JP6539795B1 - Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet - Google Patents
Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet Download PDFInfo
- Publication number
- JP6539795B1 JP6539795B1 JP2019000319A JP2019000319A JP6539795B1 JP 6539795 B1 JP6539795 B1 JP 6539795B1 JP 2019000319 A JP2019000319 A JP 2019000319A JP 2019000319 A JP2019000319 A JP 2019000319A JP 6539795 B1 JP6539795 B1 JP 6539795B1
- Authority
- JP
- Japan
- Prior art keywords
- based alloy
- scale
- content
- mass
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 146
- 239000000956 alloy Substances 0.000 title claims abstract description 146
- 238000005098 hot rolling Methods 0.000 title claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 151
- 239000010955 niobium Substances 0.000 claims abstract description 32
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 27
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 26
- 239000010936 titanium Substances 0.000 claims abstract description 17
- 239000011651 chromium Substances 0.000 claims abstract description 15
- 239000011572 manganese Substances 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 239000011733 molybdenum Substances 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000010937 tungsten Substances 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 239000011574 phosphorus Substances 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 239000011593 sulfur Substances 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- 238000004299 exfoliation Methods 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 abstract description 28
- 230000007797 corrosion Effects 0.000 abstract description 28
- 230000037303 wrinkles Effects 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 13
- 238000005336 cracking Methods 0.000 abstract description 11
- 238000003825 pressing Methods 0.000 abstract description 9
- 238000005242 forging Methods 0.000 description 19
- 230000007547 defect Effects 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 238000012360 testing method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 238000007373 indentation Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- -1 scrap Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009721 upset forging Methods 0.000 description 1
Images
Landscapes
- Forging (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
【課題】本発明は、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵の発生を防止でき、熱間加工前後で優れた歩留まりを得ることができる、スケール剥離性に優れるNi基合金を提供することを目的とする。【解決手段】質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。4.2×Mo+3.6×W+355×B≧0.60【選択図】なしThe object of the present invention is to heat even a high Nb-containing Ni-based alloy which is excellent in hot workability, cracking resistance and corrosion resistance and which contains 1.5 mass% or more of Nb in the Ni-based alloy. It is possible to provide a Ni-based alloy excellent in scale removability, which can prevent the generation of dents and wrinkles on the surface of the alloy due to the pressing of the oxide scale generated in the in-process step, and obtain excellent yield before and after hot working. To aim. SOLUTION: In mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, Phosphorus (P): 0.015% or less, Sulfur (S): 0.0030% or less, Chromium (Cr): 14 to 24%, Niobium (Nb): 1.5 to 4.0%, Iron (Fe) Aluminum: 3 to 25% Aluminum (Al): 0.01 to 0.20% Titanium (Ti): 0.001 to 0.20% Nitrogen (N): 0.003 to 0.020% Boron B): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W): 0.005 to 0.25%, balance nickel ( Ni) and unavoidable impurities, and in the following formulas (wherein each element is described in Ni-based alloy A Ni-based alloy excellent in scale removability characterized by satisfying the relationship of the content (mass%) of the element. 4.2 × Mo + 3.6 × W + 355 × B ≧ 0.60 【Selection chart】 None
Description
本発明は、耐応力腐食割れ、耐粒界腐食性に優れたNi基合金であって、特に、熱間鍛造等の熱間加工工程により生成した酸化スケールが押し込まれることに起因して生じる凹み、疵等の表面欠陥を抑制できる、スケール剥離性に優れるNi基合金、Ni基合金塊、Ni基合金熱間圧延用スラブ及びNi基合金板に関するものである。 The present invention is a Ni-based alloy which is excellent in stress corrosion cracking and intergranular corrosion resistance, and in particular, is a recess formed due to indentation of oxide scale produced by a hot working process such as hot forging. The present invention relates to a Ni-based alloy, a Ni-based alloy block, a Ni-based alloy ingot, a slab for Ni-based alloy hot rolling, and a Ni-based alloy sheet which are capable of suppressing surface defects such as wrinkles.
Ni基合金は、耐食性、耐熱性に優れるため厳しい使用環境で適用されている。Ni基合金のうち、例えば、JIS NCF 600相当材は、優れた耐応力腐食割れ性、耐粒界腐食性を具備しているため、原子炉の炉心材として使用されている。さらに厳しい環境の場合には、通常、Nb等を添加し、固溶する炭素を炭化物として固着したNi基合金が適用されている。 Ni-based alloys are applied in severe use environments because they are excellent in corrosion resistance and heat resistance. Among the Ni-based alloys, for example, JIS NCF 600 equivalent materials are used as core materials of nuclear reactors because they have excellent resistance to stress corrosion cracking and intergranular corrosion resistance. In a more severe environment, a Ni-based alloy is generally applied in which Nb or the like is added and carbon in solid solution is fixed as carbide.
しかしながら、Nbを添加したNi基合金は熱間加工性に問題があった。そこで、特許文献1では、NbCの溶体化熱処理が提案されている。また、特許文献2では、B添加およびO含有量の低減による粒界強化の改善が提案されている。しかしながら、いずれも一定の効果はあるものの、耐応力腐食割れ、耐粒界腐食性に改善の余地があった。そこで、特許文献3では、熱間加工性に優れ、耐応力腐食割れに優れたNi基合金、特許文献4では、Bを含有するスラブに表面欠陥を発生させないように熱間圧延し厚板とするNi基合金熱間圧延板の製造方法が提案されている。特に、特許文献3、4では、熱間加工性、耐割れ性、耐食性に優れていた。
However, the Ni-based alloy to which Nb is added has a problem in hot workability. Then, in
一方で、上記特許文献のNi基合金では、熱間鍛造等の熱間加工工程で生成した酸化スケールがNi基合金の表面に一部残存し、そのまま、Ni基合金に押し込まれることにより、Ni基合金の表面に凹みや疵等の表面欠陥が発生することがあった。一部残存した酸化スケールがNi基合金に押し込まれて形成される凹みや疵等の表面欠陥は、当該部分を研削除去することで品質上は対応可能である。 On the other hand, in the Ni-based alloy of the above-mentioned patent document, the oxidized scale formed in the hot working process such as hot forging partially remains on the surface of the Ni-based alloy and is directly pressed into the Ni-based alloy. Surface defects such as dents and wrinkles may occur on the surface of the base alloy. The surface defects such as dents and wrinkles, which are formed by pressing the partially remaining oxide scale into the Ni-based alloy, can be dealt with in terms of quality by grinding and removing the relevant portion.
しかし、例えば、Ni基合金が原子炉用材料として使用される場合には、極めて高い品質が要求されるので、上記した凹みや疵等の表面欠陥を確実に除去することが必要な場合がある。上記した凹みや疵等の表面欠陥を確実に除去するために、研削等の工程を実施すると、歩留まりが低下し、また、余分な工程が追加されることとなり、Ni基合金板の製造が煩雑化し、製造コストも上昇することとなる。 However, for example, when a Ni-based alloy is used as a material for nuclear reactors, extremely high quality is required, so it may be necessary to reliably remove surface defects such as the above-mentioned dents and wrinkles. . If a process such as grinding is carried out to reliably remove the surface defects such as the above-mentioned dents and wrinkles, the yield will be reduced, and an extra process will be added, making the production of the Ni-based alloy plate complicated. And the manufacturing cost will also rise.
