JP2010156039A - Ferritic stainless steel superior in heat resistance - Google Patents

Ferritic stainless steel superior in heat resistance Download PDF

Info

Publication number
JP2010156039A
JP2010156039A JP2009231181A JP2009231181A JP2010156039A JP 2010156039 A JP2010156039 A JP 2010156039A JP 2009231181 A JP2009231181 A JP 2009231181A JP 2009231181 A JP2009231181 A JP 2009231181A JP 2010156039 A JP2010156039 A JP 2010156039A
Authority
JP
Japan
Prior art keywords
mass
less
ferritic stainless
stainless steel
thermal fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009231181A
Other languages
Japanese (ja)
Other versions
JP5540637B2 (en
Inventor
Tomomasa Hirata
知正 平田
Yasushi Kato
康 加藤
Takumi Ugi
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009231181A priority Critical patent/JP5540637B2/en
Publication of JP2010156039A publication Critical patent/JP2010156039A/en
Application granted granted Critical
Publication of JP5540637B2 publication Critical patent/JP5540637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel which has superior thermal fatigue characteristics and repeated oxidation characteristics. <P>SOLUTION: The ferritic stainless steel includes, by mass%, 0.02% or less C, 0.3% or less Si, 1% or less Mn, 0.05% or less P, 0.01% or less S, 0.5% or less Al, 0.02% or less N, 20-40% Cr, 1% or less Ni, 0.2-1% Nb, 0.1-3% Mo, 1-3% Cu and 0.0003-0.01% B so that Si and Mn satisfy the following expression of 2×Si+Mn<1 mass%, wherein symbols of elements represent the contents (mass%) of the elements, respectively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車や二輪車のエキゾーストマニホールドや排気管、コンバーターケース等の排気系部材、火力発電プラントの排気ダクト、熱交換器および燃料電池関連部材などのように、繰り返しの熱サイクルを受ける環境下で使用される部材に用いられるフェライト系ステンレス鋼に関するものである。   The present invention is in an environment subject to repeated thermal cycles, such as exhaust manifolds and exhaust pipes of automobiles and motorcycles, exhaust system members such as converter cases, exhaust ducts of thermal power plants, heat exchangers and fuel cell-related members. The present invention relates to a ferritic stainless steel used for members used in the above.

自動車や二輪車のエキゾーストマニホールドや排気管コンバーターケース等に代表される排気系部材は、エンジンの起動・停止に伴って、高温域への昇温と常温への降温という熱サイクルを繰り返し受ける。そのため、これらの部材は、部材周囲や自らの形状に起因した拘束を受けて、自由な膨張や収縮が妨げられるため、熱応力による疲労を起こすことが知られている。そのため、熱疲労特性に劣る材料を、上記部材に使用した場合には、使用中に破断を起こしたり、排ガスの漏えいを起こしたりする。   Exhaust system members typified by exhaust manifolds and exhaust pipe converter cases of automobiles and motorcycles are repeatedly subjected to a thermal cycle of temperature rise to a high temperature range and temperature fall to room temperature as the engine starts and stops. For this reason, these members are known to cause fatigue due to thermal stress because they are restrained due to the surroundings of the members and their own shapes, and free expansion and contraction are hindered. For this reason, when a material inferior in thermal fatigue characteristics is used for the above-mentioned member, it breaks during use or leaks exhaust gas.

排気系部材に使用中に受ける熱疲労は、一般に、熱サイクルの最高温度が高いほど厳しくなる。しかしながら、低エミッション化が指向されていている現在、自動車エンジンの燃焼温度は年々高まる傾向にあり、排気系部材に用いられる材料には、従来にも増して、熱疲労特性に優れることが要求されている。   In general, the thermal fatigue experienced by the exhaust system member during use becomes more severe as the maximum temperature of the thermal cycle is higher. However, with the trend toward lower emissions, the combustion temperature of automobile engines tends to increase year by year, and materials used for exhaust system members are required to have better thermal fatigue characteristics than ever before. ing.

上記排気温度の高温化に対応できる排気系部材用の材料としては、従来、NbやMoを添加したフェライト系ステンレス鋼、例えば、JIS G4305に規定されたSUS444(19Cr−1.8Mo−0.2Nb鋼,19Cr−2Mo−0.5Nb鋼など)が知られているが、その他にも幾つかの排気系部材用の材料が開発されている。例えば、特許文献1には、Siを一定量以下に低減して室温での加工性を保持した上で、MoとWを複合添加することにより、900℃を超える高温における耐酸化性を高めたフェライト系ステンレス鋼が開示されている。   As a material for an exhaust system member that can cope with the increase in the exhaust temperature, conventionally, ferritic stainless steel to which Nb or Mo is added, for example, SUS444 (19Cr-1.8Mo-0.2Nb) defined in JIS G4305 is used. Steel, 19Cr-2Mo-0.5Nb steel, etc.) are known, but several other materials for exhaust system members have been developed. For example, in Patent Document 1, after reducing Si to a certain amount or less and maintaining the workability at room temperature, the oxidation resistance at a high temperature exceeding 900 ° C. is enhanced by adding Mo and W in combination. Ferritic stainless steel is disclosed.

