JPH0499215A - Production of stainless steel for mirror-like finishing - Google Patents

Production of stainless steel for mirror-like finishing

Info

Publication number
JPH0499215A
JPH0499215A JP21064190A JP21064190A JPH0499215A JP H0499215 A JPH0499215 A JP H0499215A JP 21064190 A JP21064190 A JP 21064190A JP 21064190 A JP21064190 A JP 21064190A JP H0499215 A JPH0499215 A JP H0499215A
Authority
JP
Japan
Prior art keywords
steel
stainless steel
molten
reduction
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21064190A
Other languages
Japanese (ja)
Inventor
Takeshi Ishiguro
石黒 毅志
Motoo Hattori
服部 基夫
Yuji Tanaka
勇次 田中
Hiroshi Mukoyama
洋 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP21064190A priority Critical patent/JPH0499215A/en
Publication of JPH0499215A publication Critical patent/JPH0499215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To reduce Al2O3 type inclusions by reducing the total content of Al in a raw material for electric furnace melting and reducing Al content in a molten crude stainless steel. CONSTITUTION:A crude stainless steel is prepared by carrying out electric furnace melting while blending the raw material so that the total content of Al in the raw material for melting is regulated to <=0.020kg per ton of molten crude steel. The molten crude steel is subjected to AOD decarburization, and reduction is performed in the course of this carburization. The content of Si in the molten steel after the completion of reduction stage is regulated to >=0.40%. In a finishing stage, metallic Al is not used for deoxidation regulation, and heat elevation by means of Si addition is not exerted. The resulting refined stainless steel is subjected to continuous casting at 0.67-0.80m/min pouring rate.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、冷間圧延後に鏡面仕上されて使用されるス
テンレス鋼の製造方法に係り、特に地底発生率が少なく
、高品質の鏡面板を製造するのに適したステンレス鋼の
製造方法に関する。 (従来の技術) 装飾層や反射鏡などに使用される鏡面仕上のステンレス
鋼は1.LIS 5US304相当鋼等を使用し、通常
、AOD精練炉で溶製した後、連続鋳造され、鋳片表面
の手入れを行った後、熱間圧延、酸洗、冷間圧延および
光輝焼鈍の工程を経て、最後にパフ研磨を行って製造さ
れる。 上記のように、鏡面仕上のステンレス鋼板は、最終的に
パブ研磨を実施するため、掻く軽微な地底も表面に現れ
て検出されやすく、そのため冷延板に要求される品質グ
レートがきわめて高い。 地底の発生は、溶製工程中に生成するA l zfh系
介在物が圧延加工によっても変形せずにそのままの状態
で存在することが原因であると言われている。このA 
l gos系介在物は難加工性介在物であり圧延により
伸展、分断されることなくクラスター状に存在する。従
って、鋼中に存在するA l gos系介在物は可及的
に少なくする必要があり、特に高品質の鏡面仕上ステン
レス鋼板を得るためにはAl工O1系介在物に起因する
地底発生率を小さくする必要がある。 (発明が解決しようとする課B) 本発明の課題は、鏡面仕上されるステンレス鋼として、
地底の発生が少ない綱を製造することにあり、その具体
的な目的は、溶解、精錬から鋳造までの工程を改良して
A l xCh系介在物の少ないステンレス鋼を製造す
る新しい方法を提供することにある。 (!1題を解決するための手段) 本発明者らは、電気炉溶解工程、AOD精諌工程、更に
連続鋳造工程の改良によって、地底を減らすことが可能
であることを見出した。 本発明は、下記■〜■を特徴とする鏡面仕上用ステンレ
ス鋼の製造方法を要旨とする。 ■ 溶解原料の全A2含有量を粗溶鋼1トンあたり0.