上記事情に鑑み、本発明は、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵等の表面欠陥の発生を防止でき、熱間加工前後で優れた歩留まりを得ることができる、スケール剥離性に優れるNi基合金を提供することを目的とする。 In view of the above circumstances, the present invention is a high Nb-containing Ni-based alloy which is excellent in hot workability, cracking resistance and corrosion resistance and which contains 1.5% by mass or more of Nb in the Ni-based alloy. Ni base excellent in scale removability, which can prevent generation of surface defects such as dents and wrinkles of the alloy surface due to pressing of oxide scale generated in the hot working process, and excellent yield before and after hot working The purpose is to provide an alloy.
発明者らは、上記課題を解決するために鋭意検討を重ね、上記課題を解決するには、酸化スケールがNi基合金から剥離して容易に割れる組成、構造にすればよいと考えた。一方で、酸化スケールはNi基合金の酸化の進行を抑制する作用もあり、酸化スケールのNi基合金に対する密着性があまりに低下してしまうと、熱間加工時の酸化作用によってNi基合金のロスが大きくなり、歩留りが低下してしまう恐れがあった。そこで、加熱時には、Ni基合金に対して従来に近い酸化スケールの密着状態を維持しつつ、鍛造等の加工時には、酸化スケールに容易に多くの割れが導入されてNi基合金から剥離するような酸化スケールを得ることを目的に検討を進めた。酸化スケールの組成、構造は添加元素の影響を受けることから、添加元素の組成の観点から、加熱時には酸化スケールの密着性を維持しつつ、鍛造等の加工時には剥離性を有する酸化スケールを形成させることを見出すこととした。 The inventors of the present invention have intensively studied in order to solve the above-mentioned problems, and in order to solve the above-mentioned problems, it was considered that the oxide scale should have a composition and structure which can be easily peeled off from the Ni-based alloy. On the other hand, the oxide scale also has the function of suppressing the progress of oxidation of the Ni-based alloy, and if the adhesion of the oxide scale to the Ni-based alloy is too low, the loss of the Ni-based alloy is caused by the oxidation during hot working. And the yield may be reduced. Therefore, during heating, while maintaining the close contact state of the oxide scale close to the conventional one with respect to the Ni-based alloy, during processing such as forging, many cracks are easily introduced into the oxide scale and peeled off from the Ni-based alloy. The investigation was advanced for the purpose of obtaining the oxidation scale. Since the composition and structure of the oxide scale are affected by the additive elements, from the viewpoint of the composition of the additive elements, the adhesion of the oxide scale is maintained at the time of heating, and an oxide scale having releasability is formed at processing such as forging. I decided to find a thing.
そこで、発明者らは、高Nb含有Ni基合金について、加熱時における酸化スケールの密着性及び加工時における剥離性と合金組成との関係に注目した。その結果、加熱時における酸化スケールの剥離性を向上させる添加元素は、Mo、W、Bの3つであり、特にBの剥離性向上の効果は顕著で、微量の添加にも関わらず、加工時における優れた剥離性が確認された。さらに、熱間加工時にNi基合金が酸化されることによる重量変化は、Al、Tiの効果で従来と略同程度を維持でき、酸化作用によるNi基合金のロスも従来と同程度となることを見出した。 Therefore, the inventors focused on the adhesion of the oxide scale at the time of heating and the relationship between the peelability at the time of processing and the alloy composition for the high Nb-containing Ni-based alloy. As a result, the additive elements that improve the removability of the oxide scale at the time of heating are three elements of Mo, W, and B, and the effect of improving the removability of B is particularly remarkable. Excellent peelability at time was confirmed. Furthermore, the weight change due to the oxidation of the Ni-based alloy during hot working can be maintained substantially the same as in the prior art by the effects of Al and Ti, and the loss of the Ni-based alloy due to the oxidation action is also comparable to the conventional Found out.
上記効果のメカニズムは不明であるが、Mo、W、Bは、高温の酸化雰囲気にさらされると昇華しガス化することから、Mo、W、Bのガス成分が酸化スケール/母相間に微量存在し、鍛造等の加工時の剥離を促進しているか、またはMo、W、Bは、ガスとして酸化スケールを透過して放出されることでガスの流路が形成された、割れ易い酸化スケールとなったことが考えられる。 Although the mechanism of the above effect is unknown, Mo, W, B sublime and gasify when exposed to a high temperature oxidizing atmosphere, so that a small amount of Mo, W, B gas components exist between the oxide scale / matrix. Or promote separation during processing such as forging, or Mo, W, and B are released through the oxide scale as a gas, and a gas flow path is formed, so that a fragile oxide scale and It is thought that it became.
本発明の構成の要旨は、以下の通りである。
[1]質量%で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W)をそれぞれ0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、
下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧0.60
[2]質量%で、ホウ素(B):0.0010〜0.008%、モリブデン(Mo)及び/またはタングステン(W):0.008〜0.21%であることを特徴とする[1]に記載のスケール剥離性に優れるNi基合金。
[3]下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とする[1]または[2]に記載のスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧1.00
[4][1]乃至[3]のいずれか1つに記載のNi基合金からなるNi基合金塊。 [5][4]に記載のNi基合金塊が熱間鍛造されたNi基合金熱間圧延用スラブ。
[6][5]に記載のNi基合金熱間圧延用スラブが熱間圧延されたNi基合金板。
The summary of the configuration of the present invention is as follows.
[1] by mass%, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0.20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B (B) ): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W) respectively 0.005 to 0.25%, balance nickel ( Ni) and inevitable impurities,
A Ni-based alloy excellent in scale removability characterized by satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy).
4.2 × Mo + 3.6 × W + 355 × B ≧ 0.60
[2] It is characterized in that, by mass%, boron (B): 0.0010 to 0.008%, molybdenum (Mo) and / or tungsten (W): 0.008 to 0.21% [1 ] The Ni-based alloy which is excellent in the scale exfoliation property as described in [].
[3] is characterized by satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy) [1] or [2] The Ni-based alloy which is excellent in scale removability as described in.
4.2 × Mo + 3.6 × W + 355 × B ≧ 1.00
[4] A Ni-based alloy block comprising the Ni-based alloy according to any one of [1] to [3]. [5] A slab for Ni-based alloy hot rolling, in which the Ni-based alloy mass according to [4] is hot-forged.
The Ni-based alloy sheet by which the slab for Ni-based alloy hot rolling as described in [6] [5] was hot-rolled.
本発明のNi基合金によれば、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵等の表面欠陥の発生を防止でき、熱間加工前後で優れた歩留まりを得ることができる、スケール剥離性に優れるNi基合金を得ることができる。従って、欠陥のない良好な表面状態となった高Nb含有Ni基合金について、熱間加工後の歩留まりの低下を防止し、また余分な工程を追加することなく、凹みや疵等の微細な欠陥発生も防止された表面状態を得ることができる。 According to the Ni-based alloy of the present invention, it is a high Nb-containing Ni-based alloy which is excellent in hot workability, cracking resistance and corrosion resistance and in which the N-based alloy contains 1.5% by mass or more of Nb Also, Ni which is excellent in scale removability can prevent generation of surface defects such as dents and wrinkles of the alloy surface by pressing of oxide scale generated in the hot working process and can obtain excellent yield before and after hot working Base alloys can be obtained. Therefore, for a high Nb-containing Ni-based alloy that has a good surface state free from defects, the reduction in yield after hot working is prevented, and fine defects such as dents and wrinkles are prevented without adding an extra step. It is possible to obtain a surface state which is also prevented from occurring.