また、特許文献2には、600〜750℃の中温度域でCuの析出物を微細に析出させ、さらに、800℃以上の高温度域では、微細析出したCu析出物を再固溶させて固溶強化を図ることにより、800℃以上の高温度域の排ガス環境下で使用される排気系部品に必要な強度、耐熱疲労性および耐酸化性を備えたフェライト系ステンレス鋼が開示され、特許文献3には、排ガス部材に使用される前の段階で、Cuの析出物(ε−Cu相)の存在形態をある特定の状態にしておくことによって、熱疲労特性を高めたフェライト系ステンレス鋼が開示されている。   Further, in Patent Document 2, Cu precipitates are finely precipitated at an intermediate temperature range of 600 to 750 ° C., and further, at a high temperature range of 800 ° C. or higher, the finely precipitated Cu precipitates are dissolved again. Ferritic stainless steel with the strength, heat fatigue resistance and oxidation resistance required for exhaust system parts used in exhaust gas environments in a high temperature range of 800 ° C or higher is disclosed by strengthening the solid solution. Patent Reference 3 describes a ferritic stainless steel that has improved thermal fatigue characteristics by keeping the presence of Cu precipitates (ε-Cu phase) in a certain state before being used in an exhaust gas member. Is disclosed.

また、特許文献4には、Nbを含むCr含有鋼において、Si,Crの含有量を低減し、MoをSi含有量と関連して適正量添加することにより、Laves相の析出を抑制し、Moを固溶Mo主体の存在形態とすることにより、常温強度を上昇させることなく高温強度を高め、しかも異常酸化の発生を抑制した鋼が開示され、さらに、特許文献5には、Nb,Moの含有量を適正化して室温伸びの面内異方性を改善し、固溶Cuにより高温強度を確保した耐熱性フェライト系ステンレス鋼が開示されている。   Further, in Patent Document 4, in the Cr-containing steel containing Nb, the content of Si and Cr is reduced, and by adding an appropriate amount of Mo in relation to the Si content, precipitation of the Laves phase is suppressed, Disclosed is a steel in which high-temperature strength is increased without increasing the normal-temperature strength and the occurrence of abnormal oxidation is suppressed by making Mo a solid solution-Mo main form. Further, Patent Document 5 discloses Nb, Mo. A heat resistant ferritic stainless steel is disclosed in which the content of is optimized to improve the in-plane anisotropy of room temperature elongation, and high-temperature strength is ensured by solute Cu.

特開2004−018921号公報JP 2004-018921 A 特開2000−297355号公報JP 2000-297355 A 特開2006−117985号公報JP 2006-117985 A 特開2002−212685号公報Japanese Patent Laid-Open No. 2002-212585 特開2001−303204号公報JP 2001-303204 A

しかしながら、上記の従来技術のフェライト系ステンレス鋼では、昨今における排気ガス温度の上昇に十分対応することは難しくなってきており、より熱疲労特性および繰り返し酸化特性に優れた材料の開発が望まれている。   However, in the above-described prior art ferritic stainless steel, it has become difficult to sufficiently cope with the recent increase in exhaust gas temperature, and development of a material having more excellent thermal fatigue characteristics and repeated oxidation characteristics is desired. Yes.

そこで、本発明の目的は、従来の排気系部材用の材料が抱える上記問題点を有利に解決することによって、従来材よりも熱疲労特性および繰り返し酸化特性が格段に優れたフェライト系ステンレス鋼を提供することにある。   Accordingly, an object of the present invention is to provide a ferritic stainless steel that has superior thermal fatigue characteristics and repetitive oxidation characteristics as compared with conventional materials by advantageously solving the above-mentioned problems of conventional materials for exhaust system members. It is to provide.

発明者らは、フェライト系ステンレス鋼の熱疲労特性に及ぼす各種添加元素の影響に着目して鋭意研究を重ねた。その結果、20mass%を超えるCrを含有するフェライト系ステンレス鋼において、Nb,Mo,CuおよびBを複合添加することに加えてさらに、SiおよびMnの含有量を最適化することによって熱疲労特性と繰り返し酸化特性を飛躍的に向上させることができることを知見し、本発明を完成させた。   The inventors conducted extensive research focusing on the effects of various additive elements on the thermal fatigue properties of ferritic stainless steel. As a result, in the ferritic stainless steel containing Cr exceeding 20 mass%, in addition to the composite addition of Nb, Mo, Cu and B, the thermal fatigue characteristics can be further improved by optimizing the contents of Si and Mn. The inventors have found that repeated oxidation characteristics can be dramatically improved, and have completed the present invention.

すなわち、本発明は、C:0.02mass%以下、Si:0.3mass%以下、Mn:1mass%以下、P:0.05mass%以下、S:0.01mass%以下、Al:0.5mass%以下、N:0.02mass%以下、Cr:20〜40mass%、Ni:1mass%以下、Nb:0.2〜1mass%、Mo:0.1〜3mass%、Cu:1〜3mass%、B:0.0003〜0.01mass%を含有し、SiとMnが、下記式;
2×Si+Mn<1mass%
ただし、各元素記号は、それぞれの元素の含有量(mass%)を示す。
を満たして含有することを特徴とする熱疲労特性および繰り返し酸化特性に優れるフェライト系ステンレス鋼である。
That is, the present invention is C: 0.02 mass% or less, Si: 0.3 mass% or less, Mn: 1 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.5 mass% Hereinafter, N: 0.02 mass% or less, Cr: 20 to 40 mass%, Ni: 1 mass% or less, Nb: 0.2 to 1 mass%, Mo: 0.1 to 3 mass%, Cu: 1 to 3 mass%, B: 0.0003-0.01mass% is contained, Si and Mn are following formula;
2 × Si + Mn <1 mass%
However, each element symbol indicates the content (mass%) of each element.
It is a ferritic stainless steel excellent in thermal fatigue characteristics and repeated oxidation characteristics characterized by containing.

