Al-containing ferrite system having excellent resistance to brittleness at 475 ° C. according to any one of (1) to (4), which is applied to a high-temperature member used in at least one of a gas turbine and a power generation system. Stainless steel welded joint.
(7) It is applied to at least one of automotive components such as an exhaust manifold, a converter, a muffler, a turbocharger, an EGR cooler, a front pipe, and a center pipe. 475 ° C Al-containing ferritic stainless steel welded joint with excellent brittleness.
(8) Al content having excellent resistance to brittleness at 475 ° C. according to any one of (1) to (4), which is applied to a high temperature member used in at least one of combustion equipment of a stove and a fan heater Ferritic stainless steel welded joint.
Hereinafter, each of the Al-containing ferritic stainless steel welded joints according to the above (1) to (8) is referred to as the present invention.

本発明により、耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手を提供することができる。   According to the present invention, it is possible to provide an Al-containing ferritic stainless steel welded joint excellent in resistance to brittleness at 475 ° C.

本発明者らは、前記した課題を解決するため、フェライト系ステンレス鋼における475℃脆性に起因した脆性破壊機構の解明および脆性破壊挙動におよぼす各種合金元素の影響について実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。   In order to solve the above-mentioned problems, the present inventors have conducted experiments and studies on the elucidation of the brittle fracture mechanism due to brittleness at 475 ° C. in ferritic stainless steel and the effects of various alloy elements on the brittle fracture behavior. Was completed. The knowledge obtained by the present invention will be described below.

(a)母材部に対し、溶接部では結晶粒径が大きくなるため、475℃脆性起因の破壊が生じやすくなる。この破壊の場合、へき開破面を呈する。Al含有フェライト系ステンレス鋼では、Alを含有していないフェライト系ステンレス鋼と比較し溶接時の結晶粒径が粗大化しやすい傾向にある。溶接継手における溶金部(溶接金属部、本発明では溶接施工時に溶融して凝固した領域のことを意味する)の結晶粒径は350μm以下であることが好ましい。また、475℃脆性起因の硬化挙動は例えばビッカース硬さ試験により評価できる。耐475℃脆性確保のためには、500℃時効後のビッカース硬さが300以下であることが好ましい。 (A) Since the crystal grain size is larger in the welded portion than in the base metal portion, fracture due to 475 ° C. brittleness is likely to occur. In the case of this destruction, it exhibits a cleavage plane. Al-containing ferritic stainless steel tends to be coarser in crystal grain size during welding than ferritic stainless steel not containing Al. It is preferable that the crystal grain size of the molten metal part (welded metal part, which means a region melted and solidified at the time of welding in the present invention) in the welded joint is 350 μm or less. Further, the curing behavior due to brittleness at 475 ° C. can be evaluated by, for example, a Vickers hardness test. In order to ensure 475 ° C. brittleness resistance, it is preferable that the Vickers hardness after aging at 500 ° C. is 300 or less.

(b)詳細な組織観察を行った結果、475℃脆性起因の破壊には双晶変形が関与しており、変形双晶導入によりせん断歪が発生する。このせん断歪を解放するため、へき開き裂が生成し、伝播することで破壊に至る。また、上述のせん断歪の解放時、粒界き裂が生じる場合もあることが分かった。この場合、PやS,Sn等の粒界偏析による粒界強度低下にともなう粒界破壊がき裂生成の起点となる。 (B) As a result of detailed structure observation, twin deformation is involved in the fracture due to brittleness at 475 ° C., and shear strain is generated by introducing the deformation twin. In order to release this shear strain, a cleaved crack is generated and propagates to break. It was also found that a grain boundary crack may occur when the above-described shear strain is released. In this case, intergranular fracture resulting from a decrease in grain boundary strength due to segregation of grain boundaries such as P, S, and Sn is the starting point for crack generation.

(c)溶接部における475℃脆性起因の破壊を抑制するためには、(i)双晶変形を発現しにくくすること、(ii)溶接時の結晶粒の粗大化を抑制すること、(iii)不純物元素の過剰な粒界偏析による粒界強度の低下を抑制することが重要となる。 (C) In order to suppress breakage due to brittleness at 475 ° C. in the welded part, (i) making it difficult to develop twin deformation, (ii) suppressing coarsening of crystal grains during welding, (iii) It is important to suppress a decrease in grain boundary strength due to excessive grain boundary segregation of impurity elements.

(d)Alは従来、フェライト鋼の強度を増加させ、延性脆性遷移温度を増加させる、すなわち脆性破壊を助長させる元素であることが知られていた。しかしながら、溶接部のような結晶粒が粗大で、かつ475℃脆性起因の硬化によりすべり変形が非常に困難な状況において、適量のAl添加は双晶変形応力を高め、相対的にすべり変形を容易にすることが新たに分かった。 (D) Al is conventionally known to be an element that increases the strength of ferritic steel and increases the ductile brittle transition temperature, that is, promotes brittle fracture. However, in a situation where crystal grains are coarse like welds and slip deformation is very difficult due to brittleness due to 475 ° C brittleness, an appropriate amount of Al increases twin deformation stress and makes slip deformation relatively easy. I have newly found out.

(e)通常、Al含有フェライト系ステンレス鋼の溶接組織は柱状晶の成長により構成されるため、Alを含有していないフェライト系ステンレス鋼に対して粗大となる傾向にある。しかしながら、溶接金属中の化学成分の制御により(Ti,Nb,V)(C,N)から成る炭窒化物、あるいはMgO、CaOなどから成る介在物を生成させることで等軸晶の形成が助長され、溶接組織が微細化することがわかった。 (E) Usually, since the weld structure of Al-containing ferritic stainless steel is constituted by the growth of columnar crystals, it tends to be coarser than ferritic stainless steel not containing Al. However, formation of equiaxed crystals is promoted by generating carbonitrides composed of (Ti, Nb, V) (C, N) or inclusions composed of MgO, CaO, etc. by controlling chemical components in the weld metal. It was found that the weld structure was refined.

