JP6910523B1 - Manufacturing method of ultra-soft rolled steel that does not easily rust - Google Patents

Manufacturing method of ultra-soft rolled steel that does not easily rust Download PDF

Info

Publication number
JP6910523B1
JP6910523B1 JP2020176557A JP2020176557A JP6910523B1 JP 6910523 B1 JP6910523 B1 JP 6910523B1 JP 2020176557 A JP2020176557 A JP 2020176557A JP 2020176557 A JP2020176557 A JP 2020176557A JP 6910523 B1 JP6910523 B1 JP 6910523B1
Authority
JP
Japan
Prior art keywords
less
steel
radle
iron
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020176557A
Other languages
Japanese (ja)
Other versions
JP2022067774A (en
Inventor
山田 勝彦
勝彦 山田
Original Assignee
山田 榮子
山田 榮子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山田 榮子, 山田 榮子 filed Critical 山田 榮子
Priority to JP2020176557A priority Critical patent/JP6910523B1/en
Application granted granted Critical
Publication of JP6910523B1 publication Critical patent/JP6910523B1/en
Publication of JP2022067774A publication Critical patent/JP2022067774A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

【課題】高耐食性・極軟質の制御冷却鋼材とその製造方法を提供する。【解決手段】アーク炉においてスクラップを熔解し、酸素吹錬してCを0.05%以下とした溶鋼をFeO20%以上で塩基度が1.0〜1.5のスラグとともにレードル2に受け、受鋼中から該レードル底部のプラグ3より酸素含有ガスを吹き込んでCを0.03%以下とした後、該レードルに気密カバーを取り付け、吹込みを継続しつつ真空ポンプ11によりレードル内を50Torr以上200Torr以下に減圧してCを0.01%以下、Oを0.05%以上1.3%以下とした後、連続鋳造に供して鋼片とし、次いで熱間圧延に供し、仕上げ加工温度をγ−α共存域を避けて行い、その後の徐冷により高耐蝕で極軟質の制御冷却鋼材とする。抗張力は300MPa未満となる。【選択図】図1PROBLEM TO BE SOLVED: To provide a controlled cooling steel material having high corrosion resistance and extremely softness and a method for producing the same. SOLUTION: Scrap is melted in an arc furnace and oxygen is blown to receive molten steel having C of 0.05% or less in a radle 2 together with slag having FeO of 20% or more and basicity of 1.0 to 1.5. Oxygen-containing gas is blown from the steel receiver through the plug 3 at the bottom of the radle to reduce C to 0.03% or less, and then an airtight cover is attached to the radle, and the inside of the radle is 50 Torr by the vacuum pump 11 while continuing the blowing. After reducing the pressure to 200 Torr or less to make C 0.01% or less and O 0.05% or more and 1.3% or less, the steel pieces are subjected to continuous casting and then subjected to hot rolling to finish processing temperature. Is performed avoiding the γ-α coexistence region, and then slow cooling is performed to obtain a highly corrosion-resistant and extremely soft controlled cooling steel material. The tensile strength is less than 300 MPa. [Selection diagram] Fig. 1

Description

本発明は、いわゆる黒錆びを形成することによって赤さびの発生を抑制した耐食性の優れた極軟質の圧延鋼材とその製造方法に関している。 The present invention relates to an extremely soft rolled steel material having excellent corrosion resistance in which the generation of red rust is suppressed by forming so-called black rust, and a method for producing the same.

鉄は錆びやすい金属である。大気中で冷延鋼板に生ずる錆は初めは点状さびの集団だが、虫食い状、あばた状を経て大きな腐蝕孔となる。典型的赤錆であって茶褐色であり多孔質である。冷延鋼板に塗装が必要であることは良く解る。
一方古墳から発掘された古代鉄の一部には、耐食性環境でもないのに1500年以上腐蝕に耐え、刻印を残しているほど錆びにくい鉄がある。
同様にタタラ鉄の一部で錆が進みにくいことも良く知られていて、例として現在のタタラ鉄破片の研磨面はステンレス鋼のように室内で15年以上金属光沢のままである。薄い不導体膜(半透明)を形成していると推測される。
また大型木造建築の黒っぽい瓦釘は1000年以上使い回されている。
インドのチャンドラバルマンの鉄柱(440mm径×9m長)は1600年間、地中埋設部分も腐蝕に耐えている。Fe純度が99.8%で含P鉄であることが解明されている。
Iron is a metal that easily rusts. Rust that occurs on cold-rolled steel sheets in the atmosphere is initially a group of punctate rust, but after worm-eaten and pockmarked, it becomes large corrosion holes. It is typical red rust, brown and porous. It is well understood that cold-rolled steel sheets need to be painted.
On the other hand, some of the ancient iron excavated from the tumulus has withstood corrosion for more than 1500 years even though it is not in a corrosion-resistant environment, and is so resistant to rust that it leaves a mark.
Similarly, it is well known that some of the tatara iron does not easily rust. For example, the polished surface of the current tatara iron fragments remains metallic luster indoors for more than 15 years like stainless steel. It is presumed that a thin non-conductor film (semi-transparent) is formed.
The black tile nails of large wooden buildings have been used for more than 1000 years.
The iron pillars of Chandra Balman (440 mm diameter x 9 m long) in India have withstood corrosion in the underground for 1600 years. It has been elucidated that Fe purity is 99.8% and it contains P iron.

非特許文献1には、タタラ鉄が錆びにくいメカニズムの解説がある。それによると、『タタラ製鉄においては、還元された砂鉄は木炭と接触して急速に吸炭して溶融鉄粒となり、羽口前で空気酸化して昇温・火花形成して炉底に落下し、凝固する。その際多量の酸素を固溶する。』、
『鍛錬に際しても、加熱と空気酸化により昇温して表面が溶解し、多量の酸素を溶解させる。即時の凝固により多量の酸素を固溶する。』、
『平衡論では溶融鉄はFeOと平衡する場合、Oは1530℃において0.17%以上溶解する。急速凝固により過飽和固溶となる。固溶した酸素は加熱や湿気がトリガーになり分解して表面に緻密なマグネタイト(不導体)である『黒錆』を短時間で生成する。この黒錆が腐蝕の進行を防止している』、と記載されている。
不導体膜のマグネタイトは薄いとほぼ透明であり金属光沢を示すが、膜厚が成長して緻密黒褐色を示すのが鉄の黒錆と見なされる。なおネット情報には黒錆と黒染めを混同しているものがある。
以上から鋼の腐蝕には鋼の純度と酸素含有量が関わっていると推測される。
Non-Patent Document 1 describes the mechanism by which tatara iron does not easily rust. According to the report, "In Tatara ironmaking, the reduced iron sand comes into contact with charcoal and rapidly absorbs coal to form molten iron grains, which are air-oxidized in front of the tuyere to raise the temperature and form sparks and fall to the bottom of the furnace. And solidify. At that time, a large amount of oxygen is dissolved as a solid solution. 』,
"Even during forging, the temperature rises due to heating and air oxidation, the surface dissolves, and a large amount of oxygen dissolves. A large amount of oxygen is dissolved by immediate solidification. 』,
"In equilibrium theory, when molten iron equilibrates with FeO, O dissolves 0.17% or more at 1530 ° C. Due to rapid solidification, it becomes a supersaturated solid solution. The solid solution of oxygen is triggered by heating and humidity and decomposes to generate "black rust", which is a dense magnetite (non-conductor) on the surface, in a short time. This black rust prevents the progress of corrosion. "
Magnetite, which is a non-conductive film, is almost transparent when it is thin and exhibits a metallic luster, but it is considered that iron black rust shows a dense dark brown color as the film thickness grows. Some online information confuses black rust and black dyeing.
From the above, it is inferred that the purity of steel and the oxygen content are related to the corrosion of steel.

非特許文献2には鋼の腐蝕の進行に及ぼす合金元素の影響に関する論文が抄録されている。それによると、酸溶液中での腐蝕に関する図V−6から以下が解る。
1)Cは明らかに腐蝕を進行させる。純鉄に近い鋼は錆びにくい。
2)冷延鋼板では腐蝕の進行が大きいが焼鈍材では大きく低下する。
残念ながらOの影響の研究例は見当たらない。
過飽和酸素により黒錆(不導体膜)が形成されて耐食性を発揮するが、黒錆が脱落した後は、無Cが耐食性を補助すると考えられる。
Non-Patent Document 2 abstracts a paper on the influence of alloying elements on the progress of corrosion of steel. According to it, the following can be seen from FIG. V-6 regarding corrosion in an acid solution.
1) C clearly promotes corrosion. Steel close to pure iron does not easily rust.
2) The progress of corrosion is large in cold-rolled steel sheets, but it is greatly reduced in annealed materials.
Unfortunately, there are no studies on the effects of O.
Black rust (non-conductor film) is formed by supersaturated oxygen to exhibit corrosion resistance, but it is considered that no C assists corrosion resistance after the black rust has fallen off.