次に、本発明のスケール剥離性に優れるNi基合金について詳細を説明する。本発明のスケール剥離性に優れるNi基合金は、質量%(以下、Ni基合金の各成分の含有量である質量%を、単に「%」という。)で、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧0.60
Next, the Ni-based alloy excellent in the scale removability of the present invention will be described in detail. The Ni-based alloy having excellent scale removability according to the present invention has a carbon (C) content of 0.001% by mass (hereinafter, the mass% which is the content of each component of the Ni-based alloy is simply referred to as "%"). -0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25%, aluminum (Al): 0.01 to 0 .20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, oxygen (O) : 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W): 0.005 to 0.25 %, The balance being nickel (Ni) and unavoidable impurities, and satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy). Ni-based alloy excellent in scale removability characterized by
4.2 × Mo + 3.6 × W + 355 × B ≧ 0.60
C:0.001〜0.045%
スケール剥離性に優れるNi基合金中のCは、オーステナイト相を安定化し、室温での機械的強度を確保するために必須の元素である。このためには、0.001%以上の含有量が必要である。一方で、過剰量の添加はNbとCを主成分とする化合物(炭化物)を生成させ、その近傍にCr欠乏部を形成し、耐食性を著しく低下させる。また、NbとCを主成分とする化合物が増えて、割れを発生させて、耐割れ性を低下させる。このため、含有量の上限は0.045%とする。含有量の好ましい下限は0.003%、特に好ましい下限は0.005%である。また、含有量の好ましい上限は0.040%、特に好ましい上限は0.035%である。
C: 0.001 to 0.045%
C in a Ni-based alloy excellent in scale removability is an essential element to stabilize the austenite phase and to secure mechanical strength at room temperature. For this purpose, a content of 0.001% or more is required. On the other hand, the addition of an excessive amount forms a compound (carbide) mainly composed of Nb and C, forms a Cr-depleted part in the vicinity thereof, and significantly reduces the corrosion resistance. Moreover, the compound which has Nb and C as a main component increases, causes a crack, and reduces crack resistance. Therefore, the upper limit of the content is 0.045%. The preferable lower limit of the content is 0.003%, and the particularly preferable lower limit is 0.005%. The upper limit of the content is preferably 0.040%, and particularly preferably 0.035%.
Si:0.05〜1.00%
スケール剥離性に優れるNi基合金中のSiは、脱酸を行なうのに必須の元素であり、さらに、耐応力腐食割れ性を向上させるのに必要である。この効果は、0.05%以上の添加により得られる。一方で、過剰量の添加は、介在物の増加、これに関連して表面欠陥の発生を招く。このため、含有量の上限は1.00%とする。含有量の好ましい下限は0.08%、特に好ましい下限は0.10%である。また、含有量の好ましい上限は0.80%、特に好ましい上限は0.60%である。
Si: 0.05 to 1.00%
Si in the Ni-based alloy, which is excellent in scale removability, is an element essential to deoxidation, and is further required to improve stress corrosion cracking resistance. This effect is obtained by addition of 0.05% or more. On the other hand, the addition of an excessive amount leads to the increase of inclusions and the associated generation of surface defects. Therefore, the upper limit of the content is 1.00%. The preferable lower limit of the content is 0.08%, and the particularly preferable lower limit is 0.10%. Further, a preferable upper limit of the content is 0.80%, and a particularly preferable upper limit is 0.60%.
Mn:0.05〜1.00%
スケール剥離性に優れるNi基合金中のMnは、Siと同じく脱酸を行なうのに必須の元素であり、オーステナイト相の安定にも寄与する。特に、添加による硬さの上昇が小さく、機械的強度を適正化しつつ、オーステナイト相の安定を確保できる元素である。さらに、酸化スケールに作用して、酸化スケールの効率的な剥離に寄与し、酸化スケールの押し込みによるNi基合金表面の凹みや疵の発生を抑制する。このため、少なくとも0.05%以上の添加が必要である。一方で、過剰量の添加は、耐食性を低下させるため、含有量の上限は1.00%とする。含有量の好ましい下限は、0.08%、特に好ましい下限は0.10%である。また、含有量の好ましい上限は0.80%、特に好ましい上限は0.60%である。
Mn: 0.05 to 1.00%
Mn in a Ni-based alloy, which is excellent in scale removability, is an element essential for deoxidation as with Si, and also contributes to the stability of the austenite phase. In particular, the increase in hardness due to the addition is small, and it is an element that can ensure the stability of the austenite phase while optimizing the mechanical strength. Furthermore, it acts on the oxide scale, contributes to the efficient peeling of the oxide scale, and suppresses the generation of dents and wrinkles on the surface of the Ni-based alloy due to the indentation of the oxide scale. For this reason, addition of at least 0.05% or more is necessary. On the other hand, the addition of an excessive amount lowers the corrosion resistance, so the upper limit of the content is 1.00%. The preferable lower limit of the content is 0.08%, and the particularly preferable lower limit is 0.10%. Further, a preferable upper limit of the content is 0.80%, and a particularly preferable upper limit is 0.60%.
P:0.015%以下
スケール剥離性に優れるNi基合金中のPは、粒界に偏析し、耐食性、熱間加工性を低下させてしまう元素である。このため、その上限は厳しく限定する必要がある。本発明では0.015%以下に制限する。含有量の好ましい上限は0.012%、特に好ましい上限は、0.010%である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.001%が挙げられる。
P: 0.015% or less P in a Ni-based alloy which is excellent in scale removability is an element which segregates in grain boundaries and reduces corrosion resistance and hot workability. For this reason, the upper limit needs to be strictly limited. In the present invention, the content is limited to 0.015% or less. The upper limit of the content is preferably 0.012%, and particularly preferably 0.010%. The lower limit of the content is preferably as close to 0% as, for example, 0.001%.
S:0.0030%以下
スケール剥離性に優れるNi基合金中のSは、粒界に偏析して低融点化合物を形成し、熱間加工性の低下を招く元素であり、極力低減すべきである。このため、その上限は厳しく限定する必要がある。本発明では0.0030%以下に制限する。好ましくは0.0025%以下、特に好ましくは0.0020%以下である。また、含有量の下限は0%に近いほど好ましいが、例えば、0.0001%が挙げられる。
S: 0.0030% or less S in a Ni-based alloy excellent in scale removability is an element which segregates at grain boundaries to form a low melting point compound and causes a reduction in hot workability, and should be reduced as much as possible. is there. For this reason, the upper limit needs to be strictly limited. In the present invention, the content is limited to 0.0030% or less. Preferably it is 0.0025% or less, especially preferably 0.0020% or less. The lower limit of the content is preferably as close to 0% as, for example, 0.0001%.
Cr:14〜24%
スケール剥離性に優れるNi基合金中のCrは、耐食性の向上に寄与する重要な元素であり、厳しい環境に使用するのに必須の元素である。このため、少なくとも14%の添加は必要である。一方で、24%を越えて含有すると、高温での機械的強度が高くなり加工が困難となる。さらに、オーステナイト相の不安定化を招き、炭化物の析出も促進する。このため、含有量の上限は24%とする。含有量の好ましい下限は15.0%、特に好ましい下限は15.5%である。また、含有量の好ましい上限は23.0%、特に好ましい上限は22.0%である。
Cr: 14 to 24%
Cr in a Ni-based alloy excellent in scale removability is an important element contributing to the improvement of the corrosion resistance, and an element essential for use in a severe environment. For this reason, an addition of at least 14% is necessary. On the other hand, if the content is more than 24%, the mechanical strength at high temperature becomes high and the processing becomes difficult. Furthermore, it causes destabilization of the austenite phase and promotes precipitation of carbides. Therefore, the upper limit of the content is 24%. The preferable lower limit of the content is 15.0%, and the particularly preferable lower limit is 15.5%. The upper limit of the content is preferably 23.0%, and more preferably 22.0%.
