JPH09324246A - Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance - Google Patents

Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance

Info

Publication number
JPH09324246A
JPH09324246A JP18930096A JP18930096A JPH09324246A JP H09324246 A JPH09324246 A JP H09324246A JP 18930096 A JP18930096 A JP 18930096A JP 18930096 A JP18930096 A JP 18930096A JP H09324246 A JPH09324246 A JP H09324246A
Authority
JP
Japan
Prior art keywords
less
high temperature
stainless steel
steel
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18930096A
Other languages
Japanese (ja)
Inventor
Hideto Kimura
秀途 木村
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18930096A priority Critical patent/JPH09324246A/en
Publication of JPH09324246A publication Critical patent/JPH09324246A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an austenitic stainless steel for a heat exchanger excellent in oxidation resistance, corrosion resistance, structural stability, weldability and high temp. strength. SOLUTION: This steel is the one having a compsn. contg., by weight, <=0.12% C, <=1.0% Si, <=5.0% Mn, <=0.04% P, <=0.03% S, 14 to 22% Cr, 10 to 25% Ni, 1.0 to 3.5% Al, <=0.02% N and Y, La and Ce by 0 to 0.07% as the total content, furthermore contg. one or >= two kinds among 0.05 to 0.5% Ti, 0.1 to 1.0% V, 0.1 to 1.0% Nb, 0.1 to 1.0 % Zr and 0.5 to 4.0% Cu, and the balance Fe with inevitable impurities and also satisfying the following inequalities I and II: the inequality I: α=(1.5Si+Cr+3Al)-(0.5Mn+Ni+30C+30 N)<9 and the inequality II: MCI=C/5-12×(Zr/91+Nb/93+Ti/48+V/68)>=0, where MCI denotes the index showing the ratio of MC type carbide in the whole carbide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電用ボイ
ラ、化学プラント等における熱交換器用鋼管などに適用
するオーステナイト系ステンレス鋼に関する。
TECHNICAL FIELD The present invention relates to an austenitic stainless steel applicable to a boiler for thermal power generation, a steel pipe for a heat exchanger in a chemical plant and the like.

【0002】[0002]

【従来の技術】近年、主として火力発電プラントの高効
率化を目指し、新形式の複合発電プラントの提案、従来
型プラントの更新、およびボイラ操業条件の高温・高圧
化などがなされている。ボイラ操業条件の高温・高圧化
は今後とも推進される傾向にあり、一般の石炭焚き火力
プラントで計画されている超々臨界圧操業は、近い将
来、複合発電プラント蒸気ボイラの操業にも適用され、
今後とも適用範囲が拡大される見込みである。
2. Description of the Related Art In recent years, mainly for the purpose of improving the efficiency of thermal power plants, proposals of new types of combined power plants, renewal of conventional plants, and high-temperature / high-pressure boiler operating conditions have been made. Increasing the operating temperature and pressure of boilers tends to continue to be promoted, and the ultra-supercritical pressure operation planned for general coal-fired thermal power plants will be applied to the operation of combined power plant steam boilers in the near future.
The scope of application is expected to expand in the future.

【0003】従来、熱交換器などの高温部材用鋼種とし
ては、18Cr−8Ni系ステンレス鋼がチューブ材と
して多用されており、その主流はJIS SUS304
H(18Cr−10Ni−C)であり、更に、これにT
iを加えたJIS SUS321Hなどがあり、基本的
には長期の相安定性を考慮して18−8系で対応を行っ
ていた。
Conventionally, 18Cr-8Ni type stainless steel has been widely used as a tube material as a steel type for high temperature members such as heat exchangers, and its mainstream is JIS SUS304.
H (18Cr-10Ni-C), and further T
There are JIS SUS321H and the like to which i is added, and basically, 18-8 system is used in consideration of long-term phase stability.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述したよう
な今後の火力発電プラントの高温・高圧化に対応するた
めには、600〜800℃という高温において、十数年
もしくはそれ以上の長期に亘って使用可能なレベルの耐
食性と、現在用いられている18Cr−8Ni系ステン
レス鋼を上回る高温強度が求められ、現状では使用可能
な鋼種がほとんど見あたらない。
However, in order to cope with the high temperature and high pressure of the thermal power plant in the future as described above, at a high temperature of 600 to 800 ° C. for a long time of ten years or more. It is required to have a corrosion resistance at a level that can be used for a long time and high-temperature strength that exceeds the currently used 18Cr-8Ni type stainless steel, and at present, almost no usable steel type is found.

【0005】内面の高圧水接触部における耐水蒸気酸化
性の改善の面からは、特開昭53−63210号公報な
どに開示された、耐高温酸化性改善に有効な元素である
Al、Siを含有したCr−Ni系ステンレス鋼が良好
である。そればかりか、このようなAl、Si含有鋼は
石炭灰等の存在下での過酷な環境に対する耐蝕性も極め
て良好であることがわかってきた。しかし、このような
鋼は、耐圧熱交換器用管材としては高温強度の面で不足
し、しかも長時間相安定性の維持および溶接性という点
において特性が十分とはいえない。
From the viewpoint of improving the steam oxidation resistance in the high-pressure water contact portion on the inner surface, Al and Si which are effective elements for improving the high temperature oxidation resistance disclosed in JP-A-53-63210 are used. The contained Cr-Ni type stainless steel is good. Not only that, it has been found that such Al- and Si-containing steels also have extremely good corrosion resistance to harsh environments in the presence of coal ash and the like. However, such a steel is insufficient as a pipe material for a pressure-resistant heat exchanger in terms of high-temperature strength, and further, its properties are not sufficient in terms of maintaining long-term phase stability and weldability.

【0006】また、特開平6−271992号公報には
耐酸化性が考慮された高Al含有鋼が開示されている
が、このような高Al含有鋼も同様の問題を有してい
る。さらに、今一つの解決策として、JIS SUS3
10Sに代表される高合金25Cr−20Ni系をベー
スとし、これにNb、N等を添加して高温強度および長
時間相安定性を改善したオーステナイト系ステンレス耐
熱鋼を用いることも考えられ、特開昭57−16497
1号、164972号公報などにはこのようなことを目
指した鋼が開示している。しかし、このようなCr−N
i系の鋼種は、基本的に高価であり、600〜800℃
においては500〜5000時間の使用でシグマ相を析
出する傾向にあり、靭性の急激な低下が危惧される。
Japanese Unexamined Patent Publication (Kokai) No. 6-271992 discloses a high Al content steel in consideration of oxidation resistance, but such a high Al content steel has the same problem. Furthermore, as another solution, JIS SUS3
It is also possible to use an austenitic stainless heat resistant steel based on a high alloy 25Cr-20Ni system typified by 10S, to which Nb, N, etc. are added to improve high temperature strength and long-term phase stability. Showa 57-16497
No. 1 and No. 164972 disclose steels aiming at such a thing. However, such Cr-N
i-type steel is basically expensive and is 600 to 800 ° C.
In the above, the sigma phase tends to precipitate after 500 to 5000 hours of use, and a sharp drop in toughness is feared.

【0007】また、オーステナイト凝固する成分系では
溶接時の高温割れ感受性が高いことも問題である。した
がって、現在の高温用鋼技術においては、このような耐
高温腐食性、長時間相安定性、溶接性という3点を同時
に満足し、しかも高温強度が高い合金設計指針の確立が
強く望まれている。
Another problem is that the austenite solidifying component system has a high sensitivity to hot cracking during welding. Therefore, in the current high-temperature steel technology, it is strongly desired to establish an alloy design guideline that satisfies these three points of high-temperature corrosion resistance, long-term phase stability, and weldability at the same time and has high high-temperature strength. There is.

