JP6539794B1 - Ni-based alloy and Ni-based alloy sheet - Google Patents

Ni-based alloy and Ni-based alloy sheet Download PDF

Info

Publication number
JP6539794B1
JP6539794B1 JP2019000318A JP2019000318A JP6539794B1 JP 6539794 B1 JP6539794 B1 JP 6539794B1 JP 2019000318 A JP2019000318 A JP 2019000318A JP 2019000318 A JP2019000318 A JP 2019000318A JP 6539794 B1 JP6539794 B1 JP 6539794B1
Authority
JP
Japan
Prior art keywords
based alloy
content
scale
mass
oxide scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019000318A
Other languages
Japanese (ja)
Other versions
JP2020109198A (en
Inventor
茂 平田
茂 平田
和人 瀧本
和人 瀧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2019000318A priority Critical patent/JP6539794B1/en
Application granted granted Critical
Publication of JP6539794B1 publication Critical patent/JP6539794B1/en
Priority to CN201911399683.1A priority patent/CN111411264B/en
Publication of JP2020109198A publication Critical patent/JP2020109198A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

【課題】本発明は、熱間加工性、耐割れ性及び耐腐食性に優れたNi基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程後の固溶化熱処理工程において生成した酸化スケールを、容易に酸洗除去できる脱スケール性に優れるNi基合金を提供することを目的とする。【解決手段】質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜0.45%、マンガン(Mn):0.10〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.10%、チタン(Ti):0.001〜0.08%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする脱スケール性に優れるNi基合金。1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧3.20【選択図】なしAn object of the present invention is to heat even a high Nb-containing Ni-based alloy in which 1.5 mass% or more of Nb is contained in a Ni-based alloy excellent in hot workability, cracking resistance and corrosion resistance. An object of the present invention is to provide a Ni-based alloy which is excellent in descalability, capable of easily pickling and removing oxide scale generated in a solution treatment heat treatment step after a processing step. SOLUTION: In mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 0.45%, manganese (Mn): 0.10 to 1.00%, Phosphorus (P): 0.015% or less, Sulfur (S): 0.0030% or less, Chromium (Cr): 14 to 24%, Niobium (Nb): 1.5 to 4.0%, Iron (Fe) Aluminum: 3 to 25% Aluminum (Al): 0.01 to 0.10% Titanium (Ti): 0.001 to 0.08% Nitrogen (N): 0.003 to 0.020% Boron B): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W): 0.005 to 0.25%, balance nickel ( Ni) and unavoidable impurities, and in the following formulas (wherein each element is described in Ni-based alloy A Ni-based alloy excellent in descalability characterized by satisfying the relationship of the content (mass%) of the element. 1401 × B + (Mo + W) + 3.0 × Mn−2.2 × Si−2.4 × Al−1.7 × Ti ≧ 3.20 【Selection Diagram】 None

Description

本発明は、耐応力腐食割れ、耐粒界腐食性に優れたNi基合金であって、特に、熱間圧延工程、熱間圧延工程に続く固溶化熱処理により生成した酸化スケールを容易に酸洗除去し、清浄な表面を得ることのできる、脱スケール性に優れるNi基合金及びNi基合金を圧延してなる板材に関するものである。   The present invention is a Ni-based alloy excellent in stress corrosion cracking and intergranular corrosion resistance, and in particular, it is easy to pickle oxide scale formed by solution heat treatment subsequent to hot rolling process and hot rolling process. The present invention relates to a Ni-based alloy excellent in descalability and a plate material formed by rolling a Ni-based alloy, which can be removed to obtain a clean surface.

Ni基合金は、耐食性、耐熱性に優れるため厳しい使用環境で適用されている。Ni基合金のうち、例えば、JIS NCF 600相当材は、優れた耐応力腐食割れ性、耐粒界腐食性を具備しているため、原子炉の炉心材として使用されている。さらに厳しい環境の場合には、通常、Nb等を添加し、固溶する炭素を炭化物として固着した合金が適用されている。   Ni-based alloys are applied in severe use environments because they are excellent in corrosion resistance and heat resistance. Among the Ni-based alloys, for example, JIS NCF 600 equivalent materials are used as core materials of nuclear reactors because they have excellent resistance to stress corrosion cracking and intergranular corrosion resistance. In a more severe environment, an alloy is generally used in which Nb or the like is added and carbon in solid solution is fixed as carbide.

しかしながら、Nbを添加したNi基合金は熱間加工性に問題があった。そこで、特許文献1では、NbCの溶体化熱処理が提案されている。また、特許文献2では、B添加およびO含有量の低減による粒界強化の改善が提案されている。しかしながら、いずれも一定の効果はあるものの、耐応力腐食割れ、耐粒界腐食性に改善の余地があった。そこで、特許文献3では、熱間加工性に優れ、耐応力腐食割れに優れたNi基合金、特許文献4では、Bを含有するスラブに表面欠陥を発生させないように熱間圧延し厚板とするNi基合金熱間圧延板の製造方法が提案されている。   However, the Ni-based alloy to which Nb is added has a problem in hot workability. Then, in patent document 1, the solution heat treatment of NbC is proposed. Moreover, in patent document 2, improvement of the grain boundary strengthening by reduction of B addition and O content is proposed. However, although all have a certain effect, there is room for improvement in stress corrosion cracking and intergranular corrosion resistance. Therefore, in Patent Document 3, a Ni-based alloy excellent in hot workability and excellent in stress corrosion cracking, and in Patent Document 4, hot rolled so as not to generate surface defects in a slab containing B and A method of manufacturing a Ni-based alloy hot-rolled sheet is proposed.

一方で、鋳造したNi基合金の合金塊から熱間鍛造スラブを製造後に、熱間加工工程と固溶化熱処理工程を経てNi基合金板を製造するにあたり、Ni基合金板表面に表面欠陥が発生することがあった。表面欠陥が発生した場合、一般的な表面欠陥の除去方法としては、固溶化熱処理工程後に機械的に除去する方法が挙げられる。機械的に表面欠陥を除去する方法としては、例えば、高速で回転する砥石で、または高速で回転するベルトに砥粒を接着させたもので除去する方法が挙げられる。また、フライスなどで表面欠陥を機械的に除去する方法も挙げられる。このように、機械的に表面欠陥を除去すると、結果として、表面欠陥の1種である酸化スケールも除去される。   On the other hand, after producing a hot forged slab from an alloy ingot of cast Ni-based alloy, when producing a Ni-based alloy sheet through a hot working process and a solution heat treatment process, surface defects occur on the surface of the Ni-based alloy sheet I had something to do. When surface defects occur, a general method of removing surface defects includes a method of removing mechanically after the solution heat treatment step. As a method of mechanically removing surface defects, there may be mentioned, for example, a method of removing with a grindstone rotating at a high speed, or with a grit adhered to a belt rotating at a high speed. There is also a method of mechanically removing surface defects with a milling cutter or the like. Thus, mechanical removal of surface defects results in removal of oxide scale, which is one of surface defects.