020kg以下とする原料配合で電気炉溶解して粗ステ
ンレス溶鋼を得る。 ■ 上記粗ステンレス溶鋼をAOD脱炭を行い、その過
程で途中還元を行う。 ■ 還元工程終了後の?8鋼中〔SI〕を0.40%以
上とする。 ■ 仕上工程では脱酸調整に金属Alを使用せずかつS
i添加による昇熱を行わない。 ■ 上記の方法で精錬したステンレス鋼を0.67〜0
.80m/分の鋳込速度で連続鋳造する。 通常のステンレス鋼のAOD精錬は、下記のような工程
で行われる。 溶解口!lcr、Ni含有量に応じて配合されたチャー
ジクロム等の高炭素フエロクロム、フェロニッケルまた
は酸化ニッケル、フェロシリコン、ステンレス鋼屑およ
び普通鋼屑を電気炉に装入し、造滓用石灰を添加して通
電溶解する。溶解中の金属酸化損失を少なくするため、
通常配合Si量は、約0.5%とし、造滓用石灰は塩基
度1.0〜1.5に調整するのに必要な最小限で熔解を
進める。 針一般炭工互 電気炉等で溶製した粗ステンレス溶鋼をAOD炉に移し
、0□ガスまたは0□とArやN、との混合ガスを底吹
きしてCO反応を生しさせ、所定値まで脱炭する。 ■−」しL:程 脱炭工程で、溶鋼中〔Crとの同時酸化で生成したCr
およびMnの酸化物を還元する工程であり、還元材とし
てフェロシリコンを使用し、Arガスを底吹きして溶鋼
を強く攪拌しながら還元反応を進める。 幻−ILk−工程 還元終了後フェロシリコンまたはAlを使用して溶鋼中
(0)レベルを低め、成分、温度を調整する。溶鋼温度
を高める必要のある場合は、フェロシリコンを添加して
0□ガスを底吹きして溶鋼中(St ]を酸化して昇熱
するいわゆるSi吹きを行う。 上記のような工程でAOD精練が行われるのであるが、
電気炉溶解工程では、溶解する合金鉄は(1,01−0
,02重量%のA1を含有し、スクランプ中にはAlを
含むものがあるので、溶解後の粗ステンレス溶鋼中にA
I!、が溶解して残存し、次の脱炭工程において酸化さ
れて大部分はA ffi 10.となって鋼中に含まれ
ることになる。 還元工程では、還元材として通常用いられる)二ロシリ
コン中にはAI!が2%程度含有されでおり、還元後の
溶鋼中にその一部が溶解する。還元後の溶鋼中(Si 
)が低い場合あるいは仕上げ工程でSi吹き(01吹込
)を実施した場合のように?8綱中の
(Industrial Application Field) This invention relates to a method for manufacturing stainless steel that is used after being cold-rolled to a mirror finish. Concerning a method of manufacturing steel. (Prior art) Mirror-finished stainless steel used for decorative layers, reflective mirrors, etc. Using steel equivalent to LIS 5US304, etc., it is usually melted in an AOD smelting furnace, then continuously cast, and after the surface of the slab is treated, it undergoes the processes of hot rolling, pickling, cold rolling, and bright annealing. Finally, it is manufactured by performing puff polishing. As mentioned above, mirror-finished stainless steel sheets are finally pub-polished, so even minor scratches appear on the surface and are easy to detect, so the quality grade required for cold-rolled sheets is extremely high. The occurrence of underground formations is said to be caused by Al zfh inclusions generated during the melting process that remain undeformed even during rolling. This A
l Gos-based inclusions are difficult-to-process inclusions and exist in clusters without being stretched or divided by rolling. Therefore, it is necessary to reduce the Al gos-based inclusions present in steel as much as possible, and in particular, in order to obtain high-quality mirror-finished stainless steel sheets, it is necessary to reduce the underground occurrence rate caused by Al-O inclusions. It needs to be made smaller. (Problem B to be solved by the invention) The problem of the present invention is to provide mirror-finished stainless steel.
The purpose is to manufacture steel with less underground formation, and the specific purpose is to provide a new method for manufacturing stainless steel with fewer Al x Ch inclusions by improving the process from melting and refining to casting. There is a particular thing. (Means for Solving Problem 1) The present inventors have discovered that it is possible to reduce the amount underground by improving the electric furnace melting process, the AOD refinement process, and the continuous casting process. The gist of the present invention is a method for producing mirror-finishing stainless steel characterized by the following (1) to (2). ■ The total A2 content of the molten raw materials is 0.0% per ton of crude molten steel.
Crude molten stainless steel is obtained by melting in an electric furnace with a raw material composition of 0.020 kg or less. ■ The crude stainless steel molten steel is subjected to AOD decarburization, and during the process, reduction is performed. ■ After the reduction process? [SI] in 8 steels shall be 0.40% or more. ■ In the finishing process, metal Al is not used for deoxidation adjustment and S
Do not raise the temperature by adding i. ■ Stainless steel refined by the above method is 0.67~0.