【0008】本発明はかかる事情に鑑みてなされたもの
であって、600〜800℃での耐酸化性ないし耐腐食
性、長時間の組織安定性、溶接性および高温強度に優れ
た熱交換器用オーステナイト系ステンレス鋼を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and is for a heat exchanger excellent in oxidation resistance or corrosion resistance at 600 to 800 ° C., long-term structural stability, weldability and high temperature strength. It is intended to provide an austenitic stainless steel.

【0009】[0009]

【課題を解決するための手段】発明者らは、まず耐高温
酸化性を向上させる元素として安価なAl、Siを選定
し、600〜800℃で長時間加熱を受けた場合の相安
定性について、脆いシグマ相析出に及ぼす影響を調査し
た。一般にオーステナイト系ステンレス鋼の圧延時のデ
ルタフェライト抑制、あるいはデルタフェライト量につ
いては、例えばde Longが1960年にMeta
l Progressにおいて提唱したような、Cr当
量、Ni当量の概念が用い得ることを見出した。ただ
し、シグマ相析出量の予測等には上記式をそのまま用い
ることはできなかった。すなわち、Cr−Ni系ステン
レス鋼においては、図1に示す状態図上においては、シ
グマ相の析出領域はデルタフェライトの析出領域よりも
広い、換言すれば、シグマ相の析出を抑制するためには
デルタフェライトの析出を抑制するよりも多量に高価な
Niを添加しなければならないことが実験的に明らかに
なった。
Means for Solving the Problems First, the inventors selected inexpensive Al and Si as elements for improving high temperature oxidation resistance and examined the phase stability when they were heated at 600 to 800 ° C. for a long time. , The effect on brittle sigma phase precipitation was investigated. Generally, regarding the suppression of delta ferrite during rolling of austenitic stainless steel, or the amount of delta ferrite, for example, de Long in 1960, Meta.
It has been found that the concept of Cr equivalent and Ni equivalent can be used as proposed in I. Progress. However, the above equation could not be used as it is for predicting the amount of sigma phase precipitation. That is, in the Cr-Ni-based stainless steel, in the state diagram shown in FIG. 1, the precipitation region of the sigma phase is wider than the precipitation region of the delta ferrite. In other words, in order to suppress the precipitation of the sigma phase, It has been empirically revealed that a large amount of expensive Ni must be added to suppress the precipitation of delta ferrite.

【0010】また、Si添加系について実験を行ったと
ころ、図1の状態図におけるシグマ相の析出領域は、S
i無添加のCr−Ni系ステンレス鋼に比べ拡大するこ
とが明らかになった。ところが、Alを含有する系にお
いては、Alのシグマ相生成能がデルタフェライト生成
能に比べて小さいことから、図1の状態図上ではシグマ
相析出領域はAl無添加系に比べ縮小し、デルタフェラ
イト析出領域とほぼ等しくなることを新たに見い出し
た。
Further, when an experiment was conducted on a Si-added system, the sigma phase precipitation region in the state diagram of FIG.
It was clarified that it expands as compared with Cr-Ni-based stainless steel containing no i. However, in the system containing Al, the sigma phase forming ability of Al is smaller than the delta ferrite forming ability. Therefore, the sigma phase precipitation region in the phase diagram of FIG. It was newly found that it is almost equal to the ferrite precipitation area.

【0011】すなわち、耐酸化性向上元素としてAlを
添加した場合、下記(1)式が成り立つ成分範囲におい
て、圧延時のデルタフェライトの析出と600〜800
℃で長時間加熱を受けた場合のシグマ相の析出の両方を
抑制できることを見出した。
That is, when Al is added as an element for improving the oxidation resistance, precipitation of delta ferrite during rolling and 600 to 800 within the range of the components satisfying the formula (1) below.
It was found that both precipitation of sigma phase when heated for a long time at ℃ can be suppressed.

【0012】 α=(1.5Si+Cr+3Al )−(0.5Mn +Ni+30C +30N )<9 …(1) なお、圧延時のデルタフェライトの析出抑制により、圧
延時の耳割れを防止でき、歩留り向上にもつながる。
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) By suppressing the precipitation of delta ferrite during rolling, ear cracks during rolling can be prevented and yield can be improved.

【0013】次に、溶接性については、高温割れ感受性
を抑制する手段を種々検討した。一般にオーステナイト
系ステンレス鋼の高温割れ感受性は、凝固時に数%のデ
ルタフェライトを存在させることにより低下させること
ができる。しかし、耐酸化性を高めるためにCr量を増
加させると、シグマ相析出を抑制するため、オーステナ
イト相の安定性をデルタフェライトに対して過剰に高め
なければならず、凝固時に完全にオーステナイト凝固と
なってしまい、高温割れ感受性を高めてしまう。また、
Si量を増加させた場合は、さらにシグマ相析出抑制の
ためにNi当量を増加させなければならず、高温割れ感
受性を高めてしまう。
Next, regarding the weldability, various means for suppressing the hot crack susceptibility were examined. Generally, the hot cracking susceptibility of austenitic stainless steel can be reduced by the presence of several% of delta ferrite during solidification. However, if the amount of Cr is increased to increase the oxidation resistance, the stability of the austenite phase must be increased excessively with respect to delta ferrite in order to suppress the precipitation of sigma phase, and the austenite solidification is completely completed during solidification. And increase the sensitivity to hot cracking. Also,
When the amount of Si is increased, the Ni equivalent must be further increased in order to further suppress the sigma phase precipitation, which increases the hot cracking susceptibility.

【0014】ところが、Alは、デルタフェライト生成
能に対してシグマ相生成能が低いため、シグマ相析出抑
制のためにデルタフェライトに対するオーステナイト相
の安定性を過剰に高める必要がない。すなわち、Alを
含有する系においては、シグマ相の析出を十分抑制でき
るだけNi当量を高めてオーステナイト相を安定化して
も、溶接部の凝固時においてはデルタフェライトが存在
し、溶接部の高温割れ感受性を極めて低く抑制できるこ
とが判明した。
However, since Al has a lower sigma phase forming ability than a delta ferrite forming ability, it is not necessary to excessively increase the stability of the austenite phase with respect to delta ferrite in order to suppress sigma phase precipitation. That is, in the system containing Al, even if the Ni equivalent is increased to stabilize the austenite phase as much as possible to sufficiently suppress the precipitation of the sigma phase, delta ferrite is present during the solidification of the weld, and the hot crack sensitivity of the weld is high. It has been found that can be suppressed to an extremely low level.

【0015】高温強度については、強化因子として固溶
強化、窒化物析出強化、炭化物析出強化、Cu富化相析
出強化、金属間化合物析出強化等について多くの実験室
溶解を行って検討した結果、炭化物析出強化およびCu
富化相析出強化が、クリープ破断強度、長時間靭性、ク
リープ延性のいずれの観点からも最も優れていることが
判明した。このため、これらについてさらに集中的に検
討を重ねた結果、Cuについては0.5〜4.0%の範
囲で添加することが、また、炭化物生成元素について
は、析出し得るM236 型鉄・クロム炭化物、MC型Z
r、Nb、Ti、V炭化物が以下の(2´)式を満足す
ることが最も有効にクリープ破断強度を向上させ得るこ
とが明らかになった。
Regarding the high temperature strength, as a result of examination by conducting a number of laboratory dissolutions on solid solution strengthening, nitride precipitation strengthening, carbide precipitation strengthening, Cu enriched phase precipitation strengthening, intermetallic compound precipitation strengthening, etc. as strengthening factors, Carbide precipitation strengthening and Cu
It was found that the enriched phase precipitation strengthening was the best from the viewpoints of creep rupture strength, long-term toughness, and creep ductility. Therefore, as a result of further intensive studies on these, Cu is added in the range of 0.5 to 4.0%, and carbide forming elements are M 23 C 6 type which can be precipitated. Iron / Chromium carbide, MC type Z
It has been clarified that r, Nb, Ti, and V carbide satisfying the following formula (2 ′) can most effectively improve the creep rupture strength.