本発明は、上記成分組成に加えてさらに、V:0.5mass%以下、W:1〜5mass%、Ti:0.02〜0.5mass%、Zr:0.02〜0.5mass%、Co:0.05〜3mass%およびTa:2mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the present invention further includes V: 0.5 mass% or less, W: 1-5 mass%, Ti: 0.02-0.5 mass%, Zr: 0.02-0.5 mass%, Co : 0.05 to 3 mass% and Ta: 1 mass% or less selected from 2 mass% or less.

本発明によれば、熱疲労特性および繰り返し酸化特性が、従来材と比較して格段に優れたフェライト系ステンレス鋼を提供することができる。従って、本発明のフェライト系ステンレス鋼は、低エミッション化が進められている自動車や二輪車などの排気系部材の材料等として好適に用いることができる。   According to the present invention, it is possible to provide a ferritic stainless steel that has excellent thermal fatigue characteristics and repeated oxidation characteristics as compared with conventional materials. Therefore, the ferritic stainless steel of the present invention can be suitably used as a material for exhaust system members of automobiles and motorcycles whose emission is being reduced.

熱疲労試験に用いた試験片形状を示す図である。It is a figure which shows the test piece shape used for the thermal fatigue test. 熱疲労試験条件の加熱サイクル、歪サイクルを説明する図である。It is a figure explaining the heating cycle of a thermal fatigue test condition, and a distortion cycle.

まず、本発明のフェライト系ステンレス鋼の成分組成を上記範囲に限定する理由について説明する。
C:0.02mass%以下
Cは、鋼の成形性や耐食性を低下させる元素であるので、0.02mass%以下に制限する。好ましくは、0.01mass%以下である。
First, the reason why the composition of the ferritic stainless steel of the present invention is limited to the above range will be described.
C: 0.02 mass% or less Since C is an element that lowers the formability and corrosion resistance of steel, it is limited to 0.02 mass% or less. Preferably, it is 0.01 mass% or less.

Si:0.3mass%以下
Siは、鋼の酸化特性を向上する元素であり、本発明における重要元素の1つである。しかし、過剰なSiの添加は、Laves相の析出を促進し、熱疲労特性を低下させるため、0.3mass%以下に制限する。好ましくは0.2mass%以下である。
Si: 0.3 mass% or less Si is an element that improves the oxidation characteristics of steel, and is one of the important elements in the present invention. However, excessive Si addition promotes the precipitation of the Laves phase and lowers the thermal fatigue characteristics, so it is limited to 0.3 mass% or less. Preferably it is 0.2 mass% or less.

Mn:1mass%以下
Mnは、スケール密着性を向上させ、繰り返し耐酸化性を向上する元素である。しかし、発明者らの研究によれば、Mnは、熱疲労特性に対して悪影響を及ぼす元素であることを新規に知見した。その原因はまだ明確にはなっていないが、Mnの添加によって、熱膨張挙動が変化するためと考えられる。そのため、Mnは1mass%以下とする。好ましくは0.1〜0.6mass%の範囲である。
Mn: 1 mass% or less Mn is an element that improves scale adhesion and repeatedly improves oxidation resistance. However, according to the studies by the inventors, it has been newly found that Mn is an element that adversely affects thermal fatigue properties. Although the cause is not yet clear, it is considered that the thermal expansion behavior is changed by the addition of Mn. Therefore, Mn is set to 1 mass% or less. Preferably it is the range of 0.1-0.6 mass%.

P:0.05mass%以下
Pは、鋼の耐食性、靭性を低下させる有害な元素であり、0.05mass%以下に制限する。好ましくは0.03mass%以下である。
P: 0.05 mass% or less P is a harmful element that lowers the corrosion resistance and toughness of steel, and is limited to 0.05 mass% or less. Preferably it is 0.03 mass% or less.

S:0.01mass%以下
Sは、鋼の発銹や孔食の起点となり耐食性を低下させる有害な元素であり、0.01mass%以下に制限する。好ましくは0.002mass%以下である。
S: 0.01 mass% or less S is a harmful element that becomes a starting point of steel cracking and pitting corrosion and lowers corrosion resistance, and is limited to 0.01 mass% or less. Preferably it is 0.002 mass% or less.

Al:0.5mass%以下
Alは、一般には、製鋼段階において脱酸剤として添加される元素であり、Al脱酸を行う場合は不可避的に添加される元素である。また、耐酸化性を向上する効果があるので、必要に応じて積極的に添加してもよい。しかし、Alの過剰な添加は、靭性を低下させるため、上限は0.5mass%とする。好ましくは、0.3mass%以下である。
Al: 0.5 mass% or less Al is generally an element added as a deoxidizer in the steelmaking stage, and is an element inevitably added when Al deoxidation is performed. Moreover, since there exists an effect which improves oxidation resistance, you may add actively as needed. However, excessive addition of Al reduces toughness, so the upper limit is made 0.5 mass%. Preferably, it is 0.3 mass% or less.

N:0.02mass%以下
Nは、鋼の成形性や耐食性を低下させる有害な元素であるため、0.02mass%以下に制限する。好ましくは、0.01mass%以下である。
N: 0.02 mass% or less Since N is a harmful element that lowers the formability and corrosion resistance of steel, it is limited to 0.02 mass% or less. Preferably, it is 0.01 mass% or less.