.. Continuous casting is performed at a casting speed of 80 m/min. Normal AOD refining of stainless steel is performed in the following steps. Melting mouth! Charge high carbon ferrochrome such as charged chromium, ferronickel or nickel oxide, ferrosilicon, stainless steel scrap and ordinary steel scrap mixed according to LCR and Ni content into an electric furnace, and add lime for slag making. Dissolve by applying electricity. To reduce metal oxidation loss during melting,
The amount of Si added is usually about 0.5%, and the lime for slag is melted at the minimum amount necessary to adjust the basicity to 1.0 to 1.5. Crude stainless molten steel melted in a needle steam coal-fired electric furnace, etc. is transferred to an AOD furnace, and 0□ gas or a mixed gas of 0□ and Ar or N is blown at the bottom to generate a CO reaction, and the temperature is increased to a predetermined value. decarburize up to ■-” L: In the decarburization process, Cr generated by simultaneous oxidation with Cr in molten steel
This is a step of reducing oxides of Mn and Mn, using ferrosilicon as a reducing agent, and blowing Ar gas from the bottom to proceed with the reduction reaction while strongly stirring the molten steel. Phantom-ILk-Step After completion of the reduction, use ferrosilicon or Al to lower the (0) level in the molten steel and adjust the components and temperature. If it is necessary to raise the temperature of the molten steel, ferrosilicon is added and 0□ gas is blown from the bottom to oxidize and heat up the molten steel (St), so-called Si blowing. is carried out,
In the electric furnace melting process, the ferroalloy to be melted is (1,01-0
,02% by weight of A1, and since some scraps contain Al, A1 is added to the crude stainless steel after melting.
I! , is dissolved and remains, and in the next decarburization process, it is oxidized and most of it becomes Affi 10. Therefore, it is included in the steel. In the reduction process, dirosilicon (usually used as a reducing agent) contains AI! is contained in an amount of about 2%, and a portion of it is dissolved in the molten steel after reduction. In the molten steel after reduction (Si
) is low or when Si blowing (01 blowing) is performed in the finishing process? Of the 8 ropes

〔0〕レベルが高
くなると、微量残留した溶鋼中のCAl)が酸化されて
AN、0.を生成する。 上記のように従来の精錬条件では、精練工程で溶鋼中に
生成したA Q 、0.の一部が凝固鋼中に残存し、冷