【0016】 (CasMC)/(CasM236 +CasMC)≧0.2 …(2´) (ただし、CasMC、CasM236 は、それぞれMC型
炭化物、M236 型炭化物を形成する炭素量を表す。) この場合に、上記(2´)式を満足するためには、Z
r、Nb、Ti、Vを以下の(2)式の範囲で添加する
必要がある。
(CasMC) / (CasM 23 C 6 + CasMC) ≧ 0.2 (2 ′) (wherein CasMC and CasM 23 C 6 are carbon amounts forming MC type carbide and M 23 C 6 type carbide, respectively) In this case, in order to satisfy the above equation (2 ′), Z
It is necessary to add r, Nb, Ti and V within the range of the following formula (2).

【0017】 MCI =C /5 −12×(Zr/91+Nb/93+Ti/48+V /68)≦0 …(2) (ただし、MCI は、全炭化物中におけるMC型炭化物の
割合を示す指数である。) 本発明はこのような知見に基づいてなされたものであっ
て、第1に、重量%で、C:0.12%以下、Si:
1.0%以下、Mn:5.0%以下、P:0.04%以
下、S:0.03%以下、Cr:14〜22%、Ni:
10〜25%、Al:1.0〜3.5%、N:0.02
%以下、Y、La、Ceを合計含有量として0〜0.0
7%(無添加の場合も含む)を含有し、さらに、Ti:
0.05〜0.5%、V:0.1〜1.0%、Nb:
0.1〜1.0%、Zr:0.1〜1.0%、およびC
u:0.5〜4.0%のうち1種または2種以上を含有
し、残部がFeおよび不可避不純物からなり、かつ以下
の(1)式および(2)式を満たすことを特徴とする耐
高温腐食性に優れた熱交換器用オーステナイト系ステン
レス鋼を提供する。
MCI = C / 5-12 × (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≦ 0 (2) (where MCI is an index showing the ratio of MC type carbides in all the carbides) The present invention has been made on the basis of such findings. Firstly, in% by weight, C: 0.12% or less, Si:
1.0% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 14 to 22%, Ni:
10-25%, Al: 1.0-3.5%, N: 0.02
% Or less, Y, La, Ce as a total content of 0 to 0.0
7% (including the case of no addition), and Ti:
0.05-0.5%, V: 0.1-1.0%, Nb:
0.1-1.0%, Zr: 0.1-1.0%, and C
u: 0.5 to 4.0% of one or more kinds are contained, the balance is Fe and inevitable impurities, and the following expressions (1) and (2) are satisfied. Provided is an austenitic stainless steel for a heat exchanger, which has excellent high-temperature corrosion resistance.

【0018】第2に、重量%で、C:0.12%以下、
Si:1.0%以下、Mn:5.0%以下、P:0.0
4%以下、S:0.03%以下、Cr:14〜22%、
Ni:10〜25%、Al:1.0〜3.5%、N:
0.02%以下、Y、La、Ceを合計含有量として0
〜0.07%(無添加の場合も含む)、B:0.001
〜0.01%を含有し、さらに、Ti:0.05〜0.
5%、V:0.1〜1.0%、Nb:0.1〜1.0
%、Zr:0.1〜1.0%、およびCu:0.5〜
4.0%のうち1種または2種以上を含有し、残部がF
eおよび不可避不純物からなり、かつ以下の(1)式お
よび(2)式を満たすことを特徴とする耐高温腐食性に
優れた熱交換器用オーステナイト系ステンレス鋼を提供
する。 α=(1.5Si+Cr+3Al )−(0.5Mn +Ni+30C +30N )<9 …(1) MCI =C /5 −12×(Zr/91+Nb/93+Ti/48+V /68)≦0 …(2)
Secondly, in% by weight, C: 0.12% or less,
Si: 1.0% or less, Mn: 5.0% or less, P: 0.0
4% or less, S: 0.03% or less, Cr: 14 to 22%,
Ni: 10-25%, Al: 1.0-3.5%, N:
0.02% or less, 0 as the total content of Y, La and Ce
~ 0.07% (including no addition), B: 0.001
.About.0.01% and further Ti: 0.05-0.
5%, V: 0.1 to 1.0%, Nb: 0.1 to 1.0
%, Zr: 0.1 to 1.0%, and Cu: 0.5 to
It contains one or more of 4.0% and the balance is F.
Provided is an austenitic stainless steel for a heat exchanger, which is characterized by comprising e and unavoidable impurities and satisfying the following formulas (1) and (2). α = (1.5Si + Cr + 3Al)-(0.5Mn + Ni + 30C + 30N) <9 ... (1) MCI = C / 5-12x (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≤0 ... (2)

【0019】[0019]

【発明の実施の形態】以下、本発明について具体的に説
明する。本発明に係る熱交換器用オーステナイト系ステ
ンレス鋼は、重量%で、C:0.12%以下、Si:
1.0%以下、Mn:5.0%以下、P:0.04%以
下、S:0.03%以下、Cr:14〜22%、Ni:
10〜25%、Al:1.0〜3.5%、N:0.02
%以下、Y、La、Ceを合計含有量として0〜0.0
7%(無添加の場合も含む)を含有し、さらに、Ti:
0.05〜0.5%、V:0.1〜1.0%、Nb:
0.1〜1.0%、Zr:0.1〜1.0%、およびC
u:0.5〜4.0%のうち1種または2種以上を含有
する組成を有する。また、さらにB:0.001〜0.
01%を含有する組成を有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. The austenitic stainless steel for heat exchangers according to the present invention has a weight percentage of C: 0.12% or less and Si:
1.0% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 14 to 22%, Ni:
10-25%, Al: 1.0-3.5%, N: 0.02
% Or less, Y, La, Ce as a total content of 0 to 0.0
7% (including the case of no addition), and Ti:
0.05-0.5%, V: 0.1-1.0%, Nb:
0.1-1.0%, Zr: 0.1-1.0%, and C
u: 0.5 to 4.0% of the composition containing one or more. Moreover, B: 0.001 to 0.
It has a composition containing 01%.

【0020】以下に各成分を含有させた理由およびその
範囲を限定した理由を述べる。 C: Cは本発明鋼の母相の高温強さを与え、相安定性
に有効な元素であるが、0.12%を超えて含有する
と、結晶粒内を縦断する形で粗大な炭化物が析出するの
で、その含有量を0.12%以下とした。
The reasons why each component is contained and the range thereof is limited will be described below. C: C gives the high temperature strength of the parent phase of the steel of the present invention, and is an element effective for phase stability. However, when it is contained in excess of 0.12%, coarse carbides are formed in the form of longitudinal cutting through the crystal grains. Since it precipitates, its content was set to 0.12% or less.