Nb:1.5〜4.0%
スケール剥離性に優れるNi基合金中のNbは、CおよびNを炭化物、窒化物または炭窒化物として析出させて耐食性を向上させる効果がある。この効果を得るには、少なくとも1.5%以上の添加が必要である。一方で、含有量が多すぎると過剰に析出した析出物により粒界脆性を生じさせる場合があるので、含有量の上限は4.0%とする。含有量の好ましい下限は2.0%、特に好ましい下限は2.1%である。また、含有量の好ましい上限は3.7%、特に好ましい上限は3.2%である。
Nb: 1.5 to 4.0%
Nb in a Ni-based alloy excellent in scale removability has the effect of precipitating C and N as carbides, nitrides or carbonitrides to improve corrosion resistance. In order to obtain this effect, addition of at least 1.5% or more is necessary. On the other hand, if the content is too large, intergranular brittleness may be caused by precipitates precipitated excessively, so the upper limit of the content is made 4.0%. The preferable lower limit of the content is 2.0%, and the particularly preferable lower limit is 2.1%. The upper limit of the content is preferably 3.7%, and particularly preferably 3.2%.
Fe:3〜25%
スケール剥離性に優れるNi基合金中のFeは、靭性の向上に寄与する成分である。この効果を得るには少なくとも3%の添加が必要である。一方で、含有量が25%を越えると耐食性を低下させる。このため、含有量の上限は25%とする。含有量の好ましい下限は5%、特に好ましい下限は6%である。また、含有量の好ましい上限は23%、特に好ましい上限は21%である。
Fe: 3 to 25%
Fe in the Ni-based alloy excellent in scale removability is a component that contributes to the improvement of toughness. At least 3% addition is required to achieve this effect. On the other hand, if the content exceeds 25%, the corrosion resistance is lowered. Therefore, the upper limit of the content is 25%. The preferable lower limit of the content is 5%, and the particularly preferable lower limit is 6%. The upper limit of the content is preferably 23%, particularly preferably 21%.
Al:0.01〜0.20%
スケール剥離性に優れるNi基合金中のAlは、脱酸を行なうのに必須の元素であり、また、Tiとともに酸化を抑制する効果がある。この効果を得るには少なくとも0.01%以上の添加が必要である。一方で、0.20%を越えて添加すると、熱間加工性を低下させて、Ni基合金の母材中に介在物を多数形成し、耐食性が低下するようになる。このため、含有量の上限は0.20%とする。含有量の好ましい下限は0.02%、特に好ましい下限は0.03%である。また、含有量の好ましい上限は0.18%、特に好ましい上限は0.16%である。
Al: 0.01 to 0.20%
Al in a Ni-based alloy excellent in scale removability is an element essential for deoxidation, and has an effect of suppressing oxidation together with Ti. Addition of at least 0.01% or more is necessary to obtain this effect. On the other hand, when it is added in excess of 0.20%, the hot workability is lowered, a large number of inclusions are formed in the base material of the Ni-based alloy, and the corrosion resistance is lowered. Therefore, the upper limit of the content is 0.20%. The preferable lower limit of the content is 0.02%, and the particularly preferable lower limit is 0.03%. Further, a preferable upper limit of the content is 0.18%, and a particularly preferable upper limit is 0.16%.
Ti:0.001〜0.20%
スケール剥離性に優れるNi基合金中のTiは、脱酸に寄与する元素であり、Alとともに酸化を抑制する効果がある。本発明では、B、Moなどの添加により熱間加工時のスケール剥離性を向上させているが、加熱時、つまり加熱条件下にて静的に保持している段階では耐酸化性を保持することでNi基合金のロスを抑制することが好ましい。加熱条件下にて静的に保持する際の耐酸化性を維持するために、少なくとも0.001%以上の添加が必要である。一方で、0.20%を越えて添加すると、熱間加工性を低下させて、Ni基合金の母材中に介在物を多数形成し、耐食性が低下するようになる。このため、含有量の上限は0.20%とする。含有量の好ましい下限は0.002%、特に好ましい下限は0.003%である。また、含有量の好ましい上限は0.18%、特に好ましい上限は0.16%である。
Ti: 0.001 to 0.20%
Ti in the Ni-based alloy, which is excellent in scale removability, is an element contributing to deoxidation, and has an effect of suppressing oxidation together with Al. In the present invention, the scale removability during hot working is improved by the addition of B, Mo, etc., but the oxidation resistance is maintained at the time of heating, that is, at the stage of holding statically under heating conditions. Therefore, it is preferable to suppress the loss of the Ni-based alloy. Addition of at least 0.001% or more is necessary to maintain the oxidation resistance when held statically under heating conditions. On the other hand, when it is added in excess of 0.20%, the hot workability is lowered, a large number of inclusions are formed in the base material of the Ni-based alloy, and the corrosion resistance is lowered. Therefore, the upper limit of the content is 0.20%. The preferable lower limit of the content is 0.002%, and the particularly preferable lower limit is 0.003%. Further, a preferable upper limit of the content is 0.18%, and a particularly preferable upper limit is 0.16%.
N:0.003〜0.020%
スケール剥離性に優れるNi基合金中のNは、室温での機械的強度を向上させ、オーステナイト相の安定度を増し、さらに耐食性も向上させる。このため、0.003%以上の添加が必要である。一方で、Nbと化合物を形成することから有効なNb量を低減させ、ブローホールが生じやすくなる。このため、含有量の上限は0.020%とする。含有量の好ましい下限は0.005%、特に好ましい下限は0.008%である。また、含有量の好ましい上限は0.014%、特に好ましい上限は0.012%である。
N: 0.003 to 0.020%
N in the Ni-based alloy excellent in scale removability improves the mechanical strength at room temperature, increases the stability of the austenite phase, and further improves the corrosion resistance. For this reason, addition of 0.003% or more is required. On the other hand, the formation of a compound with Nb reduces the amount of Nb that is effective, and blow holes are likely to occur. Therefore, the upper limit of the content is 0.020%. The preferable lower limit of the content is 0.005%, and the particularly preferable lower limit is 0.008%. The upper limit of the content is preferably 0.014%, and more preferably 0.012%.
B:0.0010〜0.0100%
スケール剥離性に優れるNi基合金中のBは、熱間加工性を改善する重要な元素である。熱間鍛造や熱間圧延等の熱間加工において、酸化スケールのNi基合金からの剥離を促進し、酸化スケールの押し込みに起因する凹みや疵等の表面欠陥の発生を確実に抑制する。上記の効果を得るには少なくとも0.0010%の添加が必要である。一方で、0.0100%を越えて含有すると、かえって熱間加工性が低下し、熱間鍛造、熱間圧延時に割れが発生する。よって、含有量の上限は0.0100%とする。含有量の好ましい下限は0.0012%、特に好ましい下限は0.0015%である。また、含有量の好ましい上限は0.0080%、特に好ましい上限は0.0070%である。
B: 0.0010 to 0.0100%
B in a Ni-based alloy excellent in scale removability is an important element for improving hot workability. In hot working such as hot forging and hot rolling, exfoliation of oxide scale from a Ni-based alloy is promoted, and generation of surface defects such as dents and wrinkles resulting from indentation of oxide scale is surely suppressed. The addition of at least 0.0010% is necessary to obtain the above effect. On the other hand, if the content exceeds 0.0100%, the hot workability is rather reduced, and cracking occurs during hot forging and hot rolling. Therefore, the upper limit of the content is 0.0100%. The preferable lower limit of the content is 0.0012%, and the particularly preferable lower limit is 0.0015%. The upper limit of the content is preferably 0.0080%, and particularly preferably 0.0070%.