延板の地圧の発生を招(、この地圧は、通常の(鏡面仕
上をしない)板ではさほど問題にならないのであるが、
パフ研磨を行う鏡面仕上板では問題にされる。 (作用) 上記従来の精錬工程と較べて、本発明方法の精錬工程の
特徴は前記■〜■にある。以下、これらについて詳述す
る。 ■ 電気炉溶解原料の全A1含有量を低く抑え、粗ステ
ンレス溶鋼中[1)含有量を低減することによって、へ
1□0.系の介在物を減少させることができる。 第1図および第2図は、Cr18%−Ni8%の鋼(J
IS−5US304相当)の鏡面仕上鋼板を後述する実
施例に示した条件で製造し、電気炉装入原料の全Al含
有量と鋳造前ステンレス溶鋼中の^2□0.含*tおよ
び地底発生傾向との関係をそれぞれ調べた結果である。 第1図に示すように、電気炉装入原料の全Al含有量が
高くなると、粗ステンレス溶鋼中の〔^N]が多くなり
(Af)が溶解雰囲気中の0□あるいは脱炭工程の吹込
みOlと結合して鋼中に残存するのでA l 、0.系
介在物の生成が多くなる。 なお装入原料中のAlが酸化して生成したA l 2o
sは、主として脱炭工程の生成COガスによる溶鋼撹拌
で溶鋼表面に浮上除去され、その残存率は約19〜35
%である。 また第2図に示すように、電気炉装入原料の全Al含有
量が高く、へ2□03系介在物が多い場合は、地底成績
が3を趙えて鏡面板として実用上支障を生ずる地底が発
生している。なお地底成績l、2.3.4および5は、
下記の式で定義される地底%がそれぞれ0〜2%、3〜
4%、5〜6%、7〜9%および10%以上を示し、地
底成績1.2をAランク、3をBランクとして、ここま
でを鏡面板として実用上の支障がない地底と評価してい
る。 但し、Aはコイルを2m毎に区切って、その中に地底が
あった場合を1とするカウント数である。 即ち、例えば200mのコイルに地底が1個あれば、地
底%は1%となる。 本発明方法では、電気炉に装入するステンレス鋼屑およ
び合金鉄はAN含有量が判明しているものを選んで使用
し、通常Alを含む普通鋼屑を使用しないオール自家発
生ステンレス鋼屑配合とする等の対策を講じ、A2含有
量の高いチャージクロムの使用量を減らして、電気炉装
入原料のAI!含有量を0.020kg/粗溶鋼1.以
下に抑えるのである。 ■ 本発明方法では、AOD脱炭工程(例えば、(C)
=1.50重量%から0.06重置%まで脱炭)の途中
、例えばCC)=0.4重量%、で02吹込みを中断し
、低Alフェロシリコン中 でに02吹きによって酸化されたCrzO*を予備還元
した後、再度0.吹込みにより、例えば[C]=0゜0
6重量%まで脱炭する。これにより最終還元工程での低
Alフェロシリコン使用量が減少する。 途中還元で添加された低Alフェロシリコン中のAIV
、は再度脱炭中にA l gozを生成するが、前述し
たように脱炭で生成するCOガスの?8鋼攪拌により溶
鋼表面に浮上し、生成量120.の19〜35%が残存
するに過ぎない、一方、脱炭が終了した後の還元工程で
添加される低Alフェロシリコン中のANは溶鋼中の(
0)と反応してA N 、0.を生成するが、この時は
溶鋼の攪拌が弱いので1.0゜系介在物として残存しや
すい、従って、途中還元して最終還元工程での低Afフ
ェロシリコンの使用量が減少すると低Alフェロシリコ
ン中のANによるAf、O,生成量が減って、鋳造時の
溶鋼中に残留するA l 、0.系介在物量が、途中還
元を実施しない場合より少なくなるのである。 なお、本発明方法においては、A l zch系介在物
を溶鋼中に残存させないため、上述と同様の理由で仕上
工程における脱#調整に金属A2は使用しない。 ■および■ 還元工程終了後の〔S1〕を一定値以上に保つことによ
って、溶鋼中の酸素〔0]レベルが低くなり、還元後の
溶鋼中に微量残存する[A/!]と反応して生成するA
 l tCh系介在物の発生量が減少する。 第3図は、Cr18%−Ni8%の鋼(JIS−SIJ
S304相当)の鏡面仕上鋼板を後述する実施例に示し
た条件で製造し、還元工程終了後の(Sil量と、地底
発生傾向との関係を調べた結果である。 第3図に示すように、還元後(Si )の値が高くなる
とともに、地底発生の傾向は小さくなる。 なお、図中にOで示すのは、精錬の仕上工程で51添加
による昇熱を実施しなかったもの、・は実施したもので
ある。 還元後(Si )の値が0.40%以上であれば、地疵
成績は3以下となり、鏡面板として実用上差し支えない
ものとなる。 第1図に・で示すように、仕上工程でSi添加後Si吹
き昇熱を行うと、(Si3が0.40%以上であっても
地底の発生が多くなる。その理由は、s1吹き昇熱は鋼
中に0!を吹込み(Si )の酸化反応熱を利用するの
であるが、鋼中に残存する微量の(AA)と吹込み02
とが反応しA i! gosが生成するためと考えられ
る。従って、本発明方法では、仕上期において、Si吹
き昇熱を実施しない。 還元工程終了後の(Si )を0.40%以上にするた
めの具体的な方法は、脱炭前後の溶鋼中(Cr)および
〔PIn〕含有量から(Cr)および(Mn)酸化量を
算出し、その金属酸化物を還元するのに必要なフェロシ
リコン量と、溶鋼中の(Si )を0.40%以上とす
るのに必要なフェロシリコン量との合計量のフェロシリ
コンを、脱炭終了後の溶鋼中に添加することである。 このようにして(Si )20.40%を確保すること
によって、精錬中の(0)レヘルが低減する結果A/!