【0021】Si: Siは脱酸に有効な元素である
が、1.0%を超えるとシグマ相の生成能が大きく相安
定性を維持するのが困難となるため、さらに溶接時の高
温割れ感受性を高めるため、その含有量を1.0%以下
とした。
Si: Si is an element effective for deoxidation, but if it exceeds 1.0%, the sigma phase has a large forming ability and it becomes difficult to maintain phase stability. The content was set to 1.0% or less in order to enhance the sensitivity.

【0022】Mn: Mnは相安定性に有効な元素であ
るが、5.0%を超えて含有すると耐高温腐食性に有害
となるので、含有量を5.0%以下とした。 P: Pは粒界偏析して圧延時の延性を害する元素であ
って、その含有量は少ないほど良い。そこで、圧延時に
おける延性の低下による割れを防止するため、その含有
量を0.04%以下とした。
Mn: Mn is an element effective for phase stability, but if it exceeds 5.0%, it becomes harmful to the high temperature corrosion resistance, so the content is made 5.0% or less. P: P is an element that segregates at grain boundaries and impairs ductility during rolling, and the smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, its content is set to 0.04% or less.

【0023】S: SもP同様に、粒界偏析して圧延時
の延性を害する元素である。その含有量は少ないほど良
い。そこで、圧延時における延性の低下による割れを防
止するため、その含有量を0.03%以下とした。
S: S, like P, is an element that segregates at the grain boundaries and impairs ductility during rolling. The smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, its content is set to 0.03% or less.

【0024】Cr: Crは高温での耐酸化性を与える
基本元素として重要である。その含有量が14%未満の
場合は、耐高温酸化性に有効なAlを含有しても600
〜800℃において耐高温酸化性ないし耐高温腐食性の
大幅な向上を得ることができない。一方、22%を超え
て含有するとオーステナイト相の安定性を維持するため
に、高価なNiを多量に必要とし経済性を損なうように
なり、しかも耐高温酸化性ないし高温腐食性向上に対す
る寄与が小さくなる。したがって、Cr含有量を14〜
22%とした。
Cr: Cr is important as a basic element that imparts oxidation resistance at high temperatures. When the content is less than 14%, it is 600 even if Al which is effective for high temperature oxidation resistance is contained.
At ˜800 ° C., high temperature oxidation resistance or high temperature corrosion resistance cannot be significantly improved. On the other hand, when the content exceeds 22%, a large amount of expensive Ni is required to maintain the stability of the austenite phase, which impairs the economical efficiency, and has a small contribution to the improvement of high temperature oxidation resistance or high temperature corrosion resistance. Become. Therefore, the Cr content is 14 to
22%.

【0025】Ni: Niは、安定なオーステナイト組
織を得るために必須の元素である。その含有量は、他の
含有元素、特にCrとAlとの関係から10%以上を必
要とする。一方、Niの含有量が25%を超えると、オ
ーステナイト安定化の効果が小さくなり、Ni量を増加
してもCr等の耐高温酸化性ないし耐高温腐食性を向上
する元素を大きく増やすことができなくなる。また、N
i量を過剰に多くすると、フェライト相に対するオース
テナト相の安定性が過剰に高くなり、溶接時の高温割れ
感受性を高めてしまう。これらのため、Ni含有量を1
0〜25%とした。
Ni: Ni is an essential element for obtaining a stable austenite structure. The content thereof needs to be 10% or more in view of the relationship between other contained elements, particularly Cr and Al. On the other hand, if the Ni content exceeds 25%, the effect of stabilizing austenite becomes small, and even if the Ni content is increased, elements such as Cr that improve high temperature oxidation resistance or high temperature corrosion resistance can be greatly increased. become unable. Also, N
When the amount of i is excessively increased, the stability of the austenato phase with respect to the ferrite phase becomes excessively high, and the hot cracking susceptibility during welding is increased. Therefore, the Ni content should be 1
It was set to 0 to 25%.

【0026】Al: Alは単独では、酸化環境中でA
23 という非常に緻密な保護被膜を形成し、Cr酸
化物存在下ではその中に複合酸化物として含まれて、酸
化物の緻密性を高める。かかる場合の表面保護性は非常
に高く、優れた耐高温酸化性および耐高温腐食性を与え
る元素である。しかし、この耐高温酸化性および耐高温
腐食性の向上はAl量が1.0%未満の場合は、ある程
度の効果があるものの、大幅な効果はみとめられない。
ところが、Al量が1.0%以上になると、このような
耐高温酸化性および耐高温腐食性は大幅に向上する。し
かし、Alを3.5%を超えて含有すると相安定性を維
持するのが困難となる。このためAlの含有量を1.0
〜3.5%とした。
Al: Al alone forms A in an oxidizing environment.
It forms a very dense protective film of l 2 O 3 and is contained as a complex oxide in the presence of Cr oxide to increase the denseness of the oxide. In such a case, the surface protection property is very high, and it is an element that provides excellent high temperature oxidation resistance and high temperature corrosion resistance. However, this improvement in high temperature oxidation resistance and high temperature corrosion resistance has some effect when the Al content is less than 1.0%, but a significant effect cannot be observed.
However, when the Al content is 1.0% or more, such high temperature oxidation resistance and high temperature corrosion resistance are significantly improved. However, if Al exceeds 3.5%, it becomes difficult to maintain phase stability. Therefore, the Al content is 1.0
˜3.5%.

【0027】N: NはCと同様に、本発明鋼の母相の
高温強さを与え、相安定性に有効な元素であるが、0.
02%を超えて含有すると窒化物を形成し、靭性に有害
であることから、Nの含有量を0.02%以下とした。
N: Similar to C, N is an element which gives the high temperature strength of the parent phase of the steel of the present invention and is effective for phase stability.
When the content exceeds 02%, a nitride is formed, which is harmful to the toughness, so the content of N is set to 0.02% or less.

【0028】Y、La、Ce: 希土類元素であるY、
La、CeはAl23 酸化被膜中に溶け込んで、その
高温酸化に対する一般的耐性を高めるので、これらのう
ち一種以上を含有してもよい。これらが合計で0.07
%を超えて含有すると熱間加工性を害するので、これら
含有量を合計量で0.07%以下とした。また、これら
は必要に応じて添加されるものであるから、無添加の場
合も含むことにした。
Y, La, Ce: Y which is a rare earth element,
La and Ce dissolve in the Al 2 O 3 oxide film and increase the general resistance to high temperature oxidation, so one or more of these may be contained. These are 0.07 in total
%, The hot workability is impaired, so the total content is made 0.07% or less. Moreover, since these are added as needed, it is decided to include the case of no addition.

【0029】Ti、V、Nb、Zr: Ti、V、N
b,Zrは、炭窒化物として微細に分散析出し、もって
高温強度の改善に寄与するが、Tiで0.05%未満、
V、Nb、Zrでそれぞれ0.1%未満ではその効果が
十分ではない。また、過剰に添加すると、溶体化熱処理
後に未固溶のTi、V、Nb、Zrの炭窒化物の量が増
加し高温強度を害するようになり、さらに溶接性も低下
させることになるので、これらの含有量をTi:0.0
5〜0.5%、V:0.1〜1.0%、Nb:0.1〜
1.0%、Zr:0.1〜1.0%とした。
Ti, V, Nb, Zr: Ti, V, N
b and Zr finely disperse and precipitate as carbonitrides, thus contributing to the improvement of high temperature strength, but less than 0.05% in Ti,
If each of V, Nb, and Zr is less than 0.1%, the effect is not sufficient. Further, if added excessively, the amount of undissolved Ti, V, Nb, and Zr carbonitrides after solution heat treatment increases, impairs high-temperature strength, and further deteriorates weldability. The content of these is Ti: 0.0
5 to 0.5%, V: 0.1 to 1.0%, Nb: 0.1
1.0% and Zr: 0.1 to 1.0%.