Cr:20〜40mass%
Crは、フェライト系ステンレス鋼の耐食性を確保するために必要な基本成分である。また、Crは、本発明で実施した熱疲労試験の全ての温度範囲において、強度を高め、熱疲労特性を向上する効果や、耐酸化性を向上させる効果を有する。しかし、Crが20mass%未満では、十分な熱疲労特性向上効果が得られず、一方、40mass%を超えると、加工性を損なう。よって、Crは20〜40mass%の範囲とする。好ましくは、21〜35mass%の範囲である。
Cr: 20-40 mass%
Cr is a basic component necessary for ensuring the corrosion resistance of ferritic stainless steel. In addition, Cr has the effect of increasing strength and improving thermal fatigue characteristics and the effect of improving oxidation resistance in the entire temperature range of the thermal fatigue test performed in the present invention. However, if Cr is less than 20 mass%, a sufficient effect of improving thermal fatigue properties cannot be obtained, while if it exceeds 40 mass%, workability is impaired. Therefore, Cr is set to a range of 20 to 40 mass%. Preferably, it is the range of 21-35 mass%.

Ni:1mass%以下
Niは、鋼の靭性を向上する効果を有する元素である。しかし、Niは高価であるので、1mass%以下とする。
Ni: 1 mass% or less Ni is an element having an effect of improving the toughness of steel. However, since Ni is expensive, it is set to 1 mass% or less.

Nb:0.2〜1mass%
Nbは、鋼の高温強度を高めるとともに、熱疲労寿命を向上させる元素であり、本発明における重要元素の1つである。しかし、Nbの添加量が0.2mass%未満では、十分な高温強度が得られず、一方、1mass%を超える過剰な添加は、多量のLaves相が析出し、熱疲労特性の低下を招く。よって、Nbは0.2〜1mass%の範囲とする。好ましくは、0.3〜0.6mass%の範囲である。
Nb: 0.2-1 mass%
Nb is an element that increases the high-temperature strength of the steel and improves the thermal fatigue life, and is one of the important elements in the present invention. However, if the amount of Nb added is less than 0.2 mass%, sufficient high-temperature strength cannot be obtained. On the other hand, if it exceeds 1 mass%, a large amount of Laves phase is precipitated, resulting in a decrease in thermal fatigue characteristics. Therefore, Nb is set to a range of 0.2 to 1 mass%. Preferably, it is the range of 0.3-0.6 mass%.

Mo:0.1〜3mass%
Moは、鋼の高温強度を高めるとともに、熱疲労寿命を向上させる重要な元素である。Mo含有量が0.1mass%より少ないと、十分な高温強度が得られず、一方、3mass%を超える過剰な添加は、多量のLaves相やσ相を析出し、熱疲労特性の低下を招く。よって、Moは0.1〜3mass%の範囲とする。好ましくは、1〜2mass%の範囲である。
Mo: 0.1-3 mass%
Mo is an important element that increases the high temperature strength of the steel and improves the thermal fatigue life. If the Mo content is less than 0.1 mass%, sufficient high-temperature strength cannot be obtained. On the other hand, excessive addition exceeding 3 mass% precipitates a large amount of Laves phase and σ phase, leading to deterioration of thermal fatigue characteristics. . Therefore, Mo is set to a range of 0.1 to 3 mass%. Preferably, it is the range of 1-2 mass%.

Cu:1〜3mass%
Cuは、繰り返して受ける熱サイクル中に微細なε−Cuの析出と固溶を繰り返すことで、長期間、低温域の強度を高く保持し、熱疲労特性を向上させる効果を有する元素であり、本発明における不可欠な元素の1つである。上記効果は、Cuを1mass%超添加することで発現するが、3mass%を超える過剰な添加は、鋼の靭性を低下させる。よって、Cuは1〜3mass%の範囲で添加する。好ましくは1.2〜2mass%の範囲である。
Cu: 1-3 mass%
Cu is an element having the effect of improving the thermal fatigue properties by maintaining high strength in the low temperature range for a long time by repeating fine ε-Cu precipitation and solid solution during repeated thermal cycles. It is one of the essential elements in the present invention. The above effect is manifested by adding more than 1 mass% of Cu, but excessive addition exceeding 3 mass% reduces the toughness of the steel. Therefore, Cu is added in the range of 1 to 3 mass%. Preferably it is the range of 1.2-2 mass%.

B:0.0003〜0.01mass%
Bは、粒界近傍におけるLaves相の析出を抑制し、高温強度を高めるとともに、熱疲労特性を向上する効果を有する、本発明における重要元素の1つである。上記効果を得るには0.0003mass%以上の添加が必要である。しかし、0.01mass%を超える過剰な添加は、鋼の融点を下げ、溶接時の高温割れを引き起こす。よって、Bは0.0003〜0.01mass%の範囲とする。好ましくは、0.0005〜0.003mass%の範囲である。
B: 0.0003 to 0.01 mass%
B is one of the important elements in the present invention that has the effect of suppressing the precipitation of the Laves phase in the vicinity of the grain boundary, increasing the high temperature strength, and improving the thermal fatigue characteristics. To obtain the above effect, 0.0003 mass% or more must be added. However, excessive addition exceeding 0.01 mass% lowers the melting point of the steel and causes hot cracking during welding. Therefore, B is in the range of 0.0003 to 0.01 mass%. Preferably, it is in the range of 0.0005 to 0.003 mass%.