、0.系介在物の全介在物減少するのである。 上記のから■までの対策によって、Az、O,系介在物
に起因する地底は大幅に減少する。 次に、前記■の連続鋳造の条件について説明する。 ■ 第4図は、CrlB%−N48%の綱(JIS 5
US304相当)の鏡面仕上!ll板を後述する実施例
に示した本発明方法の条件で精錬し、連続鋳造の鋳込速
度と地底発生傾向との関係を調べた結果である。 第4図に示すとおり、連続鋳造の鋳込速度を大きくすれ
ば、地底発注傾向が小さくなる。鋳込速度が0.67m
/分以上であれば、鏡面板の地紙成績が3以下となる。 これは鋳込速度を大きくすることにより鋳型的溶鋼流速
が高く保たれ、凝固シェルの洗浄効果が上昇したことに
よるものと考えられる。鋳込速度が0.67m/分未満
では凝固シェルの洗浄効果が十分に得られず、他方、0
.80m/分を鰯えると、フレークアウト発生の危険性
がある。 (実施例) 第1表に示す配合の原料を電気炉に装入して溶解し、第
2表に示す組成の粗ステンレス溶鋼を溶製した。その後
AOD炉で第3表に示す二つの操業条件で精錬し、第4
表に示す組成のJIS−5tlS304相当鋼を製造し
た。 (以下、余白) AOD精練後、垂直型連続鋳造機で1200mm巾、2
06−−厚のスラブを本発明方法では0,67〜0.8
0m/分、比較法は0.60〜0.65m/分の鋳込速
度で鋳造し、表面手入れ後、1200℃に加熱し連続熱
間圧延機で3.6mm厚に圧延した。この熱延板を酸洗
して連続冷間圧延機で厚さ1.51に一次冷延し、光輝
焼鈍を行った後テンパーミルで二次冷延し厚さ1.49
5m霧の薄鋼板を製造した。 こうして得られた鋼板を# 700の条件でパフ研磨し
て、地圧発生率を調べた。その結果を第5表に示す、第
5表で本発明例というのは、前記第1表および第3表の
本発明方法によって製造した鋼板、比較例というのは同
しく比較法で製造した鋼板である。 第5表 (発明の効果) 本発明の製造法によれば、Aj’ZOユ系介在@!I!
こ起因する地圧を減少させるこ七ができる。その結果、
高品質の鏡面仕上げステンレス鋼板を製造することが可
能になる。なお、地圧の減少は、鏡面板の加工性、被め
っき性等の改善にも役立つ。
When the [0] level becomes high, the trace amount of remaining CA1 in the molten steel is oxidized, resulting in AN, 0. generate. As mentioned above, under conventional refining conditions, AQ generated in molten steel during the refining process is 0. A part of the steel remains in the solidified steel, causing ground pressure in the cold-rolled plate (this ground pressure is not so much of a problem with normal (non-mirrored) plates, but
This is a problem for mirror-finished plates that are subjected to puff polishing. (Operation) Compared with the conventional refining process described above, the characteristics of the refining process of the method of the present invention are in the above-mentioned points 1 to 2. These will be explained in detail below. ■ By keeping the total A1 content of the raw material melted in the electric furnace low and reducing the [1] content in the crude stainless steel molten steel, 1□0. Inclusions in the system can be reduced. Figures 1 and 2 show 18% Cr-8% Ni steel (J
IS-5US304 equivalent) mirror-finished steel sheets were manufactured under the conditions shown in the examples below, and the total Al content of the raw material charged in the electric furnace and the ^2□0. These are the results of investigating the relationship between *t and underground occurrence tendency. As shown in Figure 1, when the total Al content of the raw material charged in the electric furnace increases, the amount of [^N] in the crude molten stainless steel increases, and the amount of [^N] (Af) in the melting atmosphere or the blowout during the decarburization process increases. Since it combines with the included O and remains in the steel, A l , 0. The generation of system inclusions increases. In addition, Al2o generated by oxidation of Al in the charged raw material
s is mainly removed by floating to the surface of the molten steel during stirring of the molten steel by the CO gas generated during the decarburization process, and its residual rate is approximately 19 to 35.