非特許文献3には、酸素が合金元素として活用されている唯一の鋼種・製品として琺瑯用鋼板に関する記述がある。
該琺瑯用鋼板には2種あって、古い方はアームコ鉄やリムド鋼を使用する高酸素鋼(非脱酸鋼で0.03〜0.1%O)であり、他方は極低炭素Ti添加清浄鋼(脱酸鋼でO≦0.003%)である。
炭素含有の高酸素鋼(例;リムド鋼)は現在製造されていない。COガス気泡の大量発生が連続鋳造を阻害するからである。
いずれも琺瑯処理時のCOガス気泡の発生防止のため極低炭素鋼である。前者では多量に介在するMn酸化物が被覆ガラス層の付着性を強化するとのことである。当該鋼種は強度・延靭性・加工性等に特に問題はなく使用されているが、高酸素鋼板が耐食性に優れるとの記述は見つからない。琺瑯処理材自体が超耐食性であるから、生地になる鋼の耐食性には何ら問題とすることがないからであろう。
Non-Patent Document 3 describes a steel sheet for enamel as the only steel type / product in which oxygen is utilized as an alloying element.
There are two types of steel sheets for amber, the older one is high oxygen steel using armco iron or rimmed steel (0.03 to 0.1% O for non-deoxidized steel), and the other is ultra-low carbon Ti. Additive clean steel (O ≦ 0.003% for deoxidized steel).
Carbon-containing high oxygen steels (eg, rimmed steels) are not currently manufactured. This is because a large amount of CO gas bubbles hinders continuous casting.
Both are ultra-low carbon steels to prevent the generation of CO gas bubbles during enamel treatment. In the former case, a large amount of Mn oxide is said to enhance the adhesiveness of the coated glass layer. The steel type is used without any particular problems in strength, toughness, workability, etc., but there is no description that the high oxygen steel sheet has excellent corrosion resistance. This is probably because the enamel-treated material itself has super-corrosion resistance, so there is no problem with the corrosion resistance of the steel used as the fabric.

以上から錆びにくい鉄の条件は極低炭素と高酸素であることが判明したが、応用に際して問題は、
1)当該成分の鋼種が琺瑯鋼以外に現行のどの様な製品に適合するか、
2)適合しても当該製品における現行コストと競争可能かと言うことになる。
第1の適合する製品については、極低炭素鋼であるから必然的に低強度であり、それが許容される製品に限定される。
同様に高酸素であるから非金属介在物が多く、それが問題とならない製品に限定される。簡単には見当たらない。
他方第2のコスト問題については、琺瑯用鋼他極低炭素鋼の製造には現在すべてRH方式等真空脱炭処理が適用されている。当該処理設備を保有しない電炉普通鋼ミルでは設備・コスト負担は大きな障害となる。
From the above, it was found that the conditions for iron that does not easily rust are extremely low carbon and high oxygen.
1) What kind of current products are compatible with the steel grade of the relevant component other than enamel steel?
2) Even if it conforms, it will be possible to compete with the current cost of the product.
The first compatible product is inevitably low strength because it is an ultra-low carbon steel, and is limited to products to which it is acceptable.
Similarly, because of its high oxygen content, there are many non-metal inclusions, which are limited to products that do not matter. I can't find it easily.
On the other hand, regarding the second cost problem, vacuum decarburization treatment such as RH method is currently applied to all production of steel for enamel and other ultra-low carbon steel. For electric furnace ordinary steel mills that do not have the processing equipment, the equipment and cost burden is a major obstacle.

第2のコストについて検討する。
新鋼種・新製品の製造に当たっては通常の熔解精錬に、1)極低炭素への精錬と、2)通常の脱酸とは逆の酸素富化精錬が負荷されなければならない。高度の脱炭は今日RH法に代表される真空処理によってなされている。溶鋼の真空処理は本来脱ガス(H)用に開発され、高度脱酸に展開され、高度脱炭に拡張されてきた。
Consider the second cost.
In the production of new steel grades and new products, normal melting refining must be loaded with 1) refining to ultra-low carbon and 2) oxygen-enriched refining, which is the opposite of normal deoxidation. Advanced decarburization is done by vacuum treatment represented by the RH method today. Vacuum treatment of molten steel was originally developed for degassing (H), expanded to advanced deoxidation, and expanded to advanced decarburization.

特許文献1には、極低炭素・高酸素の高品質の琺瑯用鋼をRH法によって製造する方法が開示されている。上記成分への精錬はコストを除外すると特に困難ではない。
RH法は一般の深絞り用鋼板には極低炭素・低酸素へ向けて広く適用されている。
真空脱炭における問題は、
1) 長時間(例;20分以上)の処理による溶鋼温度低下に対処するため再加熱を後続又は先行させなければならない。
2) 真空処理は脱ガス促進のため、高真空度で且つスラグレス下でなされる。溶鋼面での気泡の破裂による飛散溶鋼が真空容器内面又はレードル上部内面へ付着することが避けられず、耐火物消費と付着地金処理の作業負担が大きい。
Patent Document 1 discloses a method for producing high-quality enamel steel having extremely low carbon and high oxygen by the RH method. Refining the above ingredients is not particularly difficult except for the cost.
The RH method is widely applied to general deep drawing steel sheets toward ultra-low carbon and low oxygen.
The problem with vacuum decarburization is
1) Reheating must be followed or preceded in order to cope with the temperature drop of the molten steel due to the treatment for a long time (eg, 20 minutes or more).
2) The vacuum treatment is performed at a high degree of vacuum and under slagless to promote degassing. Scattered due to the bursting of air bubbles on the molten steel surface It is inevitable that the molten steel adheres to the inner surface of the vacuum vessel or the inner surface of the upper part of the ladle, and the work load of refractory consumption and the treatment of the adhered bullion is large.

特許文献2には、ステンレス鋼の溶製において脱炭に有利な方法(AODプロセス)が開示されている。それによると、アーク炉中の溶鋼を転炉状の精錬炉(AOD炉)に移送し、酸素混合ガスを吹き込んでCrの酸化を抑制しつつ脱炭を進める際、炉内を減圧することにより極低炭素までの脱炭効率他を飛躍的に向上させる。さらに好都合なことに、部分的なCrの酸化発熱により再加熱を要しないことである。
本方法を普通鋼に適用しようとすると、熱源(Crの酸化)が無いのでアーク炉の下流にAOD炉と再加熱炉とが必要になり設備費・操業費の問題が大きく実用例は無い。
Patent Document 2 discloses a method (AOD process) advantageous for decarburization in melting stainless steel. According to the report, when the molten steel in the arc furnace is transferred to a converter-shaped smelting furnace (AOD furnace) and oxygen mixed gas is blown into it to suppress the oxidation of Cr and proceed with decarburization, the pressure inside the furnace is reduced. Dramatically improve decarburization efficiency up to extremely low carbon. More conveniently, reheating is not required due to partial heat generation of Cr oxidation.
When this method is applied to ordinary steel, since there is no heat source (oxidation of Cr), an AOD furnace and a reheating furnace are required downstream of the arc furnace, and there are no practical examples due to problems of equipment cost and operating cost.

以上、真空処理は特殊鋼の製造と品質強化に適用されるが、普通鋼に対しては大型転炉による大量生産意外は設備費・エネルギー費・耐火物費等の負担が大きく、特に再加熱工程(再加熱設備)が不可欠となっている。従って真空設備の付設には至っていない。真空処理の抜本的コスト低減が期待されるが、現行の真空処理方法では極めて困難である。 As mentioned above, vacuum treatment is applied to the production and quality enhancement of special steel, but for ordinary steel, the burden of equipment cost, energy cost, refractory cost, etc. is large except for mass production by large converter, especially reheating. The process (reheating equipment) is indispensable. Therefore, no vacuum equipment has been installed. A drastic cost reduction of vacuum processing is expected, but it is extremely difficult with the current vacuum processing method.

特許文献3にはレードル精錬における簡素な真空処理が記載されている。それによるとアーク炉中で予備脱酸された溶鋼をFeOの少ない浮遊スラグとともに側壁気密のレードルに受け、該レードルの上下を真空カバーにより密封し、上部カバーから減圧しつつレードル底部から不活性ガスを吹込み、低真空状態で溶鋼上部に溶鋼+気泡+スラグの混合体を形成して脱酸・脱硫・脱非金属介在物を誘導する。攪拌エネルギーが大きいので反応速度が大きく、真空処理に不可欠の再加熱工程を必要としていない。
当該方法によりコスト負担が小さく高級弁ばね材等が製造されてきた。問題は極低炭素鋼の製造が可能かどうかについては開示が無い。さらに脱酸用の設備であって、逆の高酸素鋼の製造に適切かどうかも不明である。
Patent Document 3 describes a simple vacuum treatment in ladle refining. According to this, the molten steel pre-deoxidized in the arc furnace is received by the airtight radle on the side wall together with the floating slag with less FeO, the top and bottom of the radle are sealed with a vacuum cover, and the inert gas is depressurized from the bottom of the radle while depressurizing from the top cover. Is blown in, and a mixture of molten steel + bubbles + slag is formed on the upper part of the molten steel in a low vacuum state to induce deoxidation, desulfurization, and non-metal inclusions. Since the stirring energy is large, the reaction rate is high, and the reheating step indispensable for vacuum processing is not required.
High-grade valve spring materials and the like have been manufactured by this method with a small cost burden. The problem is that there is no disclosure as to whether it is possible to produce ultra-low carbon steel. Furthermore, it is unclear whether the equipment is suitable for the production of reverse hyperoxygen steel because it is a deoxidizing facility.