【0030】Cu: Cuは高温での使用中にCu富化
相として母相中に微細析出し、クリープ強度向上に寄与
する添加元素である。しかし、0.5%未満ではほとん
ど析出せず、一方4.0%を超えると破断延性が著しく
低下する。このためCuの含有量を0.5〜4.0%と
した。
Cu: Cu is an additive element that finely precipitates in the mother phase as a Cu-rich phase during use at high temperatures and contributes to the improvement of creep strength. However, if it is less than 0.5%, it hardly precipitates, while if it exceeds 4.0%, the fracture ductility is remarkably reduced. Therefore, the content of Cu is set to 0.5 to 4.0%.

【0031】なお、上述したように、高温強度を高める
ためにZr、Nb、Ti、Vなどによる炭化物析出強化
およびCu富化相析出強化が有効であることから、T
i、V、Nb、ZrおよびCuのうち1種または2種以
上添加することとした。
As described above, since the carbide precipitation strengthening and the Cu-rich phase precipitation strengthening by Zr, Nb, Ti, V, etc. are effective for increasing the high temperature strength, T
It is decided to add one or more of i, V, Nb, Zr and Cu.

【0032】B: Bは、粒界を強化し高温強度特性を
改善するのに有効な元素であるが、過剰に添加すると溶
接性を劣化させるので、この点を考慮してBの含有量を
0.001〜0.01%とした。なお、Bは必要に応じ
て添加される。
B: B is an element effective in strengthening the grain boundaries and improving the high temperature strength characteristics, but if added in excess, it deteriorates weldability. It was set to 0.001 to 0.01%. In addition, B is added as needed.

【0033】次に、(1)式の限定理由について説明す
る。耐シグマ脆性、熱間加工性、溶接性に影響を及ぼす
オーステナイト相とシグマ相またはフェライト相との相
対的な安定性を決定する主な因子は、Cr当量とNi当
量の関係である。これらはそれぞれ以下のような式で示
される。
Next, the reason for limiting the equation (1) will be described. The main factor that determines the relative stability of the austenite phase and the sigma or ferrite phase that affects sigma brittleness resistance, hot workability, and weldability is the relationship between the Cr equivalent and the Ni equivalent. Each of these is expressed by the following equations.

【0034】Cr当量=1.5Si+Cr+3Al Ni当量=0.5Mn+Ni+30C+30N 本発明者らはこれらCr当量およびNi当量を用いた下
記の(1)式が成り立つときに、600〜800℃での
長時間使用後も脆いシグマ相の析出がほとんど無いこ
と、すなわち、長時間使用しても良好な靭性が保たれる
ことを見出した。また、同時に(1)式が成り立つと
き、圧延後のフェライト相の存在がなくオーステナイト
単相組織であり、鋼板端部の割れもほとんど無いことを
見出した。鋼板端部の割れは歩留りを低下させるため経
済的に好ましくない。したがって、以下の(1)式を満
足することを要件とした。
Cr equivalent = 1.5 Si + Cr + 3Al Ni equivalent = 0.5 Mn + Ni + 30C + 30N When the following formula (1) using these Cr equivalent and Ni equivalent is established, the inventors of the present invention use after 600 to 800 ° C. for a long time. It was also found that there is almost no precipitation of brittle sigma phase, that is, good toughness is maintained even when used for a long time. Further, at the same time, it was found that when the formula (1) is satisfied, there is no ferrite phase after rolling, the structure is an austenite single-phase structure, and there is almost no cracking at the edges of the steel sheet. Cracking at the edges of the steel plate reduces the yield and is not economically preferable. Therefore, the requirement is to satisfy the following expression (1).

【0035】 α=(1.5Si+Cr+3Al )−(0.5Mn +Ni+30C +30N )<9 …(1) なお、溶接性の観点からは、フェライト相に対するオー
ステナイト相の安定性を過剰に高めると、高温割れ感受
性を高めてしまうことになるため、(1)式の左辺の値
はできるだけ大きくなるような成分系とすることが好ま
しい。
Α = (1.5Si + Cr + 3Al) − (0.5Mn + Ni + 30C + 30N) <9 (1) From the viewpoint of weldability, if the stability of the austenite phase with respect to the ferrite phase is excessively increased, the hot cracking susceptibility is increased. Therefore, it is preferable to use a component system in which the value on the left side of Expression (1) is as large as possible.

【0036】次に、(2)式の限定理由について説明す
る。前述したように、炭化物析出強化が高温強度に対し
て有効であるが、炭化物生成元素については、析出し得
るM236 型鉄・クロム炭化物、MC型Zr、Nb、T
i、V炭化物が以下の(2´)式を満足することが最も
有効にクリープ破断強度を向上させ得る。
Next, the reason why the formula (2) is limited will be described. As described above, although carbide precipitation strengthening is effective for high temperature strength, as for the carbide forming elements, M 23 C 6 type iron / chromium carbide, MC type Zr, Nb, T which can be precipitated can be used.
The creep rupture strength can be most effectively improved when the i and V carbides satisfy the following expression (2 ′).

【0037】 (CasMC)/(CasM236 +CasMC)≧0.2 …(2´) この場合に、上記(2´)式を満足するためには、Z
r、Nb、Ti、Vを以下の(2)式の範囲で添加する
必要がある。
(CasMC) / (CasM 23 C 6 + CasMC) ≧ 0.2 (2 ′) In this case, in order to satisfy the above expression (2 ′), Z
It is necessary to add r, Nb, Ti and V within the range of the following formula (2).

【0038】 MCI =C /5 −12×(Zr/91+Nb/93+Ti/48+V /68)≦0 …(2) なお、上記のように規定される本発明のオーステナイト
系ステンレス鋼は、所定の成分を所定量、単体または母
合金の形で含有した状態で溶解され、その後、鋳造、熱
間圧延等の通常の工程により所望の形状に形成される。
また鋼管に成形するに際しても特に限定されるものでは
なく通常用いられる種々の方法を採用することができる
が、溶解、鋳造後、熱間押し出し法またはマンネスマン
圧延法による管体製造工程を経て最終形状とする方法が
通常好適に用いられる。
MCI = C / 5−12 × (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≦ 0 (2) The austenitic stainless steel of the present invention defined as above has a predetermined composition. It is melted in a state where it is contained in a predetermined amount in the form of a simple substance or a mother alloy, and then formed into a desired shape by a usual process such as casting or hot rolling.
Also, when forming into a steel pipe, it is not particularly limited and various commonly used methods can be adopted, but after melting, casting, a final shape is obtained through a tube manufacturing process by a hot extrusion method or a Mannesmann rolling method. The method is usually used preferably.