%. In addition, as shown in Figure 2, when the total Al content of the raw material charged in the electric furnace is high and there are many He2□03-based inclusions, the underground grade will be lower than 3, causing problems in practical use as a specular plate. is occurring. Furthermore, underground results 1, 2.3.4 and 5 are as follows:
The underground % defined by the following formula is 0~2% and 3~
4%, 5-6%, 7-9%, and 10% or more, underground performance of 1.2 is ranked A, 3 is ranked B, and up to this point is evaluated as underground with no practical problems as a mirror plate. ing. However, A is a count number in which the coil is divided into sections of 2 m, and 1 is the case where there is an underground section. That is, for example, if there is one underground part in a 200 m long coil, the underground percentage is 1%. In the method of the present invention, the stainless steel scraps and ferroalloys to be charged into the electric furnace are selected from those with a known AN content, and are all self-generated stainless steel scraps that do not use ordinary steel scraps that normally contain Al. We have taken measures such as reducing the amount of charged chromium with a high A2 content and reducing the amount of AI used in charging raw materials for electric furnaces. Content: 0.020kg/crude molten steel 1. It should be kept below. ■ In the method of the present invention, AOD decarburization step (for example, (C)
In the middle of decarburization (decarburization) from = 1.50 wt.% to 0.06 wt.%, for example, at CC = 0.4 wt.%, the 02 blowing was interrupted, and the carbon was oxidized by the 02 blowing in low Al ferrosilicon. After preliminary reduction of the CrzO*, the CrzO* was reduced to 0. By blowing, for example, [C]=0°0
Decarburize to 6% by weight. This reduces the amount of low Al ferrosilicon used in the final reduction step. AIV in low Al ferrosilicon added during intermediate reduction
, again generates Al goz during decarburization, but as mentioned above, the CO gas produced during decarburization? 8 Steel floats to the surface of the molten steel by stirring, and the amount of production is 120. On the other hand, AN in low-Al ferrosilicon, which is added in the reduction process after decarburization is complete, remains in the molten steel.
0) to produce A N , 0. However, since the stirring of the molten steel is weak at this time, they tend to remain as 1.0° inclusions. Therefore, if the amount of low Af ferrosilicon used in the final reduction process is reduced during the intermediate reduction, low Al ferrosilicon will be produced. The amount of Af, O, produced by AN in silicon is reduced, and the amount of Al remaining in molten steel during casting is reduced to 0. The amount of inclusions in the system is smaller than when no intermediate reduction is performed. In addition, in the method of the present invention, in order to prevent Al zch inclusions from remaining in the molten steel, metal A2 is not used for de#ing adjustment in the finishing process for the same reason as described above. ■ and ■ By keeping [S1] above a certain value after the reduction process, the oxygen [0] level in the molten steel is lowered, and a trace amount of [A/!] remains in the molten steel after reduction. ] A produced by reacting with
The amount of generated tCh-based inclusions is reduced. Figure 3 shows 18% Cr-8% Ni steel (JIS-SIJ
This is the result of investigating the relationship between the amount of Sil and the underground generation tendency after the completion of the reduction process by manufacturing a mirror-finished steel plate (equivalent to S304) under the conditions shown in the example below. As shown in Figure 3. As the value of , after reduction (Si) increases, the tendency for underground generation decreases.In addition, O in the figure indicates that the heating by adding 51 was not carried out in the finishing process of smelting. If the value after reduction (Si) is 0.40% or more, the ground scratch score will be 3 or less, and there will be no problem in practical use as a mirror plate. As shown in the figure, if Si blowing heat raising is performed after Si addition in the finishing process (even if the Si3 content is 0.40% or more, underground formation will occur more often). The oxidation reaction heat of the blown (Si) is used, but the trace amount of (AA) remaining in the steel and the blown 02
The reaction is A i! This is thought to be because gos is generated. Therefore, in the method of the present invention, Si blowing heating is not performed during the finishing period. A specific method for increasing (Si) to 0.40% or more after the reduction process is to calculate the oxidation amount of (Cr) and (Mn) from the (Cr) and [PIN] contents in the molten steel before and after decarburization. The total amount of ferrosilicon, which is the amount of ferrosilicon required to reduce the metal oxide and the amount of ferrosilicon required to make (Si) in the molten steel 0.40% or more, is removed. It is added to molten steel after charcoal is finished. By securing (Si) 20.40% in this way, the (0) level during refining is reduced, resulting in A/!