(f)フェライト系ステンレス鋼において、炭窒化物Ti(C,N)の生成挙動は[Ti]/([C]+[N])で整理させる。しかしながら、Al含有フェライト系ステンレス鋼においては、AlがCの活量を増加させるため、Cr炭化物の析出挙動は、通常のフェライト系ステンレス鋼に対してC量の影響をより強く受けることが新たに分かった。(e)で述べた炭窒化物(Ti,Nb,V)(C,N)による等軸晶の形成促進効果を得るためには、([Ti]+[Nb]+[V])/(2×[C]+[N])の値を4.0以上とすることが好ましい。或いは、同様の効果を得るためにMgを0.0005%以上、Caを0.0001%以上添加することが好ましいことが分かった。 (F) In ferritic stainless steel, the formation behavior of carbonitride Ti (C, N) is arranged by [Ti] / ([C] + [N]). However, in Al-containing ferritic stainless steel, since Al increases the activity of C, the precipitation behavior of Cr carbide is newly affected by the amount of C more strongly than ordinary ferritic stainless steel. I understood. In order to obtain the effect of promoting the formation of equiaxed crystals by the carbonitrides (Ti, Nb, V) (C, N) described in (e), ([Ti] + [Nb] + [V]) / ( 2 × [C] + [N]) is preferably 4.0 or more. Or in order to acquire the same effect, it turned out that it is preferable to add Mg 0.0005% or more and Ca 0.0001% or more.

(g)粒界偏析による粒界移動を抑制する元素はCo、Sn、As、B、Pb、Zr、Zn、Y、Ga、La、Hf、Sb、REM、Taである。これら元素を1種類または2種類以上含有し、その合計量が0.010%以上であることが好ましい。一方、これら元素の過剰な含有は粒界強度の低下による粒界破壊を助長するため、合計量を0.10%以下とすることが好ましい。 (G) Elements that suppress grain boundary migration due to grain boundary segregation are Co, Sn, As, B, Pb, Zr, Zn, Y, Ga, La, Hf, Sb, REM, and Ta. It is preferable that one or more of these elements are contained and the total amount thereof is 0.010% or more. On the other hand, since excessive inclusion of these elements promotes grain boundary fracture due to a decrease in grain boundary strength, the total amount is preferably made 0.10% or less.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

溶接金属部の化学成分の限定理由を以下に説明する。   The reason for limiting the chemical composition of the weld metal part will be described below.

<C:0.03%以下>
Cは、フェライト相に固溶あるいはCr炭化物を形成して耐酸化性を阻害する。また、溶接時の粒界におけるCr炭化物形成を促進させる。このため、C量は少ないほど良く、上限を0.03%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とすることが好ましい。より好ましい範囲は0.002〜0.020%である。
<C: 0.03% or less>
C inhibits oxidation resistance by forming a solid solution or Cr carbide in the ferrite phase. Moreover, Cr carbide formation at the grain boundary during welding is promoted. For this reason, the smaller the amount of C, the better. The upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.001%. A more preferable range is 0.002 to 0.020%.

<N:0.030%以下>
Nは、Cと同様に本発明の目標とする耐酸化性を阻害する。このため、N量は少ないほど良く、上限を0.030%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とする。好ましい範囲は0.002〜0.020%である。
<N: 0.030% or less>
N, like C, inhibits the target oxidation resistance of the present invention. For this reason, the smaller the amount of N, the better. The upper limit is made 0.030%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%. A preferred range is 0.002 to 0.020%.

<Si:2.0%以下>
Siは、耐酸化性を確保する上で重要な元素である。Siは、Al系酸化皮膜中へ僅かに固溶するとともに、酸化皮膜直下/鋼界面にも濃化し、改質ガス環境下の耐酸化性を向上させる。これら効果を得るために下限は0.2%とすることが好ましい。一方、過度な添加は、Crのスピノーダル分解を助長させ、耐475℃脆性を低下させる。また、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合もあるため、上限は2.0%とする。好ましい上限は1.2%である。
<Si: 2.0% or less>
Si is an important element in securing oxidation resistance. Si slightly dissolves in the Al-based oxide film and also concentrates directly under the oxide film / steel interface to improve the oxidation resistance under the reformed gas environment. In order to obtain these effects, the lower limit is preferably 0.2%. On the other hand, excessive addition promotes the spinodal decomposition of Cr and reduces the 475 ° C. brittleness resistance. In addition, the upper limit is set to 2.0% because it may hinder the toughness and workability of steel and the formation of an Al-based oxide film. A preferable upper limit is 1.2%.

<Mn:2.0%以下>
Mnは、改質ガス環境下でSiとともに酸化皮膜中に固溶して保護性を高める。これら効果を得るために下限は0.1%とすることが好ましい。一方、過度な添加は、鋼の耐食性やAl系酸化皮膜の形成を阻害するため、上限は2.0%以下とする。耐酸化性と基本特性の点から、1.2%以下が好ましい。
<Mn: 2.0% or less>
Mn is dissolved in the oxide film together with Si in the reformed gas environment to enhance the protection. In order to obtain these effects, the lower limit is preferably 0.1%. On the other hand, excessive addition inhibits the corrosion resistance of steel and the formation of an Al-based oxide film, so the upper limit is made 2.0% or less. From the viewpoint of oxidation resistance and basic characteristics, 1.2% or less is preferable.

<P:0.040%以下>
Pは、製造性や溶接性を阻害し、溶接部における粒界強度を低下させる元素である。その含有量は少ないほど良いため、上限は0.040%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.004〜0.028%である。
<P: 0.040% or less>
P is an element that impedes manufacturability and weldability and lowers the grain boundary strength at the weld. The lower the content, the better, so the upper limit is made 0.040%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferred range is 0.004 to 0.028%.

<S:0.010%以下>
Sは、鋼中に含まれる不可避的不純物元素であり、Al系皮膜の保護性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるAl系酸化皮膜の破壊起点としても作用する。また、溶接部における粒界強度を低下させる元素である。従って、S量は低いほど良いため、上限は0.010%とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%とする。製造性と耐酸化性、耐475℃脆性の観点から、好ましい範囲は0.0001〜0.0010%である。
<S: 0.010% or less>
S is an inevitable impurity element contained in the steel, and lowers the protective properties of the Al-based film. In particular, the presence of Mn-based inclusions and solute S also acts as a fracture starting point for Al-based oxide films when used at high temperatures for long periods of time. Further, it is an element that lowers the grain boundary strength in the weld zone. Therefore, the lower the amount of S, the better. Therefore, the upper limit is made 0.010%. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is made 0.0001%. From the viewpoint of manufacturability, oxidation resistance, and 475 ° C. brittleness, the preferred range is 0.0001 to 0.0010%.