O:0.0002〜0.0020%
スケール剥離性に優れるNi基合金中のOは、溶解、精錬工程でN量の低減を容易とする。このため、少なくとも0.0002%以上の含有が必要である。一方で、Oは、Al、Ti、Si、Mnと結合し、脱酸生成物を生成する。0.0020%を越えて含有する場合、脱酸生成物による耐食性の低下、表面疵の原因となる。このため、含有量の上限は0.0020%とする。含有量の好ましい下限は0.0003%、特に好ましい下限は0.0004%である。また、含有量の好ましい上限は0.0019%、特に好ましい上限は0.0018%である。
O: 0.0002 to 0.0020%
O in the Ni-based alloy, which is excellent in scale removability, makes it easy to reduce the amount of N in the melting and refining processes. For this reason, it is necessary to contain at least 0.0002% or more. On the other hand, O bonds with Al, Ti, Si and Mn to form a deoxidized product. When it is contained in excess of 0.0020%, the deoxidation product causes a reduction in corrosion resistance and causes surface defects. For this reason, the upper limit of the content is made 0.0020%. The preferable lower limit of the content is 0.0003%, and the particularly preferable lower limit is 0.0004%. The upper limit of the content is preferably 0.0019%, and particularly preferably 0.0018%.
Mo及び/またはW:0.005〜0.25%
スケール剥離性に優れるNi基合金中のMo、Wは、耐食性の向上、特に耐孔食性、耐隙間腐食性を向上させ、また、粒界腐食性の向上にも寄与する。さらに、酸化スケールに作用し、熱間加工時の酸化スケールのNi基合金からの剥離を促進し、酸化スケールの押し込みに起因する凹みや疵等の表面欠陥の発生を確実に抑制する。これらの効果を得るには少なくともMo、Wのいずれか1種を0.005%、またはMo、Wともに、それぞれ、0.005%の添加が必要である。一方で、Mo及び/またはWの過剰の添加は、Ni基合金の耐酸化性の低下や酸化の促進となるので、熱間加工前の加熱時の酸化が促進されて熱間加工後の酸化スケールの剥離による歩留りの低下、すなわち、Ni基合金のロスが大きくなり、コスト増となってしまう。このため、Mo及び/またはWの含有量の上限はMo、Wのいずれか1種を0.25%、またはMo、Wともに、それぞれ、0.25%とする。Mo及び/またはWの含有量の好ましい下限はMo、Wのいずれか1種を0.008%、またはMo、Wともに、それぞれ、0.008%、特に好ましい上記下限は0.010%である。また、Mo及び/またはWの含有量の好ましい上限はMo、Wのいずれか1種を0.21%、またはMo、Wともに、それぞれ、0.21%、特に好ましい上記上限は0.18%である。
Mo and / or W: 0.005 to 0.25%
Mo and W in the Ni-based alloy excellent in scale removability improve the corrosion resistance, in particular, improve the pitting resistance, the crevice corrosion resistance, and also contribute to the improvement of intergranular corrosion. Furthermore, it acts on the oxide scale, promotes the exfoliation of the oxide scale from the Ni-based alloy during hot working, and reliably suppresses the occurrence of surface defects such as dents and wrinkles resulting from indentation of the oxide scale. In order to obtain these effects, it is necessary to add at least 0.005% of at least one of Mo and W, or 0.005% of each of Mo and W, respectively. On the other hand, the excessive addition of Mo and / or W reduces the oxidation resistance of the Ni-based alloy and promotes the oxidation, so the oxidation at the time of heating before hot working is promoted and the oxidation after hot working The reduction in yield due to the exfoliation of the scale, that is, the loss of the Ni-based alloy increases, and the cost increases. Therefore, the upper limit of the content of Mo and / or W is 0.25% for any one of Mo and W, or 0.25% for both Mo and W. The lower limit of the content of Mo and / or W is preferably 0.008% for Mo or W, or 0.008% for Mo or W, and the lower limit is particularly preferably 0.010%. . In addition, the upper limit of the content of Mo and / or W is preferably 0.21% of either Mo or W, or 0.21% for Mo and W, respectively, and the upper limit is particularly preferably 0.18%. It is.
本発明のスケール剥離性に優れるNi基合金では、上記成分以外の残部はNi及び不可避的不純物である。本発明のスケール剥離性に優れるNi基合金では、主成分としてNiが含有されている。 In the Ni-based alloy having excellent scale removability according to the present invention, the balance other than the above components is Ni and unavoidable impurities. The Ni-based alloy excellent in the scale removability of the present invention contains Ni as a main component.
下記式
4.2×Mo+3.6×W+355×B≧0.60
酸化スケール剥離性に影響する元素について、その影響の程度を回帰分析により式として表したものである。上記式の値が0.60以上であると、熱間加工時における酸化スケール剥離性が向上して、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工時に効果的に酸化スケールがNi基合金から剥離する。よって、上記式の値が0.60以上となるように、Ni基合金の成分組成をコントロールする必要がある。上記式の値は、熱間加工時における酸化スケール剥離性と歩留まりをさらに向上させる点から0.80以上が好ましく、1.00以上がより好ましく、1.40以上が特に好ましい。一方で、上記式の値の上限値は、特に限定されないが、例えば、5.50が挙げられる。
The following formula 4.2 × Mo + 3.6 × W + 355 × B ≧ 0.60
The degree of the influence is shown as a formula by regression analysis about the element which affects the oxide scale exfoliation property. When the value of the above-mentioned formula is 0.60 or more, Nb is included in the Ni-based alloy which is improved in oxide scale removability during hot working and is excellent in hot workability, cracking resistance and corrosion resistance. Even in a high Nb-containing Ni-based alloy containing 1.5% by mass or more, the oxide scale exfoliates effectively from the Ni-based alloy during hot working. Therefore, it is necessary to control the component composition of the Ni-based alloy so that the value of the above equation is 0.60 or more. The value of the above formula is preferably 0.80 or more, more preferably 1.00 or more, and particularly preferably 1.40 or more from the viewpoint of further improving the oxide scale removability and the yield during hot working. On the other hand, the upper limit of the value of the above formula is not particularly limited, and an example is 5.50.
上記式の特定方法は、以下の通りである。
Ni−20%Cr−2.3%Nb−7%Feを基本組成とし、これに上記各種元素の添加量を変化させたNi基合金を溶製し、10mmt×100mm×150mmに切断した。その後、切断したNi基合金のすべての表面を湿式研磨♯120で仕上げて試験片とした。得られた試験片を、予め1200℃に加熱した加熱装置に入れ、3時間保持して加熱処理をし、Ni基合金表面に酸化スケールを形成させた。加熱処理後、加熱装置から試験片を取り出して油圧ハンマーで15%変形させて、酸化スケールの剥離の有無を評価した。酸化スケールの剥離の有無の評価は、試験片表面をデジタル顕微鏡(倍率10倍)にて、20mm×20mmの面積を計20箇所観察し、酸化スケールが残存していると判断した箇所の面積を多角形で近似して、酸化スケールの合計面積を算出した。酸化スケールが残存していた箇所の合計面積を観察面積で除し、さらに100を乗じた値を残存スケール面積率(%)とした。
The specification method of the said formula is as follows.