, 0. The total number of inclusions in the system is reduced. By taking the above-mentioned measures to (3), the underground density caused by Az, O, and inclusions can be significantly reduced. Next, the conditions for continuous casting mentioned above will be explained. ■ Figure 4 shows the CrlB%-N48% steel (JIS 5
Mirror finish (equivalent to US304)! These are the results of examining the relationship between the casting speed of continuous casting and the tendency for underground formation by refining a ll plate under the conditions of the method of the present invention shown in the examples below. As shown in FIG. 4, if the pouring speed of continuous casting is increased, the tendency to order underground becomes smaller. Casting speed is 0.67m
/min or more, the base paper score of the mirrored board will be 3 or less. This is thought to be due to the fact that by increasing the casting speed, the flow rate of molten steel in the mold was kept high, and the cleaning effect of the solidified shell was increased. If the casting speed is less than 0.67 m/min, a sufficient cleaning effect of the solidified shell cannot be obtained;
.. If the speed is 80m/min, there is a risk of flaking out. (Example) Raw materials having the composition shown in Table 1 were charged into an electric furnace and melted to produce crude stainless steel molten steel having the composition shown in Table 2. After that, it is refined in an AOD furnace under the two operating conditions shown in Table 3.
Steel equivalent to JIS-5tlS304 having the composition shown in the table was manufactured. (Hereafter, blank space) After AOD scouring, 1200mm width, 2
06--thickness of slabs from 0.67 to 0.8 in the method of the present invention
Casting was performed at a casting speed of 0 m/min and 0.60 to 0.65 m/min for the comparative method, and after surface treatment, it was heated to 1200°C and rolled to a thickness of 3.6 mm using a continuous hot rolling mill. This hot-rolled sheet was pickled and firstly cold-rolled to a thickness of 1.51 in a continuous cold rolling mill, bright annealed, and then secondly cold-rolled in a temper mill to a thickness of 1.49.
A 5m thick thin steel plate was manufactured. The steel plate thus obtained was puff polished under #700 conditions, and the rate of ground pressure generation was investigated. The results are shown in Table 5. In Table 5, the examples of the present invention refer to steel plates manufactured by the method of the present invention shown in Tables 1 and 3, and the comparative examples refer to steel plates manufactured by the comparative method. It is. Table 5 (Effects of the Invention) According to the production method of the present invention, Aj'ZOY system intervention@! I!
This can reduce the ground pressure caused by this. the result,
It becomes possible to manufacture high-quality mirror-finished stainless steel sheets. Note that the reduction in ground pressure also helps improve the workability and plating properties of mirror-finished plates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電気炉装入原料の全1含有量と鋳造前ステン
レス溶鋼中のAltOff含有蓋との関係を示す図、 第2図は、電気炉装入原料の全1含有量と地圧発生傾向
との関係を示す図、 第3図は、還元工程終了後のC3l)およびSi吹き昇
熱実施の有無と地圧発生1頃向との関係を示す図、 第4図は、連続鋳造の鋳込速度と地圧発生傾向との関係
を示す図、である。 第5表に示すとおり、本発明例では、地圧発生率がきわ
めて小さくなっている。 出願人  日本ステンレス株式会社 代理人  弁理士 穂 上 照 忠(ほか1名)図面の
冷害 第  1 図 (不良) 図面の浄揚 第  2 図 電気炉溶解原料の全AL含有t(kg/粗溶鋼トン)電
気炉溶解原料の全A4含有量(kg/粗溶鋼トン)手続
補正書(方側 平成2年11月22日 平成2年特許願第210641号 2、発明の名称 鏡面仕上用ステンレス鋼の製造方法 3、補正をする者 事件との関係  特許出願人 住所 東京都新宿区本塩町8番地の2 名称 日本ステンレス株式会社 7、補正の内容 第1図から第4図までを別紙のとおり補正する。 8、添付書類の目録 補正した第1図、第2図、第3図および第4回収 上 4、代理人
Figure 1 is a diagram showing the relationship between the total 1 content of the raw material charged in the electric furnace and the AltOff content lid in the molten stainless steel before casting. Figure 3 is a diagram showing the relationship between C3l) after the end of the reduction process and the presence or absence of Si blowing heat raising and the direction of ground pressure generation around 1. Figure 4 is a diagram showing the relationship between the generation tendency and FIG. As shown in Table 5, in the examples of the present invention, the ground pressure generation rate is extremely small. Applicant Nippon Stainless Co., Ltd. Representative Patent Attorney Terutada Hogami (and 1 other person) Chilling damage to drawings Figure 1 (defective) Cleaning of drawings Figure 2 Total AL content in electric furnace melting raw materials t (kg/ton of crude molten steel) ) Total A4 content of raw materials melted in electric furnace (kg/ton crude molten steel) Procedural amendment (November 22, 1990, 1990 Patent Application No. 210641 2, Title of invention: Manufacture of stainless steel for mirror finishing) Method 3: Relationship with the case of the person making the amendment Patent Applicant Address: 8-2 Motoshio-cho, Shinjuku-ku, Tokyo Name: Nippon Stainless Co., Ltd. 7 Contents of the amendment Figures 1 to 4 will be amended as shown in the attached sheet. 8. Revised catalog of attached documents Figures 1, 2, 3 and 4. 4. Agent

Claims (1)

【特許請求の範囲】 溶解原料の全Al含有量を粗溶鋼1トン当たり0.02
0kg以下とする原料配合で電気炉溶解した粗ステンレ
ス溶鋼をAOD脱炭し、AOD脱炭の過程で途中還元を
行い、還元工程終了後の溶鋼中の〔Si〕を0.40%
以上とし、仕上工程では脱酸調整に金属Alを使用せず
、かつSi添加による昇熱を行わずに精錬し、0.67
〜0.80m/分の鋳込速度で連続鋳造することを特徴
とする鏡面仕上用ステンレス鋼の製造方法。
[Claims] The total Al content of the molten raw material is 0.02 per ton of crude molten steel.