<Cr:15.0〜25.0%>
Crは、耐食性に加えて、表面酸化皮膜の保護性を確保する上で基本となる構成元素であり、これら効果を得るためには15.0%以上のCr量が必要である。一方、過度なCrの添加は、475℃脆性起因の著しい材料硬化に加え、高温雰囲気に曝された際、脆化相であるσ相の生成を助長する。また、合金コストの上昇とCr蒸発を助長する場合があるため上限は25.0%とする。好ましい範囲は15.5〜20.0%である。より好ましい範囲は、16.0〜20.0%である。
<Cr: 15.0 to 25.0%>
In addition to corrosion resistance, Cr is a basic constituent element for securing the protective property of the surface oxide film. In order to obtain these effects, a Cr amount of 15.0% or more is required. On the other hand, excessive addition of Cr promotes the formation of a σ phase which is an embrittled phase when exposed to a high temperature atmosphere in addition to significant material hardening due to brittleness at 475 ° C. Moreover, since an increase in alloy cost and Cr evaporation may be promoted, the upper limit is made 25.0%. A preferable range is 15.5 to 20.0%. A more preferable range is 16.0 to 20.0%.

<Al:1.0〜4.0%>
Alは、脱酸元素に加えて、Al系酸化皮膜を形成してCr蒸発を抑止するために必須の添加元素である。また、溶接部における双晶変形発現を抑制する元素である。本発明においては、1.0%未満ではこれら効果が得られないため、下限は1.0%とする。しかし、過度なAlの添加は、鋼の靭性や溶接部における脆性破壊を助長するため、上限は、4.0%とする。好ましい範囲は1.2〜3.5%である。
<Al: 1.0-4.0%>
In addition to the deoxidizing element, Al is an additional element essential for forming an Al-based oxide film and suppressing Cr evaporation. In addition, it is an element that suppresses twin deformation in the weld. In the present invention, since these effects cannot be obtained at less than 1.0%, the lower limit is made 1.0%. However, excessive addition of Al promotes the toughness of steel and brittle fracture in welds, so the upper limit is made 4.0%. A preferable range is 1.2 to 3.5%.

<Ti、Nb、V:1.0%以下>
Tiは、C,Nを固定する安定化元素の作用により、溶接時のCr炭化物生成抑制に寄与する元素である。また、Al系酸化皮膜の外層側へTi系酸化物を形成してCrの蒸発を抑止する有効な元素である。これら効果を得るために下限は0.01%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下や耐酸化性の低下にも繋がるため、上限は1.0%とする。好ましい範囲は0.10〜0.50%である。
NbおよびVは固溶強化により材料強度を高め、過剰な添加は脆性破壊を助長するため、上限をそれぞれ1.0%とする必要がある。好ましい成分範囲は0.008〜0.7%である。
<Ti, Nb, V: 1.0% or less>
Ti is an element that contributes to suppression of Cr carbide generation during welding by the action of a stabilizing element that fixes C and N. In addition, it is an effective element that suppresses evaporation of Cr by forming a Ti-based oxide on the outer layer side of the Al-based oxide film. In order to obtain these effects, the lower limit is preferably 0.01%. On the other hand, excessive addition leads to a decrease in manufacturability and a decrease in oxidation resistance accompanying an increase in alloy costs and a recrystallization temperature, so the upper limit is made 1.0%. A preferable range is 0.10 to 0.50%.
Nb and V increase material strength by solid solution strengthening, and excessive addition promotes brittle fracture, so the upper limit must be 1.0%. A preferable component range is 0.008 to 0.7%.

<([Ti]+[Nb]+[V])/(2×[C]+[N])>(第1群)
また、本発明に係る溶接継手では、Ti、Nb、Vからなる元素群が上記で限定した溶接金属の化学組成を満たしつつ、溶接金属部のTi、Nb、V、C、Nの含有量(質量%)が以下の式(1)を満たすことが好ましい。
([Ti]+[Nb]+[V])/(2×[C]+[N])≧4.0・・・・式(1)
ここで、[Ti]、[Nb]、[V]、[C]、[N]は、溶接金属部におけるそれぞれの元素の含有量(質量%)を示す。
<([Ti] + [Nb] + [V]) / (2 × [C] + [N])> (first group)
In the welded joint according to the present invention, the element group consisting of Ti, Nb, and V satisfies the chemical composition of the weld metal defined above, while the content of Ti, Nb, V, C, and N in the weld metal part ( % By mass) preferably satisfies the following formula (1).
([Ti] + [Nb] + [V]) / (2 × [C] + [N]) ≧ 4.0 (1)
Here, [Ti], [Nb], [V], [C], and [N] indicate the content (mass%) of each element in the weld metal part.

<Mg、Ca>(第2群)
Mg、Caは鋼の清浄度や熱間加工性を高めるのに有効な元素である。また、溶接時にMgO、CaOなどから成る介在物を生成させることで等軸晶の形成が助長され、溶接組織の微細化に寄与する元素でもある。これら効果を得るため、Mgは0.0005%以上、Caは0.0005%以上含むことが好ましい。一方、過度な添加は製造性の低下を招くため、Mgは0.010%以下、Caは0.005%以下であることが好ましい。尚、Mg:0.0005%以上0.010%以下、Ca:0.0005%以上0.005%以下の1種または2種以上からなる第2群を溶接金属部に含有させることによって、溶接金属部のTi、Nb及びVの少なくとも1種以上からなり且つ前記式(1)を満たす第2群を含有する場合と同様の効果を得ることができる。また、溶接金属部の組成は、第1群又は第2群のうち少なくともいずれかの群を含有すれば良く、溶接金属部がMg及び/又はCaを前記範囲未満(例えば、不純物レベルの濃度)で含有している場合であっても、前記式(1)を満たせば良い。
<Mg, Ca> (second group)
Mg and Ca are effective elements for enhancing the cleanliness and hot workability of steel. In addition, by forming inclusions made of MgO, CaO or the like during welding, formation of equiaxed crystals is promoted, and it is also an element contributing to refinement of the weld structure. In order to acquire these effects, it is preferable to contain 0.0005% or more of Mg and 0.0005% or more of Ca. On the other hand, excessive addition causes a decrease in manufacturability, so Mg is preferably 0.010% or less and Ca is preferably 0.005% or less. In addition, welding is carried out by including a second group consisting of one or more of Mg: 0.0005% to 0.010% and Ca: 0.0005% to 0.005% in the weld metal part. The same effect can be obtained as in the case of containing the second group consisting of at least one of Ti, Nb and V in the metal part and satisfying the above formula (1). Further, the composition of the weld metal portion may include at least one of the first group and the second group, and the weld metal portion contains Mg and / or Ca less than the above range (for example, impurity level concentration). Even if it is contained, the above formula (1) may be satisfied.