(2×Si+Mn):1mass%未満
本発明のフェライト系ステンレス鋼は、熱疲労特性と繰り返し酸化特性との両立を図るためには、SiとMnが上記組成範囲を満たすことに加えてさらに、下記式;
(2×Si+Mn)<1mass%
ただし、各元素記号は、それぞれの元素の含有量(mass%)を示す。
を満たして含有していることが必要である。
十分な熱疲労特性を得るには、SiやMnは低いほど好ましく、一方、酸化特性の向上には、SiやMnは高い方が好ましいという、相反する要求がある。しかし、本発明のフェライト系ステンレス鋼においては、低Si化、低Mn化による酸化特性の低下を、Crの添加によって補うことができるので、SiおよびMnを、上記関係式を満たす範囲に限定しても、優れた熱疲労特性と繰り返し酸化特性の両立を図ることが可能となった。なお、好ましくは、(2×Si+Mn)は0.7mass%以下である。
(2 × Si + Mn): less than 1 mass% The ferritic stainless steel of the present invention, in order to achieve both thermal fatigue characteristics and repeated oxidation characteristics, in addition to Si and Mn satisfying the above composition range, formula;
(2 × Si + Mn) <1 mass%
However, each element symbol indicates the content (mass%) of each element.
It is necessary to satisfy and contain.
In order to obtain sufficient thermal fatigue characteristics, Si and Mn are preferably as low as possible. On the other hand, in order to improve oxidation characteristics, there is a conflicting requirement that Si and Mn are preferable as high as possible. However, in the ferritic stainless steel of the present invention, the deterioration of oxidation characteristics due to low Si and low Mn can be compensated by the addition of Cr, so Si and Mn are limited to a range satisfying the above relational expression. However, it has become possible to achieve both excellent thermal fatigue characteristics and repeated oxidation characteristics. Preferably, (2 × Si + Mn) is 0.7 mass% or less.

本発明のフェライト系ステンレス鋼は、上記の必須とする成分に加えてさらに、V,W,Ti,Zr,CoおよびTaのうちから選ばれる1種または2種以上を下記の範囲で含有することができる。
V:0.5mass%以下
Vは、鋼の成形性を高めるのに有効な元素である。しかし、0.5mass%を超える過剰な添加は、粗大なV(C,N)が析出して、表面性状を劣化させる。よって、Vを添加する場合は、0.5mass%以下とするのが好ましい。
The ferritic stainless steel of the present invention further contains one or more selected from V, W, Ti, Zr, Co, and Ta in the following range in addition to the essential components described above. Can do.
V: 0.5 mass% or less V is an element effective for improving the formability of steel. However, excessive addition exceeding 0.5 mass% causes coarse V (C, N) to precipitate and deteriorates the surface properties. Therefore, when adding V, it is preferable to set it as 0.5 mass% or less.

W:1〜5mass%
Wは、鋼中に固溶することによって、高温強度および耐酸化性を高める効果がある元素である。これらの効果は、1mass%以上の添加で認められる。しかし、5mass%を超える過剰な添加は、原料コストの増大を招く。よって、Wを添加する場合には、1〜5mass%の範囲で添加するのが好ましくい。より好ましくは、2〜3.5mass%の範囲である。
W: 1 to 5 mass%
W is an element that has the effect of increasing the high-temperature strength and oxidation resistance by being dissolved in steel. These effects are recognized by addition of 1 mass% or more. However, excessive addition exceeding 5 mass% leads to an increase in raw material cost. Therefore, when adding W, it is preferable to add in the range of 1-5 mass%. More preferably, it is the range of 2-3.5 mass%.

Ti:0.02〜0.5mass%
Tiは、鋼の成形性を向上させる元素であり、また、C,Nとの親和力がNbより強いため、それらと優先的に結合して有効Nbの固溶量を増加させる効果がある。このような効果は、0.02mass%以上で認められるが、0.5mass%を超えて添加すると、粗大なTi(C,N)が析出して表面性状を劣化させる。よって、Tiは0.02〜0.5mass%の範囲で添加するのが好ましい。より好ましくは、0.02〜0.4mass%の範囲である。
Ti: 0.02-0.5 mass%
Ti is an element that improves the formability of steel, and has an effect of increasing the solid solution amount of effective Nb by preferentially bonding to them because the affinity for C and N is stronger than Nb. Such an effect is recognized at 0.02 mass% or more. However, when it is added in an amount exceeding 0.5 mass%, coarse Ti (C, N) is precipitated and the surface properties are deteriorated. Therefore, Ti is preferably added in the range of 0.02 to 0.5 mass%. More preferably, it is the range of 0.02-0.4 mass%.

Zr:0.02〜0.5mass%
Zrは、Tiと同様、成形性を向上させる元素であり、C,Nとの親和力がNbより強く、それらと優先的に結合するため、有効Nbの固溶量を増加させる効果がある。このような効果は、0.02mass%以上の添加で認められるが、0.5mass%を超える添加は、Zr金属間化合物が析出して鋼を脆化させる。よって、Zrは0.02〜0.5mass%の範囲で添加するのが好ましい。より好ましくは、0.02〜0.4mass%の範囲である。
Zr: 0.02-0.5 mass%
Zr, like Ti, is an element that improves formability, has an affinity for C and N that is stronger than that of Nb, and preferentially binds to them, so that it has the effect of increasing the solid solution amount of effective Nb. Such an effect is recognized by addition of 0.02 mass% or more, but addition exceeding 0.5 mass% causes Zr intermetallic compounds to precipitate and embrittles the steel. Therefore, it is preferable to add Zr in the range of 0.02 to 0.5 mass%. More preferably, it is the range of 0.02-0.4 mass%.

Co:0.05〜3mass%
Coは、鋼の高温強度を高めるのに有効な元素であり、必要に応じて添加することができる。この効果は、0.05mass%以上の添加で認められる。しかし、過剰な添加はコストの上昇を招くため、上限を3mass%とするのが好ましい。より好ましくは、0.1〜1mass%の範囲である。
Co: 0.05-3 mass%
Co is an element effective for increasing the high-temperature strength of steel, and can be added as necessary. This effect is recognized when 0.05 mass% or more is added. However, excessive addition causes an increase in cost, so the upper limit is preferably set to 3 mass%. More preferably, it is the range of 0.1-1 mass%.

Ta:2mass%以下
Taは、鋼の高温強度を高めるのに有効な元素であり、必要に応じて添加することができる。しかし、2mass%を超える多量の添加は、Laves相の析出によって熱疲労特性を低下させるので、添加する場合は、2mass%以下とするのが好ましい。より好ましくは1.5mass%以下である。
Ta: 2 mass% or less Ta is an element effective for increasing the high-temperature strength of steel, and can be added as necessary. However, since a large amount of addition exceeding 2 mass% deteriorates thermal fatigue properties due to precipitation of the Laves phase, when it is added, it is preferably made 2 mass% or less. More preferably, it is 1.5 mass% or less.

次に、本発明のフェライト系ステンレス鋼の好ましい製造方法について説明する。
本発明の鋼の製造条件は、特に限定されるものではなく、Cr含有鋼の一般的な製造方法であれば好適に用いることができる。例えば、上記の適正な成分組成に調整した溶鋼を、転炉や電気炉等の溶製炉さらには取鋼精錬、真空精錬等の2次精錬を経て溶製した後、連続鋳造方法または造塊・分塊法でスラブとし、その後、そのスラブを、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍、酸洗の各工程を順次経て、冷延焼鈍板とする製造方法を採用することができる。なお、上記工程における冷間圧延は、1回または中間焼鈍を挟む2回以上の冷間圧延としてもよく、また、冷間圧延、仕上焼鈍、酸洗の各工程は繰り返して行ってもよい。さらに、熱延板焼鈍工程は省略してもよい。
Next, the preferable manufacturing method of the ferritic stainless steel of this invention is demonstrated.
The production conditions of the steel of the present invention are not particularly limited, and any suitable method for producing Cr-containing steel can be used. For example, after the molten steel adjusted to the above-mentioned proper component composition is melted through a secondary refining process such as a refining furnace such as a converter or an electric furnace, a steel refining process, a vacuum refining process, etc.・ Production method to make a slab by the lump method, and then make the slab a cold-rolled annealed plate through each step of hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, pickling Can be adopted. In addition, the cold rolling in the said process is good also as cold rolling of 2 times or more on both sides of intermediate annealing, and each process of cold rolling, finish annealing, and pickling may be performed repeatedly. Furthermore, the hot-rolled sheet annealing step may be omitted.

表1に示す成分組成を有するNo.1〜29の鋼を真空溶解炉で溶製して100kg鋼塊とした後、この鋼塊を1200℃に加熱し、熱間圧延して厚さ30mmのシートバーとし、以下の熱疲労試験および繰り返し酸化試験に供した。   No. having the component composition shown in Table 1. 1 to 29 steel was melted in a vacuum melting furnace to form a 100 kg steel ingot, and then the steel ingot was heated to 1200 ° C. and hot-rolled into a sheet bar having a thickness of 30 mm. It was subjected to repeated oxidation tests.

Figure 2010156039
Figure 2010156039

<熱疲労試験>
上記シートバーの一部を、鍛造して厚さ30mm×幅30mmの角棒とし、その角棒に、1000〜1150℃×1〜5分間保持後、20℃/s以上で冷却する仕上熱処理を施した後、その角棒から、図1に示した形状の熱疲労試験片(最細部直径8mmφ)を採取し、熱疲労試験に供した。なお、上記熱疲労試験は、図2に示したように、最低温度200℃で90s保持後、6℃/sで最高温度880℃まで昇温し、この温度に120s保持後、再び最低温度200℃まで6℃/sで降温するヒートサイクルを1サイクルとする熱処理を繰り返し付与する条件で行った。なお、上記熱疲労試験における見かけ歪は、電気機械システムによって、自由熱膨張収縮歪の60%(拘束率0.40)となるよう制御した。また、熱疲労寿命は、荷重−歪ヒステリシスループが安定する5サイクル目における最大荷重に対して、90%まで最大荷重が低下した時点のサイクル数とし、このサイクル数が1200を超えるものを熱疲労特性に優れる(○)と評価した。
<Thermal fatigue test>
A part of the sheet bar is forged into a square bar having a thickness of 30 mm and a width of 30 mm, and the square bar is subjected to a finish heat treatment of holding at 1000 to 1150 ° C. for 1 to 5 minutes and then cooling at 20 ° C./s or more. After the application, a thermal fatigue test piece (the most detailed diameter of 8 mmφ) having the shape shown in FIG. 1 was collected from the square bar and subjected to a thermal fatigue test. In the thermal fatigue test, as shown in FIG. 2, after maintaining at a minimum temperature of 200 ° C. for 90 s, the temperature was increased to 6 ° C./s up to a maximum temperature of 880 ° C. It was performed under the condition of repeatedly applying a heat treatment in which the heat cycle for lowering the temperature to 6 ° C. at 6 ° C./s was one cycle. The apparent strain in the thermal fatigue test was controlled by an electromechanical system to be 60% of the free thermal expansion and contraction strain (constraint rate 0.40). The thermal fatigue life is the number of cycles when the maximum load is reduced to 90% with respect to the maximum load in the fifth cycle in which the load-strain hysteresis loop is stabilized. It was evaluated that the properties were excellent (◯).

<繰り返し酸化試験>
熱間圧延して得た厚さ30mmの上記シートバーを、1000〜1200℃に加熱し、さらに熱間圧延して厚さ5mmの熱延板とし、この熱延板に1000〜1200℃の温度で熱延焼鈍板を施した後、酸洗し、圧下率60%で冷間圧延し、1000〜1200℃の温度で仕上焼鈍し、酸洗して、板厚2mmの冷延焼鈍板とした。
この冷延焼鈍板から厚さ2mm×幅20mm×長さ30mmの試験片を各2枚ずつ採取し、その試験片を、大気中で1000℃×8min加熱後、冷却して、200℃×1min保持するヒートサイクルを繰り返す酸化試験を1000サイクル実施した。なお、繰り返し酸化特性の評価は、試験後、試験片表面を目視観察してスケール剥離の無いものを良好(○)であると判定した。
<Repetitive oxidation test>
The sheet bar having a thickness of 30 mm obtained by hot rolling is heated to 1000 to 1200 ° C. and further hot rolled to obtain a hot rolled plate having a thickness of 5 mm. The hot rolled plate has a temperature of 1000 to 1200 ° C. After the hot-rolled annealed plate is applied, pickling, cold rolling at a reduction rate of 60%, finish annealing at a temperature of 1000 to 1200 ° C., pickling, and a cold-rolled annealed plate having a thickness of 2 mm is obtained. .
Two test pieces each having a thickness of 2 mm, a width of 20 mm, and a length of 30 mm were sampled from the cold-rolled annealed plate, and the test pieces were heated in the atmosphere at 1000 ° C. for 8 minutes and then cooled to 200 ° C. for 1 minute. An oxidation test was repeated 1000 times to repeat the heat cycle to be held. In addition, the evaluation of the repeated oxidation characteristics was determined by visually observing the surface of the test piece after the test to determine that no scale peeling occurred (good).

上記熱疲労試験および繰り返し酸化試験の結果を表2に纏めて示した。表2から、本発明の成分組成を満たすフェライト系ステンレス鋼はいずれも、熱疲労寿命が1200サイクルを超えており、良好な熱疲労特性を有していると共に、繰り返し酸化試験においても、スケール剥離の発生もなく異常酸化は認められていない。これに対して、本発明の成分組成を満たさない比較例の鋼は、熱疲労試験での寿命が1200サイクルに達しないかおよび/または繰り返し酸化試験でスケール剥離が発生しており、両特性を兼備した鋼となっていない。   The results of the thermal fatigue test and the repeated oxidation test are summarized in Table 2. From Table 2, all the ferritic stainless steels satisfying the component composition of the present invention have a thermal fatigue life exceeding 1200 cycles, have good thermal fatigue properties, and are also exfoliated in repeated oxidation tests. No abnormal oxidation was observed. On the other hand, the steel of the comparative example not satisfying the component composition of the present invention has a life of 1200 cycles in the thermal fatigue test and / or scale peeling in the repeated oxidation test. It is not a combined steel.

Figure 2010156039
Figure 2010156039

本発明の鋼板は、自動車や二輪車のエキゾーストマニホールドや排気管、コンバーターケース等の排気系部材、火力発電プラントの排気ダクト、熱交換器および燃料電池関連部材などのように、繰り返しの熱サイクルを受ける環境下で使用される部材に好適に用いることができる。   The steel sheet of the present invention undergoes repeated thermal cycles such as exhaust manifolds and exhaust pipes of automobiles and motorcycles, exhaust system members such as converter cases, exhaust ducts of thermal power plants, heat exchangers and fuel cell-related members. It can use suitably for the member used in an environment.

Claims (2)

C:0.02mass%以下、
Si:0.3mass%以下、
Mn:1mass%以下、
P:0.05mass%以下、
S:0.01mass%以下、
Al:0.5mass%以下、
N:0.02mass%以下、
Cr:20〜40mass%、
Ni:1mass%以下、
Nb:0.2〜1mass%、
Mo:0.1〜3mass%、
Cu:1〜3mass%、
B:0.0003〜0.01mass%を含有し、
SiとMnが、下記式を満たして含有することを特徴とする熱疲労特性および繰り返し酸化特性に優れるフェライト系ステンレス鋼。

2×Si+Mn<1mass%
ただし、各元素記号は、それぞれの元素の含有量(mass%)を示す。
C: 0.02 mass% or less,
Si: 0.3 mass% or less,
Mn: 1 mass% or less,
P: 0.05 mass% or less,
S: 0.01 mass% or less,
Al: 0.5 mass% or less,
N: 0.02 mass% or less,
Cr: 20 to 40 mass%,
Ni: 1 mass% or less,
Nb: 0.2-1 mass%,
Mo: 0.1-3 mass%,
Cu: 1-3 mass%,
B: 0.0003-0.01mass% is contained,
A ferritic stainless steel excellent in thermal fatigue characteristics and repeated oxidation characteristics characterized by containing Si and Mn satisfying the following formula.
2 × Si + Mn <1 mass%
However, each element symbol indicates the content (mass%) of each element.
上記成分組成に加えてさらに、
V:0.5mass%以下、
W:1〜5mass%、
Ti:0.02〜0.5mass%、
Zr:0.02〜0.5mass%、
Co:0.05〜3mass%および
Ta:2mass%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。
In addition to the above component composition,
V: 0.5 mass% or less,
W: 1 to 5 mass%,
Ti: 0.02-0.5 mass%,
Zr: 0.02 to 0.5 mass%,
The ferritic stainless steel according to claim 1, comprising one or more selected from Co: 0.05 to 3 mass% and Ta: 2 mass% or less.
JP2009231181A 2008-12-04 2009-10-05 Ferritic stainless steel with excellent heat resistance Active JP5540637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009231181A JP5540637B2 (en) 2008-12-04 2009-10-05 Ferritic stainless steel with excellent heat resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008309210 2008-12-04
JP2008309210 2008-12-04
JP2009231181A JP5540637B2 (en) 2008-12-04 2009-10-05 Ferritic stainless steel with excellent heat resistance