例えば、特許文献4のように、熱間加工に起因する表面欠陥が効果的に防止できるようになると、表面欠陥を機械的に除去する工程は不要となり、例えば、一般的なSUS304で採用されている、硝酸と弗酸からなる混酸を用いて酸化スケールを酸洗除去して清浄な合金表面を得ることが行われている。しかし、Ni基合金中にNbが1.5質量%以上含まれるような高Nb含有Ni基合金では、従来の酸洗除去方法では、依然として、島状に点々と酸化スケールが残存してしまい、結果として、機械的な酸化スケール除去工程が必要となってしまう状況があった。この現象の原因としては、高Nb含有Ni基合金では、Feの含有量が少なく、表面に保護性の高いCrの酸化スケールやNiの酸化スケールが緻密に生成すること、Nbの高含有量が何らかの影響を及ぼしていること等が考えられる。   For example, as in Patent Document 4, when surface defects caused by hot working can be effectively prevented, the step of mechanically removing surface defects is unnecessary, and for example, it is adopted in general SUS 304. It has been carried out to pick up the oxide scale with a mixed acid consisting of nitric acid and hydrofluoric acid to obtain a clean alloy surface. However, in the case of a high Nb-containing Ni-based alloy in which Nb is contained in an amount of 1.5% by mass or more in the Ni-based alloy, oxidized scale still remains in the form of islands in the conventional pickling removal method. As a result, there has been a situation where a mechanical oxide scale removing step is required. The cause of this phenomenon is that a high Nb content Ni base alloy has a small content of Fe and densely forms Cr oxide scale and Ni oxide scale with high protection on the surface, high Nb content It can be considered that something has some effect.

上記のように、酸化スケールが完全に酸洗除去できないと、結果として、機械的な酸化スケール除去工程が必要となってしまい、表面欠陥の防止技術を十分に活用できないので、酸洗条件を強化するなどして酸化スケールを除去することが必要となる。しかし、酸洗条件の強化は、廃酸液の処理等による追加のコスト発生や環境負荷の点から適当とはいえない。   As mentioned above, if the oxidation scale can not be completely removed by acid pickling, as a result, a mechanical oxidation scale removing step is required, and the technology for preventing surface defects can not be fully utilized. It is necessary to remove the oxide scale by However, strengthening of pickling conditions is not appropriate in view of additional cost and environmental load due to the treatment of waste acid solution and the like.

特開昭63−53235号公報Japanese Patent Application Laid-Open No. 63-53235 特開昭61−84348号公報Japanese Patent Application Laid-Open No. 61-84348 特許第4993327号公報Patent No. 4,993,327 特許第4414588号公報Patent No. 4414588 gazette

上記事情に鑑み、本発明は、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程後の固溶化熱処理工程において生成した酸化スケールを、容易に酸洗除去できる脱スケール性に優れるNi基合金を提供することを目的とする。   In view of the above circumstances, the present invention is a high Nb-containing Ni-based alloy which is excellent in hot workability, cracking resistance and corrosion resistance and which contains 1.5% by mass or more of Nb in the Ni-based alloy. An object of the present invention is to provide a Ni-based alloy which is excellent in descalability, capable of easily pickling and removing oxide scale produced in a solution heat treatment step after a hot working step.

発明者らは、上記課題を解決するために鋭意検討を重ね、上記問題を解決するために、容易に酸洗除去できる酸化スケールの組成、構造が形成されるよう検討を進めた。すなわち、本発明は、Nbが1.5質量%以上含まれる高Nb含有Ni基合金を対象としたもので、容易に酸洗除去できる酸化スケールの組成、構造を形成することで、熱間圧延等の熱間加工工程後の固溶化熱処理工程において生成した酸化スケールを容易に酸洗除去し、清浄なNi基合金表面を得ることができるNi基合金組成を見出すこととした。   The inventors of the present invention conducted extensive studies to solve the above-mentioned problems, and in order to solve the above-mentioned problems, proceeded with studies so as to form the composition and structure of oxide scale which can be easily pickled and removed. That is, the present invention is directed to a high Nb-containing Ni-based alloy containing 1.5% by mass or more of Nb, and by forming a composition and structure of an oxide scale that can be easily pickled and removed, hot rolling It was decided to find a Ni-based alloy composition capable of easily pickling and removing the oxide scale formed in the solution heat treatment step after the hot working step such as, etc. to obtain a clean Ni-based alloy surface.

そこで、発明者らは、高Nb含有Ni基合金について、酸化スケールの残存の程度と合金組成の関係に注目した。その結果、B含有量が高い場合、比較的よく酸化スケールを酸洗できる傾向にあったことから、微量元素の添加で残存酸化スケールを低減、防止できるのでは、と考えた。発明者らは、酸化スケールの形成に影響を及ぼす微量元素として、Al、Ti、Si、Mn、Mo、Wを見出し、これら微量元素を添加した場合における、酸化スケールの酸洗除去の影響を明らかにするために検討を行った。微量とするのは、Ni基合金の特性、例えば、耐割れ性、耐食性、加工性、組織安定性、さらには製造性、コストへの影響を防止できる程度での達成を目指したためである。   Therefore, the inventors focused on the relationship between the degree of residual oxide scale and the alloy composition for a high Nb-containing Ni-based alloy. As a result, when the B content was high, the oxide scale tended to be pickled relatively well, so it was considered that the residual oxide scale could be reduced and prevented by the addition of trace elements. The inventors found Al, Ti, Si, Mn, Mo, and W as trace elements affecting formation of oxide scale, and clarified the influence of pickling removal of oxide scale when these trace elements are added. We studied to make it. The purpose of the small amount is to achieve the characteristics of the Ni-based alloy, such as cracking resistance, corrosion resistance, workability, structure stability, manufacturability, and the extent to which the influence on the cost can be prevented.

本発明の構成の要旨は、以下の通りである。
[1]質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜0.45%、マンガン(Mn):0.10〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.10%、チタン(Ti):0.001〜0.08%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W)をそれぞれ0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、
下記式(式中、各元素の表記は、該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする脱スケール性に優れるNi基合金。
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧3.20
[2]下記式(式中、各元素の表記は、該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする[1]に記載の脱スケール性に優れるNi基合金。
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧6.00
[3]質量%で、ホウ素(B):0.0020〜0.0070%であることを特徴とする[1]または[2]に記載の脱スケール性に優れるNi基合金。
[4][1]乃至[3]のいずれか1つに記載の脱スケール性に優れるNi基合金が、圧延されたNi基合金板。
The summary of the configuration of the present invention is as follows.
[1] by mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 0.45%, manganese (Mn): 0.10 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0.10%, titanium (Ti): 0.001 to 0.08%, nitrogen (N): 0.003 to 0.020%, boron (B ): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W) respectively 0.005 to 0.25%, balance nickel ( Ni) and inevitable impurities,
A Ni-based alloy excellent in descalability characterized by satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element).
1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 3. 3.20
[2] Ni excellent in descalability according to [1] characterized by satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element) Base alloy.
1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 6.00 6.00
[3] A Ni-based alloy excellent in descaling properties according to [1] or [2], characterized in that it is, by mass%, boron (B): 0.0020 to 0.0070%.
[4] A Ni-based alloy sheet obtained by rolling the Ni-based alloy excellent in descalability according to any one of [1] to [3].

本発明のNi基合金によれば、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程後の固溶化熱処理工程において生成した酸化スケールを、容易に酸洗除去できる脱スケール性に優れるNi基合金を得ることができる。従って、欠陥のない良好な表面状態となった高Nb含有Ni基合金について、酸化スケール除去のために機械的除去工程を実施することなく、清浄な表面状態を得ることができる。   According to the Ni-based alloy of the present invention, it is a high Nb-containing Ni-based alloy which is excellent in hot workability, cracking resistance and corrosion resistance and in which the N-based alloy contains 1.5% by mass or more of Nb Also, it is possible to obtain a Ni-based alloy which is excellent in descalability, in which the oxide scale formed in the solution heat treatment step after the hot working step can be easily pickled and removed. Therefore, a clean surface state can be obtained without performing a mechanical removal step for oxide scale removal for a high Nb-containing Ni-based alloy that has a good surface state free of defects.

Bの含有量(%)と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relationship between the content (%) of B and the residual scale area ratio (%). Mo+Wの含有量(%)と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relationship between the content (%) of Mo + W and the residual scale area ratio (%). Mnの含有量(%)と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relation between the content (%) of Mn and the residual scale area rate (%). Siの含有量(%)と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relationship between the content (%) of Si and the residual scale area ratio (%). Alの含有量(%)と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relation between the content (%) of Al and the residual scale area ratio (%). Tiの含有量(%)と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relationship between the content (%) of Ti and the residual scale area ratio (%). Ni基合金の成分組成の関係式の値と残存スケール面積率(%)との関係を表すグラフである。It is a graph showing the relationship between the value of the relational expression of the component composition of Ni-based alloy, and a residual-scale area ratio (%).

次に、本発明の脱スケール性に優れるNi基合金について詳細を説明する。本発明の脱スケール性に優れるNi基合金は、質量%(以下、Ni基合金の各成分の含有量である質量%を、単に「%」という。)で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜0.45%、マンガン(Mn):0.10〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.10%、チタン(Ti):0.001〜0.08%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする脱スケール性に優れるNi基合金。
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧3.20
Next, details of the Ni-based alloy which is excellent in the descaling property of the present invention will be described. The Ni-based alloy having excellent descalability according to the present invention has a carbon (C) content of 0.001% by mass (hereinafter, the mass% which is the content of each component of the Ni-based alloy is simply referred to as "%"). -0.045%, silicon (Si): 0.05 to 0.45%, manganese (Mn): 0.10 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0 .10%, titanium (Ti): 0.001 to 0.08%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, oxygen (O) : 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W): 0.005 to 0.25% And the remainder nickel (Ni) and unavoidable impurities, and satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy). Ni-based alloy with excellent de-scalability characterized by
1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 3. 3.20

C:0.001〜0.045%
脱スケール性に優れるNi基合金中のCは、オーステナイト相を安定化し、室温での機械的強度を確保するために必須の元素である。このためには、0.001%以上の含有量が必要である。一方で、過剰量の添加はNbとCを主成分とする化合物(炭化物)を生成させ、その近傍にCr欠乏部を形成し、耐食性を著しく低下させる。また、NbとCを主成分とする化合物が増えて、割れを発生させて、耐割れ性を低下させる。このため、含有量の上限は0.045%とする。含有量の好ましい下限は0.003%、特に好ましい下限は0.005%である。また、含有量の好ましい上限は0.040%、特に好ましい上限は0.035%である。
C: 0.001 to 0.045%
C in the Ni-based alloy, which is excellent in descaling properties, is an essential element to stabilize the austenite phase and to ensure the mechanical strength at room temperature. For this purpose, a content of 0.001% or more is required. On the other hand, the addition of an excessive amount forms a compound (carbide) mainly composed of Nb and C, forms a Cr-depleted part in the vicinity thereof, and significantly reduces the corrosion resistance. Moreover, the compound which has Nb and C as a main component increases, causes a crack, and reduces crack resistance. Therefore, the upper limit of the content is 0.045%. The preferable lower limit of the content is 0.003%, and the particularly preferable lower limit is 0.005%. The upper limit of the content is preferably 0.040%, and particularly preferably 0.035%.

Si:0.05〜0.45%
脱スケール性に優れるNi基合金中のSiは、脱酸を行なうのに必須の元素であり、さらに、耐応力腐食割れ性を向上させるのに必要である。この効果は、0.05%以上の添加により得られる。一方で、過剰量の添加は、介在物の増加、これに関連して表面欠陥の発生を招く。また、酸化スケールの効率的な酸洗除去を阻害する。このため、含有量の上限は0.45%とする。含有量の好ましい下限は0.08%、特に好ましい下限は0.10%である。また、含有量の好ましい上限は0.40%、特に好ましい上限は0.35%である。
Si: 0.05 to 0.45%
Si in the Ni-based alloy, which is excellent in descaleability, is an element essential for deoxidation, and is further required to improve stress corrosion cracking resistance. This effect is obtained by addition of 0.05% or more. On the other hand, the addition of an excessive amount leads to the increase of inclusions and the associated generation of surface defects. Also, it inhibits the efficient pickling of oxidized scale. Therefore, the upper limit of the content is 0.45%. The preferable lower limit of the content is 0.08%, and the particularly preferable lower limit is 0.10%. The upper limit of the content is preferably 0.40%, and particularly preferably 0.35%.

Mn:0.10〜1.00%
脱スケール性に優れるNi基合金中のMnは、Siと同じく脱酸を行なうのに必須の元素であり、オーステナイト相の安定にも寄与する。特に、添加による硬さの上昇が小さく、機械的強度を適正化しつつ、オーステナイト相の安定を確保できる元素である。さらに、酸化スケールに作用し、酸化スケールの効率的な酸洗除去にも寄与する。このため、少なくとも0.10%以上の添加が必要である。一方で、過剰量の添加は、耐食性を低下させるため、含有量の上限は1.00%とする。含有量の好ましい下限は、0.11%、特に好ましい下限は0.12%である。また、含有量の好ましい上限は0.80%、特に好ましい上限は0.60%である。
Mn: 0.10 to 1.00%
Mn in a Ni-based alloy, which is excellent in descaleability, is an element essential to deoxidation as with Si, and also contributes to the stability of the austenite phase. In particular, the increase in hardness due to the addition is small, and it is an element that can ensure the stability of the austenite phase while optimizing the mechanical strength. Furthermore, it acts on the oxide scale and contributes to the efficient pickling removal of the oxide scale. For this reason, addition of at least 0.10% or more is necessary. On the other hand, the addition of an excessive amount lowers the corrosion resistance, so the upper limit of the content is 1.00%. The preferable lower limit of the content is 0.11%, and the particularly preferable lower limit is 0.12%. Further, a preferable upper limit of the content is 0.80%, and a particularly preferable upper limit is 0.60%.

P:0.015%以下
脱スケール性に優れるNi基合金中のPは、粒界に偏析し、耐食性、熱間加工性を低下させてしまう元素である。このため、その上限は厳しく限定する必要がある。本発明では0.015%以下に制限する。含有量の好ましい上限は0.012%、特に好ましい上限は、0.010%である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.001%が挙げられる。
P: 0.015% or less P in a Ni-based alloy which is excellent in descalability is an element which segregates in grain boundaries and reduces corrosion resistance and hot workability. For this reason, the upper limit needs to be strictly limited. In the present invention, the content is limited to 0.015% or less. The upper limit of the content is preferably 0.012%, and particularly preferably 0.010%. The lower limit of the content is preferably as close to 0% as, for example, 0.001%.

S:0.0030%以下
脱スケール性に優れるNi基合金中のSは、粒界に偏析して低融点化合物を形成し、熱間加工性の低下を招く元素であり、極力低減すべきである。このため、その上限は厳しく限定する必要がある。本発明では0.0030%以下に制限する。好ましくは0.0025%以下、特に好ましくは0.0020%以下である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.0001%が挙げられる。
S: 0.0030% or less S in a Ni-based alloy excellent in descalability is an element which segregates in grain boundaries to form a low melting point compound and causes a reduction in hot workability, and should be reduced as much as possible. is there. For this reason, the upper limit needs to be strictly limited. In the present invention, the content is limited to 0.0030% or less. Preferably it is 0.0025% or less, especially preferably 0.0020% or less. The lower limit of the content is preferably as close to 0% as, for example, 0.0001%.

Cr:14〜24%
脱スケール性に優れるNi基合金中のCrは、耐食性の向上に寄与する重要な元素であり、厳しい環境に使用するのに必須の元素である。このため、少なくとも14%の添加は必要である。一方で、24%を越えて含有すると、高温での機械的強度が高くなり加工が困難となる。さらに、オーステナイト相の不安定化を招き、炭化物の析出も促進する。このため、含有量の上限は24%とする。含有量の好ましい下限は15.0%、特に好ましい下限は15.5%である。また、含有量の好ましい上限は23.0%、特に好ましい上限は22.0%である。
Cr: 14 to 24%
Cr in a Ni-based alloy, which is excellent in descaleability, is an important element contributing to the improvement of the corrosion resistance, and is an element essential for use in severe environments. For this reason, an addition of at least 14% is necessary. On the other hand, if the content is more than 24%, the mechanical strength at high temperature becomes high and the processing becomes difficult. Furthermore, it causes destabilization of the austenite phase and promotes precipitation of carbides. Therefore, the upper limit of the content is 24%. The preferable lower limit of the content is 15.0%, and the particularly preferable lower limit is 15.5%. The upper limit of the content is preferably 23.0%, and more preferably 22.0%.

Nb:1.5〜4.0%
脱スケール性に優れるNi基合金中のNbは、CおよびNを炭化物、窒化物もしくは炭窒化物として析出させて耐食性を向上させる効果がある。この効果を得るには、少なくとも1.5%以上の添加が必要である。一方で、含有量が多すぎると過剰に析出した析出物により粒界脆性を生じさせる場合があるので、含有量の上限は4.0%とする。含有量の好ましい下限は2.0%、特に好ましい下限は2.1%である。また、含有量の好ましい上限は3.7%、特に好ましい上限は3.2%である。
Nb: 1.5 to 4.0%
Nb in a Ni-based alloy which is excellent in descaleability has an effect of precipitating C and N as carbides, nitrides or carbonitrides to improve corrosion resistance. In order to obtain this effect, addition of at least 1.5% or more is necessary. On the other hand, if the content is too large, intergranular brittleness may be caused by precipitates precipitated excessively, so the upper limit of the content is made 4.0%. The preferable lower limit of the content is 2.0%, and the particularly preferable lower limit is 2.1%. The upper limit of the content is preferably 3.7%, and particularly preferably 3.2%.

Fe:3〜25%
脱スケール性に優れるNi基合金中のFeは、靭性の向上に寄与する成分である。この効果を得るには少なくとも3%の添加が必要である。一方で、含有量が25%を越えると耐食性を低下させる。このため、含有量の上限は25%とする。含有量の好ましい下限は5%、特に好ましい下限は6%である。また、含有量の好ましい上限は23%、特に好ましい上限は21%である。
Fe: 3 to 25%
Fe in the Ni-based alloy, which is excellent in descaleability, is a component that contributes to the improvement of toughness. At least 3% addition is required to achieve this effect. On the other hand, if the content exceeds 25%, the corrosion resistance is lowered. Therefore, the upper limit of the content is 25%. The preferable lower limit of the content is 5%, and the particularly preferable lower limit is 6%. The upper limit of the content is preferably 23%, particularly preferably 21%.

Al:0.01〜0.10%
脱スケール性に優れるNi基合金中のAlは、脱酸を行なうのに必須の元素であり、また、Tiとともに酸化を抑制する効果がある。この効果を得るには少なくとも0.01%以上の添加が必要である。一方で、0.10%を越えて添加すると、酸洗による酸化スケール除去が阻害されて残存酸化スケールを生じさせるようになる。このため、含有量の上限は0.10%とする。含有量の好ましい下限は0.02%、特に好ましい下限は0.03%である。また、含有量の好ましい上限は0.09%、特に好ましい上限は0.08%である。
Al: 0.01 to 0.10%
Al in the Ni-based alloy, which is excellent in descaleability, is an element essential for deoxidation, and has the effect of suppressing oxidation together with Ti. Addition of at least 0.01% or more is necessary to obtain this effect. On the other hand, if it is added in excess of 0.10%, removal of the oxide scale by pickling is inhibited to generate residual oxide scale. Therefore, the upper limit of the content is 0.10%. The preferable lower limit of the content is 0.02%, and the particularly preferable lower limit is 0.03%. The upper limit of the content is preferably 0.09%, particularly preferably 0.08%.

Ti:0.001〜0.08%
脱スケール性に優れるNi基合金中のTiは、脱酸に寄与する元素であり、Alとともに酸化を抑制する効果がある。この効果を得るには少なくとも0.001%以上の添加が必要である。一方で、0.08%を越えて添加すると、酸洗による酸化スケール除去が阻害されて残存酸化スケールを生じさせるようになる。このため、含有量の上限は0.08%とする。含有量の好ましい下限は0.002%、特に好ましい下限は0.003%である。また、含有量の好ましい上限は0.07%、特に好ましい上限は0.06%である。
Ti: 0.001 to 0.08%
Ti in the Ni-based alloy, which is excellent in descaleability, is an element contributing to deoxidation, and has an effect of suppressing oxidation together with Al. Addition of at least 0.001% is necessary to obtain this effect. On the other hand, if it is added in excess of 0.08%, removal of the oxide scale by pickling is inhibited to generate residual oxide scale. Therefore, the upper limit of the content is 0.08%. The preferable lower limit of the content is 0.002%, and the particularly preferable lower limit is 0.003%. The upper limit of the content is preferably 0.07%, particularly preferably 0.06%.

N:0.003〜0.020%
脱スケール性に優れるNi基合金中のNは、室温での機械的強度を向上させ、オーステナイト相の安定度を増し、さらに耐食性も向上させる。このため、0.003%以上の添加が必要である。一方で、Nbと化合物を形成することから有効なNb量を低減させ、ブローホールが生じやすくなる。このため、含有量の上限は0.020%とする。含有量の好ましい下限は0.005%、特に好ましい下限は0.008%である。また、含有量の好ましい上限は0.014%、特に好ましい上限は0.012%である。
N: 0.003 to 0.020%
N in the Ni-based alloy, which is excellent in descaleability, improves the mechanical strength at room temperature, increases the stability of the austenite phase, and further improves the corrosion resistance. For this reason, addition of 0.003% or more is required. On the other hand, the formation of a compound with Nb reduces the amount of Nb that is effective, and blow holes are likely to occur. Therefore, the upper limit of the content is 0.020%. The preferable lower limit of the content is 0.005%, and the particularly preferable lower limit is 0.008%. The upper limit of the content is preferably 0.014%, and more preferably 0.012%.