Crude stainless steel molten steel melted in an electric furnace with a raw material composition of 0 kg or less is decarburized by AOD, and reduction is performed midway through the AOD decarburization process to reduce [Si] in the molten steel to 0.40% after the reduction process is completed.
With the above, in the finishing process, metal Al is not used for deoxidation adjustment, and refining is performed without heating by adding Si, and 0.67
A method for producing stainless steel for mirror finishing, characterized by continuous casting at a casting speed of ~0.80 m/min.
JP21064190A 1990-08-08 1990-08-08 Production of stainless steel for mirror-like finishing Pending JPH0499215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21064190A JPH0499215A (en) 1990-08-08 1990-08-08 Production of stainless steel for mirror-like finishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21064190A JPH0499215A (en) 1990-08-08 1990-08-08 Production of stainless steel for mirror-like finishing

Publications (1)

Publication Number Publication Date
JPH0499215A true JPH0499215A (en) 1992-03-31

Family

ID=16592674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21064190A Pending JPH0499215A (en) 1990-08-08 1990-08-08 Production of stainless steel for mirror-like finishing

Country Status (1)

Country Link
JP (1) JPH0499215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133291A1 (en) 2011-03-25 2012-10-04 日新製鋼株式会社 Austenitic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133291A1 (en) 2011-03-25 2012-10-04 日新製鋼株式会社 Austenitic stainless steel

Similar Documents

Publication Publication Date Title
CN101418363B (en) Production method of low-carbon high-toughness X60/X65 pipeline steel
CN114131240B (en) Wire rod for pipeline steel gas shielded welding wire and manufacturing method thereof
CN103966527A (en) Austenitic stainless steel for urban rail vehicle face plates and manufacturing method of austenitic stainless steel
WO2023130546A1 (en) Gas shielded arc welding wire, steel wire rod for gas shielded arc welding wire and production method thereof
CN109487165A (en) A method of improving Q345B mill coil production efficiency
CN103589953A (en) Hot rolled thin plate enamel steel with 245-MPa yield strength and manufacturing method thereof
JP3746045B2 (en) Ferritic stainless steel slabs and steel plates and methods for producing them
CN115896637A (en) Preparation method of super austenitic stainless steel hot-rolled coil
CN117026092A (en) High-strength spring steel and preparation method thereof
US3853540A (en) Desulfurization of vacuum-induction-furnace-melted alloys
JP6910523B1 (en) Manufacturing method of ultra-soft rolled steel that does not easily rust
CN113046616B (en) Stainless steel excellent in surface properties and method for producing same
CN113862446A (en) Production method of X70 pipeline steel with high heating temperature
JPS58197224A (en) Manufacture of base plate for tin plate and tin-free steel plate by continuous annealing
JP3416858B2 (en) Stainless steel manufacturing method
JPH0499215A (en) Production of stainless steel for mirror-like finishing
JP6539794B1 (en) Ni-based alloy and Ni-based alloy sheet
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
JP2004204252A (en) Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP7413600B1 (en) Fe-Ni alloy plate and its manufacturing method
JPS58130215A (en) Deoxidizing method of molten steel
JP5087965B2 (en) Extremely low carbon ferritic stainless steel and method for producing the same
JPS5925008B2 (en) Method for producing steel slabs for enameling