<Ni、Cu、Mo、W:1.0%以下>(第3群)
Ni、Cu、Mo、Wは高温強度と耐食性を高めるのに有効な元素であり、必要に応じて少なくとも1種(以下、「第3群」ともいう。)を添加しても良い。但し、過度な添加は合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Mo、Wの上限は1.0%とする。前記効果を発現させるためには、Ni,Co,Mo,Wは0.02%以上が好ましい。更に好ましくは0.08%以上である。
<Ni, Cu, Mo, W: 1.0% or less> (third group)
Ni, Cu, Mo, and W are effective elements for increasing high-temperature strength and corrosion resistance, and at least one (hereinafter also referred to as “third group”) may be added as necessary. However, excessive addition leads to an increase in alloy cost and obstructs manufacturability, so the upper limit of Ni, Cu, Mo, W is 1.0%. In order to exhibit the effect, Ni, Co, Mo, and W are preferably 0.02% or more. More preferably, it is 0.08% or more.

<Co、Sn、As、B、Pb、Zr、Zn、Y、Ga、La、Hf、Sb、REM、Ta>(第4群)
これらの元素は粒界に偏析して溶接時の結晶粒の粗大化を抑制する。また、Zr、La、Y、Hf、REM、Taは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素である。Ga、Zn、Sn、Sbは表面近傍に濃化してCrの酸化を抑制する。
<Co, Sn, As, B, Pb, Zr, Zn, Y, Ga, La, Hf, Sb, REM, Ta> (fourth group)
These elements segregate at the grain boundaries and suppress the coarsening of crystal grains during welding. Zr, La, Y, Hf, REM, and Ta are elements that have been conventionally effective for improving hot workability, cleanliness of steel, and improving oxidation resistance. Ga, Zn, Sn, and Sb are concentrated near the surface to suppress oxidation of Cr.

これらの効果を得るため、Co:0.005%以上、Sn0.003%以上、As:0.001%以上、B:0.0001%以上、Pb:0.0001%以上、Zr:0.0001%以上、Zn:0.01%以上、Y:0.0001%以上、Ga:0.001%以上、La:0.0001%以上、Hf:0.0001%以上、Sb:0.003%以上、REM:0.001%以上、Ta:0.002%以上でこれらの元素を1種類または2種類以上含有し、合計量が0.010%以上であることが好ましい。本発明のAl含有フェライト系ステンレス鋼溶接継手は、その溶接金属部が、前記第3群とともに、或いは、Ni、Cu、Mo、Wの元素群の代わりに、Co、Sn、As、B、Pb、Zr、Zn、Y、Ga、La、Hf、Sb、REM、Taの元素群のうちの少なくとも1種の元素からなる第4群を前述の含有量の範囲で含有しても良い。   In order to obtain these effects, Co: 0.005% or more, Sn 0.003% or more, As: 0.001% or more, B: 0.0001% or more, Pb: 0.0001% or more, Zr: 0.0001 %: Zn: 0.01% or more, Y: 0.0001% or more, Ga: 0.001% or more, La: 0.0001% or more, Hf: 0.0001% or more, Sb: 0.003% or more REM: 0.001% or more, Ta: 0.002% or more, one or more of these elements are contained, and the total amount is preferably 0.010% or more. In the Al-containing ferritic stainless steel welded joint according to the present invention, the weld metal part thereof has Co, Sn, As, B, Pb together with the third group or instead of the element group of Ni, Cu, Mo, W. , Zr, Zn, Y, Ga, La, Hf, Sb, REM, and Ta, the fourth group consisting of at least one element may be contained within the above-described content range.

一方、これらの元素の過度な添加は粒界強度低下による粒界破壊を助長するため、前記第4群は、Co:0.10%以下、Sn0.10%以下、As:0.05%以下、B:0.005%以下、Pb:0.005%以下、Zr:0.1%以下、Zn:0.03%以下、Y:0.10%以下、Ga:0.10%以下、La:0.10%以下、Hf:0.10%以下、Sb:0.10%以下、REM:0.10%以下、Ta:0.5%以下の1種類または2種類以上からなる元素群であって、合計量(以下の式(2))を0.20%以下とする必要がある。
[Co]+[Sn]+[As]+[B]+[Pb]+[Zr]+[Zn]+[Y]+[Ga]+[La]+[Hf]+[Sb]+[REM]・・・式(2)
ここで、[Co]、[Sn]、[As]、[B]、[Pb]、[Zr]、[Zn]、[Y]、[Ga]、[La]、[Hf]、[Sb]、[REM]、[Ta]は、それぞれの元素の含有量(質量%)を示す。
On the other hand, excessive addition of these elements promotes grain boundary destruction due to a decrease in grain boundary strength. Therefore, the fourth group contains Co: 0.10% or less, Sn 0.10% or less, As: 0.05% or less. B: 0.005% or less, Pb: 0.005% or less, Zr: 0.1% or less, Zn: 0.03% or less, Y: 0.10% or less, Ga: 0.10% or less, La : 0.10% or less, Hf: 0.10% or less, Sb: 0.10% or less, REM: 0.10% or less, Ta: 0.5% or less. Therefore, the total amount (the following formula (2)) needs to be 0.20% or less.
[Co] + [Sn] + [As] + [B] + [Pb] + [Zr] + [Zn] + [Y] + [Ga] + [La] + [Hf] + [Sb] + [REM ] Formula (2)
Here, [Co], [Sn], [As], [B], [Pb], [Zr], [Zn], [Y], [Ga], [La], [Hf], [Sb] , [REM], and [Ta] indicate the content (% by mass) of each element.

製造方法について以下に説明する。
本発明の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手は、Al含有フェライト系ステンレス鋼をなめ付けあるいは溶接棒を使用した溶接により作製される。本発明の溶接継手は、後述する本発明の溶接材料を用いて製造することで、実現が容易になるが、本発明の溶接継手は、当該製造条件に限定されるものでないことは言うまでもない。つまり、溶接する母鋼材、用いる溶接材料、溶接手法、さらに溶接条件を適切に選択することで、最終的な溶接継手における溶接金属の化学組成を本発明の範囲内に制御することができる。溶接材料を使用する場合、SOFC用途では良好な耐酸化性・耐Cr蒸発性が求められるため、これら特性を兼ね備えたAl含有フェライト系ステンレス鋼を母材として溶接継手を製造することは、本発明の好ましい例である。また、溶接継手の成分制御を容易にする意味では、母材あるいは溶接材料が本発明の溶接継手に近い成分系であることはさらに好ましい。
The manufacturing method will be described below.
The Al-containing ferritic stainless steel welded joint having excellent 475 ° C brittleness resistance according to the present invention is produced by tanning an Al-containing ferritic stainless steel or welding using a welding rod. The welded joint of the present invention can be easily realized by using the welding material of the present invention described later, but it goes without saying that the welded joint of the present invention is not limited to the manufacturing conditions. That is, the chemical composition of the weld metal in the final welded joint can be controlled within the scope of the present invention by appropriately selecting the base steel material to be welded, the welding material to be used, the welding technique, and the welding conditions. When using welding materials, good oxidation resistance and Cr evaporation resistance are required for SOFC applications. Therefore, manufacturing a welded joint using an Al-containing ferritic stainless steel having these properties as a base material is the present invention. Is a preferred example. Further, in terms of facilitating component control of the welded joint, it is further preferable that the base material or the welding material is a component system close to the welded joint of the present invention.