B:0.0010〜0.0100%
脱スケール性に優れるNi基合金中のBは、熱間加工性を改善する重要な元素である。熱間鍛造、熱間圧延において、安定して割れを防止する。さらに、酸化スケールの構造に影響を及ぼして、酸洗による酸化スケールの除去特性を向上させる。これらの効果を得るには少なくとも0.0010%の添加が必要である。一方で、0.0100%を越えて含有すると、かえって熱間加工性が低下する。よって、含有量の上限は0.0100%とする。含有量の好ましい下限は0.0015%、特に好ましい下限は0.0020%である。また、含有量の好ましい上限は0.0080%、特に好ましい上限は0.0070%である。
B: 0.0010 to 0.0100%
B in the Ni-based alloy, which is excellent in descaleability, is an important element that improves the hot workability. In hot forging and hot rolling, stably prevent cracking. In addition, it affects the structure of the oxide scale and improves the removal characteristics of the oxide scale by pickling. It is necessary to add at least 0.0010% to obtain these effects. On the other hand, if the content is more than 0.0100%, the hot workability is rather reduced. Therefore, the upper limit of the content is 0.0100%. The preferable lower limit of the content is 0.0015%, and the particularly preferable lower limit is 0.0020%. The upper limit of the content is preferably 0.0080%, and particularly preferably 0.0070%.

O:0.0002〜0.0020%
脱スケール性に優れるNi基合金中のOは、溶解、精錬工程でN量の低減を容易とする。このため、少なくとも0.0002%以上の含有が必要である。一方で、Oは、Al、Ti、Si、Mnと結合し、脱酸生成物を生成する。0.0020%を越えて含有する場合、脱酸生成物による耐食性の低下、表面疵の原因となる。このため、含有量の上限は0.0020%とする。含有量の好ましい下限は0.0003%、特に好ましい下限は0.0004%である。また、含有量の好ましい上限は0.0019%、特に好ましい上限は0.0018%である。
O: 0.0002 to 0.0020%
O in the Ni-based alloy, which is excellent in descaleability, facilitates reduction of the amount of N in the melting and refining processes. For this reason, it is necessary to contain at least 0.0002% or more. On the other hand, O bonds with Al, Ti, Si and Mn to form a deoxidized product. When it is contained in excess of 0.0020%, the deoxidation product causes a reduction in corrosion resistance and causes surface defects. For this reason, the upper limit of the content is made 0.0020%. The preferable lower limit of the content is 0.0003%, and the particularly preferable lower limit is 0.0004%. The upper limit of the content is preferably 0.0019%, and particularly preferably 0.0018%.

Mo及び/またはW:0.005〜0.25%
脱スケール性に優れるNi基合金中のMo、Wは、耐食性の向上、特に耐孔食性、耐隙間腐食性を向上させ、また、粒界腐食性の向上にも寄与する。さらに、酸化スケールに作用し、酸洗による酸化スケールの除去特性を向上させる。これらの効果を得るには少なくともMo、Wのいずれか1種を0.005%、またはMo、Wともに、それぞれ、0.005%の添加が必要である。一方で、Mo及び/またはWの過剰の添加は、コスト増を招き、また、オーステナイト相の安定性を低下させる。このため、Mo及び/またはWの含有量の上限はMo、Wのいずれか1種を0.25%、またはMo、Wともに、それぞれ、0.25%とする。Mo及び/またはWの含有量の好ましい下限はMo、Wのいずれか1種を0.008%、またはMo、Wともに、それぞれ、0.008%、特に好ましい上記下限は0.010%である。また、Mo及び/またはWの含有量の好ましい上限はMo、Wのいずれか1種を0.21%、またはMo、Wともに、それぞれ、0.21%、特に好ましい上記上限は0.18%である。
Mo and / or W: 0.005 to 0.25%
Mo and W in the Ni-based alloy, which is excellent in descaling properties, improve the corrosion resistance, particularly the pitting resistance, the crevice corrosion resistance, and also contribute to the improvement of intergranular corrosion. Furthermore, it acts on the oxide scale and improves the removal characteristics of the oxide scale by pickling. In order to obtain these effects, it is necessary to add at least 0.005% of at least one of Mo and W, or 0.005% of each of Mo and W, respectively. On the other hand, excessive addition of Mo and / or W causes cost increase and also reduces the stability of the austenite phase. Therefore, the upper limit of the content of Mo and / or W is 0.25% for any one of Mo and W, or 0.25% for both Mo and W. The lower limit of the content of Mo and / or W is preferably 0.008% for Mo or W, or 0.008% for Mo or W, and the lower limit is particularly preferably 0.010%. . In addition, the upper limit of the content of Mo and / or W is preferably 0.21% of either Mo or W, or 0.21% for Mo and W, respectively, and the upper limit is particularly preferably 0.18%. It is.

本発明の脱スケール性に優れるNi基合金では、上記成分以外の残部はNi及び不可避的不純物である。本発明の脱スケール性に優れるNi基合金では、主成分としてNiが含有されている。   In the Ni-based alloy excellent in the descalability of the present invention, the balance other than the above components is Ni and an unavoidable impurity. In the Ni-based alloy which is excellent in the descaling property of the present invention, Ni is contained as a main component.

下記式
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧3.20
酸洗による酸化スケール除去特性に影響する元素について、その影響の程度を回帰分析により式として表したものである。上記式の値が3.20以上であると、酸洗による酸化スケール除去特性を促進する元素と酸洗による酸化スケール除去特性を抑制する元素とのバランスが適正化され、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、効果的に酸洗によって酸化スケールを除去することができる。よって、上記式の値が3.20以上となるように、Ni基合金の成分組成をコントロールする必要がある。上記式の値は、酸洗による酸化スケールの除去特性をさらに向上させる点から4.50以上が好ましく、5.50以上がより好ましく、6.00以上が特に好ましい。一方で、上記式の値の上限値は、特に限定されないが、例えば、17.34が挙げられる。
Following formula 1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 3. 3.20
About the element which influences the oxide scale removal characteristic by pickling, the grade of the influence is expressed as a formula by regression analysis. When the value of the above formula is 3.20 or more, the balance between the element promoting oxide scale removal characteristics by pickling and the element suppressing oxide scale removal characteristics by pickling is optimized, and the hot workability and the resistance Even with a high Nb-containing Ni-based alloy containing 1.5% by mass or more of Nb in a Ni-based alloy, which is excellent in cracking resistance and corrosion resistance, oxide scale can be effectively removed by pickling. . Therefore, it is necessary to control the component composition of the Ni-based alloy so that the value of the above equation is 3.20 or more. The value of the above formula is preferably 4.50 or more, more preferably 5.50 or more, and particularly preferably 6.00 or more, from the viewpoint of further improving the removal property of oxide scale by pickling. On the other hand, the upper limit of the value of the above formula is not particularly limited, and an example is 17.34.

上記式の特定方法は、以下の通りである。
Ni−20%Cr−2.3%Nb−7%Feを基本組成とし、これに上記各種元素の添加量を変化させたNi基合金を溶製し、熱間鍛造、冷間圧延を経たサンプルを、3mmt×40mm×60mmに切断した。その後、切断したNi基合金のすべての表面を湿式研磨♯120で仕上げた後、酸素濃度2.5%とした都市ガスの燃焼雰囲気中で、1025℃に加熱、30分間保持して加熱処理をし、Ni基合金表面に酸化スケールを形成させた。加熱処理後、加熱装置からNi基合金を取り出して冷却し、その後、Ni基合金を温度30℃の混酸(硝酸1モル、弗酸1モル)中に15分間浸漬した。次に、Ni基合金を混酸から取り出して水洗後、酸化スケールの残存の程度を評価した。評価は、40mm×60mmのNi基合金表面の面積をデジタル顕微鏡で撮影、得られたデジタル画像についてスケール部を黒、スケールが除去されている部分を白と二値化して残存スケールの面積率を求めた。
The specification method of the said formula is as follows.
A sample of Ni-based alloy which has Ni-20% Cr-2.3% Nb-7% Fe as its basic composition and in which the addition amounts of the above-mentioned various elements are changed and which is hot-forged and cold-rolled Were cut into 3 mm t × 40 mm × 60 mm. Then, after finishing the entire surface of the cut Ni-based alloy by wet polishing # 120, it is heated to 1025 ° C in a burning atmosphere of city gas with an oxygen concentration of 2.5%, held for 30 minutes, and heat treated The oxide scale was formed on the surface of the Ni-based alloy. After the heat treatment, the Ni-based alloy was taken out of the heating apparatus and cooled, and then the Ni-based alloy was immersed in a mixed acid (1 mol of nitric acid, 1 mol of hydrofluoric acid) at a temperature of 30 ° C. for 15 minutes. Next, the Ni-based alloy was taken out of the mixed acid and washed with water, and then the degree of residual oxide scale was evaluated. In the evaluation, the area of the surface of the Ni-based alloy of 40 mm × 60 mm is photographed with a digital microscope, the scale of the obtained digital image is black, the portion from which the scale is removed is binarized to white, and the area ratio of the remaining scale I asked.

Ni基合金の表面からスケールが除去されて、残存スケールの面積率が3%未満となると脱スケールは完了と評価した。ここでは、酸洗による凹凸も、デジタル画像上では、スケールが残存またはわずかに点状のスケールが残存している状態と判断している。脱スケール状態としては、(1)晒しでこするとスマットにより僅かに黒くなるものの、上記わずかな点状のスケールの除去も完了している状態が好ましく、(2)上記わずかな点状のスケールの除去も完了しており、且つ晒しでこすっても黒くならない状態が特に好ましい。   Descaling was evaluated as complete when scale was removed from the surface of the Ni-based alloy and the area ratio of residual scale was less than 3%. Here, it is judged that the unevenness due to the pickling is also in a state in which the scale remains or a slight dotted scale remains on the digital image. As the descaling state, it is preferable that (1) the surface is slightly darkened by smut when exposed and rubbed, but the removal of the slight point-like scale is also completed, and (2) the slight point-like scale is It is particularly preferred that the removal is also complete and does not become black when exposed to rubbing.

その結果、酸洗による酸化スケール除去特性を得るには、Bの添加が非常に有効であり、また、Mo、W、Mnも添加することで酸洗による酸化スケール除去特性の向上に寄与する傾向が確認された。一方で、Alの添加量が増えると酸洗による酸化スケールの除去が阻害され、Si、Tiについても、Ni基合金に添加すると、酸洗では残存酸化スケールが生じやすくなった。Bの含有量(%)と残存スケール面積率(%)との関係を表すグラフを図1、Mo+Wの含有量(%)と残存スケール面積率(%)との関係を表すグラフを図2、Mnの含有量(%)と残存スケール面積率(%)との関係を表すグラフを図3、Siの含有量(%)と残存スケール面積率(%)との関係を表すグラフを図4、Alの含有量(%)と残存スケール面積率(%)との関係を表すグラフを図5、Tiの含有量(%)と残存スケール面積率(%)との関係を表すグラフを図6に、それぞれ示す。   As a result, addition of B is very effective in obtaining oxide scale removal characteristics by pickling, and addition of Mo, W, and Mn also tends to contribute to improvement of oxide scale removal characteristics by pickling. Was confirmed. On the other hand, when the addition amount of Al increases, removal of the oxide scale by pickling is inhibited, and when Si and Ti are also added to the Ni-based alloy, the residual oxide scale tends to be generated in the acid washing. A graph showing the relationship between the B content (%) and the residual scale area ratio (%) is shown in FIG. 1, a graph showing the relationship between the Mo + W content (%) and the residual scale area ratio (%) is shown in FIG. A graph showing the relationship between the content of Mn (%) and the residual scale area ratio (%) is shown in FIG. 3, and the graph showing the relationship between the content of Si (%) and the residual scale area ratio (%) is shown in FIG. A graph showing the relationship between the Al content (%) and the residual scale area ratio (%) is shown in FIG. 5, and a graph showing the relationship between the Ti content (%) and the residual scale area ratio (%) is shown in FIG. , Respectively.

図1〜図6の結果から、添加元素の酸洗による酸化スケール除去特性への影響度合いが明らかとなり、残存スケール面積率(%)とNi基合金の成分組成の関係を回帰分析し求めたものが、下記式である。
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧3.20
From the results of FIGS. 1 to 6, the degree of influence of the pickling of the additive element on the oxide scale removal characteristics becomes clear, and the relationship between the residual scale area ratio (%) and the component composition of the Ni base alloy is determined by regression analysis Is the following formula.
1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 3. 3.20

また、上記Ni基合金の成分組成の関係式の値と残存スケール面積率(%)との関係を表すグラフを図7に示す。図7から、上記式の値が3.20以上であることで効果的に酸洗による酸化スケール除去特性が得られることがわかる。なお、図7の点線は、残存スケール面積率(%)3%を示す。   Moreover, the graph showing the relationship between the value of the relational expression of the component composition of said Ni-based alloy, and a residual-scale area ratio (%) is shown in FIG. It is understood from FIG. 7 that when the value of the above formula is 3.20 or more, the oxide scale removing characteristic by the pickling can be effectively obtained. The dotted line in FIG. 7 indicates the residual scale area ratio (%) of 3%.

本発明の脱スケール性に優れるNi基合金によれば、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程後の固溶化熱処理工程において生成した酸化スケールを、容易に酸洗除去できる脱スケール性に優れるNi基合金を得ることができる。従って、欠陥のない良好な表面状態となった高Nb含有Ni基合金について、酸化スケール除去のために機械的除去工程を実施することなく、清浄な表面状態を得ることができる。また、本発明の脱スケール性に優れるNi基合金が、熱間圧延等にて圧延されることで、酸化スケールが除去された表面清浄なNi基合金板を得ることができる。   According to the Ni-based alloy excellent in descaling properties of the present invention, high Nb-containing Ni containing 1.5 mass% or more of Nb in the Ni-based alloy excellent in hot workability, cracking resistance and corrosion resistance Even if it is a base alloy, it is possible to obtain a Ni-based alloy which is excellent in descalability, in which the oxide scale formed in the solution heat treatment step after the hot working step can be easily pickled and removed. Therefore, a clean surface state can be obtained without performing a mechanical removal step for oxide scale removal for a high Nb-containing Ni-based alloy that has a good surface state free of defects. In addition, by rolling the Ni-based alloy having excellent descaling properties of the present invention by hot rolling or the like, it is possible to obtain a surface-clean Ni-based alloy plate from which oxide scale has been removed.

このため、本発明のNi基合金は、例えば、要求品質が厳しい原子炉用材料に適用することができる。   For this reason, the Ni-based alloy of the present invention can be applied, for example, to nuclear reactor materials that have stringent requirements.

また、酸洗に先立ち、レベラーによる曲げ加工、ショットブラストなどで酸化スケールに機械的にクラックや一部除去を行い、酸洗を促進する方法が知られているが、これらの方法は、いずれも本発明の効果を減ずるものではない。   Also, prior to acid washing, there is known a method in which oxidation scale is mechanically cracked or partially removed by bending with a leveler, shot blasting or the like to promote acid washing. It does not reduce the effects of the present invention.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの実施例に限定されるものではない。   EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited to these examples as long as the purpose of the present invention is not exceeded.

実施例1〜17、比較例1〜7
Ni基合金の熱間鍛造スラブの製造
下記表1に示す各種成分組成を有する実施例1〜17及び比較例1〜7のNi基合金を、まず、60t電気炉にて、スクラップ、ニッケル、クロム、ニオブなどの所定の原料を所定量投入して溶解後、AOD(Argon Oxygen Decarburization)またはVOD(Vacuum Oxygen Decarburization)にて、酸素とArの混合ガスを吹き込み脱炭した。その後、フェロシリコン合金および/またはアルミニウムを添加して、Cr還元し、その後、石灰石、蛍石を添加して、脱酸、脱硫を実施した。その後、いわゆる普通造塊法で、鋳型の下側から溶湯を注入して平角型Ni基合金塊へと鋳造した。平角型Ni基合金塊の質量は8トンであった。鋳造後に冷却固化したNi基合金塊を加熱し、1030℃にて2時間、保持した後、1200℃に再加熱し、20%の据込み鍛造を行った。20%の据込み鍛造後、さらに、第一段プレスとして、1200℃に加熱して、各プレスの鍛造率を7%とした鍛造を3回行い、続いて、第二段プレスとして、1250℃で5〜75%の範囲で鍛造を3回行い、続いて、最終プレス工程として、1150℃に加熱して、15%の鍛造を行い、サンプルとして、厚さ150mmであるNi基合金の熱間鍛造スラブを製造した。なお、表1中の各成分の含有量は、質量%を意味する。
Examples 1 to 17 and Comparative Examples 1 to 7
Production of Hot Forged Slab of Ni-Based Alloy The Ni-based alloys of Examples 1 to 17 and Comparative Examples 1 to 7 having various component compositions shown in Table 1 below are first scrapped in a 60 t electric furnace, nickel, chromium A predetermined amount of a predetermined raw material such as niobium was added and dissolved, and then a mixed gas of oxygen and Ar was blown in at AOD (Argon Oxygen Decarburization) or VOD (Vacuum Oxygen Decarburization) to decarburize. Thereafter, ferrosilicon alloy and / or aluminum were added to reduce Cr, and then limestone and fluorite were added to perform deoxidation and desulfurization. Thereafter, the so-called ordinary ingot forming method injects a molten metal from the lower side of the mold and casts it into a rectangular Ni-based alloy mass. The mass of the rectangular Ni-based alloy mass was 8 tons. After casting, the cooled and solidified Ni-based alloy block was heated and held at 1030 ° C. for 2 hours, and then reheated to 1200 ° C. to perform upset forging of 20%. After upset forging of 20%, it is further heated to 1200 ° C. as a first stage press, and forged three times at a forging rate of 7% for each press, followed by 1250 ° C. as a second stage press. Forging in the range of 5 to 75% three times, followed by heating to 1150 ° C., forging at 15% as a final pressing step, and hot working of a Ni-based alloy having a thickness of 150 mm as a sample A forged slab was manufactured. In addition, content of each component in Table 1 means mass%.

評価
脱スケール性
上記のようにして得られたNi基合金の熱間鍛造スラブについて、1200℃に加熱して熱間圧延を行い、厚さ25mmの熱間圧延板とした。次に、得られたNi基合金の熱間圧延板を加熱炉に投入し、酸素濃度2.5%とした都市ガスの燃焼雰囲気中で1025℃に加熱して30分間保持して、Ni基合金の熱間圧延板表面に酸化スケールを形成させた。加熱処理後、加熱炉から熱間圧延板を取り出して冷却し、その後、熱間圧延板を温度40℃の混酸(硝酸1モル、弗酸1モル)中に15分間浸漬した。次に、熱間圧延板を混酸から取り出して水洗後、酸化スケールの残存の程度を評価した。
評価は、100mm×150mmの面積有する試験片を切り出し、切り出した試験片をデジタル顕微鏡(株式会社キーエンス製、VHX-2000、倍率20倍)で撮影、得られたデジタル画像についてスケール部を黒、スケールが除去されている部分を白と二値化して残存スケール面積率(%)を算出し、以下の5段階で評価し、評価1〜3が合格と判断した。
評価1:残存スケールはなく、晒しでこすっても黒くならない
評価2:残存スケールはないが、晒しでこするとスマットにより僅かに黒くなる
評価3:スケール部が全体の3%未満であるが、ごくわずかに点状の残存スケールがある
評価4:スケール部が全体の3%以上25%未満
評価5:スケール部が全体の25%以上残存している
Evaluation Descalability The hot forged slab of the Ni-based alloy obtained as described above was heated at 1200 ° C. and hot-rolled to form a 25 mm-thick hot-rolled sheet. Next, the obtained Ni-based alloy hot-rolled sheet is put into a heating furnace, heated to 1025 ° C. in a combustion atmosphere of city gas with an oxygen concentration of 2.5%, and held for 30 minutes to obtain Ni-based. An oxide scale was formed on the surface of the hot-rolled sheet of the alloy. After the heat treatment, the hot-rolled sheet was removed from the heating furnace and cooled, and then the hot-rolled sheet was immersed in mixed acid (1 mol of nitric acid, 1 mol of hydrofluoric acid) at a temperature of 40 ° C. for 15 minutes. Next, the hot-rolled sheet was taken out from the mixed acid, washed with water, and the degree of remaining oxide scale was evaluated.
For evaluation, a test piece having an area of 100 mm × 150 mm is cut out, and the cut out test piece is photographed with a digital microscope (VHX-2000 manufactured by Keyence Corporation, 20 × magnification), and the scale of the obtained digital image is black, scale The part from which B was removed was binarized to white to calculate the residual scale area ratio (%), and the evaluation was made in the following five grades, and the evaluations 1 to 3 were judged as pass.
Evaluation 1: There is no residual scale, and it does not become black even if it is scratched Evaluation 2: There is no residual scale, but it becomes slightly dark due to smut when it is rubbed Evaluation 3: The scale portion is less than 3% of the whole There is a slight point-like residual scale Evaluation 4: The scale part is 3% or more and less than 25% of the whole Evaluation 5: The scale part remains 25% or more of the whole

脱スケール性の評価結果を下記表1に示す。下記表1中、下線を付した数値は、本発明の範囲外の数値であることを意味する。   The evaluation results of the descalability are shown in Table 1 below. In Table 1 below, the underlined numerical values mean that they are out of the scope of the present invention.

Figure 0006539794
Figure 0006539794

上記表1から、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜0.45%、マンガン(Mn):0.10〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.10%、チタン(Ti):0.001〜0.08%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧3.20
の関係を満たす実施例1〜17のNi基合金では、脱スケール性評価が1〜3と、優れた酸洗による酸化スケールの除去特性を得ることができた。従って、実施例1〜17のNi基合金では、酸化スケールの除去にあたり、機械的な酸化スケールの除去等、予工程を追加する必要はない。
From the above Table 1, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 0.45%, manganese (Mn): 0.10 to 1.00%, phosphorus (P ): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 3 25%, aluminum (Al): 0.01 to 0.10%, titanium (Ti): 0.001 to 0.08%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W): 0.005 to 0.25%, balance nickel (Ni) and It consists of unavoidable impurities, and in the following formula (wherein the notation of each element is the element in the Ni-based alloy Mean the content (% by mass) of
1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 3. 3.20
In the Ni-based alloys of Examples 1 to 17 which satisfy the following relationship, the descalability evaluations were as good as 1 to 3, and it was possible to obtain excellent oxide scale removal characteristics by pickling. Therefore, in the case of the Ni-based alloys of Examples 1 to 17, it is not necessary to add a preliminary step such as mechanical oxide scale removal to remove the oxide scale.

特に、上記式の値が5.83超である実施例1、3、5、7、8、10、11、14、17では、脱スケール性評価が1または2と、より優れた酸洗による酸化スケールの除去特性を得ることができ、上記式の値が9.82以上である実施例1、3、5、8、17では、脱スケール性評価が1と、さらに優れた酸洗による酸化スケールの除去特性を得ることができた。   In particular, in Examples 1, 3, 5, 7, 8, 10, 11, 14 and 17 in which the value of the above formula is more than 5.83, the descalability evaluation is 1 or 2, and the pickling is more excellent In Examples 1, 3, 5, 8 and 17 where the removal characteristics of the oxide scale can be obtained and the value of the above formula is 9.82 or more, the descalability evaluation is 1 and further excellent oxidation by pickling The scale removal characteristics could be obtained.

これに対し、アルミニウム(Al)が0.10%超である比較例1、ホウ素(B)が0.0010%未満である比較例2、モリブデン(Mo)及びタングステン(W)が0.005%未満である比較例3、各種成分組成を満たすものの上記式の値が3.20未満である比較例4、ケイ素(Si)が0.45%超である比較例5、マンガン(Mn)が0.10%未満である比較例6、チタン(Ti)が0.08%超である比較例7では、いずれも、脱スケール性評価が4または5と、酸洗による酸化スケールの除去特性を得ることができなかった。   On the other hand, Comparative Example 1 in which aluminum (Al) exceeds 0.10%, Comparative Example 2 in which boron (B) is less than 0.0010%, 0.005% of molybdenum (Mo) and tungsten (W) Comparative Example 3 which is less than, Comparative Example 4 which satisfies various component compositions but the value of the above formula is less than 3.20, Comparative Example 5 which has silicon (Si) exceeding 0.45%, manganese (Mn) 0 . In Comparative Example 6 which is less than 10%, and Comparative Example 7 in which titanium (Ti) is more than 0.08%, the descalability evaluation is 4 or 5, and the removal property of oxide scale by acid washing is obtained. I could not.

本発明では、熱間加工工程後の固溶化熱処理工程において生成した酸化スケールを、容易に酸洗除去できる脱スケール性に優れるNi基合金を得ることができるので、広汎な分野で利用可能であり、例えば、要求品質が厳しい原子炉用材料として適用することができる。   In the present invention, since it is possible to obtain a Ni-based alloy excellent in descaling ability that can be easily pickled and removed the oxide scale formed in the solution heat treatment step after the hot working step, it can be used in a wide range of fields. For example, it can be applied as a material for nuclear reactors with strict requirements.

Claims (4)

質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜0.45%、マンガン(Mn):0.10〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.10%、チタン(Ti):0.001〜0.08%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W)をそれぞれ0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、
下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする脱スケール性に優れるNi基合金。
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧3.20
% By mass, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 0.45%, manganese (Mn): 0.10 to 1.00%, phosphorus (P) 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25 %, Aluminum (Al): 0.01 to 0.10%, titanium (Ti): 0.001 to 0.08%, nitrogen (N): 0.003 to 0.020%, boron (B): 0 .0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W) respectively 0.005 to 0.25%, balance nickel (Ni) and It consists of unavoidable impurities,
A Ni-based alloy excellent in descalability characterized by satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy).
1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 3. 3.20
下記式(式中、各元素の表記は、該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする請求項1に記載の脱スケール性に優れるNi基合金。
1401×B+(Mo+W)+3.0×Mn−2.2×Si−2.4×Al−1.7×Ti≧6.00
The Ni-based alloy excellent in descalability according to claim 1, characterized in that it satisfies the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element).
1401 x B + (Mo + W) + 3.0 x Mn-2.2 x Si-2.4 x Al-1.7 x Ti 6.00 6.00
質量%で、ホウ素(B):0.0020〜0.0070%であることを特徴とする請求項1または2に記載の脱スケール性に優れるNi基合金。   The Ni-based alloy excellent in descalability according to claim 1 or 2, characterized in that it is, by mass%, boron (B): 0.0020 to 0.0070%. 請求項1乃至3のいずれか1項に記載の脱スケール性に優れるNi基合金が、圧延されたNi基合金板。   The Ni-based alloy board which the Ni-based alloy excellent in the descalability of any one of Claims 1 thru | or 3 rolled.
JP2019000318A 2019-01-04 2019-01-04 Ni-based alloy and Ni-based alloy sheet Active JP6539794B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019000318A JP6539794B1 (en) 2019-01-04 2019-01-04 Ni-based alloy and Ni-based alloy sheet
CN201911399683.1A CN111411264B (en) 2019-01-04 2019-12-30 Ni-based alloy and Ni-based alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019000318A JP6539794B1 (en) 2019-01-04 2019-01-04 Ni-based alloy and Ni-based alloy sheet

Publications (2)

Publication Number Publication Date
JP6539794B1 true JP6539794B1 (en) 2019-07-03
JP2020109198A JP2020109198A (en) 2020-07-16

Family

ID=67144643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000318A Active JP6539794B1 (en) 2019-01-04 2019-01-04 Ni-based alloy and Ni-based alloy sheet

Country Status (2)

Country Link
JP (1) JP6539794B1 (en)
CN (1) CN111411264B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058903B (en) * 2020-07-30 2022-06-14 宝武特种冶金有限公司 Nickel-iron-based alloy large-caliber thick-wall pipe and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291419B1 (en) * 2008-10-02 2013-07-30 신닛테츠스미킨 카부시키카이샤 Ni-BASED HEAT-RESISTANT ALLOY
JP4780189B2 (en) * 2008-12-25 2011-09-28 住友金属工業株式会社 Austenitic heat-resistant alloy
KR101740164B1 (en) * 2009-12-10 2017-06-08 신닛테츠스미킨 카부시키카이샤 Austenitic heat-resistant alloy
JP6499546B2 (en) * 2015-08-12 2019-04-10 山陽特殊製鋼株式会社 Ni-based superalloy powder for additive manufacturing

Also Published As

Publication number Publication date
CN111411264A (en) 2020-07-14
CN111411264B (en) 2022-09-27
JP2020109198A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP3041050B2 (en) Duplex stainless steel and its manufacturing method
JP3886933B2 (en) Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP5534119B1 (en) Ferritic stainless steel
JP5713118B2 (en) Ferritic stainless steel
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP6037882B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
TWI638055B (en) Ferrous iron series stainless steel plate
JP3904683B2 (en) Ferritic stainless steel with excellent surface properties and method for producing the same
EP0130220A1 (en) Corrosion-resistant alloy
TW201435096A (en) Ferritic stainless steel sheet
JP2001288544A (en) High purity ferritic stainless steel excellent in surface property and corrosion resistance and its production method
JP6539794B1 (en) Ni-based alloy and Ni-based alloy sheet
JPWO2019087761A1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2765392B2 (en) Method for manufacturing hot-rolled duplex stainless steel strip
JP2017115238A (en) High strength cold rolled steel sheet excellent in bending workability and production method therefor
JP2011001564A (en) Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same
KR101940427B1 (en) Ferritic stainless steel sheet
JP6146401B2 (en) Ferritic stainless steel sheet
JP6539795B1 (en) Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet
JP3884899B2 (en) Ferritic stainless steel with excellent workability and corrosion resistance and low surface flaws
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JP6146400B2 (en) Ferritic stainless steel sheet
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping characteristic, and its manufacture
US2646352A (en) Alloy steel products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R150 Certificate of patent or registration of utility model

Ref document number: 6539794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250