Publications (2)

Publication Number Publication Date
JP2010156039A true JP2010156039A (en) 2010-07-15
JP5540637B2 JP5540637B2 (en) 2014-07-02

Family

ID=42574163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009231181A Active JP5540637B2 (en) 2008-12-04 2009-10-05 Ferritic stainless steel with excellent heat resistance

Country Status (1)

Country Link
JP (1) JP5540637B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
WO2013133429A1 (en) 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet
US20140023550A1 (en) * 2011-03-29 2014-01-23 Junichi Hamada Ferritic stainless steel sheet excellent in heat resistance and workability and method of production of same
WO2014136866A1 (en) * 2013-03-06 2014-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance
JP2014214321A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Ferritic stainless steel excellent in thermal fatigue characteristics
JP2017179398A (en) * 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold
JP2018016862A (en) * 2016-07-29 2018-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in carburization resistance and oxidation resistance and manufacturing method therefor
KR20180043359A (en) 2015-09-29 2018-04-27 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303204A (en) * 2000-04-19 2001-10-31 Sumitomo Metal Ind Ltd Heat resistant ferritic stainless steel and steel sheet thereof
JP2006009056A (en) * 2004-06-23 2006-01-12 Nisshin Steel Co Ltd Ferritic stainless steel for solid oxide type fuel cell separator
JP2006089814A (en) * 2004-09-24 2006-04-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent workability and its production method
JP2006104498A (en) * 2004-10-01 2006-04-20 Nisshin Steel Co Ltd High purity ferritic steel sheet having excellent workability and low temperature toughness
JP2006193771A (en) * 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
JP2008285693A (en) * 2007-05-15 2008-11-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having superior thermal fatigue resistance for component of automotive exhaust system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303204A (en) * 2000-04-19 2001-10-31 Sumitomo Metal Ind Ltd Heat resistant ferritic stainless steel and steel sheet thereof
JP2006009056A (en) * 2004-06-23 2006-01-12 Nisshin Steel Co Ltd Ferritic stainless steel for solid oxide type fuel cell separator
JP2006089814A (en) * 2004-09-24 2006-04-06 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having excellent workability and its production method
JP2006104498A (en) * 2004-10-01 2006-04-20 Nisshin Steel Co Ltd High purity ferritic steel sheet having excellent workability and low temperature toughness
JP2006193771A (en) * 2005-01-12 2006-07-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet with excellent workability, and its manufacturing method
JP2008285693A (en) * 2007-05-15 2008-11-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having superior thermal fatigue resistance for component of automotive exhaust system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
US9243306B2 (en) 2010-03-11 2016-01-26 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in oxidation resistance
US20140023550A1 (en) * 2011-03-29 2014-01-23 Junichi Hamada Ferritic stainless steel sheet excellent in heat resistance and workability and method of production of same
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
WO2013133429A1 (en) 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
WO2014136866A1 (en) * 2013-03-06 2014-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance
CN104968818A (en) * 2013-03-06 2015-10-07 新日铁住金不锈钢株式会社 Ferritic stainless steel sheet having excellent heat resistance
JPWO2014136866A1 (en) * 2013-03-06 2017-02-16 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance
CN104968818B (en) * 2013-03-06 2017-09-08 新日铁住金不锈钢株式会社 The ferrite series stainless steel plate of excellent heat resistance
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2014214321A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Ferritic stainless steel excellent in thermal fatigue characteristics
KR20180043359A (en) 2015-09-29 2018-04-27 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
US10975459B2 (en) 2015-09-29 2021-04-13 Jfe Steel Corporation Ferritic stainless steel
JP2017179398A (en) * 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold
JP2018016862A (en) * 2016-07-29 2018-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in carburization resistance and oxidation resistance and manufacturing method therefor

Also Published As

Publication number Publication date
JP5540637B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
WO2010110466A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP2009120894A (en) Ferritic stainless steel material for automotive member of exhaust gas path
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP2009120893A (en) Ferritic stainless steel material for automotive member of exhaust gas path
JP2012102376A (en) Ferritic stainless steel with excellent oxidation resistance
JP2011202257A (en) Ferritic stainless steel sheet having excellent heat resistance and workability, and method for producing the same
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP5717359B2 (en) Heat-resistant austenitic stainless steel for metal gaskets
WO2018181060A1 (en) Ferrite stainless steel sheet and production method therefor, and exhaust components
TW201718903A (en) Ferrite-based stainless steel
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP4304109B2 (en) Ferritic stainless steel for automotive exhaust systems with excellent thermal fatigue properties
JP6296435B2 (en) Manufacturing method of heat-resistant austenitic stainless steel for metal gasket
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP5796398B2 (en) Ferritic stainless steel with excellent thermal and high temperature fatigue properties
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JP5343444B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and workability
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP5141295B2 (en) Ferritic stainless steel with excellent thermal fatigue properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5540637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250