【0039】[0039]

【実施例】次に本発明の実施例について説明する。表1
と表2に本実施例で用いた鋼の化学組成を示す。表1の
No.1からNo.19は上記第1発明の組成範囲を満
足する発明鋼であり、またNo.20からNo.25は
上記第2発明の成分範囲を満足する発明鋼である。一
方、表2のNo.26からNo.50は比較鋼である。
両表中には、(1)式で定義されるαの値および(2)
式で定義されるMCI の値も併せて示した。
Next, an embodiment of the present invention will be described. Table 1
Table 2 shows the chemical composition of the steel used in this example. No. 1 in Table 1. No. 1 to No. No. 19 is an invention steel satisfying the composition range of the first invention, and No. 19 20 to No. No. 25 is an invention steel satisfying the composition range of the second invention. On the other hand, No. 26 to No. 50 is a comparative steel.
In both tables, the value of α defined by equation (1) and (2)
The value of MCI defined by the formula is also shown.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】これらの成分の鋼を、電気炉溶解、鋳造、
熱間圧延によって12mm厚に製造し、1100℃で溶
体化処理した後、鋼板全厚×30mm×50mmの腐食
試験片を切り出し、石炭灰塗布高温腐食試験および連続
酸化試験を行った。
Steel of these components is melted by an electric furnace, cast,
After manufacturing by hot rolling to a thickness of 12 mm and solution treatment at 1100 ° C., a corrosion test piece of steel plate total thickness × 30 mm × 50 mm was cut out and subjected to a coal ash coating high temperature corrosion test and a continuous oxidation test.

【0043】高温腐食試験は、超々臨界圧ボイラー過熱
器を模擬した700℃石炭灰腐食試験条件で行った。す
なわち、組成を30%Na2 SO4 +40%K2 SO4
+30%Fe23 に調整した混合灰を試験片に塗布
し、1%SO2 +5%O2 +10%CO2 +84%N2
混合ガス流中で700℃に加熱し100時間保持した後
脱スケール処理を行い、腐食減量を測定した。
The high temperature corrosion test was carried out under the conditions of 700 ° C. coal ash corrosion test simulating an ultra-supercritical boiler superheater. That is, the composition is 30% Na 2 SO 4 + 40% K 2 SO 4
The mixed ash adjusted to + 30% Fe 2 O 3 was applied to the test piece, and 1% SO 2 + 5% O 2 + 10% CO 2 + 84% N 2
After heating to 700 ° C. in a mixed gas flow and holding for 100 hours, descaling treatment was performed to measure the corrosion weight loss.

【0044】耐高温酸化試験は、800℃大気酸化条件
とし、露点30℃に制御した湿潤大気流中で480時間
保持した後空冷し、十分冷却された後重量減少を測定し
た。これらの繰り返し数は各鋼種とも3とし、これらの
平均値で評価した。個々の試験片間のばらつきは概ね1
0〜20%以内であった。これらの結果はいずれも減肉
量(mm/year)で整理した。これらの結果を表3
および表4に示す。
The high temperature oxidation resistance test was carried out under the atmospheric oxidation conditions of 800 ° C., after keeping it for 480 hours in a humid atmospheric flow controlled to a dew point of 30 ° C., followed by air cooling, and after sufficient cooling, weight loss was measured. The number of repetitions was set to 3 for each steel type, and the average value of these was evaluated. The variation between individual test pieces is approximately 1
It was within 0 to 20%. All of these results were organized by the amount of thinning (mm / year). Table 3 shows these results.
And shown in Table 4.

【0045】一方、長時間時効後の組織安定性を評価す
る目的で、圧延容体化処理材を800℃で4000時間
加熱した後Vノッチシャルピー試験片を切り出し、0℃
における吸収エネルギーを測定した。
On the other hand, for the purpose of evaluating the microstructure stability after long-term aging, the rolled and tempered material was heated at 800 ° C. for 4000 hours, and then a V-notch Charpy test piece was cut out at 0 ° C.
The absorbed energy in was measured.

【0046】また、高温強度を把握する目的でクリープ
破断試験を行った。クリープ破断試験は650℃、75
0℃で行い、10000時間までの破断試験を行い、そ
の結果より100000時間破断強度を外挿してクリー
プ破断強度を求めた。
Further, a creep rupture test was conducted for the purpose of grasping high temperature strength. Creep rupture test is 650 ℃, 75
The rupture test was performed at 0 ° C. for up to 10,000 hours, and the rupture strength of 100,000 hours was extrapolated from the result to determine the creep rupture strength.

【0047】さらに、構造部材として使用する場合に問
題となる特性として、溶接時の高温割れ感受性をバレス
トレイン試験により評価した。ここでは、ノンフィラー
TIGで入熱18kJ/cmの溶接を模擬しながら、試
験片に1.0%の曲げ歪を与え、冷却後に合計割れ長さ
を測定した。これら時効材吸収エネルギー、クリープ破
断強度、バレストレイン割れ長さについても表3および
表4に示す。
Further, as a characteristic which becomes a problem when it is used as a structural member, susceptibility to high temperature cracking during welding was evaluated by a Balestrain test. Here, a bending strain of 1.0% was applied to the test piece while simulating welding with a heat input of 18 kJ / cm with the non-filler TIG, and the total crack length was measured after cooling. Tables 3 and 4 also show the absorbed energy of the aging material, the creep rupture strength, and the Vallestrain crack length.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】耐高温腐食性については、これらの表から
わかるように、No.1からNo.25の発明鋼はいず
れも、比較鋼No.26として試験した現用の18Cr
−8Ni系ステンレス鋼SUS304H、およびNo.
27として試験したSUS321Hに比べ1/2以下の
腐食減量であり、良好な耐高温腐食性を示すことが確認
された。これは、一定量以上のAlとCr量を含有する
ことにより、酸化被膜の緻密性が増し、かつ酸化被膜が
安定になり、内部保護性が向上するためと考えられる。
これに対し、比較鋼No.28では添加Cr量が十分で
ないことから、大きな腐食減量を示しており、また、比
較鋼No.40は過剰のMnを添加したことから耐高温
腐食性が劣化した。
Regarding the high temperature corrosion resistance, as can be seen from these tables, No. No. 1 to No. No. 25 invention steels are all comparative steel Nos. Working 18Cr tested as 26
-8Ni stainless steel SUS304H, and No.
It was confirmed that the corrosion weight loss was 1/2 or less as compared with SUS321H tested as No. 27, and good high temperature corrosion resistance was exhibited. It is considered that the inclusion of a certain amount or more of Al and Cr increases the denseness of the oxide film, stabilizes the oxide film, and improves the internal protection.
On the other hand, comparative steel No. In No. 28, the amount of added Cr is not sufficient, so that a large corrosion weight loss is exhibited. In No. 40, the high temperature corrosion resistance deteriorated due to the addition of excessive Mn.

【0051】耐高温酸化性についても、これらの表から
わかるように、No.1からNo.25の発明鋼はいず
れも、比較鋼No.26として試験した現用の18Cr
−8Ni系ステンレス鋼SUS304H、およびNo.
27として試験したSUS321Hに比べ1/2以下の
酸化減量であり、良好な特性を示した。これに対し、比
較鋼No.28ではAl量の不足により、十分な耐高温
酸化性が得られなかった。
Regarding the high temperature oxidation resistance, as can be seen from these tables, No. No. 1 to No. No. 25 invention steels are all comparative steel Nos. Working 18Cr tested as 26
-8Ni stainless steel SUS304H, and No.
As compared with SUS321H tested as No. 27, the weight loss due to oxidation was 1/2 or less, and good characteristics were exhibited. On the other hand, comparative steel No. In No. 28, sufficient high temperature oxidation resistance could not be obtained due to lack of Al amount.