本発明の好適な母材の化学組成は、質量%で、C:0.02%以下、Si:0.15〜0.70%、Mn:0.3%以下、Cr:13〜20%、Al:1.5〜6%、N:0.02%以下、Ti:0.03〜0.5%を含有し、残部がFeおよび不可避的不純物である。また、本発明の好適な溶接材料の化学組成は、質量%で、C:0.02%以下、Si:0.1〜0.6%、Mn:0.05〜0.4%、Cr:13〜20%、Ti:0.05〜0.4%、P:0.020%以下、S:0.015%以下、N:0.040%以下を含有し、残部がFeおよび不可避的不純物である。   The chemical composition of a suitable base material of the present invention is, in mass%, C: 0.02% or less, Si: 0.15 to 0.70%, Mn: 0.3% or less, Cr: 13 to 20%, Al: 1.5 to 6%, N: 0.02% or less, Ti: 0.03 to 0.5% is contained, and the balance is Fe and inevitable impurities. Moreover, the chemical composition of the suitable welding material of this invention is the mass%, C: 0.02% or less, Si: 0.1-0.6%, Mn: 0.05-0.4%, Cr: 13-20%, Ti: 0.05-0.4%, P: 0.020% or less, S: 0.015% or less, N: 0.040% or less, the balance being Fe and inevitable impurities It is.

なお、SOFC用途以外の用途であって、耐475℃脆性を要求される用途において、本発明の溶接継手を構成する母材は、Al含有フェライト系ステンレス鋼に限定されない。また、例えば、ガスタービン、発電システムなどに用いられる高温部材、エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ、センターパイプなどの自動車部材、ストーブ・ファンヒータなどの燃焼機器といった高温環境下で使用される部材全般に好適である。   In addition, in applications other than SOFC applications that require brittle resistance at 475 ° C., the base material constituting the welded joint of the present invention is not limited to Al-containing ferritic stainless steel. Also, for example, in high-temperature environments such as high-temperature components used in gas turbines, power generation systems, exhaust manifolds, converters, mufflers, turbochargers, EGR coolers, front pipes, center pipes, and other combustion components such as stove / fan heaters Suitable for all members used.

以下に、本発明の実施例について述べる。
表1−1及び表1−2に成分を示す鋼種1〜35のフェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延後、仕上げ焼鈍・酸洗により厚さ1.0mmの冷延焼鈍鋼板を製造した。尚、表1−1の「発明例の組成」とは、鋼の組成が本発明のAl含有フェライト系ステンレス鋼溶接継手の溶接金属部の組成を満たすことを意味する。また、表1−2の「比較例の組成」とは、鋼の組成が本発明のAl含有フェライト系ステンレス鋼溶接継手の溶接金属部の組成を満たしていないことを意味する。尚、表1−1、表1−2、表2及び表3の空欄は、該当する成分を添加していないことを意味する。
Examples of the present invention will be described below.
Ferritic stainless steels of steel types 1-35 whose components are shown in Table 1-1 and Table 1-2 are melted, and after hot rolling, annealing pickling, cold rolling, finish annealing and pickling to obtain a thickness of 1. A 0 mm cold-rolled annealed steel sheet was produced. The “composition of the inventive example” in Table 1-1 means that the steel composition satisfies the composition of the weld metal part of the Al-containing ferritic stainless steel welded joint of the present invention. Further, “composition of comparative example” in Table 1-2 means that the composition of steel does not satisfy the composition of the weld metal part of the Al-containing ferritic stainless steel welded joint of the present invention. In addition, the blank of Table 1-1, Table 1-2, Table 2, and Table 3 means that the applicable component is not added.

各鋼種のフェライト系ステンレス鋼板から幅120mm、長さ250mmの試験片を切り出した。次いで、同じ鋼種のフェライト系ステンレス鋼板同士を母材として、電流80〜100A、溶接速度50cm/minにて、Arシールドガスを用いてTIGなめ付け溶接して、鋼種1〜31のフェライト系ステンレス鋼板毎にフェライト系ステンレス鋼溶接継手を製造した。溶接位置は板幅中央で、溶接方向は板長手方向とした。   A test piece having a width of 120 mm and a length of 250 mm was cut out from a ferritic stainless steel plate of each steel type. Next, using ferritic stainless steel sheets of the same steel type as base materials, TIG tanning welding is performed using an Ar shield gas at a current of 80 to 100 A and a welding speed of 50 cm / min. A ferritic stainless steel welded joint was produced every time. The welding position was the center of the plate width, and the welding direction was the plate longitudinal direction.

また、表2に成分を示す記号A〜CのAl含有フェライト系ステンレス鋼溶接材料を溶製した。表1−1及び表1−2の鋼種4,5,14,22,29を母材とし、前記記号A〜Cの溶接材料を用いて溶接継手を作製した。溶接条件は電流200A、溶接速度50cm/min、溶接材料供給量8g/minであり、Arガスシールドを実施した。得られた溶接継手の溶接金属部から化学分析用試料を採取し、成分分析を行った。表3に各溶接継手の溶接金属部の化学成分を示す。ここで、表3の記号は、例えば4Aの場合、母材は4、溶接材料はCを使用して製造した溶接継手であることを意味する。   Moreover, the Al containing ferritic stainless steel welding material of the symbol AC which shows a component in Table 2 was melted. Using steel types 4, 5, 14, 22, and 29 in Table 1-1 and Table 1-2 as base materials, weld joints were prepared using the welding materials of the symbols A to C. The welding conditions were an electric current of 200 A, a welding speed of 50 cm / min, a welding material supply amount of 8 g / min, and an Ar gas shield was implemented. A sample for chemical analysis was collected from the weld metal part of the obtained welded joint, and component analysis was performed. Table 3 shows the chemical composition of the weld metal part of each weld joint. Here, for example, in the case of 4A, the symbols in Table 3 indicate that the base material is 4 and the welding material is a welded joint manufactured using C.

Figure 2017095786
Figure 2017095786

Figure 2017095786
Figure 2017095786

Figure 2017095786
Figure 2017095786

Figure 2017095786
Figure 2017095786

各溶接継手の溶接部より試料を切り出し、樹脂埋めを行った後、王水によるエッチングを行った。エッチング後の試料に対し、光学顕微鏡により撮影した溶金部において、溶金部中心の厚さ800μm×幅1600μmの領域内の結晶粒の数をカウントした。測定領域の1辺をまたいだ結晶粒は0.5個、2辺をまたいだ場合は0.25個とした。(測定領域の面積)/(測定領域内の結晶粒の数)の平方根をその溶接継手の結晶粒径と定義した。   A sample was cut out from the welded portion of each welded joint, filled with resin, and then etched with aqua regia. With respect to the sample after etching, the number of crystal grains in the region of thickness 800 μm × width 1600 μm at the center of the molten metal was counted in the molten metal photographed by an optical microscope. The number of crystal grains straddling one side of the measurement region was 0.5, and the number of crystal grains straddling two sides was 0.25. The square root of (area of measurement region) / (number of crystal grains in measurement region) was defined as the crystal grain size of the weld joint.

各溶接継手に対し大気中で500℃、3000時間の時効処理を行った。耐475℃脆性は、これら500℃時効処理材に対し、V曲げ試験により評価した。曲げ半径2.0mm、曲げ角度90度とし、試料の裏ビードに押金具が接触するようにしてV曲げを行った。目視にて割れが生成することなくV曲げ成型が完了した場合、耐475℃脆性は極めて良好(◎)、V曲げ成型が完了するが目視にて割れが確認できた場合は良好(○)、V曲げ成型中に割れが貫通した場合、耐475℃脆性は不良(×)とした。   Each welded joint was subjected to aging treatment at 500 ° C. for 3000 hours in the atmosphere. The resistance to brittleness at 475 ° C. was evaluated by a V-bending test on these 500 ° C. aging-treated materials. V-bending was performed with a bending radius of 2.0 mm and a bending angle of 90 degrees so that the pressing metal was in contact with the back bead of the sample. When V-bending molding is completed without visual cracking, 475 ° C. brittleness resistance is very good (◎), and when V-bending molding is completed, but cracking can be confirmed by visual inspection (◯), When cracks penetrated during V-bending molding, the 475 ° C. brittleness resistance was judged as poor (x).

表4に試験結果を示す。記号1〜32の試験片は、各記号に対応する鋼種のフェライト系ステンレス鋼板をなめ付け溶接して得られた溶接継手の溶接金属部なので、各記号に対応する鋼種のフェライト系ステンレス鋼板と同一の組成を有している。従って、記号1〜22の試験片は本発明の規定する成分範囲を満たしている。その結果、500℃、3000時間の時効処理後も溶接部にてV曲げによる割れの生成は確認されず、優れた耐475℃脆性を示した。   Table 4 shows the test results. Since the test pieces of symbols 1 to 32 are welded metal parts of welded joints obtained by tanning the ferritic stainless steel plates corresponding to the respective symbols, they are the same as the ferritic stainless steel plates of the steel types corresponding to the respective symbols. It has the composition of. Therefore, the test pieces of symbols 1 to 22 satisfy the component range defined by the present invention. As a result, even after aging treatment at 500 ° C. for 3000 hours, generation of cracks due to V-bending was not confirmed in the welded portion, and excellent 475 ° C. brittleness resistance was exhibited.

記号8aは、記号Hの溶接継手よりも高い入熱量で作製した試験片である。溶接部の結晶粒径は360μmで本発明の好ましい範囲よりも大きいが、本発明の規定する成分範囲を満たしているため、良好な耐475℃脆性を示した。
記号23の試験片はP量が本発明の規定範囲よりも多い。その結果、溶接金属部の粒界強度が低下し、粒界破壊が生じた。
記号24の試験片はCr量が本発明の規定範囲よりも多い。その結果、Crのスピノーダル分解による素材の著しい硬化が生じ、へき開破壊が生じた。
記号25の試験片はAl量が本発明の規定範囲よりも多い。その結果、Al添加による双晶変形の抑制効果を、Alの固溶強化による著しい硬化が上回り、へき開破壊が生じた。
記号26および30の試験片はAl量が本発明の規定範囲よりも少ない。その結果、Al添加による双晶変形の抑制効果を十分に得ることができず、へき開破壊が生じた。
記号27の試験片は、Snの含有量が0.10%を超過しており、Sn、Sb及びGaの含有量の合計も本発明の規定範囲より多い。また、記号28の試験片は、Zn、B及びPbのそれぞれの含有量が本発明の規定範囲よりも多く、Zn、B、As及びPbの含有量の合計も本発明の規定範囲より多い。その結果、記号27及び28の試験片の溶接部の粒界強度は著しく低下し、粒界破壊が生じた。
記号29の試験片は、溶接金属部As、Zr、Y、Ga及びTaの含有量が本発明の規定範囲内であるにも関わらず、前記式(2)で表される合計量が本発明の規定範囲よりも多い。その結果、溶接部の結晶粒径が大きくなり、へき開破壊が生じた。
記号31の試験片は、前記式(1)の値が本発明の規定範囲よりも少ない。また、記号32の試験片は、C含有量が本発明の規定範囲より多い。その結果、いずれの試験片も溶接部の結晶粒径が大きくなり、へき開破壊が生じた。
記号33の試験片は、Sb含有量が0.10%を超過している。また、記号34の試験片は、As含有量が0.05%、Pb含有量が0.005%を超過している。その結果記号33および34の試験片の溶接部の粒界強度は著しく低下し、粒界破壊が生じた。
記号35の試験片はCa含有量が0.005%を超過している。その結果記号35の試験片の溶接部で過剰に生成した介在物が破壊の起点となり、へき開破壊が生じた。
Symbol 8a is a test piece produced with a higher heat input than the welded joint of symbol H. Although the crystal grain size of the welded portion was 360 μm, which was larger than the preferred range of the present invention, it exhibited satisfactory 475 ° C. brittleness resistance because it satisfied the component range defined by the present invention.
The test piece of the symbol 23 has a P amount larger than the specified range of the present invention. As a result, the grain boundary strength of the weld metal part was lowered, and grain boundary fracture occurred.
The test piece of the symbol 24 has a Cr amount larger than the specified range of the present invention. As a result, the material was markedly hardened due to the spinodal decomposition of Cr, and cleavage fracture occurred.
The test piece of the symbol 25 has an Al amount larger than the specified range of the present invention. As a result, the effect of suppressing twin deformation due to the addition of Al exceeded the remarkable hardening due to the solid solution strengthening of Al, resulting in cleavage fracture.
The specimens of symbols 26 and 30 have an Al content less than the specified range of the present invention. As a result, the effect of suppressing twin deformation due to the addition of Al could not be sufficiently obtained, and cleavage fracture occurred.
In the test piece of symbol 27, the Sn content exceeds 0.10%, and the total content of Sn, Sb and Ga is larger than the specified range of the present invention. Moreover, the test piece of the code | symbol 28 has each content of Zn, B, and Pb more than the prescription | regulation range of this invention, and the sum total of content of Zn, B, As, and Pb is also larger than the prescription | regulation range of this invention. As a result, the grain boundary strength of the welded portions of the test pieces of symbols 27 and 28 was remarkably lowered, and grain boundary fracture occurred.
The test piece of symbol 29 has a total amount represented by the above formula (2) in spite of the fact that the contents of the weld metal parts As, Zr, Y, Ga and Ta are within the specified range of the present invention. More than the specified range. As a result, the crystal grain size of the welded portion increased and cleavage fracture occurred.
The test piece of the symbol 31 has a value of the formula (1) smaller than the specified range of the present invention. Moreover, the test piece of the symbol 32 has more C content than the specified range of the present invention. As a result, in all the test pieces, the crystal grain size of the welded portion was increased, and cleavage fracture occurred.
The test piece of symbol 33 has an Sb content exceeding 0.10%. Moreover, the test piece of the symbol 34 has As content exceeding 0.05% and Pb content exceeding 0.005%. As a result, the grain boundary strength of the welded portion of the test pieces of symbols 33 and 34 was remarkably reduced, and grain boundary fracture occurred.
The specimen of symbol 35 has a Ca content exceeding 0.005%. As a result, inclusions generated excessively in the welded portion of the test piece of symbol 35 became the starting point of the fracture, and cleavage fracture occurred.

Figure 2017095786
Figure 2017095786

記号4A、5C、14A、22C、29Bの試験片はいずれも本発明の規定する成分範囲を満たしている。その結果、500℃、3000時間の時効処理後も溶接部にてV曲げによる割れの生成は確認されず、優れた耐475℃脆性を示した。特に29Bの試験片については、母材XのTIGなめ付け溶接継手では脆性破壊が生じていることから、本発明において、母材の成分は限定されるものではなく、溶接金属の化学組成が重要であると示唆する結果である。   All the test pieces of symbols 4A, 5C, 14A, 22C, and 29B satisfy the component ranges defined by the present invention. As a result, even after aging treatment at 500 ° C. for 3000 hours, generation of cracks due to V-bending was not confirmed in the welded portion, and excellent 475 ° C. brittleness resistance was exhibited. Especially for the specimen of 29B, since brittle fracture occurs in the TIG tanned welded joint of the base material X, the composition of the base material is not limited in the present invention, and the chemical composition of the weld metal is important. This result suggests that

本発明によれば、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材、エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ、センターパイプなどの自動車用部材、ストーブ・ファンヒータなどの燃焼機器など、高温環境下で使用される部材全般に好適な耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手を提供することができる。   According to the present invention, fuel cell high-temperature members such as reformers and heat exchangers used when reforming hydrocarbon-based fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen, Excellent 475 ° C brittleness resistance suitable for all parts used in high-temperature environments such as exhaust manifolds, converters, mufflers, turbochargers, EGR coolers, front pipes, center pipes and other automotive parts, and stove / fan heaters and other combustion equipment An Al-containing ferritic stainless steel welded joint can be provided.

Claims (8)