Ni-20% Cr-2.3% Nb-7% Fe was made into the basic composition, the Ni base alloy which changed the addition amount of the said various elements to this was melted, and it cut | disconnected to 10 mmt x 100 mm x 150 mm. Thereafter, all surfaces of the cut Ni-based alloy were finished by wet polishing # 120 to obtain test pieces. The obtained test piece was placed in a heating device previously heated to 1200 ° C., held for 3 hours, and subjected to heat treatment to form an oxide scale on the surface of the Ni-based alloy. After the heat treatment, the test piece was taken out of the heating device, deformed by 15% with a hydraulic hammer, and the presence or absence of peeling of the oxide scale was evaluated. The evaluation of the presence or absence of peeling of the oxide scale was carried out by observing the surface of the test piece with a digital microscope (10 × magnification), for a total of 20 mm × 20 mm areas, and the area of the portion judged to have remained oxide scale The total area of the oxidation scale was calculated by approximation with a polygon. The total area of the places where the oxide scale remained was divided by the observation area, and the value obtained by further multiplying by 100 was taken as the residual scale area ratio (%).
試験片を変形させた後でも酸化スケールが剥離せずに残存している面積で比較すると、特定の元素をわずかに含有しているものが、酸化スケールが試験片から円滑に剥離することが判明し、また、残存スケール面積率が30%以下であれば、酸化スケールの押し込みによる凹みや疵等の表面欠陥は認められなかった。上記試験の結果、特に、酸化スケール剥離性の効果が認められた元素は、Mo、W、Bであり、Mo、W、Bのうち、特にBの効果は顕著で、微量の添加にも関わらず、酸化スケール剥離性の効果が確認された。さらに、Ni基合金が酸化されることによる重量変化は、Al、Tiの効果で従来と略同程度を維持でき、酸化作用によるNi基合金のロスも従来と同程度となることを見出した。 Comparison of the area in which the oxide scale remains without peeling even after deformation of the test piece shows that the oxide scale peels off from the test piece smoothly even though it contains a small amount of a specific element. Also, when the residual scale area ratio was 30% or less, surface defects such as dents and wrinkles due to indentation of oxide scale were not observed. As a result of the above test, in particular, the elements in which the effect of the oxide scale removability is recognized are Mo, W, B, and the effect of B among Mo, W, B is particularly remarkable, and the addition of a small amount is also possible. The effect of the oxide scale removability was confirmed. Furthermore, it has been found that the weight change due to the oxidation of the Ni-based alloy can be maintained substantially the same as the conventional one by the effects of Al and Ti, and the loss of the Ni-based alloy due to the oxidation action is also comparable to the conventional one.
上記試験結果から、Ni基合金の変形による酸化スケール剥離性への添加元素の影響度合いが明らかとなり、重回帰分析により求めたのが、4.2×Mo+3.6×W+355×Bで表されるNi基合金の成分組成の関係式であり、4.2×Mo+3.6×W+355×Bを0.6以上とすることで、熱間加工工程で生成した酸化スケールの押し込みによるNi基合金表面の凹みや疵の発生を防止できることが判明した。 From the above test results, the degree of influence of the additive element on the oxide scale removability due to the deformation of the Ni-based alloy is clarified, and the value obtained by multiple regression analysis is represented by 4.2 × Mo + 3.6 × W + 355 × B. It is a relational expression of the component composition of the Ni-based alloy, and by setting 4.2 × Mo + 3.6 × W + 355 × B to be 0.6 or more, the Ni-based alloy surface is formed by pressing the oxide scale formed in the hot working process. It turned out that it is possible to prevent the occurrence of dents and wrinkles.
上記Ni基合金の成分組成の関係式の値と残存スケール面積率(%)との関係を表すグラフを図1に示す。図1から、上記式の値が0.60以上であることで効果的にNi基合金の変形による酸化スケール剥離性が得られることがわかる。なお、図1の点線は、残存スケール面積率30%を示す。 A graph showing the relationship between the value of the relational expression of the component composition of the Ni-based alloy and the residual scale area ratio (%) is shown in FIG. It can be seen from FIG. 1 that when the value of the above equation is 0.60 or more, oxide scale removability by deformation of the Ni-based alloy can be obtained effectively. The dotted line in FIG. 1 indicates a residual scale area ratio of 30%.
本発明のスケール剥離性に優れるNi基合金によれば、熱間加工性、耐割れ性及び耐腐食性に優れた、Ni基合金中にNbが1.5質量%以上含まれる高Nb含有Ni基合金であっても、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵の発生を防止でき、また、熱間加工前後で優れた歩留まりを得ることができる、スケール剥離性に優れるNi基合金を得ることができる。従って、欠陥のない良好な表面状態となった高Nb含有Ni基合金について、熱間加工後の歩留まりの低下を防止し、また余分な工程を追加することなく、熱間加工後であっても凹みや疵等の微細な欠陥発生も防止された表面状態を得ることができる。 According to the Ni-based alloy having excellent scale removability according to the present invention, high Nb-containing Ni having 1.5% by mass or more of Nb contained in the Ni-based alloy excellent in hot workability, cracking resistance and corrosion resistance Even in the base alloy, it is possible to prevent the generation of dents and wrinkles on the surface of the alloy due to the pressing of the oxide scale generated in the hot working process, and also to obtain excellent yield before and after hot working. Ni-based alloy excellent in Therefore, for the high Nb-containing Ni-based alloy which has a good surface state free from defects, the reduction in yield after hot working is prevented, and even after hot working without adding an extra step. It is possible to obtain a surface state in which the occurrence of minute defects such as dents and wrinkles is also prevented.
また、本発明のスケール剥離性に優れるNi基合金が、Ni基合金塊であり、該Ni基合金塊が熱間鍛造されてNi基合金熱間圧延用スラブとすることで、酸化スケールの押し込みによる合金表面の微細な凹みや疵の発生も防止でき、また、熱間鍛造前後で優れた歩留まりを有するNi基合金熱間圧延用スラブを得ることができる。また、Ni基合金熱間圧延用スラブが熱間圧延等にて圧延されることで、酸化スケールの押し込みによる合金表面の微細な凹みや疵の発生も防止でき、また、圧延前後で優れた歩留まりを有するNi基合金板を得ることができる。 In addition, the Ni-based alloy having excellent scale removability according to the present invention is a Ni-based alloy ingot, and the Ni-based alloy ingot is hot-forged to form a slab for Ni-based alloy hot rolling, thereby pushing oxide scale. It is possible to prevent the occurrence of fine dents and wrinkles on the surface of the alloy and to obtain a Ni-based alloy hot rolling slab having an excellent yield before and after hot forging. In addition, by rolling the Ni-based alloy hot rolling slab by hot rolling or the like, it is possible to prevent the generation of fine dents and wrinkles on the surface of the alloy due to pressing of oxide scale, and excellent yield before and after rolling. It is possible to obtain a Ni-based alloy sheet having
このため、本発明のNi基合金は、例えば、要求品質が厳しい原子炉用材料に適用することができ、また、原子炉用材料を安価に製造できる。 For this reason, the Ni-based alloy of the present invention can be applied to, for example, nuclear reactor materials with strict requirements, and nuclear reactor materials can be manufactured inexpensively.
次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの実施例に限定されるものではない。 EXAMPLES Next, examples of the present invention will be described, but the present invention is not limited to these examples as long as the purpose of the present invention is not exceeded.