【0052】高温での組織安定性の指標である時効材の
靭性については、No.1からNo.25の発明鋼はい
ずれも、No.27として試験したSUS321Hより
も良好な靭性を示した。これは、本発明鋼ではオーステ
ナイト安定性に配慮した結果、シグマ相等の金属間化合
物等の生成が抑制されたことによると考えられる。これ
に対し、比較鋼No.32はSi量が過剰であるため、
No.39はAl量が過剰であるため、また、比較鋼N
o.43,50はαの値が9以上となっているため、い
ずれも長時間の熱処理によりシグマ相が析出し靭性の劣
化が認められた。比較鋼No.38は炭化物の過剰な析
出による靭性の低下が認められた。
Regarding the toughness of the aged material which is an index of the structural stability at high temperature, No. No. 1 to No. The invention steels of No. 25 are all No. 25. It showed better toughness than SUS321H tested as No. 27. It is considered that this is because in the steel of the present invention, generation of intermetallic compounds such as sigma phase was suppressed as a result of considering the austenite stability. On the other hand, comparative steel No. 32 has an excessive amount of Si,
No. Since 39 has an excessive amount of Al, the comparative steel N
o. Since the values of α of Nos. 43 and 50 were 9 or more, deterioration of toughness was observed in both cases due to precipitation of sigma phase due to long-term heat treatment. Comparative steel No. In No. 38, a decrease in toughness was observed due to excessive precipitation of carbide.

【0053】クリープ破断強度については、No.1か
らNo.25の発明鋼はいずれも、比較鋼No.26と
して試験した現用の18Cr−8Ni系ステンレス鋼S
US304H、およびNo.27として試験したSUS
321Hよりも良好な値が得られた。一方、析出強化元
素の添加量が十分でない比較鋼No.29,30,4
8,49においては、クリープ破断強度が不足した。ま
た、逆にこれらの添加が過剰なNo.35,36,37
においては、破断延性が低下し、N添加が過剰であった
比較鋼No.42、B添加が過剰であった比較鋼No.
47でも破断延性の低下によって結果的にクリープ破断
強度が不足した。また、比較鋼No.33ではCuの添
加が過剰であり、No.46ではY、Laの合計量が過
剰であったことから、著しい破断延性の低下およびクリ
ープ破断強度の不足が生じ、100000時間破断強度
外挿値が求められなかった。
Regarding the creep rupture strength, no. No. 1 to No. No. 25 invention steels are all comparative steel Nos. 18Cr-8Ni series stainless steel S currently tested as No. 26
US304H, and No. SUS tested as 27
A value better than 321H was obtained. On the other hand, Comparative Steel No. 3 in which the addition amount of the precipitation strengthening element is not sufficient 29, 30, 4
In Nos. 8 and 49, the creep rupture strength was insufficient. Further, conversely, the addition of No. 35, 36, 37
In Comparative Steel No. 3, the fracture ductility was lowered and the N addition was excessive. 42, comparative steel No. 42 in which the addition of B was excessive.
Even with No. 47, the creep rupture strength was insufficient as a result of the decrease in fracture ductility. In addition, the comparative steel No. In No. 33, the addition of Cu was excessive, and No. 33 was used. In No. 46, since the total amount of Y and La was excessive, the fracture ductility was significantly reduced and the creep rupture strength was insufficient, and the 100,000-hour rupture strength extrapolated value could not be obtained.

【0054】溶接時の高温割れについては、本発明鋼で
あるNo.1からNo.25については全て高温割れが
認められなかった。しかし、比較鋼No.41,44,
45については大きく高温割れを生じた。これは、比較
鋼No.44,45ではP、Sの値が高かったため耐高
温割れ性が低下し、No.41では比較的高いCr、N
iを含有した成分系のためオーステナイト凝固系とな
り、高温割れ感受性が高まったものとしたものと考えら
れる。
Regarding hot cracking during welding, the steel of the present invention No. No. 1 to No. Regarding No. 25, no hot cracking was observed. However, the comparative steel No. 41, 44,
For No. 45, large hot cracking occurred. This is a comparative steel No. In Nos. 44 and 45, since the values of P and S were high, the resistance to hot cracking deteriorated. 41, relatively high Cr, N
It is considered that the component system containing i became an austenite solidification system and the hot cracking susceptibility was enhanced.

【0055】以上の結果から明らかなように、本発明鋼
によれば、耐高温腐食性および体高温酸化性の向上を図
ることができ、また高温使用時の組織安定性に優れるた
め靭性の劣化がなく、かつクリープ破断強度に優れ、さ
らに高温での溶接性が良好となることが確認された。
As is clear from the above results, according to the steel of the present invention, the high temperature corrosion resistance and the high temperature oxidation resistance of the body can be improved, and the toughness is deteriorated due to the excellent structural stability during high temperature use. It was confirmed that there was no cracking, the creep rupture strength was excellent, and the weldability at high temperature was good.

【0056】[0056]

【発明の効果】本発明によれば、600〜800℃での
耐酸化性ないし耐腐食性、長時間の組織安定性、溶接性
および高温強度に優れた熱交換器用オーステナイト系ス
テンレス鋼が提供される。本発明に係るステンレス鋼
は、従来の汎用性ステンレス鋼である18Cr−8Ni
系ステンレス鋼よりもこれら特性が大幅に優れており、
溶接の際に高温割れ感受性が低いため作業性の良好であ
るという特長を有するものである。
According to the present invention, there is provided an austenitic stainless steel for a heat exchanger, which is excellent in oxidation resistance or corrosion resistance at 600 to 800 ° C., long-term structure stability, weldability and high temperature strength. It The stainless steel according to the present invention is 18Cr-8Ni which is a conventional general-purpose stainless steel.
These properties are significantly superior to the stainless steels,
It has the feature of good workability because it has low sensitivity to hot cracking during welding.

【図面の簡単な説明】[Brief description of drawings]