溶接金属部の化学成分が、質量%にて、C:0.03%以下、N:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.040%以下、S:0.01%以下、Cr:15〜25%、Al:1.0〜4.0%を含み、
更にTi:1.0%以下、Nb:1.0%以下、V:1.0%以下の1種類または2種以上からなり且つ式(1)を満たす第1群、および、
Mg:0.010%以下、Ca:0.005%以下の1種または2種以上からなる第2群のうち少なくともいずれかの群を含有し、
残部がFeおよび不可避的不純物であることを特徴とする耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
([Ti]+[Nb]+[V])/(2×[C]+[N])≧4.0・・・・式(1)
ここで、[Ti]、[Nb]、[V]、[C]、[N]は、それぞれの元素の含有量(質量%)を示す。
The chemical composition of the weld metal part is, in mass%, C: 0.03% or less, N: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.040. %: S: 0.01% or less, Cr: 15-25%, Al: 1.0-4.0%,
Furthermore, the first group consisting of one or more of Ti: 1.0% or less, Nb: 1.0% or less, V: 1.0% or less and satisfying the formula (1), and
Mg: 0.010% or less, Ca: 0.005% or less, containing at least one of the second group consisting of one or more,
An Al-containing ferritic stainless steel welded joint excellent in brittleness resistance at 475 ° C, wherein the balance is Fe and inevitable impurities.
([Ti] + [Nb] + [V]) / (2 × [C] + [N]) ≧ 4.0 (1)
Here, [Ti], [Nb], [V], [C], and [N] indicate the content (% by mass) of each element.
溶接金属部の化学成分が、更に、質量%にて、
Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下の1種または2種以上からなる第3群、および、
Co:0.10%以下、Sn0.10%以下、As:0.05%以下、B:0.005%以下、Pb:0.005%以下、Zr:0.1%以下、Zn:0.03%以下、Y:0.10%以下、Ga:0.10%以下、La:0.10%以下、Hf:0.10%以下、Sb:0.10%以下、REM:0.10%以下、Ta:0.5%以下の1種または2種以上からなる第4群のうち、
少なくともいずれかの群を含有することを特徴とする請求項1に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
The chemical composition of the weld metal part is further mass%,
A third group consisting of one or more of Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, and
Co: 0.10% or less, Sn: 0.10% or less, As: 0.05% or less, B: 0.005% or less, Pb: 0.005% or less, Zr: 0.1% or less, Zn: 0. 03% or less, Y: 0.10% or less, Ga: 0.10% or less, La: 0.10% or less, Hf: 0.10% or less, Sb: 0.10% or less, REM: 0.10% Hereinafter, among the fourth group consisting of one or more of Ta: 0.5% or less,
2. The Al-containing ferritic stainless steel welded joint having excellent 475 ° C. brittleness resistance according to claim 1, comprising at least one group.
式(2)が質量%にて、0.20%以下であることを特徴とする請求項2に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
[Co]+[Sn]+[As]+[B]+[Pb]+[Zr]+[Zn]+[Y]+[Ga]+[La]+[Hf]+[Sb]+[REM]+[Ta]・・・式(2)
ここで、[Co]、[Sn]、[As]、[B]、[Pb]、[Zr]、[Zn]、[Y]、[Ga]、[La]、[Hf]、[Sb]、[REM]、[Ta]は、それぞれの元素の含有量(質量%)を示す。
The Al-containing ferritic stainless steel welded joint having excellent 475 ° C brittleness resistance according to claim 2, wherein the formula (2) is 0.20% or less in terms of mass%.
[Co] + [Sn] + [As] + [B] + [Pb] + [Zr] + [Zn] + [Y] + [Ga] + [La] + [Hf] + [Sb] + [REM ] + [Ta] Formula (2)
Here, [Co], [Sn], [As], [B], [Pb], [Zr], [Zn], [Y], [Ga], [La], [Hf], [Sb] , [REM], and [Ta] indicate the content (% by mass) of each element.
溶接金属部における結晶粒径の大きさが350μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。   4. The Al-containing ferritic stainless steel welded joint having excellent brittleness resistance at 475 ° C. according to claim 1, wherein the crystal grain size in the weld metal part is 350 μm or less. 燃料改質器、熱交換器あるいは燃料電池高温部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。   5. The Al-containing ferritic stainless steel welded joint having excellent brittle resistance at 475 ° C. according to claim 1, which is applied to a fuel reformer, a heat exchanger, or a fuel cell high-temperature member. . ガスタービン及び発電システムの少なくともいずれかに用いられる高温部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。   The Al-containing ferritic stainless steel welding excellent in 475 ° C brittleness resistance according to any one of claims 1 to 4, which is applied to a high-temperature member used in at least one of a gas turbine and a power generation system. Fittings. エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ及びセンターパイプの少なくともいずれかの自動車用部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。   The 475 ° C brittleness resistance according to any one of claims 1 to 4, wherein the 475 ° C brittleness is applied to a member for an automobile of at least one of an exhaust manifold, a converter, a muffler, a turbocharger, an EGR cooler, a front pipe, and a center pipe. Excellent Al-containing ferritic stainless steel welded joint. ストーブ及びファンヒータの少なくともいずれかの燃焼機器に用いられる高温部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。   The Al-containing ferritic stainless steel excellent in brittleness resistance at 475 ° C according to any one of claims 1 to 4, which is applied to a high-temperature member used for at least one of a stove and a fan heater. Steel welded joint.
JP2015232001A 2015-11-27 2015-11-27 Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance Active JP6655962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232001A JP6655962B2 (en) 2015-11-27 2015-11-27 Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232001A JP6655962B2 (en) 2015-11-27 2015-11-27 Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance

Publications (2)

Publication Number Publication Date
JP2017095786A true JP2017095786A (en) 2017-06-01
JP6655962B2 JP6655962B2 (en) 2020-03-04

Family

ID=58817924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232001A Active JP6655962B2 (en) 2015-11-27 2015-11-27 Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance

Country Status (1)

Country Link
JP (1) JP6655962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173076A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel welding joint, and fuel battery member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263811A (en) * 2005-02-28 2006-10-05 Jfe Steel Kk Ferritic stainless steel filler metal rod for tig welding
JP2009068113A (en) * 2008-10-24 2009-04-02 Nippon Steel & Sumikin Stainless Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET WITH EXCELLENT WORKABILITY AND OXIDATION RESISTANCE, AND ITS MANUFACTURING METHOD
JP2011179088A (en) * 2010-03-02 2011-09-15 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability
JP2011190524A (en) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP2012012674A (en) * 2010-07-01 2012-01-19 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance and secondary workability
JP2014524841A (en) * 2011-07-13 2014-09-25 イリノイ トゥール ワークス インコーポレイティド Flux core welding wire, method of manufacturing the same and use thereof
JP2015199107A (en) * 2014-04-10 2015-11-12 日新製鋼株式会社 FeCrAl ALLOY WELD WIRE AND WELD STRUCTURE PREPARED USING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263811A (en) * 2005-02-28 2006-10-05 Jfe Steel Kk Ferritic stainless steel filler metal rod for tig welding
JP2009068113A (en) * 2008-10-24 2009-04-02 Nippon Steel & Sumikin Stainless Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET WITH EXCELLENT WORKABILITY AND OXIDATION RESISTANCE, AND ITS MANUFACTURING METHOD
JP2011179088A (en) * 2010-03-02 2011-09-15 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability
JP2011190524A (en) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP2012012674A (en) * 2010-07-01 2012-01-19 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance and secondary workability
JP2014524841A (en) * 2011-07-13 2014-09-25 イリノイ トゥール ワークス インコーポレイティド Flux core welding wire, method of manufacturing the same and use thereof
JP2015199107A (en) * 2014-04-10 2015-11-12 日新製鋼株式会社 FeCrAl ALLOY WELD WIRE AND WELD STRUCTURE PREPARED USING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173076A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel welding joint, and fuel battery member

Also Published As

Publication number Publication date
JP6655962B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6300841B2 (en) Al-containing ferritic stainless steel with excellent high-temperature strength
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP2009120894A (en) Ferritic stainless steel material for automotive member of exhaust gas path
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
JP6190498B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2010222638A (en) Al-CONTAINING HEAT RESISTANT FERRITIC STAINLESS STEEL FOR FUEL CELL, AND METHOD FOR PRODUCING THE SAME
JP6113359B1 (en) Al-containing ferritic stainless steel with excellent creep characteristics and fuel cell components
JP2010156039A (en) Ferritic stainless steel superior in heat resistance
JP6067134B2 (en) Ferritic stainless steel for fuel reformer and manufacturing method thereof
JP6423138B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP2006134662A (en) Heat exchanger for fuel cell system of automobile
JP4463663B2 (en) Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6498263B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP6767831B2 (en) Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6429957B1 (en) Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
JP6971185B2 (en) Ferritic stainless steel welded joints and fuel cell components
JP7055050B2 (en) Ferritic stainless steel welding filler material
JP6937716B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP2007191740A (en) Heat resistant material having excellent oxidation resistance and creep property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6655962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250