実施例1〜19、比較例1〜13
Ni基合金の合金塊の製造
まず、60t電気炉にて、スクラップ、ニッケル、クロム、ニオブなどの所定の原料を所定量投入して溶解後、AOD(Argon Oxygen Decarburization)またはVOD(Vacuum Oxygen Decarburization)にて、酸素とArの混合ガスを吹き込み脱炭した。その後、フェロシリコン合金および/またはアルミニウムを添加して、Cr還元し、その後、石灰石、蛍石を添加して、脱酸、脱硫を実施した。その後、いわゆる普通造塊法で、鋳型の下側から溶湯を注入して平角型Ni基合金塊へと鋳造して、下記表1に示す各種成分組成を有する実施例1〜19及び比較例1〜13のNi基合金を得た。平角型Ni基合金塊の質量は8トンであり、注入側が280mm×850mm、押湯側が550mm×1100mmの断面寸法であった。鋳造後に冷却固化したNi基合金塊を加熱し、1030℃にて2時間、保持した後、1200℃に再加熱して20%の据込み鍛造(熱間鍛造)を行って、サンプルであるNi基合金を製造した。なお、表1中の各成分の含有量は、質量%を意味し、残部はニッケル(Ni)並びに不可避的不純物からなる。また、下記表1中、下線を付した数値は、本発明の範囲外の数値であることを意味する。
Examples 1-19, comparative examples 1-13
Production of an alloy ingot of Ni-based alloy First, predetermined amounts of predetermined raw materials such as scrap, nickel, chromium, niobium and the like are charged in a 60 t electric furnace and melted, and then AOD (Argon Oxygen Decarburization) or VOD (Vacuum Oxygen Decarburization) Then, a mixed gas of oxygen and Ar was blown to decarburize. Thereafter, ferrosilicon alloy and / or aluminum were added to reduce Cr, and then limestone and fluorite were added to perform deoxidation and desulfurization. Thereafter, the so-called ordinary ingot forming method injects a molten metal from the lower side of the mold and casts it into a rectangular Ni-based alloy mass, and Examples 1 to 19 and Comparative Example 1 having various component compositions shown in Table 1 below. We obtained ~ 13 Ni-based alloys. The mass of the flat rectangular Ni-based alloy block was 8 tons, and the cross-sectional dimensions were 280 mm × 850 mm for the injection side and 550 mm × 1100 mm for the feeder side. The cast and solidified Ni base alloy block after cooling and heating is heated and held at 1030 ° C. for 2 hours, and then reheated to 1200 ° C. to perform upset forging (hot forging) at 20% to obtain Ni as a sample. A base alloy was manufactured. In addition, content of each component in Table 1 means mass%, and remainder consists of nickel (Ni) and an unavoidable impurity. Further, in Table 1 below, the underlined numerical value means that it is a numerical value outside the scope of the present invention.
評価
(1)残存スケール面積
得られたNi基合金から10mm厚×100mm幅×150mm長さの試験片を切り出し、表面を湿式研磨♯120で仕上げて試験片とし、該試験片表面をデジタル顕微鏡(株式会社キーエンス製、VHX−2000、倍率10倍)で20mm×20mmの面積を計10箇所観察し、酸化スケールが残存していると判断した箇所の面積を多角形で近似して、酸化スケールの合計面積(A1)を算出した。酸化スケールの合計面積(A1)と観察面積の合計(A2)から、(A1/A2)×100にて残存スケール面積率(%)を算出し、以下の3段階で評価した。
◎:残存スケール面積率が20%以下
○:残存スケール面積率が20%超30%以下
×:残存スケール面積率が30%超
Evaluation (1) Residual scale area A test piece of 10 mm thickness × 100 mm width × 150 mm length is cut out from the obtained Ni-based alloy, the surface is finished by wet polishing # 120 to make a test piece, and the surface of the test piece is digital microscope ( The area of 20 mm × 20 mm is observed at a total of 10 places with Keyence Co., Ltd. (VHX-2000, magnification: 10 times), and the area of the place judged to be an oxide scale is approximated by a polygon to obtain an oxide scale The total area (A1) was calculated. From the total area (A1) of the oxide scale and the total (A2) of the observation area, the residual scale area ratio (%) was calculated by (A1 / A2) × 100, and evaluated in the following three stages.
:: Residual scale area ratio not more than 20% ○: Residual scale area ratio not less than 20% and not more than 30% ×: Residual scale area ratio not less than 30%
(2)熱間鍛造前後の歩留まり
上記のように冷却固化したNi基合金塊について、熱間鍛造前の質量(a)と、熱間鍛造後に酸化スケールの除去及び酸化スケールの押し込みに起因する欠陥の除去を行った後の質量(b)とを、それぞれ測定し、(b/a)×100にて歩留まり(%)を算出し、以下の3段階で評価した。
◎:歩留まり99%以上
○:歩留まり96%以上99%未満
×:歩留まり96%未満
(2) Yield before and after hot forging For the Ni-based alloy block cooled and solidified as described above, the mass (a) before hot forging and defects caused by removal of oxide scale and indentation of oxide scale after hot forging The mass (b) after removal of was measured, and the yield (%) was calculated by (b / a) × 100, and evaluated in the following three stages.
:: Yield 99% or more ○: Yield 96% or more and less than 99% ×: Yield less than 96%
残存スケール面積及び熱間鍛造前後の歩留まりの評価結果を下記表2に示す。 The evaluation results of the residual scale area and the yield before and after hot forging are shown in Table 2 below.
上記表2から、炭素(C):0.001〜0.045%、ケイ素(Si):0.05〜1.00%、マンガン(Mn):0.05〜1.00%、リン(P):0.015%以下、硫黄(S):0.0030%以下、クロム(Cr):14〜24%、ニオブ(Nb):1.5〜4.0%、鉄(Fe):3〜25%、アルミニウム(Al):0.01〜0.20%、チタン(Ti):0.001〜0.20%、窒素(N):0.003〜0.020%、ホウ素(B):0.0010〜0.0100%、酸素(O):0.0002〜0.0020%、モリブデン(Mo)及び/またはタングステン(W):0.005〜0.25%、残部ニッケル(Ni)並びに不可避的不純物からなり、下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)
4.2×Mo+3.6×W+355×B≧0.60
の関係を満たす実施例1〜19のNi基合金では、残存スケール面積が○評価以上、熱間鍛造前後の歩留まりも○評価以上と、熱間鍛造において残存スケール面積を低減しつつ、熱間鍛造前後の歩留まりも向上した。従って、実施例1〜19のNi基合金では、熱間加工で生成した酸化スケールの押し込みによる合金表面の凹みや疵の発生を防止でき、熱間加工前後で優れた歩留まりを得ることができることが判明した。
From the above Table 2, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P ): 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 3 25%, aluminum (Al): 0.01 to 0.20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0.0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W): 0.005 to 0.25%, balance nickel (Ni) and It consists of unavoidable impurities, and in the following formula (wherein the notation of each element is the element in the Ni-based alloy Mean the content (% by mass) of
4.2 × Mo + 3.6 × W + 355 × B ≧ 0.60
In the Ni-based alloys of Examples 1 to 19 satisfying the following relationship, the residual scale area is ○ or more, the yield before and after hot forging is also ○ or more, while reducing the residual scale area in hot forging, hot forging The yield before and after was also improved. Therefore, in the Ni-based alloys of Examples 1 to 19, the generation of dents and wrinkles on the surface of the alloy due to pressing of the oxide scale formed by the hot working can be prevented, and an excellent yield can be obtained before and after the hot working found.