日本鉄鋼協会編、ふぇらむVol24(2019),No.9,P.16、永田和宏、 『化学は疑ってかかれ−6タタラと錆びがたい鉄』The Iron and Steel Institute of Japan, Ferham Vol24 (2019), No.9, P.16, Kazuhiro Nagata, "Chemistry is Suspicious-6 Tatara and Rust-resistant Iron" 日本鉄鋼協会編、鉄鋼材料と合金元素、P.223, Fig.V-6The Iron and Steel Institute of Japan, Steel Materials and Alloy Elements, P.223, Fig.V-6 日本鉄鋼協会編、鉄鋼材料と合金元素、P.751, Fig.19.34The Iron and Steel Institute of Japan, Steel Materials and Alloy Elements, P.751, Fig.19.34 日本鉄鋼協会編、鉄鋼材料と合金元素、P.741, Fig.19.12The Iron and Steel Institute of Japan, Steel Materials and Alloy Elements, P.741, Fig.19.12

公開特許公報2001−271179Published Patent Publication 2001-271179 公開特許公報2010−156021Published Patent Publication 2010-156021 公開特許公報昭57−192214Published Patent Publication No. 57-192214

同じような鉄・鋼でありながら錆びやすいもの・錆びにくいものがあることはよく知られ、赤錆は進行するが黒錆は停滞することも知られ、黒錆の一つの冶金的条件は成分が極低炭素であり且つ高酸素であると推測される。
本発明の解決すべき課題の第1は、錆にくいことを特徴とする成分が極低炭素であり且つ高酸素である鋼種を効果的に活かせる用途を探索すること、
第2は、探索された適切な製品をコスト上問題なく製造することであり、
具体的には、特にコスト負担の大きい高度脱炭精錬を普通鋼並みに、経済的に処理し得る方法を提供することである。
It is well known that there are similar irons and steels that are easy to rust and hard to rust, and it is also known that red rust progresses but black rust stagnates. It is presumed to be extremely low carbon and high oxygen.
The first problem to be solved by the present invention is to search for an application that can effectively utilize a steel grade whose component is extremely low carbon and high oxygen, which is characterized by being resistant to rust.
The second is to manufacture the appropriate products that have been searched for without any cost problems.
Specifically, it is to provide a method that can economically process advanced decarburization refining, which has a particularly large cost burden, as much as ordinary steel.

第1の発明は、組成成分が質量%において、Cが0.01%以下、Siが0.01%以下、Oが0.05%以上0.13%以下、Mnが0.5%以下、Pが0.03%以下、Sが0.03%以下であり、熱間加工後の抗張力が300MPa未満であり、金属組織が均一フェライトであることを特徴とする高耐食性で極軟質の制御冷却鋼材である。 In the first invention, when the composition component is mass%, C is 0.01% or less, Si is 0.01% or less, O is 0.05% or more and 0.13% or less, Mn is 0.5% or less, High corrosion resistance and ultra-soft controlled cooling characterized by P of 0.03% or less, S of 0.03% or less, tensile strength after hot working of less than 300 MPa, and uniform ferrite metal structure. It is a steel material.

第2の発明は、制御冷却鋼材がZnメッキ不要の蛇篭用線材、Znメッキ不要のグレーチング用平鋼、Znメッキ不要のガス管、Znメッキ不要の鋼板、厚板・薄板・平鋼・棒鋼・線材のどれかを素材として表面絶縁処理不要の電磁鉄心用鋼材のどれかであることを特徴とする第1発明に記載した高耐食性で極軟質の制御冷却鋼材である。 In the second invention, the control cooling steel material is a wire rod for a serpentine that does not require Zn plating, a flat steel for glazing that does not require Zn plating, a gas pipe that does not require Zn plating, a steel plate that does not require Zn plating, a thick plate / thin plate / flat steel / bar steel. The highly corrosion-resistant and extremely soft controlled cooling steel material described in the first invention, which is one of the steel materials for an electromagnetic iron core that does not require surface insulation treatment using any of the wire rods as a material.

第3発明は、抗張力を300MPa未満とし、金属組織を均一フェライトにする手段が、熱間加工温度を中間圧延以後は910℃以下の温度としてフェライト単一領域で行い、その後徐冷することを特徴とする第1発明又は第2発明に記載した高耐食性で極軟質の制御冷却鋼材の製造方法である。 The third invention is characterized in that the means for making the tensile strength less than 300 MPa and making the metal structure uniform ferrite is performed in a single ferrite region at a hot working temperature of 910 ° C. or lower after intermediate rolling, and then slowly cooled. This is a method for producing a highly corrosion-resistant and extremely soft controlled cooling steel material according to the first invention or the second invention.

第4の発明は、Cを0.01%以下、Oを0.05%以上0.13%以下とする方法が、溶解炉において溶鋼中のC濃度を0.05%以下に酸化し、FeO濃度が20%以上で塩基度が1.0以上1.5以下の浮遊スラグとともに該溶鋼をレードルに排出し、該レードル底部から酸素含有ガスを吹き込んでCO反応の促進とFeの酸化を進め、次いで該レードル上部開口に気密カバーを取り付け、該気密カバー内空間を真空ポンプにより
50torr以上200torr以下に減圧しつつ吹込みを継続してC量とO量を第1発明に記載した範囲に制御することを特徴とする高耐蝕性で極軟質の制御冷却鋼材の製造方法である。
In the fourth invention, the method of setting C to 0.01% or less and O to 0.05% or more and 0.13% or less oxidizes the C concentration in molten steel to 0.05% or less in a melting furnace and FeO. The molten steel is discharged into a radle together with floating slag having a concentration of 20% or more and a basicity of 1.0 or more and 1.5 or less, and an oxygen-containing gas is blown from the bottom of the radle to promote the CO reaction and promote the oxidation of Fe. Next, an airtight cover is attached to the upper opening of the radle, and the airtight cover inner space is reduced to 50 torr or more and 200 torr or less by a vacuum pump while blowing is continued to control the amount of C and the amount of O within the range described in the first invention. This is a method for producing a controlled cooling steel material having high corrosion resistance and extremely softness.

ここで述語の定義として、本来鋼は鉄と炭素との合金と定義されているので、本発明の『鋼材』は実質Cフリーであるので鋼ではなく鉄酸素合金となる。しかし0.01%C以下の鉄でも『極低炭素鋼』と通称されており、用途も通常の鋼材と重なっているのでこれに追随した。
『熱間加工』とは、実質熱間圧延であり、鋼管の対しては熱間押出しも含む。
『熱間加工の温度』は加工直前の温度とする。
『徐冷』とは空冷よりも小さい冷却速度であり、5.5mm径の線材では空冷が約7℃/sに対して半減を目安に4℃/s以下とする。径が大きいと空冷でも徐冷になる。
(冷却速度は900℃から500℃までの平均とする)
『制御冷却』とは通常オーステナイトから所望の金属組織と機械的性質を得るための冷却条件を制御することである。第3発明では直接焼鈍に該当した熱処理と言える。
成分の濃度を示す『%』は、本明細書においてはすべて質量%とする。
Here, as the definition of the predicate, since steel is originally defined as an alloy of iron and carbon, the "steel material" of the present invention is substantially C-free, so that it is not steel but an iron-oxygen alloy. However, even iron with 0.01% C or less is commonly called "ultra-low carbon steel", and its use overlaps with ordinary steel materials, so it followed suit.
"Hot working" is substantially hot rolling, and includes hot extrusion for steel pipes.
The "hot working temperature" is the temperature immediately before machining.
"Slow cooling" is a cooling rate lower than that of air cooling, and for a wire rod with a diameter of 5.5 mm, the air cooling is about 7 ° C / s, but the air cooling is set to 4 ° C / s or less as a guide. If the diameter is large, it will be slowly cooled even with air cooling.
(The cooling rate is the average from 900 ° C to 500 ° C)
"Controlled cooling" is usually the control of cooling conditions to obtain the desired metallographic structure and mechanical properties from austenite. In the third invention, it can be said that the heat treatment corresponds to direct annealing.
In the present specification, "%" indicating the concentration of the component is all mass%.

本発明の極軟質の制御冷却鋼材の第1の効果は、酸素を過飽和に含有する結果、赤錆(水酸化鉄)が発生しにくく、黒錆(マグネタイト)が発生して以後の錆の進行が抑制され、高耐食性鋼材となる。
高耐食性鋼材の経済的な応用事例として、蛇篭用鉄線が挙げられる。該製品は線材を所望径に伸線し次いで亜鉛メッキが施されるが、本発明の熱間圧延線材がそのまま、又は線径が通常の線材よりも小さい場合は再度熱間圧延して所望径とした鉄線を亜鉛メッキせずに蛇篭用鉄線として使用することができ、コスト上大いに有利になる。
グレーチングやガス管、薄板等においても同様の効果が得られる。
今後の改良次第ではステンレス鋼製品の一部が本発明の鋼材に代替される可能性を秘める。
The first effect of the ultra-soft controlled cooling steel material of the present invention is that as a result of containing oxygen in hypersaturation, red rust (iron hydroxide) is less likely to occur, and black rust (magnetite) is generated and subsequent rust progresses. It is suppressed and becomes a highly corrosion-resistant steel material.
An example of an economical application of a highly corrosion-resistant steel material is an iron wire for a gabion. In the product, the wire is drawn to a desired diameter and then galvanized. However, if the hot-rolled wire of the present invention is used as it is, or if the wire diameter is smaller than that of a normal wire, hot-rolled again to obtain the desired diameter. The iron wire can be used as an iron wire for gabion without galvanizing, which is a great advantage in terms of cost.
The same effect can be obtained with grating, gas pipes, thin plates, etc.
Depending on future improvements, some stainless steel products may be replaced by the steel materials of the present invention.

第2に、本発明の鋼材の強度は、1)鉄の純度は99%以上で、強化元素であるC、Siを含有しないこと、2)軟鋼の通常の熱間圧延・空冷では、γ−α共存域で圧延した場合に強度が最低になる、3)炭化物の析出が無いので軟化のための球状化への時間が不要となって、これ以上の軟化が無い水準であり、極軟質直接焼鈍鋼材が得られる。一般の規格強度に達しないが、強度不足が問題となる場合は厚肉化により対処することができる。 Secondly, the strength of the steel material of the present invention is as follows: 1) The purity of iron is 99% or more and does not contain C and Si which are reinforcing elements. 2) In normal hot rolling and air cooling of mild steel, γ- The strength is the lowest when rolled in the α coexistence region. 3) Since there is no precipitation of carbides, there is no need for time for spheroidization for softening, and there is no further softening. Annealed steel material can be obtained. If the strength does not reach the general standard strength, but insufficient strength becomes a problem, it can be dealt with by thickening.

第3に、本発明の制御冷却鋼板は実質純鉄であるから磁気ヒステリシス損が極めて小さく、高級な電磁鋼板と大差がないこと、熱間圧延仕上げであるから表面は酸化膜が形成されていて絶縁性は不十分だが誘導電流損も大きくないことから状況によっては通常の高級・高価な電磁鋼板に代替することができ、コスト低減効果が大きい。電磁性能が多少低位になるので、稼働率の低い電磁コイルや電動機、直流電動機等の鉄心として使用することができる。薄板を積層せず、厚板や棒鋼から切り出して直接成形して鉄心とすることもできる。 Thirdly, since the controlled cooling steel sheet of the present invention is substantially pure iron, the magnetic hysteresis loss is extremely small, which is not much different from that of a high-grade electromagnetic steel sheet, and because it is a hot-rolled finish, an oxide film is formed on the surface. Although the insulation is insufficient, the induced current loss is not large, so it can be replaced with ordinary high-grade and expensive electromagnetic steel sheets depending on the situation, and the cost reduction effect is great. Since the electromagnetic performance is somewhat low, it can be used as an iron core for an electromagnetic coil, a motor, a DC motor, etc., which have a low operating rate. It is also possible to cut out from a thick plate or steel bar and directly form it into an iron core without laminating thin plates.

第4に、本発明の超軟質の制御冷却鋼材を製造するに際して新たに必要となる精錬装置は、真空度の低い簡単な減圧装置のみであって、従来の脱炭装置としての例えばRH法と比較して設備費は数分の1以下である。操業費についても、再加熱工程が無いこと、高真空のためのスチームエジェクターのような高エネルギーコストを要しないこと、少電力費の真空ポンプであること、高速精錬により耐火物の耐久がよいこと等現行の極低炭素鋼の精錬コストと比較して圧倒的に有利である。 Fourth, the only refining device newly required for producing the ultra-soft controlled cooling steel material of the present invention is a simple decompression device having a low degree of vacuum, which is the same as the conventional decarburization device such as the RH method. In comparison, the equipment cost is less than a fraction. Regarding operating costs, there is no reheating process, high energy costs such as steam ejectors for high vacuum are not required, vacuum pumps with low power costs, and refractory durability is good due to high-speed refining. It is overwhelmingly advantageous compared to the current refractory cost of ultra-low carbon steel.

第5に、本発明のレードルにおける脱炭方法は、従来の真空処理と同様に減圧するが、軽度の減圧であり、且つ従来と異なりスラグを介在しているので気泡破裂による溶鋼の飛散、耐火物壁面への地金付着が無く、作業性と耐火物処理に関して格段に優れる。 Fifth, the decarburization method in the ladle of the present invention reduces the pressure in the same manner as the conventional vacuum treatment, but the pressure is slightly reduced and slag is interposed unlike the conventional method, so that the molten steel is scattered due to bubble burst and refractory. There is no bare metal adhering to the wall surface of the object, and it is extremely excellent in terms of workability and refractory treatment.

本発明の高耐食性・極軟質の制御冷却鋼材を溶製する精錬装置の概略構造を示す。The schematic structure of the refining apparatus for melting the highly corrosion-resistant, ultra-soft controlled cooling steel material of the present invention is shown. 線材に対して熱間圧延後の冷却方法を示し、Aは本発明の徐冷で5.5mm径の線材では冷却速度は約4℃/sとなる。Bは通常の空冷で7℃/sである。The cooling method after hot rolling is shown for the wire rod, and A is the slow cooling of the present invention, and the cooling rate is about 4 ° C./s for the wire rod having a diameter of 5.5 mm. B is 7 ° C./s with normal air cooling. Fe−P系の状態図であり、γループの部分を示す。It is a phase diagram of the Fe-P system, and shows the part of the γ loop. 鉄の0.1モル濃度塩酸中における腐蝕速度に及ぼすC%の影響を示す。横軸はC%,縦軸は腐蝕速度を示す。 出典; 日本鉄鋼協会編、鉄鋼材料と合金元素(新版)、P.223,図Fig.V-6The effect of C% on the corrosion rate in 0.1 molar hydrochloric acid of iron is shown. The horizontal axis shows C% and the vertical axis shows the corrosion rate. Source: The Iron and Steel Institute of Japan, Steel Materials and Alloy Elements (New Edition), P.223, Fig. V-6 出鋼時における溶鋼中のC%とO%の関係を示す。軸は英語表記であるが、横軸はC%,縦軸はO量(ppm)である。 出典;日本鉄鋼協会編、217,218西山記念技術講座、P.164、図2The relationship between C% and O% in molten steel at the time of steel ejection is shown. The axis is written in English, but the horizontal axis is C% and the vertical axis is O amount (ppm). Source: The Iron and Steel Institute of Japan, 217,218 Nishiyama Memorial Technical Course, P.164, Fig. 2 脱炭反応時のスラグの発泡高さに及ぼす脱炭速度とFeO%の影響を示す。 出典; 荻野和己著、アグネ技術センター、高温界面化学下巻p.41,図18.55The effects of decarburization rate and FeO% on the foaming height of slag during the decarburization reaction are shown. Source: Kazumi Ogino, Agne Technology Center, High Temperature Surface Chemistry Vol. 2, p.41, Fig. 18.55 脱炭反応時のスラグの発泡高さに及ぼすスラグ塩基度(CaO/SiO2 )の影響を示す。 出典; 荻野和己著、アグネ技術センター、高温界面化学下巻p.41,図18.54 The effect of slag basicity (CaO / SiO 2 ) on the foaming height of slag during the decarburization reaction is shown. Source: Kazumi Ogino, Agne Technology Center, High Temperature Surface Chemistry Vol. 2, p.41, Fig. 18.54 溶鋼の均一混合時間(反応速度の逆数の代替要因)に及ぼす攪拌エネルギー密度の影響を示す。縦軸は均一混合時間(sec)で横軸は攪拌エネルギー密度(W/ton)である。出典に本発明のデータを付け加えた。 出典; 梶岡博幸著,発行;地人書館、『取鍋精錬法』、P.94,[図2.51]The effect of stirring energy density on the uniform mixing time of molten steel (an alternative factor for the reciprocal of the reaction rate) is shown. The vertical axis is the uniform mixing time (sec) and the horizontal axis is the stirring energy density (W / ton). The data of the present invention was added to the source. Source: Hiroyuki Kajioka, published by Chijin Shokan, "Tori Nabe Smelting Method", P.94, [Fig. 2.51]

以下本発明の高耐食性・極軟質の制御冷却鋼材の製造方法を図面を参照しつつ説明する。
図1において、アーク炉(図示せず)により原料のスクラップを熔解し、酸素吹錬して溶鋼中のC濃度を0.05%以下とした後、レードル台車1上のレードル2に該溶鋼をスラグとともに出鋼する。酸化精錬によりSiは0.01%以下、Mnは0.2%以下、P,Sは約0.03%、Oは約0.06%となる。スラグ組成は石灰投入量を加減して塩基度を1.0以上1.5以下としておく。スラグ中のFeO濃度は酸素吹錬により約20%以上となっている。
Hereinafter, a method for producing a controlled cooling steel material having high corrosion resistance and extremely softness of the present invention will be described with reference to the drawings.
In FIG. 1, scrap of raw material is melted by an arc furnace (not shown), oxygen is blown to reduce the C concentration in the molten steel to 0.05% or less, and then the molten steel is placed in the ladle 2 on the ladle trolley 1. Scrap out with slag. By oxidative refining, Si becomes 0.01% or less, Mn becomes 0.2% or less, P and S become about 0.03%, and O becomes about 0.06%. The slag composition has a basicity of 1.0 or more and 1.5 or less by adjusting the amount of lime input. The FeO concentration in the slag is about 20% or more by oxygen blowing.

受鋼に際して該レードル2の底部に設けた耐火物製の吹込みプラグ3を通して酸素と不活性ガス等の混合ガスを溶鋼4中に吹き込む。C含有の未脱酸鋼を出鋼するとCO反応により激しいCO沸騰が発生し、レードル2から溢れることがあるのでガス吹込みを併用して沸騰を安定させる。1〜3分の受鋼中に溶鋼中のCは約0.02%燃焼して0.03%以下となる。
受鋼後、レードル台車1を減圧装置に誘導するが、その間も吹込みを継続してCO反応を進める。
When receiving steel, a mixed gas such as oxygen and an inert gas is blown into the molten steel 4 through a refractory blowing plug 3 provided at the bottom of the ladle 2. When C-containing unacidified steel is ejected, violent CO boiling occurs due to the CO reaction, and the ladle 2 may overflow. Therefore, gas blowing is also used to stabilize the boiling. C in the molten steel burns about 0.02% during the receiving steel for 1 to 3 minutes and becomes 0.03% or less.
After receiving the steel, the ladle carriage 1 is guided to the decompression device, and during that time, the blowing is continued to proceed with the CO reaction.

減圧装置は、レードル2の鉄皮上部外周に設けた気密用フランジ6と接合する真空カバー5と該真空カバー5に付設された副資材投入ホッパー7と該真空カバー5に連接された吸引管8と該吸引管8に連接され吸引ガスを冷却する冷却塔9と該冷却塔9に後続しガス中の塵芥を除去するフィルター式の集塵機10とさらに後続し精錬ガスを吸引する真空ポンプ11と前記吹込みのためのガス供給系12とから成る。
該ガス供給系12は真空ポンプ11の排気ガスの一部を吸引しコンプレッサー13によって加圧した排ガス管14と酸素ガス管15と不活性ガス管16と上記3種のガスを適宜混合させるガス混合機17と混合ガスを溶鋼に吹き込むプラグ3とから成る。
The decompression device includes a vacuum cover 5 joined to an airtight flange 6 provided on the outer periphery of the upper part of the iron skin of the radle 2, an auxiliary material input hopper 7 attached to the vacuum cover 5, and a suction pipe 8 connected to the vacuum cover 5. A cooling tower 9 that is connected to the suction pipe 8 to cool the suction gas, a filter-type dust collector 10 that follows the cooling tower 9 and removes dust in the gas, a vacuum pump 11 that follows the cooling tower 9 and sucks the refined gas, and the above. It is composed of a gas supply system 12 for blowing.
The gas supply system 12 sucks a part of the exhaust gas of the vacuum pump 11 and pressurizes it by the compressor 13. Gas mixing of the exhaust gas pipe 14, the oxygen gas pipe 15, the inert gas pipe 16 and the above three types of gases as appropriate. It consists of a machine 17 and a plug 3 that blows mixed gas into molten steel.

レードル台車1が減圧装置に到達すると、前記真空カバー5が下降して該真空カバー5の下端が前記気密用フランジ6と接して該レードル上部空間を気密室に構成する。
直ちに真空ポンプ11を稼働させ、該空間を約100Torrに向かって減圧する。減圧に伴い、スラグ浮遊の溶鋼表面の性状は、それまでのガス吹込みによる局所噴出状から平坦な発泡状に変容して液面全体がが500mm以上上昇する。
該上昇部分には溶鋼・スラグ・気泡の混合体が形成される。それはオーバーフローした際の噴出物に鉄粒が多量に混合していることから解る。溶鋼・スラグ・気泡間の激しい攪拌により、起こるべき化学反応が急速に進行する。
When the ladle trolley 1 reaches the decompression device, the vacuum cover 5 is lowered and the lower end of the vacuum cover 5 comes into contact with the airtight flange 6 to form the upper space of the ladle into an airtight chamber.
Immediately, the vacuum pump 11 is operated to depressurize the space toward about 100 Torr. As the pressure is reduced, the surface of the molten steel floating in the slag changes from a locally ejected shape due to gas injection to a flat foamed shape, and the entire liquid level rises by 500 mm or more.
A mixture of molten steel, slag, and air bubbles is formed in the rising portion. It can be seen from the large amount of iron particles mixed in the ejecta when it overflows. Vigorous agitation between molten steel, slag, and bubbles accelerates the chemical reaction that should occur.

溶鋼中の残存Cは溶存Oと気泡中のO2 及びスラグ中のFeOと反応してCOとなって放出され、濃度を容易に0.01%以下とすることができる。
吹込みO2 はC%が多いときは主にCと反応しFeとはほとんど反応しないが、C%が0.05%以下となると反応はFe優先に移行し、溶鋼中O%の増加と酸化熱による溶鋼の昇温が発現する。
必要に応じて副資材ホッパー7から溶鋼中にMn合金等を添加して所定成分とする。
所定時間の精錬後、熱電対による溶鋼測温と固体電解質の酸素濃淡電池を原理とする酸素センサーによりO%を測定し、微調整後レードル2をビレット用連続鋳造機に移送し、連続鋳造に供する。
The residual C in the molten steel reacts with the dissolved O, O 2 in the bubbles, and Fe O in the slag and is released as CO, and the concentration can be easily reduced to 0.01% or less.
When the C% is high, the blown O 2 mainly reacts with C and hardly reacts with Fe, but when the C% is 0.05% or less, the reaction shifts to Fe priority and the O% in molten steel increases. The temperature rise of the molten steel due to the heat of oxidation develops.
If necessary, an Mn alloy or the like is added to the molten steel from the auxiliary material hopper 7 to obtain a predetermined component.
After refining for a predetermined time, O% is measured by measuring the temperature of molten steel with a thermocouple and an oxygen sensor based on an oxygen concentration cell of solid electrolyte, and after fine adjustment, transfer the radle 2 to a continuous casting machine for billets for continuous casting. To serve.

鋳造に際して通常、未脱酸鋼は凝固中に凝固界面に生ずるCO反応によって気泡群の発生・上昇が生じ、鋼塊ではリムド鋼となるが連続鋳造では吹き上がりの発生により鋳造不能となる。
しかし本発明ではC%は0.01%以下であって、CO反応は抑制され、問題なく鋳造することができる。
During casting, undeoxidized steel usually produces and rises air bubbles due to the CO reaction that occurs at the solidification interface during solidification, and ingot steel becomes rimmed steel, but continuous casting makes it impossible to cast due to the occurrence of blow-up.
However, in the present invention, C% is 0.01% or less, the CO reaction is suppressed, and casting can be performed without any problem.

熱間加工について線材圧延を例に説明する。得られた鋼片は通常の線材ミルに供され、熱間圧延により線材とされる。圧延温度を通常の普通鋼に合わせて漫然と設定していると中間圧延以後で900〜950℃になる。この範囲は本鋼種ではγ−α共存域になる。本発明ではより軟質化のため当該領域を避け、高温のγ域又は低温のα域で行う。
圧延後は図2に示すように、線材ミルには通常制御冷却装置(例;ステルモア・プロセス)が付設されている。本発明Aでは該装置による制御冷却を適用するが、送風を停止し、平行リング列のリングピッチを小さくして冷却速度を空冷Bよりも小さくし軟質化を補助する。
Hot working will be described by taking wire rod rolling as an example. The obtained steel pieces are subjected to a normal wire rod mill and are made into wire rods by hot rolling. If the rolling temperature is set loosely according to ordinary ordinary steel, it will be 900 to 950 ° C. after intermediate rolling. This range is the γ-α coexistence range for this steel grade. In the present invention, the region is avoided for softening, and the region is used in a high temperature γ region or a low temperature α region.
After rolling, as shown in FIG. 2, the wire mill is usually equipped with a controlled cooling device (eg, Stelmore process). In the present invention A, the controlled cooling by the device is applied, but the ventilation is stopped, the ring pitch of the parallel ring row is reduced, the cooling rate is made smaller than that of the air cooling B, and the softening is assisted.

本鋼種は炭素鋼ではなく、Fe−P合金と見なすのが正しい。なぜならCは0.01%以下で純鉄に近い。他方Pは平均約0.03%存在する上に、凝固時の樹枝状晶に起因して樹枝内・樹枝間でP濃度が異なり、通常後者は前者の2〜3倍となっている。圧延においてPのミクロ偏析帯が束状に分布している。
図3はFe−P状態図のγループの部分を示す。炭素鋼と異なり、A3 温度は合金量に従って低下するのではなく上昇する。図から濃縮部の濃度を0.06%Pと想定すると、A3 温度は約950℃、希薄部は約910℃になる。従って上記の共存域温度910〜950℃で圧延を行うと、帯状高P部が先行して、微量Cを排出しつつPを集め、無C高Pのα相を成長させ、残部は微量Cを含み低Pのγ相と成っている。Pの偏析を鮮明化する。 最終の金属組織は、精密に観察すると高Pフェライトと低Pフェライトが帯状に分布し厳密には均質ではない。γループ形成元素固有の組織問題が含まれる。
本発明ではCとPの分化を避け、より軟質化するため、熱間圧延温度はα又はγ単一域、即ち910℃以下又は950℃以上とし、より均一なフェライトを得る。軟化と耐食性に多少有利となる。
It is correct to regard this steel grade as an Fe-P alloy, not a carbon steel. Because C is 0.01% or less, which is close to pure iron. On the other hand, P is present at an average of about 0.03%, and the P concentration differs between the dendritic crystals at the time of solidification, and the latter is usually 2 to 3 times that of the former. At the time of rolling, the microsegregation zones of P are distributed in a bundle.
FIG. 3 shows a portion of the γ loop in the Fe-P phase diagram. Unlike carbon steel, A 3 temperature rises rather than falls as the amount of the alloy. Assuming 0.06% P concentration in the enrichment section from FIG., A 3 temperature of about 950 ° C., dilute portions of about 910 ° C.. Therefore, when rolling is performed at the above-mentioned coexistence region temperature of 910 to 950 ° C., the strip-shaped high P portion precedes and collects P while discharging a trace amount of C to grow an α phase having no C high P, and the remaining portion is a trace amount of C. It has a low P γ phase. Clarify the segregation of P. In the final metallographic structure, high P-ferrite and low-P-ferrite are distributed in a band shape when observed closely, and they are not strictly homogeneous. Includes microstructure problems specific to γ-loop forming elements.
In the present invention, in order to avoid the differentiation of C and P and to make the material softer, the hot rolling temperature is set to a single region of α or γ, that is, 910 ° C. or lower or 950 ° C. or higher to obtain a more uniform ferrite. It has some advantages in softening and corrosion resistance.

抗張力を300MPa未満と特定した理由は、1)図4に示すように焼鈍材は加工材と比較して耐食性に優れること、2)冷間加工性を最大化することであり、JISの軟鋼線材ではとても得られない強度水準を上限として特定した。軟鋼線材に十分な焼鈍を施したレベル以下を圧延のみで達成することに意義がある。軟質故に2次加工に有利であるほか、強度を要しない用途もいろいろある。 The reason for specifying the tensile strength to be less than 300 MPa is that 1) the annealed lumber has excellent corrosion resistance as compared with the processed lumber, and 2) the cold workability is maximized. The upper limit was the strength level that could not be obtained. It is significant to achieve below the level of sufficient annealing of mild steel wire only by rolling. In addition to being advantageous for secondary processing due to its softness, there are various applications that do not require strength.

溶鋼中の酸素濃度[O%]の挙動について説明する。
平衡論から[C%]と[O%]とは反比例の関係にある。
図5は酸素吹錬し、出鋼後の[C%]と[O%]との関係を示す。高酸素鋼を溶製するには、低炭素への脱炭精錬が前提となる。
図から[O%]を500ppm(0.05%)とするには[C%]は約0.05%以下としなければならない。当該[C%],[O%]濃度下で減圧処理を行うと[C]と[O]の反応が再活性され、激しい沸騰のため溶鋼はレードルから溢れ出し危険である。当問題に対して減圧前に0.03%C以下に脱炭しておかねばならない。[C%]の低下とともに沸騰強度も低下してくる。
The behavior of the oxygen concentration [O%] in the molten steel will be described.
From the theory of equilibrium, [C%] and [O%] are in inverse proportion to each other.
FIG. 5 shows the relationship between [C%] and [O%] after oxygen smelting and steel removal. Decarburization refining to low carbon is a prerequisite for melting high oxygen steel.
From the figure, in order to set [O%] to 500 ppm (0.05%), [C%] must be about 0.05% or less. When decompression treatment is performed under the [C%] and [O%] concentrations, the reaction of [C] and [O] is reactivated, and the molten steel overflows from the ladle due to intense boiling, which is dangerous. For this problem, decarburization must be done to 0.03% C or less before decompression. As the [C%] decreases, the boiling intensity also decreases.

そのためには既述のように受鋼中から適切な濃度の酸素含有ガスを吹き込んで脱炭を促進する。
吹込みガスの組成が不活性でも脱炭反応が進行するが、その場合脱酸反応を伴う。酸素含有ガスはCO反応による脱酸に対して新たな酸化を付加し、脱炭と酸化を並進させるだけでなく、Feの酸化による溶鋼の加熱が付随して、冷却過程である精錬において溶鋼温度低下を補償する。出鋼温度を多少高めに設定しておくと連続鋳造に向かって再加熱は不要になって大変好都合である。
For that purpose, as described above, oxygen-containing gas having an appropriate concentration is blown into the steel receiving material to promote decarburization.
The decarburization reaction proceeds even if the composition of the blown gas is inert, but in that case, a deoxidation reaction is involved. Oxygen-containing gas adds new oxidation to deoxidation by CO reaction and not only translates decarburization and oxidation, but also heats molten steel by oxidation of Fe, and the molten steel temperature in refining, which is a cooling process. Compensate for the decline. If the steel output temperature is set slightly higher, reheating becomes unnecessary toward continuous casting, which is very convenient.

本発明の鋼材の成分の特定について説明する。
極軟質を確保するため、適切な成分として、C;0.01%以下、Si;0.01%以下、Mn;0.5%以下、O;0.05以上0.13%以下、P;0.03%以下、S;0.03%以下、残りはFeと不可避不純物とする。
鋼の強化元素であるC、Siが含有せず、Mnについても必要最小限としている。
上記成分と既述の制御冷却により抗張力を300MPa未満とすることができる。
The specification of the component of the steel material of the present invention will be described.
To ensure ultra-softness, as appropriate components, C; 0.01% or less, Si; 0.01% or less, Mn; 0.5% or less, O; 0.05 or more and 0.13% or less, P; 0.03% or less, S; 0.03% or less, and the rest are Fe and unavoidable impurities.
It does not contain C and Si, which are the reinforcing elements of steel, and Mn is also kept to the minimum necessary.
With the above components and the above-mentioned controlled cooling, the tensile strength can be reduced to less than 300 MPa.

C%については、未脱酸鋼の鋳造においてCO気泡の連続発生による沸騰
(Rimming action)が発現しないように少なくとも0.02%以下が必要だが軟質化のため一層低位に設定した。
もう一つの理由は、図4に示し、且つ段落[0004]で既述したように冷延鋼板ではC%の増加に対応して腐蝕速度が増大するのでC%は少ないほど良い。
図4からもう一つの大きな結論は、焼鈍材の腐蝕速度は極めて小さいことである。これが段落[0032]において熱間圧延後徐冷する根拠となっている。
Regarding C%, at least 0.02% or less is required so that boiling (Rimming action) due to continuous generation of CO bubbles does not occur in casting of undeoxidized steel, but it is set to a lower level due to softening.
Another reason is that as shown in FIG. 4 and as described in paragraph [0004], the corrosion rate of the cold-rolled steel sheet increases in accordance with the increase in C%, so the smaller the C%, the better.
Another major conclusion from FIG. 4 is that the corrosion rate of the annealed material is extremely low. This is the basis for slow cooling after hot rolling in paragraph [0032].

Si%は、脱酸作用を排除するため0.01%以下とし、Mn%は、琺瑯鋼と同様の上限を設定した。
O%は琺瑯鋼の範囲を参考に、下限は琺瑯の付着性が問題となる0.05%とし、耐食性から上限は拡張した。
非特許文献5には純鉄の機械的性質に及ぼすOの影響が示され、0.013%Oまでは特に不都合が無いと解釈され、当該範囲とした。
以上、高耐食性を確保するための条件として、1)タタラを踏襲する高酸素(O;0.05〜0.13%O)、2)低炭素鋼(≦0.01%C)、3)焼鈍組織(<300MPa)の3要因を組み合わせて特定した。
Si% was set to 0.01% or less in order to eliminate the deoxidizing action, and Mn% was set to the same upper limit as that of enamel steel.
O% was set to 0.05%, which is a problem of enamel adhesion, with reference to the range of enamel steel, and the upper limit was extended from corrosion resistance.
Non-Patent Document 5 shows the influence of O on the mechanical properties of pure iron, and it is interpreted that there is no particular inconvenience up to 0.013% O, and the range is set as such.
As described above, as conditions for ensuring high corrosion resistance, 1) high oxygen (O; 0.05 to 0.13% O) following Tatara, 2) low carbon steel (≦ 0.01% C), 3) The three factors of the annealed structure (<300 MPa) were combined and identified.

不可避不純物の濃度は原料の等級に依存するが通常のスクラップでは合計約0.4%以下となる。鉄の純度は99.0%以上とすることができる。 The concentration of unavoidable impurities depends on the grade of the raw material, but it is about 0.4% or less in total for ordinary scrap. The purity of iron can be 99.0% or higher.

スラグ組成の特定について説明する。
スラグ組成は溶鋼の脱炭・酸化に影響を及ぼし、酸素含有ガスの吹込みによる脱炭・酸化を補助する。そのためにはスラグ中のFeO濃度は15%以上が必要である。
本発明におけるスラグのもう一つの役割は、真空処理に伴う気密カバーやレードル側壁への地金付着を防止することである。
通常の真空脱炭ではスラグレス下で高真空(1Torr以下)とするので、溶鋼表面での気泡の破裂により溶鋼が飛散して真空容器やレードル側壁に地金付着が堆積し、品質及び作業上の問題が大きい。
The identification of the slag composition will be described.
The slag composition affects the decarburization / oxidation of molten steel and assists the decarburization / oxidation by blowing oxygen-containing gas. For that purpose, the FeO concentration in the slag needs to be 15% or more.
Another role of the slag in the present invention is to prevent the metal from adhering to the airtight cover and the ladle side wall due to the vacuum treatment.
In normal vacuum decarburization, a high vacuum (1 Torr or less) is applied under slagless, so the molten steel scatters due to the bursting of bubbles on the surface of the molten steel, and the metal deposits accumulate on the vacuum vessel and the side wall of the ladle, resulting in quality and work. The problem is big.

スラグの存在と低真空は当飛散を防止するが問題もある。脱炭処理ではガス発生量が大きく、発泡高さが過大になると危険である。スラグは組成により発泡性が大きく異なる。
図6は転炉における酸素吹錬時の発泡高さに及ぼすガス量とFeO%の影響を示す。
図から、発泡高さは当然ながらガス量に比例して増大し、他方FeO濃度が大きいほど低下することが解る。ここからFeO濃度は20%以上とした。
The presence of slag and low vacuum prevent this scattering, but there are also problems. The decarburization process generates a large amount of gas, and it is dangerous if the foaming height becomes excessive. The foamability of slag varies greatly depending on the composition.
FIG. 6 shows the effects of the amount of gas and FeO% on the foaming height during oxygen blowing in a converter.
From the figure, it can be seen that the foaming height naturally increases in proportion to the amount of gas, while it decreases as the FeO concentration increases. From here, the FeO concentration was set to 20% or more.

同様に、図7は発泡高さに及ぼすスラグ塩基度の影響を示す。図から塩基度が1.5を超えると発泡高さは急速に増大する。ここから塩基度(=CaO/SiO2 )を1.0以上1.5以下と特定した。 Similarly, FIG. 7 shows the effect of slag basicity on foaming height. From the figure, when the basicity exceeds 1.5, the foaming height increases rapidly. From this, the basicity (= CaO / SiO 2 ) was specified to be 1.0 or more and 1.5 or less.

減圧処理条件について説明する。
通常の極低炭素鋼では0.005%C以下とするため高真空が条件となっている。攪拌ガス量にも制限があって反応速度は大きくない。
本発明では反応速度に比例的である攪拌エネルギー密度(kW/ton)を重視し、真空度よりもガス量に重点を置いている。
The decompression treatment conditions will be described.
In ordinary ultra-low carbon steel, high vacuum is a condition because it is 0.005% C or less. The amount of agitated gas is also limited and the reaction rate is not high.
In the present invention, the stirring energy density (kW / ton), which is proportional to the reaction rate, is emphasized, and the amount of gas is emphasized rather than the degree of vacuum.

図8は反応速度(均一混合時間で代替)に及ぼす攪拌エネルギー密度の影響を示す。本願発明の減圧処理では、真空度はRH法の1Torrに対して約100Torr、吹込みガス量は10倍以上で、攪拌力は数10倍となる。
真空度の適正範囲として下限は、ポンプの型式によって多少異なるが、1段の真空ポンプによって容易に得られる50Torr、上限は効果的な発泡が発現する200Torrとした。 真空装置とその動力費は極めて経済的になる。ちなみに高真空ではどの型式においても多段(3〜6)の排気装置が必要となる。
なお攪拌エネルギー密度は溶鋼容量に反比例し、ガス量に比例し、0.1気圧程度までは溶鋼上下の圧力比の対数に比例する。
FIG. 8 shows the effect of stirring energy density on the reaction rate (substitute by uniform mixing time). In the depressurization treatment of the present invention, the degree of vacuum is about 100 Torr with respect to 1 Torr of the RH method, the amount of blown gas is 10 times or more, and the stirring power is several tens of times.
The lower limit of the appropriate range of vacuum is 50 Torr, which can be easily obtained by a one-stage vacuum pump, and the upper limit is 200 Torr, which causes effective foaming, although the lower limit differs slightly depending on the pump model. Vacuum equipment and its power costs are extremely economical. By the way, in high vacuum, a multi-stage (3 to 6) exhaust system is required for all types.
The stirring energy density is inversely proportional to the molten steel capacity, proportional to the amount of gas, and proportional to the logarithm of the pressure ratio above and below the molten steel up to about 0.1 atm.

吹込みガス組成について、CO反応促進による脱炭だけが目的であるなら不活性ガスだけでよい。本発明では脱炭と酸化を並進させるため酸素混合ガスを使用する。純酸素はプラグの耐久に良くない。アルゴンガスは高価であるから使用量削減策として、真空ポンプの排気ガスの一部を回帰させる。排気ガスは、Ar,O2 ,CO,CO2 と多少のN2 から成る。 Regarding the composition of the blown gas, if the purpose is only decarburization by promoting the CO reaction, only the inert gas may be used. In the present invention, an oxygen mixed gas is used to translate decarburization and oxidation. Pure oxygen is not good for plug durability. Since argon gas is expensive, a part of the exhaust gas of the vacuum pump is returned as a measure to reduce the amount used. Exhaust gas consists of Ar, O 2 , CO, CO 2 and some N 2 .

以上、第1発明の高耐食性で極軟質の制御冷却鋼材について説明した。低強度が許容される製品に適用することが望ましい。
一例として、蛇篭用鉄線の製造工程は、軟鋼線材を素材として、所定径に伸線し、次いで亜鉛メッキして製品となっている。一部の金網も同様である。本発明の低炭素・高酸素の焼鈍鋼材は耐食性に優れるので亜鉛メッキが不要になる。
同様に、通常Znメッキされているグレーチング・ガス管・鋼板等もメッキが不要になる。
The controlled cooling steel material having high corrosion resistance and extremely softness of the first invention has been described above. It is desirable to apply it to products where low strength is acceptable.
As an example, in the manufacturing process of an iron wire for a gabion, a mild steel wire is used as a material, drawn to a predetermined diameter, and then galvanized to obtain a product. The same applies to some wire meshes. The low-carbon, high-oxygen annealed steel material of the present invention has excellent corrosion resistance, so that zinc plating is not required.
Similarly, grating, gas pipes, steel plates, etc., which are usually Zn-plated, do not need to be plated.

あえて強度を必要とせずまた非金属介在物も問題とならない鋼種・製品として、電磁鋼板がある。本発明の制御冷却鋼材は実質純鉄であるから磁気ヒステリシス損が極めて小さいこと、熱間圧延仕上げであるから表面は酸化膜が形成されていて絶縁性は不十分だが誘導電流損も大きくないことから場合によっては通常の高級・高価な高Si電磁鋼板に代替することができる。電磁性能が多少低位になるが、稼働率の低い電磁コイルや電動機、直流機器等の鉄心として使用しても電磁損失は小さい。総合コストで高級電磁鋼板に対して有利になる。
鉄心を形成するに際して、厚板や平鋼を2次熱間圧延して所望厚として従来通り薄板を積層しても良いが、他に、厚板・平鋼・棒鋼をそのまま打ち抜き又は冷間成型後焼鈍すればよい。コストは従来よりも削減される。
Electrical steel sheets are a type of steel / product that does not require strength and does not pose a problem with non-metal inclusions. Since the controlled cooling steel material of the present invention is substantially pure iron, the magnetic hysteresis loss is extremely small, and since it is a hot-rolled finish, an oxide film is formed on the surface and the insulating property is insufficient, but the induced current loss is not large. In some cases, it can be replaced with ordinary high-grade and expensive high-Si electromagnetic steel sheets. Although the electromagnetic performance is somewhat low, the electromagnetic loss is small even when used as an iron core for electromagnetic coils, motors, DC devices, etc., which have a low operating rate. It is advantageous for high-grade electrical steel sheets at the total cost.
When forming the iron core, a thick plate or flat steel may be secondarily hot-rolled to obtain a desired thickness, and thin plates may be laminated as before. It may be post-annealed. The cost is reduced more than before.

圧延後の徐冷に関して、棒鋼等径又は厚さが10mm以上あるなら空冷によって実質徐冷になる。特別の設備を必要としない。
平鋼・形鋼・厚板・鋼管の場合も線材・棒鋼と同様に処理すればよい。特に問題は無い。
Regarding slow cooling after rolling, if the steel bar has the same diameter or thickness of 10 mm or more, it is substantially cooled by air cooling. No special equipment required.
Flat steel, shaped steel, planks, and steel pipes may be treated in the same manner as wire rods and steel bars. There is no particular problem.

本発明のホットコイル状厚板を通常通り冷延鋼板に加工し、光輝焼鈍すればステンレス鋼板に代替可能な薄板が得られる可能性がある。 If the hot coiled thick plate of the present invention is processed into a cold-rolled steel plate as usual and annealed by brilliance, a thin plate that can replace the stainless steel plate may be obtained.

熔解原料として、新断プレス等の高級屑の配合量に考慮する。熔落成分は、C;0.1〜0.2%、Si;0.01%以下、Mn;約0.2%、Cu+Ni+Cr;約0.3%となる。本発明に適合する。 Consider the amount of high-grade waste such as new press as a melting material. The melted components are C; 0.1 to 0.2%, Si; 0.01% or less, Mn; about 0.2%, and Cu + Ni + Cr; about 0.3%. Fits the present invention.

容量30トンのアーク炉に後続するレードル精錬の減圧装置の仕様は以下である。
排気能力; 500Nm3/h×3台
吹込みガス量; 0.2〜0.5Nm3/分
処理圧力; 70〜200Torr
攪拌エネルギー密度; 0.1〜0.3kW/t
処理時間; 5〜7分
到達C%; 0.010%以下
一般のLF(アーク加熱保有のレードル精錬装置)よりも低コストで操業可能である。
The specifications of the decompression device for ladle refining following the arc furnace with a capacity of 30 tons are as follows.
Exhaust capacity; 500 Nm 3 / h x 3 units Blow-in gas amount; 0.2 to 0.5 Nm 3 / minute Processing pressure; 70 to 200 Torr
Stirring energy density; 0.1 to 0.3 kW / t
Processing time: 5 to 7 minutes reached C%; 0.010% or less It can be operated at a lower cost than general LF (ladle smelting equipment with arc heating).

線材の熱間圧延条件の要点は以下。
仕上げ圧延温度; 920℃
制御冷却; 徐冷
以上の条件により鋼材の抗張力は280MPaが得られる。
The main points of hot rolling conditions for wire rods are as follows.
Finish rolling temperature; 920 ° C
Controlled cooling; slow cooling Under the above conditions, the tensile strength of the steel material is 280 MPa.

本発明により極軟質の鋼材の製造が可能になり、且つ現行の種々の製品に高耐食性を与えることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to produce an extremely soft steel material, and it is possible to impart high corrosion resistance to various existing products.

1;レードル台車 2;レードル 3;吹込みプラグ 4;溶鋼 5;真空カバー 6;気密フランジ 7;副資材ホッパー 8;吸引管 9;冷却塔 10;集塵機 11;真空ポンプ 12;ガス供給系 13;コンプレッサー 14;加圧排ガス管 15;酸素ガス管 16;不活性ガス管 17;混合器 1; Radle trolley 2; Radle 3; Blow-in plug 4; Molten steel 5; Vacuum cover 6; Airtight flange 7; Secondary material hopper 8; Suction pipe 9; Cooling tower 10; Dust collector 11; Vacuum pump 12; Gas supply system 13; Compressor 14; Pressurized exhaust gas pipe 15; Oxygen gas pipe 16; Inactive gas pipe 17; Mixer

Claims (3)

錆びにくい鋼材の製造方法であって、組成成分を質量%において、Cが0.01%以下、Siが0.01%以下、Oが0.05%以上0.13%以下、Mnが0.5%以下、Pが0.03%以下、Sが0.03%以下、残部がFeと不可避不純物(主にCu+Ni+Cr)であり、鉄の純度を99.0%以上とし圧延温度を910℃以上950℃以下の範囲を避けてγ又はα単相域で圧延することによりPの偏在を緩和し、圧延後徐冷して抗張力を300MPa未満とし、亜鉛メッキを必要としないことを特徴とする蛇篭用熱延線材、又はグレーチング用熱延平鋼、又は熱延ガス管、又はZnメッキ鋼板の代替鋼板の製造方法 A method for producing a steel material that does not easily rust. When the composition component is mass%, C is 0.01% or less, Si is 0.01% or less, O is 0.05% or more and 0.13% or less, and Mn is 0. 5% or less, P 0.03% or less, S 0.03% or less, the balance is Fe and unavoidable impurities (mainly Cu + Ni + Cr), the purity of iron is 99.0% or more, and the rolling temperature is 910 ° C. It is characterized in that uneven distribution of P is alleviated by rolling in the γ or α single-phase region while avoiding the range of 950 ° C. or lower, the tensile strength is reduced to less than 300 MPa by slowly cooling after rolling, and zinc plating is not required. A method for manufacturing a hot-rolled wire rod for a rust, a hot-rolled flat steel for grazing, a hot-rolled gas pipe, or a substitute steel plate for a Zn-plated steel plate. 錆びにくい鋼材の製造方法であって、組成成分を質量%において、Cが0.01%以下、Siが0.01%以下、Oが0.05%以上0.13%以下、Mnが0.5%以下、Pが0.03%以下、Sが0.03%以下、残部がFeと不可避不純物(主にCu+Ni+Cr)であり、鉄の純度を99.0%以上とし、圧延温度を910℃以上950℃以下の範囲を避けてγ又はα単相域で圧延することによりPの偏在を緩和し、圧延後徐冷して抗張力を300MPa未満とし、表面が酸化膜のままであることを特徴とする電磁鉄心材料の製造方法 A method for producing a steel material that does not easily rust. When the composition component is mass%, C is 0.01% or less, Si is 0.01% or less, O is 0.05% or more and 0.13% or less, and Mn is 0. 5% or less, P is 0.03% or less, S is 0.03% or less, the balance is Fe and unavoidable impurities (mainly Cu + Ni + Cr) , the purity of iron is 99.0% or more, and the rolling temperature is 910 ° C. It is characterized by alleviating uneven distribution of P by rolling in the γ or α single-phase region while avoiding the range of 950 ° C. or lower, slowly cooling after rolling to reduce the tensile strength to less than 300 MPa, and the surface remaining as an oxide film. A method for manufacturing an electromagnetic iron core material . 請求項1又は請求項2において、溶解炉中の溶鋼のC濃度を0.05%以下に酸化し、FeO濃度が20%以上で塩基度が1.0以上1.5以下の浮遊スラグとともに該溶鋼をレードルに排出し、該レードル底部から酸素含有ガスを吹き込んでCO反応の促進とFeの酸化を進め、次いで該レードル上部開口に気密カバーを取り付け、該気密カバー内空間を真空ポンプにより50torr以上、200torr以下に減圧しつつ吹込みを継続してC量を0.01%以下、O量を0.05%以上0.13%以下に誘導することを特徴とするC量とO量の制御方法In claim 1 or 2, the C concentration of molten steel in the melting furnace is oxidized to 0.05% or less, and the floating slag having a FeO concentration of 20% or more and a basicity of 1.0 or more and 1.5 or less is said to be present. The molten steel is discharged to the radle, oxygen-containing gas is blown from the bottom of the radle to promote the CO reaction and the oxidation of Fe, then an airtight cover is attached to the upper opening of the radle, and the space inside the airtight cover is 50 torr or more by a vacuum pump. Control of the amount of C and the amount of O, which is characterized by continuously inducing the amount of C to 0.01% or less and the amount of O to 0.05% or more and 0.13% or less while reducing the pressure to 200 torr or less. Method .
JP2020176557A 2020-10-21 2020-10-21 Manufacturing method of ultra-soft rolled steel that does not easily rust Active JP6910523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020176557A JP6910523B1 (en) 2020-10-21 2020-10-21 Manufacturing method of ultra-soft rolled steel that does not easily rust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020176557A JP6910523B1 (en) 2020-10-21 2020-10-21 Manufacturing method of ultra-soft rolled steel that does not easily rust

Publications (2)

Publication Number Publication Date
JP6910523B1 true JP6910523B1 (en) 2021-07-28
JP2022067774A JP2022067774A (en) 2022-05-09

Family

ID=76967589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020176557A Active JP6910523B1 (en) 2020-10-21 2020-10-21 Manufacturing method of ultra-soft rolled steel that does not easily rust

Country Status (1)

Country Link
JP (1) JP6910523B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091547B1 (en) * 2021-12-10 2022-06-27 山田 榮子 Iron core manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959170B (en) * 2022-05-31 2023-08-25 达力普石油专用管有限公司 Method for reducing Pb content in carbon manganese steel produced by smelting full scrap steel in electric arc furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162249A (en) * 1983-03-08 1984-09-13 Nippon Steel Corp Mild steel wire rod
JPH10102222A (en) * 1996-09-30 1998-04-21 Nkk Corp Cold rolled steel sheet for direct one time porcelain enameling excellent in deep drawability and its production
JP2000063985A (en) * 1998-08-21 2000-02-29 Nkk Corp Cold rolled steel sheet for porcelain enameling, hardly causing strength reduction after firing
JP2004018860A (en) * 2002-06-12 2004-01-22 Nippon Steel Corp Enameling steel sheet superior in workability, aging property and enamel property, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162249A (en) * 1983-03-08 1984-09-13 Nippon Steel Corp Mild steel wire rod
JPH10102222A (en) * 1996-09-30 1998-04-21 Nkk Corp Cold rolled steel sheet for direct one time porcelain enameling excellent in deep drawability and its production
JP2000063985A (en) * 1998-08-21 2000-02-29 Nkk Corp Cold rolled steel sheet for porcelain enameling, hardly causing strength reduction after firing
JP2004018860A (en) * 2002-06-12 2004-01-22 Nippon Steel Corp Enameling steel sheet superior in workability, aging property and enamel property, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7091547B1 (en) * 2021-12-10 2022-06-27 山田 榮子 Iron core manufacturing method

Also Published As

Publication number Publication date
JP2022067774A (en) 2022-05-09

Similar Documents

Publication Publication Date Title
JP7457843B2 (en) Steel plate for polar marine construction and its manufacturing method
CN109136738B (en) High-strength low-temperature-resistant hull structure steel plate and preparation method thereof
CN108929986B (en) High-strength wear-resistant hot rolled steel plate for automobile braking and production process thereof
CN103540845A (en) Hot-rolled thin plate enamelled steel with yield strength of 330 MPa and manufacturing method thereof
CN107974612B (en) High-strength and high-toughness steel plate for SSCC (single strand ceramic) resistant spherical tank and manufacturing method thereof
CN113846260B (en) Production method of high-strength steel plate for engineering machinery
CN102605241A (en) Normalizing type 16MnDR low temperature pressure vessel steel plate and manufacturing method thereof
JP6910523B1 (en) Manufacturing method of ultra-soft rolled steel that does not easily rust
CN110029268B (en) 09MnNiDR steel plate for low-temperature pressure vessel with core low-temperature toughness protection and manufacturing method thereof
CN101935802B (en) Method for producing 490MPa level acid-washing-free hot rolled steel plate
CN109881121B (en) Chloride ion corrosion-resistant high-strength anti-seismic reinforcing steel bar and production method and application thereof
CN107557679A (en) Light austenitic steel with good strong plasticity and production method thereof
CN108677084B (en) Production method of low-inclusion clean steel
CN115896637A (en) Preparation method of super austenitic stainless steel hot-rolled coil
CN110093563B (en) Enamel cold-rolled steel plate for deep drawing and production method thereof
JP2009242912A (en) Method for melting and manufacturing titanium-added ultra-low carbon steel and method for producing titanium-added ultra-low carbon steel cast slab
KR100886046B1 (en) Method for producing extremely low carbon steel sheet and extremely low carbon cast piece having excellent surface characteristics, workability and formability
JP6645214B2 (en) Method for producing low carbon steel thin cast slab, low carbon steel thin cast slab, and method for producing low carbon steel thin steel plate
CN115522129B (en) 330 MPa-level wide-width thin-specification high-quality hot rolled enamel steel and production method thereof
CN111893401A (en) L450MS pipeline steel with excellent SSCC resistance under high loading stress and manufacturing method thereof
CN113549830B (en) Medium carbon spheroidized sorbite tool steel with high surface hardness and excellent bending property and production method thereof
CN113584259B (en) Method for washing RH furnace
CN114959504A (en) Acid-washing-free cord steel wire rod and production method thereof
CN111286673B (en) High-formability boron-containing steel with tensile strength of more than or equal to 320MPa and production method thereof
CN114875309A (en) Steel for thick-specification high-strength nuclear reactor containment vessel and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6910523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150