【図1】Al無添加の従来のCr−Ni系ステンレス鋼
と、本発明のAl含有Cr−Ni系ステンレス鋼の、C
r当量Ni当量2元系状態図上のシグマ相析出領域の相
違を示した図。
FIG. 1 is a graph showing the C of a conventional Cr-Ni-based stainless steel containing no Al and an Al-containing Cr-Ni-based stainless steel of the present invention.
The figure which showed the difference of sigma phase precipitation area | region on r equivalent Ni equivalent binary system phase diagram.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.12%以下、Si:
1.0%以下、Mn:5.0%以下、P:0.04%以
下、S:0.03%以下、Cr:14〜22%、Ni:
10〜25%、Al:1.0〜3.5%、N:0.02
%以下、Y、La、Ceを合計含有量として0〜0.0
7%(無添加の場合も含む)を含有し、さらに、Ti:
0.05〜0.5%、V:0.1〜1.0%、Nb:
0.1〜1.0%、Zr:0.1〜1.0%、およびC
u:0.5〜4.0%のうち1種または2種以上を含有
し、残部がFeおよび不可避不純物からなり、かつ以下
の(1)式および(2)式を満たすことを特徴とする耐
高温腐食性に優れた熱交換器用オーステナイト系ステン
レス鋼。 α=(1.5Si+Cr+3Al )−(0.5Mn +Ni+30C +30N )<9 …(1) MCI =C /5 −12×(Zr/91+Nb/93+Ti/48+V /68)≦0 …(2)
1. By weight%, C: 0.12% or less, Si:
1.0% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 14 to 22%, Ni:
10-25%, Al: 1.0-3.5%, N: 0.02
% Or less, Y, La, Ce as a total content of 0 to 0.0
7% (including the case of no addition), and Ti:
0.05-0.5%, V: 0.1-1.0%, Nb:
0.1-1.0%, Zr: 0.1-1.0%, and C
u: 0.5 to 4.0% of one or more kinds are contained, the balance is Fe and inevitable impurities, and the following expressions (1) and (2) are satisfied. Austenitic stainless steel for heat exchangers with excellent high temperature corrosion resistance. α = (1.5Si + Cr + 3Al)-(0.5Mn + Ni + 30C + 30N) <9 ... (1) MCI = C / 5-12x (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≤0 ... (2)
【請求項2】 重量%で、C:0.12%以下、Si:
1.0%以下、Mn:5.0%以下、P:0.04%以
下、S:0.03%以下、Cr:14〜22%、Ni:
10〜25%、Al:1.0〜3.5%、N:0.02
%以下、Y、La、Ceを合計含有量として0〜0.0
7%(無添加の場合も含む)、B:0.001〜0.0
1%を含有し、さらに、Ti:0.05〜0.5%、
V:0.1〜1.0%、Nb:0.1〜1.0%、Z
r:0.1〜1.0%、およびCu:0.5〜4.0%
のうち1種または2種以上を含有し、残部がFeおよび
不可避不純物からなり、かつ以下の(1)式および
(2)式を満たすことを特徴とする耐高温腐食性に優れ
た熱交換器用オーステナイト系ステンレス鋼。 α=(1.5Si+Cr+3Al )−(0.5Mn +Ni+30C +30N )<9 …(1) MCI =C /5 −12×(Zr/91+Nb/93+Ti/48+V /68)≦0 …(2)
2. By weight%, C: 0.12% or less, Si:
1.0% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.03% or less, Cr: 14 to 22%, Ni:
10-25%, Al: 1.0-3.5%, N: 0.02
% Or less, Y, La, Ce as a total content of 0 to 0.0
7% (including the case of no addition), B: 0.001 to 0.0
1%, Ti: 0.05-0.5%,
V: 0.1-1.0%, Nb: 0.1-1.0%, Z
r: 0.1 to 1.0%, and Cu: 0.5 to 4.0%
For a heat exchanger excellent in high-temperature corrosion resistance, characterized by containing one or more of the above, the balance consisting of Fe and unavoidable impurities, and satisfying the following formulas (1) and (2) Austenitic stainless steel. α = (1.5Si + Cr + 3Al)-(0.5Mn + Ni + 30C + 30N) <9 ... (1) MCI = C / 5-12x (Zr / 91 + Nb / 93 + Ti / 48 + V / 68) ≤0 ... (2)
JP18930096A 1996-04-04 1996-07-18 Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance Pending JPH09324246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18930096A JPH09324246A (en) 1996-04-04 1996-07-18 Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8271696 1996-04-04
JP8-82716 1996-04-04
JP18930096A JPH09324246A (en) 1996-04-04 1996-07-18 Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance

Publications (1)

Publication Number Publication Date
JPH09324246A true JPH09324246A (en) 1997-12-16

Family

ID=26423732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18930096A Pending JPH09324246A (en) 1996-04-04 1996-07-18 Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance

Country Status (1)

Country Link
JP (1) JPH09324246A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043902A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Austenitic stainless steel superior in steam oxidation resistance
WO2008086141A1 (en) * 2007-01-04 2008-07-17 Ut-Battelle, Llc Oxidation resistant high creep strength austenitic stainless steel
US7754305B2 (en) * 2007-01-04 2010-07-13 Ut-Battelle, Llc High Mn austenitic stainless steel
US7754144B2 (en) * 2007-01-04 2010-07-13 Ut-Battelle, Llc High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel
WO2012153814A1 (en) * 2011-05-11 2012-11-15 株式会社神戸製鋼所 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
WO2013175760A1 (en) * 2012-05-22 2013-11-28 株式会社Gsユアサ Electricity storage element
CN103521762A (en) * 2013-10-25 2014-01-22 天津大学 Alloy powder used for improving flexibility of dual-phase steel laser welding joints and application method of alloy powder
JP2016003843A (en) * 2014-06-19 2016-01-12 新日鐵住金株式会社 Fin tube
JP2020515715A (en) * 2017-03-31 2020-05-28 エルジー エレクトロニクス インコーポレイティド Ductile stainless steel pipe

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043902A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Austenitic stainless steel superior in steam oxidation resistance
WO2008086141A1 (en) * 2007-01-04 2008-07-17 Ut-Battelle, Llc Oxidation resistant high creep strength austenitic stainless steel
US7744813B2 (en) * 2007-01-04 2010-06-29 Ut-Battelle, Llc Oxidation resistant high creep strength austenitic stainless steel
US7754305B2 (en) * 2007-01-04 2010-07-13 Ut-Battelle, Llc High Mn austenitic stainless steel
US7754144B2 (en) * 2007-01-04 2010-07-13 Ut-Battelle, Llc High Nb, Ta, and Al creep- and oxidation-resistant austenitic stainless steel
JP2013076156A (en) * 2011-05-11 2013-04-25 Kobe Steel Ltd Heat-resistant austenitic stainless steel having excellent high-temperature strength and cyclic oxidation resistance
WO2012153814A1 (en) * 2011-05-11 2012-11-15 株式会社神戸製鋼所 Heat-resistant austenitic stainless steel having excellent cyclic oxidation resistance
WO2013175760A1 (en) * 2012-05-22 2013-11-28 株式会社Gsユアサ Electricity storage element
JPWO2013175760A1 (en) * 2012-05-22 2016-01-12 株式会社Gsユアサ Electricity storage element
US9905369B2 (en) 2012-05-22 2018-02-27 Gs Yuasa International Ltd. Energy storage device
CN103521762A (en) * 2013-10-25 2014-01-22 天津大学 Alloy powder used for improving flexibility of dual-phase steel laser welding joints and application method of alloy powder
CN103521762B (en) * 2013-10-25 2015-10-28 天津大学 For improving alloy powder and the application process thereof of dual phase steel laser weld toughness
JP2016003843A (en) * 2014-06-19 2016-01-12 新日鐵住金株式会社 Fin tube
JP2020515715A (en) * 2017-03-31 2020-05-28 エルジー エレクトロニクス インコーポレイティド Ductile stainless steel pipe

Similar Documents

Publication Publication Date Title
JP4803174B2 (en) Austenitic stainless steel
JP3271262B2 (en) Duplex stainless steel with excellent corrosion resistance
JP5870201B2 (en) Duplex stainless steel
EP1873270B1 (en) Low alloy steel
JP5838933B2 (en) Austenitic heat resistant steel
WO2009119630A1 (en) Nickel-based alloy
KR20050007572A (en) Heat-resistant ferritic stainless steel and method for production thereof
JP5846076B2 (en) Austenitic heat-resistant alloy
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JPH09324246A (en) Austenitic stainless steel for heat exchanger excellent in high temperature corrosion resistance
JP7114998B2 (en) austenitic stainless steel
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
JP2000234140A (en) Steel for boiler excellent in electric resistance weldability and electric resistance welded boiler steel tube using it
JPH0987786A (en) High molybdenum nickel base alloy and alloy pipe
JPH0533104A (en) Heat resisting ferritic stainless steel excellent in heat resistance toughness at low temperature, and weldability
JPH04173939A (en) Ferritic stainless steel excellent in high temperature strength and toughness
JP3591486B2 (en) High Cr ferritic heat resistant steel
JPH08337850A (en) Austenitic stainless steel for welding structural high temperature apparatus
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JPH09241810A (en) Austenitic stainless steel for high temperature equipment with welded structure
JP2000001755A (en) Austenitic stainless steel excellent in sulfuric acid dew point corrosion resistance and its production
JP3149687B2 (en) Stainless steel with excellent oxidation resistance
JP2021090975A (en) Weld material for ferritic heat-resistant steel, and method for producing weld joint of ferritic heat-resistant steel