特に、上記式の値が1.00以上である実施例1、2、4、5、7、8、10〜17、19では、残存スケール面積率がより低減しつつ歩留まりがより向上し、上記式の値が1.15以上である実施例2、4、5、7、8、10〜17、19では、残存スケール面積率がさらに低減しつつ歩留まりがさらに向上した。また、上記式の値が1.40以上である実施例2、4、5、7、8、11〜15、17、19では、特に優れた残存スケール面積率と歩留まりを得ることができた。 In particular, in Examples 1, 2, 4, 5, 7, 8, 10 to 17 and 19 in which the value of the above equation is 1.00 or more, the yield is further improved while the residual scale area ratio is further reduced, In Examples 2, 4, 5, 7, 8, 10 to 17 and 19 in which the value of the equation is 1.15 or more, the yield was further improved while the residual scale area ratio was further reduced. Moreover, in Example 2, 4, 5, 7, 8, 11-15, 17 and 19 whose value of said Formula is 1.40 or more, the outstanding outstanding scale area ratio and the yield were able to be obtained.
これに対し、Bが0.0010%未満、Mo及びWが0.005%未満、上記式の値が0.60未満である比較例1、Bが0.0010%未満、上記式の値が0.60未満である比較例2、3、4、Mo及びWが0.005%未満、上記式の値が0.60未満である比較例5、上記式の値が0.60未満である比較例6、Mo及びWが0.005%未満である比較例7は、残存スケール面積が×評価、熱間鍛造前後の歩留まりも×評価であった。 On the other hand, Comparative Example 1 in which B is less than 0.0010%, Mo and W are less than 0.005%, and the value of the above equation is less than 0.60, B is less than 0.0010%, the value of the above equation is Comparative Examples 2 and 3 which are less than 0.60, Comparative Example 5 wherein the value of Mo and W is less than 0.005%, the value of the above formula is less than 0.60, the value of the above formula is less than 0.60 In Comparative Example 6 and Comparative Example 7 in which Mo and W are less than 0.005%, the residual scale area is evaluated as x, and the yield before and after hot forging is also evaluated as x.
Mo及びWが0.25%超である比較例8、Moが0.25%超である比較例9、Wが0.25%超である比較例10、Alが0.01%未満である比較例11、Tiが0.001%未満である比較例12、Bが0.0100%超である比較例13では、残存スケール面積が○評価以上であったが、熱間鍛造前後の歩留まりが×評価となり、熱間鍛造前後における歩留まりを得ることができなかった。 Comparative Example 8 in which Mo and W are more than 0.25%, Comparative Example 9 in which Mo is more than 0.25%, Comparative Example 10 in which W is more than 0.25%, and Al is less than 0.01% In Comparative Example 11, Comparative Example 12 in which Ti is less than 0.001%, and Comparative Example 13 in which B is more than 0.0100%, the residual scale area is ○ or more, but the yield before and after hot forging is It was evaluated as x, and the yield before and after hot forging could not be obtained.
本発明では、熱間加工工程で生成した酸化スケールの押し込みによる合金表面の凹みや疵の発生を防止でき、また熱間加工前後で優れた歩留まりを得ることができるので、広汎な分野で利用可能であり、例えば、要求品質が厳しい原子炉用材料として適用することができる。 In the present invention, since generation of dents and wrinkles on the surface of the alloy due to pressing of oxide scale formed in the hot working process can be prevented and excellent yield can be obtained before and after hot working, it can be used in a wide range of fields. For example, it can be applied as a material for nuclear reactors with strict requirements.
Claims (6)
下記式(式中、各元素の表記は、Ni基合金中における該元素の含有量(質量%)を意味する。)の関係を満たすことを特徴とするスケール剥離性に優れるNi基合金。
4.2×Mo+3.6×W+355×B≧0.60 % By mass, carbon (C): 0.001 to 0.045%, silicon (Si): 0.05 to 1.00%, manganese (Mn): 0.05 to 1.00%, phosphorus (P) 0.015% or less, sulfur (S): 0.0030% or less, chromium (Cr): 14 to 24%, niobium (Nb): 1.5 to 4.0%, iron (Fe): 3 to 25 %, Aluminum (Al): 0.01 to 0.20%, titanium (Ti): 0.001 to 0.20%, nitrogen (N): 0.003 to 0.020%, boron (B): 0 .0010 to 0.0100%, oxygen (O): 0.0002 to 0.0020%, molybdenum (Mo) and / or tungsten (W) respectively 0.005 to 0.25%, balance nickel (Ni) and It consists of unavoidable impurities,
A Ni-based alloy excellent in scale removability characterized by satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy).
4.2 × Mo + 3.6 × W + 355 × B ≧ 0.60
4.2×Mo+3.6×W+355×B≧1.00 The scale exfoliation according to claim 1 or 2, characterized by satisfying the relationship of the following formula (wherein the notation of each element means the content (mass%) of the element in the Ni-based alloy). Ni-based alloy with excellent properties.
4.2 × Mo + 3.6 × W + 355 × B ≧ 1.00
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019000319A JP6539795B1 (en) | 2019-01-04 | 2019-01-04 | Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019000319A JP6539795B1 (en) | 2019-01-04 | 2019-01-04 | Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6539795B1 true JP6539795B1 (en) | 2019-07-03 |
JP2020109199A JP2020109199A (en) | 2020-07-16 |
Family
ID=67144653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019000319A Active JP6539795B1 (en) | 2019-01-04 | 2019-01-04 | Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6539795B1 (en) |
-
2019
- 2019-01-04 JP JP2019000319A patent/JP6539795B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020109199A (en) | 2020-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920555B1 (en) | Austenitic stainless steel sheet and manufacturing method thereof | |
JP6075349B2 (en) | Ferritic stainless steel | |
JP6123964B1 (en) | Ferritic stainless steel | |
WO2022123812A1 (en) | Method for manufacturing austenitic stainless steel strip | |
JP6990337B1 (en) | Ni-based alloy with excellent surface properties and its manufacturing method | |
JP2019173087A (en) | Martensitic stainless hot rolled steel sheet, manufacturing method of disc brake rotor using the steel sheet | |
WO2020080104A1 (en) | Ferritic stainless steel | |
JP6142837B2 (en) | Stainless steel with a structure consisting of two phases: ferrite phase and martensite phase | |
JP6554243B1 (en) | Ni-based alloy and method for producing slab for hot rolling using Ni-based alloy | |
JP6539795B1 (en) | Ni-based alloy, Ni-based alloy ingot, slab for Ni-based alloy hot rolling and Ni-based alloy sheet | |
JP6539794B1 (en) | Ni-based alloy and Ni-based alloy sheet | |
JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
JP2010174307A (en) | Steel sheet for die quenching | |
JP2011001564A (en) | Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same | |
JP2023553158A (en) | Steel material with excellent laser cutting characteristics and its manufacturing method | |
JP6146401B2 (en) | Ferritic stainless steel sheet | |
CN111004981A (en) | XL3303-33 bar and production process thereof | |
JP7009666B1 (en) | Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance | |
TW201934778A (en) | Ferritic stainless steel | |
JP7334700B2 (en) | Thick steel plate and its manufacturing method | |
JP6146400B2 (en) | Ferritic stainless steel sheet | |
JP6954976B2 (en) | High oxidation resistance Ni-Cr-Al alloy with excellent laser cutting properties and its manufacturing method | |
JP7261345B1 (en) | Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method | |
JP3959671B2 (en) | High-strength Fe-Cr-Ni-Al-based ferrite alloy with excellent oxidation resistance and alloy plate using the same | |
JP2010174303A (en) | Steel sheet for die quenching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190124 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190124 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190603 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6539795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |